xref: /linux/drivers/phy/rockchip/phy-rockchip-inno-dsidphy.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
4  *
5  * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/kernel.h>
10 #include <linux/clk.h>
11 #include <linux/iopoll.h>
12 #include <linux/clk-provider.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/time64.h>
22 
23 #include <linux/phy/phy.h>
24 #include <linux/phy/phy-mipi-dphy.h>
25 
26 #define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
27 
28 /*
29  * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
30  * is the first address, the other from the bit4 to bit0 is the second address.
31  * when you configure the registers, you must set both of them. The Clock Lane
32  * and Data Lane use the same registers with the same second address, but the
33  * first address is different.
34  */
35 #define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
36 #define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
37 #define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
38 					 SECOND_ADDRESS(second))
39 
40 /* Analog Register Part: reg00 */
41 #define BANDGAP_POWER_MASK			BIT(7)
42 #define BANDGAP_POWER_DOWN			BIT(7)
43 #define BANDGAP_POWER_ON			0
44 #define LANE_EN_MASK				GENMASK(6, 2)
45 #define LANE_EN_CK				BIT(6)
46 #define LANE_EN_3				BIT(5)
47 #define LANE_EN_2				BIT(4)
48 #define LANE_EN_1				BIT(3)
49 #define LANE_EN_0				BIT(2)
50 #define POWER_WORK_MASK				GENMASK(1, 0)
51 #define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
52 #define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
53 /* Analog Register Part: reg01 */
54 #define REG_SYNCRST_MASK			BIT(2)
55 #define REG_SYNCRST_RESET			BIT(2)
56 #define REG_SYNCRST_NORMAL			0
57 #define REG_LDOPD_MASK				BIT(1)
58 #define REG_LDOPD_POWER_DOWN			BIT(1)
59 #define REG_LDOPD_POWER_ON			0
60 #define REG_PLLPD_MASK				BIT(0)
61 #define REG_PLLPD_POWER_DOWN			BIT(0)
62 #define REG_PLLPD_POWER_ON			0
63 /* Analog Register Part: reg03 */
64 #define REG_FBDIV_HI_MASK			BIT(5)
65 #define REG_FBDIV_HI(x)				UPDATE((x >> 8), 5, 5)
66 #define REG_PREDIV_MASK				GENMASK(4, 0)
67 #define REG_PREDIV(x)				UPDATE(x, 4, 0)
68 /* Analog Register Part: reg04 */
69 #define REG_FBDIV_LO_MASK			GENMASK(7, 0)
70 #define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
71 /* Analog Register Part: reg05 */
72 #define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
73 #define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
74 #define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
75 #define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
76 /* Analog Register Part: reg06 */
77 #define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
78 #define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
79 #define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
80 #define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
81 /* Analog Register Part: reg07 */
82 #define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
83 #define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
84 #define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
85 #define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
86 /* Analog Register Part: reg08 */
87 #define PLL_POST_DIV_ENABLE_MASK		BIT(5)
88 #define PLL_POST_DIV_ENABLE			BIT(5)
89 #define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
90 #define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
91 #define SAMPLE_CLOCK_DIRECTION_FORWARD		0
92 #define LOWFRE_EN_MASK				BIT(5)
93 #define PLL_OUTPUT_FREQUENCY_DIV_BY_1		0
94 #define PLL_OUTPUT_FREQUENCY_DIV_BY_2		1
95 /* Analog Register Part: reg0b */
96 #define CLOCK_LANE_VOD_RANGE_SET_MASK		GENMASK(3, 0)
97 #define CLOCK_LANE_VOD_RANGE_SET(x)		UPDATE(x, 3, 0)
98 #define VOD_MIN_RANGE				0x1
99 #define VOD_MID_RANGE				0x3
100 #define VOD_BIG_RANGE				0x7
101 #define VOD_MAX_RANGE				0xf
102 /* Analog Register Part: reg1E */
103 #define PLL_MODE_SEL_MASK			GENMASK(6, 5)
104 #define PLL_MODE_SEL_LVDS_MODE			0
105 #define PLL_MODE_SEL_MIPI_MODE			BIT(5)
106 /* Digital Register Part: reg00 */
107 #define REG_DIG_RSTN_MASK			BIT(0)
108 #define REG_DIG_RSTN_NORMAL			BIT(0)
109 #define REG_DIG_RSTN_RESET			0
110 /* Digital Register Part: reg01 */
111 #define INVERT_TXCLKESC_MASK			BIT(1)
112 #define INVERT_TXCLKESC_ENABLE			BIT(1)
113 #define INVERT_TXCLKESC_DISABLE			0
114 #define INVERT_TXBYTECLKHS_MASK			BIT(0)
115 #define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
116 #define INVERT_TXBYTECLKHS_DISABLE		0
117 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
118 #define T_LPX_CNT_MASK				GENMASK(5, 0)
119 #define T_LPX_CNT(x)				UPDATE(x, 5, 0)
120 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
121 #define T_HS_ZERO_CNT_HI_MASK			BIT(7)
122 #define T_HS_ZERO_CNT_HI(x)			UPDATE(x, 7, 7)
123 #define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
124 #define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
125 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
126 #define T_HS_ZERO_CNT_LO_MASK			GENMASK(5, 0)
127 #define T_HS_ZERO_CNT_LO(x)			UPDATE(x, 5, 0)
128 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
129 #define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
130 #define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
131 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
132 #define T_HS_EXIT_CNT_LO_MASK			GENMASK(4, 0)
133 #define T_HS_EXIT_CNT_LO(x)			UPDATE(x, 4, 0)
134 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
135 #define T_CLK_POST_CNT_LO_MASK			GENMASK(3, 0)
136 #define T_CLK_POST_CNT_LO(x)			UPDATE(x, 3, 0)
137 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
138 #define LPDT_TX_PPI_SYNC_MASK			BIT(2)
139 #define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
140 #define LPDT_TX_PPI_SYNC_DISABLE		0
141 #define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
142 #define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
143 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
144 #define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
145 #define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
146 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
147 #define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
148 #define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
149 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
150 #define T_CLK_POST_CNT_HI_MASK			GENMASK(7, 6)
151 #define T_CLK_POST_CNT_HI(x)			UPDATE(x, 7, 6)
152 #define T_TA_GO_CNT_MASK			GENMASK(5, 0)
153 #define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
154 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
155 #define T_HS_EXIT_CNT_HI_MASK			BIT(6)
156 #define T_HS_EXIT_CNT_HI(x)			UPDATE(x, 6, 6)
157 #define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
158 #define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
159 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
160 #define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
161 #define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
162 /* LVDS Register Part: reg00 */
163 #define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
164 #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
165 #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
166 /* LVDS Register Part: reg01 */
167 #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
168 #define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
169 #define LVDS_DIGITAL_INTERNAL_DISABLE		0
170 /* LVDS Register Part: reg03 */
171 #define MODE_ENABLE_MASK			GENMASK(2, 0)
172 #define TTL_MODE_ENABLE				BIT(2)
173 #define LVDS_MODE_ENABLE			BIT(1)
174 #define MIPI_MODE_ENABLE			BIT(0)
175 /* LVDS Register Part: reg0b */
176 #define LVDS_LANE_EN_MASK			GENMASK(7, 3)
177 #define LVDS_DATA_LANE0_EN			BIT(7)
178 #define LVDS_DATA_LANE1_EN			BIT(6)
179 #define LVDS_DATA_LANE2_EN			BIT(5)
180 #define LVDS_DATA_LANE3_EN			BIT(4)
181 #define LVDS_CLK_LANE_EN			BIT(3)
182 #define LVDS_PLL_POWER_MASK			BIT(2)
183 #define LVDS_PLL_POWER_OFF			BIT(2)
184 #define LVDS_PLL_POWER_ON			0
185 #define LVDS_BANDGAP_POWER_MASK			BIT(0)
186 #define LVDS_BANDGAP_POWER_DOWN			BIT(0)
187 #define LVDS_BANDGAP_POWER_ON			0
188 
189 #define DSI_PHY_RSTZ		0xa0
190 #define PHY_ENABLECLK		BIT(2)
191 #define DSI_PHY_STATUS		0xb0
192 #define PHY_LOCK		BIT(0)
193 
194 enum phy_max_rate {
195 	MAX_1GHZ,
196 	MAX_2_5GHZ,
197 };
198 
199 struct inno_video_phy_plat_data {
200 	const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
201 	const unsigned int num_timings;
202 	enum phy_max_rate max_rate;
203 };
204 
205 struct inno_dsidphy {
206 	struct device *dev;
207 	struct clk *ref_clk;
208 	struct clk *pclk_phy;
209 	struct clk *pclk_host;
210 	const struct inno_video_phy_plat_data *pdata;
211 	void __iomem *phy_base;
212 	void __iomem *host_base;
213 	struct reset_control *rst;
214 	enum phy_mode mode;
215 	struct phy_configure_opts_mipi_dphy dphy_cfg;
216 
217 	struct clk *pll_clk;
218 	struct {
219 		struct clk_hw hw;
220 		u8 prediv;
221 		u16 fbdiv;
222 		unsigned long rate;
223 	} pll;
224 };
225 
226 enum {
227 	REGISTER_PART_ANALOG,
228 	REGISTER_PART_DIGITAL,
229 	REGISTER_PART_CLOCK_LANE,
230 	REGISTER_PART_DATA0_LANE,
231 	REGISTER_PART_DATA1_LANE,
232 	REGISTER_PART_DATA2_LANE,
233 	REGISTER_PART_DATA3_LANE,
234 	REGISTER_PART_LVDS,
235 };
236 
237 struct inno_mipi_dphy_timing {
238 	unsigned long rate;
239 	u8 lpx;
240 	u8 hs_prepare;
241 	u8 clk_lane_hs_zero;
242 	u8 data_lane_hs_zero;
243 	u8 hs_trail;
244 };
245 
246 static const
247 struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
248 	{ 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
249 	{ 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
250 	{ 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
251 	{ 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
252 	{ 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
253 	{ 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
254 	{ 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
255 	{ 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
256 	{ 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
257 	{ 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
258 	{1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
259 };
260 
261 static const
262 struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
263 	{ 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
264 	{ 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
265 	{ 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
266 	{ 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
267 	{ 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
268 	{ 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
269 	{ 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
270 	{ 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
271 	{ 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
272 	{ 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
273 	{1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
274 	{1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
275 	{1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
276 	{1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
277 	{1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
278 	{2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
279 	{2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
280 	{2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
281 	{2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
282 };
283 
284 static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
285 {
286 	return container_of(hw, struct inno_dsidphy, pll.hw);
287 }
288 
289 static void phy_update_bits(struct inno_dsidphy *inno,
290 			    u8 first, u8 second, u8 mask, u8 val)
291 {
292 	u32 reg = PHY_REG(first, second) << 2;
293 	unsigned int tmp, orig;
294 
295 	orig = readl(inno->phy_base + reg);
296 	tmp = orig & ~mask;
297 	tmp |= val & mask;
298 	writel(tmp, inno->phy_base + reg);
299 }
300 
301 static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
302 						unsigned long rate)
303 {
304 	unsigned long prate = clk_get_rate(inno->ref_clk);
305 	unsigned long best_freq = 0;
306 	unsigned long fref, fout;
307 	u8 min_prediv, max_prediv;
308 	u8 _prediv, best_prediv = 1;
309 	u16 _fbdiv, best_fbdiv = 1;
310 	u32 min_delta = UINT_MAX;
311 
312 	/*
313 	 * The PLL output frequency can be calculated using a simple formula:
314 	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
315 	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
316 	 */
317 	fref = prate / 2;
318 	if (rate > 1000000000UL)
319 		fout = 1000000000UL;
320 	else
321 		fout = rate;
322 
323 	/* 5Mhz < Fref / prediv < 40MHz */
324 	min_prediv = DIV_ROUND_UP(fref, 40000000);
325 	max_prediv = fref / 5000000;
326 
327 	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
328 		u64 tmp;
329 		u32 delta;
330 
331 		tmp = (u64)fout * _prediv;
332 		do_div(tmp, fref);
333 		_fbdiv = tmp;
334 
335 		/*
336 		 * The possible settings of feedback divider are
337 		 * 12, 13, 14, 16, ~ 511
338 		 */
339 		if (_fbdiv == 15)
340 			continue;
341 
342 		if (_fbdiv < 12 || _fbdiv > 511)
343 			continue;
344 
345 		tmp = (u64)_fbdiv * fref;
346 		do_div(tmp, _prediv);
347 
348 		delta = abs(fout - tmp);
349 		if (!delta) {
350 			best_prediv = _prediv;
351 			best_fbdiv = _fbdiv;
352 			best_freq = tmp;
353 			break;
354 		} else if (delta < min_delta) {
355 			best_prediv = _prediv;
356 			best_fbdiv = _fbdiv;
357 			best_freq = tmp;
358 			min_delta = delta;
359 		}
360 	}
361 
362 	if (best_freq) {
363 		inno->pll.prediv = best_prediv;
364 		inno->pll.fbdiv = best_fbdiv;
365 		inno->pll.rate = best_freq;
366 	}
367 
368 	return best_freq;
369 }
370 
371 static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
372 {
373 	struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
374 	const struct inno_mipi_dphy_timing *timings;
375 	u32 t_txbyteclkhs, t_txclkesc;
376 	u32 txbyteclkhs, txclkesc, esc_clk_div;
377 	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
378 	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
379 	unsigned int i;
380 
381 	timings = inno->pdata->inno_mipi_dphy_timing_table;
382 
383 	inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
384 
385 	/* Select MIPI mode */
386 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
387 			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
388 	/* Configure PLL */
389 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
390 			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
391 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
392 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
393 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
394 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
395 	if (inno->pdata->max_rate == MAX_2_5GHZ) {
396 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
397 				PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
398 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
399 				CLOCK_LANE_VOD_RANGE_SET_MASK,
400 				CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
401 	}
402 	/* Enable PLL and LDO */
403 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
404 			REG_LDOPD_MASK | REG_PLLPD_MASK,
405 			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
406 	/* Reset analog */
407 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
408 			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
409 	udelay(1);
410 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
411 			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
412 	/* Reset digital */
413 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
414 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
415 	udelay(1);
416 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
417 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
418 
419 	txbyteclkhs = inno->pll.rate / 8;
420 	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
421 
422 	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
423 	txclkesc = txbyteclkhs / esc_clk_div;
424 	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
425 
426 	/*
427 	 * The value of counter for HS Ths-exit
428 	 * Ths-exit = Tpin_txbyteclkhs * value
429 	 */
430 	hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
431 	/*
432 	 * The value of counter for HS Tclk-post
433 	 * Tclk-post = Tpin_txbyteclkhs * value
434 	 */
435 	clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
436 	/*
437 	 * The value of counter for HS Tclk-pre
438 	 * Tclk-pre = Tpin_txbyteclkhs * value
439 	 */
440 	clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
441 
442 	/*
443 	 * The value of counter for HS Tta-go
444 	 * Tta-go for turnaround
445 	 * Tta-go = Ttxclkesc * value
446 	 */
447 	ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
448 	/*
449 	 * The value of counter for HS Tta-sure
450 	 * Tta-sure for turnaround
451 	 * Tta-sure = Ttxclkesc * value
452 	 */
453 	ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
454 	/*
455 	 * The value of counter for HS Tta-wait
456 	 * Tta-wait for turnaround
457 	 * Tta-wait = Ttxclkesc * value
458 	 */
459 	ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
460 
461 	for (i = 0; i < inno->pdata->num_timings; i++)
462 		if (inno->pll.rate <= timings[i].rate)
463 			break;
464 
465 	if (i == inno->pdata->num_timings)
466 		--i;
467 
468 	/*
469 	 * The value of counter for HS Tlpx Time
470 	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
471 	 */
472 	if (inno->pdata->max_rate == MAX_1GHZ) {
473 		lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
474 		if (lpx >= 2)
475 			lpx -= 2;
476 	} else
477 		lpx = timings[i].lpx;
478 
479 	hs_prepare = timings[i].hs_prepare;
480 	hs_trail = timings[i].hs_trail;
481 	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
482 	data_lane_hs_zero = timings[i].data_lane_hs_zero;
483 	wakeup = 0x3ff;
484 
485 	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
486 		if (i == REGISTER_PART_CLOCK_LANE)
487 			hs_zero = clk_lane_hs_zero;
488 		else
489 			hs_zero = data_lane_hs_zero;
490 
491 		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
492 				T_LPX_CNT(lpx));
493 		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
494 				T_HS_PREPARE_CNT(hs_prepare));
495 		if (inno->pdata->max_rate == MAX_2_5GHZ)
496 			phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
497 					T_HS_ZERO_CNT_HI(hs_zero >> 6));
498 		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
499 				T_HS_ZERO_CNT_LO(hs_zero));
500 		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
501 				T_HS_TRAIL_CNT(hs_trail));
502 		if (inno->pdata->max_rate == MAX_2_5GHZ)
503 			phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
504 					T_HS_EXIT_CNT_HI(hs_exit >> 5));
505 		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
506 				T_HS_EXIT_CNT_LO(hs_exit));
507 		if (inno->pdata->max_rate == MAX_2_5GHZ)
508 			phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
509 					T_CLK_POST_CNT_HI(clk_post >> 4));
510 		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
511 				T_CLK_POST_CNT_LO(clk_post));
512 		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
513 				T_CLK_PRE_CNT(clk_pre));
514 		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
515 				T_WAKEUP_CNT_HI(wakeup >> 8));
516 		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
517 				T_WAKEUP_CNT_LO(wakeup));
518 		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
519 				T_TA_GO_CNT(ta_go));
520 		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
521 				T_TA_SURE_CNT(ta_sure));
522 		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
523 				T_TA_WAIT_CNT(ta_wait));
524 	}
525 
526 	/* Enable all lanes on analog part */
527 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
528 			LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
529 			LANE_EN_1 | LANE_EN_0);
530 }
531 
532 static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
533 {
534 	u8 prediv = 2;
535 	u16 fbdiv = 28;
536 
537 	/* Sample clock reverse direction */
538 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
539 			SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK,
540 			SAMPLE_CLOCK_DIRECTION_REVERSE |
541 			PLL_OUTPUT_FREQUENCY_DIV_BY_1);
542 
543 	/* Select LVDS mode */
544 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
545 			MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
546 	/* Configure PLL */
547 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
548 			REG_PREDIV_MASK, REG_PREDIV(prediv));
549 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
550 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
551 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
552 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
553 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
554 	/* Enable PLL and Bandgap */
555 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
556 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
557 			LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
558 
559 	msleep(20);
560 
561 	/* Select PLL mode */
562 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e,
563 			PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE);
564 
565 	/* Reset LVDS digital logic */
566 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
567 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
568 			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
569 	udelay(1);
570 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
571 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
572 			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
573 	/* Enable LVDS digital logic */
574 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
575 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
576 			LVDS_DIGITAL_INTERNAL_ENABLE);
577 	/* Enable LVDS analog driver */
578 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
579 			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
580 			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
581 			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
582 }
583 
584 static int inno_dsidphy_power_on(struct phy *phy)
585 {
586 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
587 
588 	clk_prepare_enable(inno->pclk_phy);
589 	clk_prepare_enable(inno->ref_clk);
590 	pm_runtime_get_sync(inno->dev);
591 
592 	/* Bandgap power on */
593 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
594 			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
595 	/* Enable power work */
596 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
597 			POWER_WORK_MASK, POWER_WORK_ENABLE);
598 
599 	switch (inno->mode) {
600 	case PHY_MODE_MIPI_DPHY:
601 		inno_dsidphy_mipi_mode_enable(inno);
602 		break;
603 	case PHY_MODE_LVDS:
604 		inno_dsidphy_lvds_mode_enable(inno);
605 		break;
606 	default:
607 		return -EINVAL;
608 	}
609 
610 	return 0;
611 }
612 
613 static int inno_dsidphy_power_off(struct phy *phy)
614 {
615 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
616 
617 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
618 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
619 			REG_LDOPD_MASK | REG_PLLPD_MASK,
620 			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
621 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
622 			POWER_WORK_MASK, POWER_WORK_DISABLE);
623 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
624 			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
625 
626 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
627 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
628 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
629 			LVDS_DIGITAL_INTERNAL_DISABLE);
630 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
631 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
632 			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
633 
634 	pm_runtime_put(inno->dev);
635 	clk_disable_unprepare(inno->ref_clk);
636 	clk_disable_unprepare(inno->pclk_phy);
637 
638 	return 0;
639 }
640 
641 static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
642 				   int submode)
643 {
644 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
645 
646 	switch (mode) {
647 	case PHY_MODE_MIPI_DPHY:
648 	case PHY_MODE_LVDS:
649 		inno->mode = mode;
650 		break;
651 	default:
652 		return -EINVAL;
653 	}
654 
655 	return 0;
656 }
657 
658 static int inno_dsidphy_configure(struct phy *phy,
659 				  union phy_configure_opts *opts)
660 {
661 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
662 	int ret;
663 
664 	if (inno->mode != PHY_MODE_MIPI_DPHY)
665 		return -EINVAL;
666 
667 	ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
668 	if (ret)
669 		return ret;
670 
671 	memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
672 
673 	return 0;
674 }
675 
676 static const struct phy_ops inno_dsidphy_ops = {
677 	.configure = inno_dsidphy_configure,
678 	.set_mode = inno_dsidphy_set_mode,
679 	.power_on = inno_dsidphy_power_on,
680 	.power_off = inno_dsidphy_power_off,
681 	.owner = THIS_MODULE,
682 };
683 
684 static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
685 	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
686 	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
687 	.max_rate = MAX_1GHZ,
688 };
689 
690 static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
691 	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
692 	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
693 	.max_rate = MAX_2_5GHZ,
694 };
695 
696 static int inno_dsidphy_probe(struct platform_device *pdev)
697 {
698 	struct device *dev = &pdev->dev;
699 	struct inno_dsidphy *inno;
700 	struct phy_provider *phy_provider;
701 	struct phy *phy;
702 	int ret;
703 
704 	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
705 	if (!inno)
706 		return -ENOMEM;
707 
708 	inno->dev = dev;
709 	inno->pdata = of_device_get_match_data(inno->dev);
710 	platform_set_drvdata(pdev, inno);
711 
712 	inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
713 	if (IS_ERR(inno->phy_base))
714 		return PTR_ERR(inno->phy_base);
715 
716 	inno->ref_clk = devm_clk_get(dev, "ref");
717 	if (IS_ERR(inno->ref_clk)) {
718 		ret = PTR_ERR(inno->ref_clk);
719 		dev_err(dev, "failed to get ref clock: %d\n", ret);
720 		return ret;
721 	}
722 
723 	inno->pclk_phy = devm_clk_get(dev, "pclk");
724 	if (IS_ERR(inno->pclk_phy)) {
725 		ret = PTR_ERR(inno->pclk_phy);
726 		dev_err(dev, "failed to get phy pclk: %d\n", ret);
727 		return ret;
728 	}
729 
730 	inno->rst = devm_reset_control_get(dev, "apb");
731 	if (IS_ERR(inno->rst)) {
732 		ret = PTR_ERR(inno->rst);
733 		dev_err(dev, "failed to get system reset control: %d\n", ret);
734 		return ret;
735 	}
736 
737 	phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
738 	if (IS_ERR(phy)) {
739 		ret = PTR_ERR(phy);
740 		dev_err(dev, "failed to create phy: %d\n", ret);
741 		return ret;
742 	}
743 
744 	phy_set_drvdata(phy, inno);
745 
746 	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
747 	if (IS_ERR(phy_provider)) {
748 		ret = PTR_ERR(phy_provider);
749 		dev_err(dev, "failed to register phy provider: %d\n", ret);
750 		return ret;
751 	}
752 
753 	pm_runtime_enable(dev);
754 
755 	return 0;
756 }
757 
758 static int inno_dsidphy_remove(struct platform_device *pdev)
759 {
760 	struct inno_dsidphy *inno = platform_get_drvdata(pdev);
761 
762 	pm_runtime_disable(inno->dev);
763 
764 	return 0;
765 }
766 
767 static const struct of_device_id inno_dsidphy_of_match[] = {
768 	{
769 		.compatible = "rockchip,px30-dsi-dphy",
770 		.data = &max_1ghz_video_phy_plat_data,
771 	}, {
772 		.compatible = "rockchip,rk3128-dsi-dphy",
773 		.data = &max_1ghz_video_phy_plat_data,
774 	}, {
775 		.compatible = "rockchip,rk3368-dsi-dphy",
776 		.data = &max_1ghz_video_phy_plat_data,
777 	}, {
778 		.compatible = "rockchip,rk3568-dsi-dphy",
779 		.data = &max_2_5ghz_video_phy_plat_data,
780 	},
781 	{}
782 };
783 MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
784 
785 static struct platform_driver inno_dsidphy_driver = {
786 	.driver = {
787 		.name = "inno-dsidphy",
788 		.of_match_table	= of_match_ptr(inno_dsidphy_of_match),
789 	},
790 	.probe = inno_dsidphy_probe,
791 	.remove = inno_dsidphy_remove,
792 };
793 module_platform_driver(inno_dsidphy_driver);
794 
795 MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
796 MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
797 MODULE_LICENSE("GPL v2");
798