1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * AppliedMicro X-Gene Multi-purpose PHY driver 4 * 5 * Copyright (c) 2014, Applied Micro Circuits Corporation 6 * Author: Loc Ho <lho@apm.com> 7 * Tuan Phan <tphan@apm.com> 8 * Suman Tripathi <stripathi@apm.com> 9 * 10 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes. 11 * The first PLL clock macro is used for internal reference clock. The second 12 * PLL clock macro is used to generate the clock for the PHY. This driver 13 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to 14 * operate according to the mode of operation. The first PLL CMU is only 15 * required if internal clock is enabled. 16 * 17 * Logical Layer Out Of HW module units: 18 * 19 * ----------------- 20 * | Internal | |------| 21 * | Ref PLL CMU |----| | ------------- --------- 22 * ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes| 23 * | | | | --------- 24 * External Clock ------| | ------------- 25 * |------| 26 * 27 * The Ref PLL CMU CSR (Configuration System Registers) is accessed 28 * indirectly from the SDS offset at 0x2000. It is only required for 29 * internal reference clock. 30 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000. 31 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400. 32 * 33 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP 34 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP, 35 * it is located outside the PHY IP. This is the case for the PHY located 36 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required 37 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled. 38 * 39 * Currently, this driver only supports Gen3 SATA mode with external clock. 40 */ 41 #include <linux/module.h> 42 #include <linux/of.h> 43 #include <linux/platform_device.h> 44 #include <linux/io.h> 45 #include <linux/delay.h> 46 #include <linux/phy/phy.h> 47 #include <linux/clk.h> 48 49 /* Max 2 lanes per a PHY unit */ 50 #define MAX_LANE 2 51 52 /* Register offset inside the PHY */ 53 #define SERDES_PLL_INDIRECT_OFFSET 0x0000 54 #define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000 55 #define SERDES_INDIRECT_OFFSET 0x0400 56 #define SERDES_LANE_STRIDE 0x0200 57 58 /* Some default Serdes parameters */ 59 #define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e } 60 #define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 } 61 #define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa } 62 #define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 } 63 #define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 } 64 #define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 } 65 #define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 } 66 #define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa } 67 68 #define SATA_SPD_SEL_GEN3 0x7 69 #define SATA_SPD_SEL_GEN2 0x3 70 #define SATA_SPD_SEL_GEN1 0x1 71 72 #define SSC_DISABLE 0 73 #define SSC_ENABLE 1 74 75 #define FBDIV_VAL_50M 0x77 76 #define REFDIV_VAL_50M 0x1 77 #define FBDIV_VAL_100M 0x3B 78 #define REFDIV_VAL_100M 0x0 79 80 /* SATA Clock/Reset CSR */ 81 #define SATACLKENREG 0x00000000 82 #define SATA0_CORE_CLKEN 0x00000002 83 #define SATA1_CORE_CLKEN 0x00000004 84 #define SATASRESETREG 0x00000004 85 #define SATA_MEM_RESET_MASK 0x00000020 86 #define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5) 87 #define SATA_SDS_RESET_MASK 0x00000004 88 #define SATA_CSR_RESET_MASK 0x00000001 89 #define SATA_CORE_RESET_MASK 0x00000002 90 #define SATA_PMCLK_RESET_MASK 0x00000010 91 #define SATA_PCLK_RESET_MASK 0x00000008 92 93 /* SDS CSR used for PHY Indirect access */ 94 #define SATA_ENET_SDS_PCS_CTL0 0x00000000 95 #define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \ 96 (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000)) 97 #define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \ 98 (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000)) 99 #define SATA_ENET_SDS_CTL0 0x0000000c 100 #define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \ 101 (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff)) 102 #define SATA_ENET_SDS_CTL1 0x00000010 103 #define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \ 104 (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f)) 105 #define SATA_ENET_SDS_RST_CTL 0x00000024 106 #define SATA_ENET_SDS_IND_CMD_REG 0x0000003c 107 #define CFG_IND_WR_CMD_MASK 0x00000001 108 #define CFG_IND_RD_CMD_MASK 0x00000002 109 #define CFG_IND_CMD_DONE_MASK 0x00000004 110 #define CFG_IND_ADDR_SET(dst, src) \ 111 (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0)) 112 #define SATA_ENET_SDS_IND_RDATA_REG 0x00000040 113 #define SATA_ENET_SDS_IND_WDATA_REG 0x00000044 114 #define SATA_ENET_CLK_MACRO_REG 0x0000004c 115 #define I_RESET_B_SET(dst, src) \ 116 (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001)) 117 #define I_PLL_FBDIV_SET(dst, src) \ 118 (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000)) 119 #define I_CUSTOMEROV_SET(dst, src) \ 120 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80)) 121 #define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30) 122 #define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31) 123 124 /* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */ 125 #define CMU_REG0 0x00000 126 #define CMU_REG0_PLL_REF_SEL_MASK 0x00002000 127 #define CMU_REG0_PLL_REF_SEL_SET(dst, src) \ 128 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000)) 129 #define CMU_REG0_PDOWN_MASK 0x00004000 130 #define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \ 131 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0)) 132 #define CMU_REG1 0x00002 133 #define CMU_REG1_PLL_CP_SET(dst, src) \ 134 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00)) 135 #define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \ 136 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 137 #define CMU_REG1_PLL_CP_SEL_SET(dst, src) \ 138 (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0)) 139 #define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001 140 #define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \ 141 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) 142 #define CMU_REG2 0x00004 143 #define CMU_REG2_PLL_REFDIV_SET(dst, src) \ 144 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) 145 #define CMU_REG2_PLL_LFRES_SET(dst, src) \ 146 (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e)) 147 #define CMU_REG2_PLL_FBDIV_SET(dst, src) \ 148 (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0)) 149 #define CMU_REG3 0x00006 150 #define CMU_REG3_VCOVARSEL_SET(dst, src) \ 151 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f)) 152 #define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \ 153 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) 154 #define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \ 155 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) 156 #define CMU_REG4 0x00008 157 #define CMU_REG5 0x0000a 158 #define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \ 159 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) 160 #define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \ 161 (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e)) 162 #define CMU_REG5_PLL_LFCAP_SET(dst, src) \ 163 (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000)) 164 #define CMU_REG5_PLL_RESETB_MASK 0x00000001 165 #define CMU_REG6 0x0000c 166 #define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \ 167 (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600)) 168 #define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \ 169 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) 170 #define CMU_REG7 0x0000e 171 #define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14) 172 #define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10) 173 #define CMU_REG8 0x00010 174 #define CMU_REG9 0x00012 175 #define CMU_REG9_WORD_LEN_8BIT 0x000 176 #define CMU_REG9_WORD_LEN_10BIT 0x001 177 #define CMU_REG9_WORD_LEN_16BIT 0x002 178 #define CMU_REG9_WORD_LEN_20BIT 0x003 179 #define CMU_REG9_WORD_LEN_32BIT 0x004 180 #define CMU_REG9_WORD_LEN_40BIT 0x005 181 #define CMU_REG9_WORD_LEN_64BIT 0x006 182 #define CMU_REG9_WORD_LEN_66BIT 0x007 183 #define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \ 184 (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380)) 185 #define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \ 186 (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070)) 187 #define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \ 188 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 189 #define CMU_REG9_VBG_BYPASSB_SET(dst, src) \ 190 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) 191 #define CMU_REG9_IGEN_BYPASS_SET(dst, src) \ 192 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 193 #define CMU_REG10 0x00014 194 #define CMU_REG10_VREG_REFSEL_SET(dst, src) \ 195 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) 196 #define CMU_REG11 0x00016 197 #define CMU_REG12 0x00018 198 #define CMU_REG12_STATE_DELAY9_SET(dst, src) \ 199 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) 200 #define CMU_REG13 0x0001a 201 #define CMU_REG14 0x0001c 202 #define CMU_REG15 0x0001e 203 #define CMU_REG16 0x00020 204 #define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001 205 #define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002 206 #define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \ 207 (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c)) 208 #define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \ 209 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) 210 #define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \ 211 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) 212 #define CMU_REG17 0x00022 213 #define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \ 214 (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00)) 215 #define CMU_REG17_RESERVED_7_SET(dst, src) \ 216 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0)) 217 #define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000 218 #define CMU_REG18 0x00024 219 #define CMU_REG19 0x00026 220 #define CMU_REG20 0x00028 221 #define CMU_REG21 0x0002a 222 #define CMU_REG22 0x0002c 223 #define CMU_REG23 0x0002e 224 #define CMU_REG24 0x00030 225 #define CMU_REG25 0x00032 226 #define CMU_REG26 0x00034 227 #define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \ 228 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) 229 #define CMU_REG27 0x00036 230 #define CMU_REG28 0x00038 231 #define CMU_REG29 0x0003a 232 #define CMU_REG30 0x0003c 233 #define CMU_REG30_LOCK_COUNT_SET(dst, src) \ 234 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) 235 #define CMU_REG30_PCIE_MODE_SET(dst, src) \ 236 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 237 #define CMU_REG31 0x0003e 238 #define CMU_REG32 0x00040 239 #define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000 240 #define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \ 241 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) 242 #define CMU_REG32_IREF_ADJ_SET(dst, src) \ 243 (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180)) 244 #define CMU_REG33 0x00042 245 #define CMU_REG34 0x00044 246 #define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \ 247 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f)) 248 #define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \ 249 (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00)) 250 #define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \ 251 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) 252 #define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \ 253 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000)) 254 #define CMU_REG35 0x00046 255 #define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \ 256 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00)) 257 #define CMU_REG36 0x00048 258 #define CMU_REG36_PLL_SSC_EN_SET(dst, src) \ 259 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010)) 260 #define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \ 261 (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0)) 262 #define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \ 263 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) 264 #define CMU_REG37 0x0004a 265 #define CMU_REG38 0x0004c 266 #define CMU_REG39 0x0004e 267 268 /* PHY lane CSR accessing from SDS indirectly */ 269 #define RXTX_REG0 0x000 270 #define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \ 271 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 272 #define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \ 273 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) 274 #define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \ 275 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) 276 #define RXTX_REG1 0x002 277 #define RXTX_REG1_RXACVCM_SET(dst, src) \ 278 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000)) 279 #define RXTX_REG1_CTLE_EQ_SET(dst, src) \ 280 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80)) 281 #define RXTX_REG1_RXVREG1_SET(dst, src) \ 282 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060)) 283 #define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \ 284 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) 285 #define RXTX_REG2 0x004 286 #define RXTX_REG2_VTT_ENA_SET(dst, src) \ 287 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) 288 #define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \ 289 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) 290 #define RXTX_REG2_VTT_SEL_SET(dst, src) \ 291 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0)) 292 #define RXTX_REG4 0x008 293 #define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040 294 #define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \ 295 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) 296 #define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \ 297 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) 298 #define RXTX_REG5 0x00a 299 #define RXTX_REG5_TX_CN1_SET(dst, src) \ 300 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 301 #define RXTX_REG5_TX_CP1_SET(dst, src) \ 302 (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0)) 303 #define RXTX_REG5_TX_CN2_SET(dst, src) \ 304 (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f)) 305 #define RXTX_REG6 0x00c 306 #define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \ 307 (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780)) 308 #define RXTX_REG6_TXAMP_ENA_SET(dst, src) \ 309 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) 310 #define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \ 311 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) 312 #define RXTX_REG6_TX_IDLE_SET(dst, src) \ 313 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 314 #define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \ 315 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 316 #define RXTX_REG7 0x00e 317 #define RXTX_REG7_RESETB_RXD_MASK 0x00000100 318 #define RXTX_REG7_RESETB_RXA_MASK 0x00000080 319 #define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \ 320 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) 321 #define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \ 322 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) 323 #define RXTX_REG8 0x010 324 #define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \ 325 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000)) 326 #define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \ 327 (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800)) 328 #define RXTX_REG8_SSC_ENABLE_SET(dst, src) \ 329 (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200)) 330 #define RXTX_REG8_SD_VREF_SET(dst, src) \ 331 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) 332 #define RXTX_REG8_SD_DISABLE_SET(dst, src) \ 333 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) 334 #define RXTX_REG7 0x00e 335 #define RXTX_REG7_RESETB_RXD_SET(dst, src) \ 336 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) 337 #define RXTX_REG7_RESETB_RXA_SET(dst, src) \ 338 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080)) 339 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000 340 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \ 341 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000)) 342 #define RXTX_REG11 0x016 343 #define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \ 344 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 345 #define RXTX_REG12 0x018 346 #define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \ 347 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000)) 348 #define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \ 349 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) 350 #define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002 351 #define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \ 352 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 353 #define RXTX_REG13 0x01a 354 #define RXTX_REG14 0x01c 355 #define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \ 356 (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f)) 357 #define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \ 358 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) 359 #define RXTX_REG26 0x034 360 #define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \ 361 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) 362 #define RXTX_REG26_BLWC_ENA_SET(dst, src) \ 363 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 364 #define RXTX_REG21 0x02a 365 #define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) 366 #define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) 367 #define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src))) 368 #define RXTX_REG22 0x02c 369 #define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) 370 #define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) 371 #define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src))) 372 #define RXTX_REG23 0x02e 373 #define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) 374 #define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) 375 #define RXTX_REG24 0x030 376 #define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) 377 #define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) 378 #define RXTX_REG27 0x036 379 #define RXTX_REG28 0x038 380 #define RXTX_REG31 0x03e 381 #define RXTX_REG38 0x04c 382 #define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \ 383 (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe)) 384 #define RXTX_REG39 0x04e 385 #define RXTX_REG40 0x050 386 #define RXTX_REG41 0x052 387 #define RXTX_REG42 0x054 388 #define RXTX_REG43 0x056 389 #define RXTX_REG44 0x058 390 #define RXTX_REG45 0x05a 391 #define RXTX_REG46 0x05c 392 #define RXTX_REG47 0x05e 393 #define RXTX_REG48 0x060 394 #define RXTX_REG49 0x062 395 #define RXTX_REG50 0x064 396 #define RXTX_REG51 0x066 397 #define RXTX_REG52 0x068 398 #define RXTX_REG53 0x06a 399 #define RXTX_REG54 0x06c 400 #define RXTX_REG55 0x06e 401 #define RXTX_REG61 0x07a 402 #define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \ 403 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010)) 404 #define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \ 405 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 406 #define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \ 407 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0)) 408 #define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \ 409 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00)) 410 #define RXTX_REG62 0x07c 411 #define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \ 412 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) 413 #define RXTX_REG81 0x0a2 414 #define RXTX_REG89_MU_TH7_SET(dst, src) \ 415 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 416 #define RXTX_REG89_MU_TH8_SET(dst, src) \ 417 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) 418 #define RXTX_REG89_MU_TH9_SET(dst, src) \ 419 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) 420 #define RXTX_REG96 0x0c0 421 #define RXTX_REG96_MU_FREQ1_SET(dst, src) \ 422 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 423 #define RXTX_REG96_MU_FREQ2_SET(dst, src) \ 424 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) 425 #define RXTX_REG96_MU_FREQ3_SET(dst, src) \ 426 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) 427 #define RXTX_REG99 0x0c6 428 #define RXTX_REG99_MU_PHASE1_SET(dst, src) \ 429 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 430 #define RXTX_REG99_MU_PHASE2_SET(dst, src) \ 431 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) 432 #define RXTX_REG99_MU_PHASE3_SET(dst, src) \ 433 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) 434 #define RXTX_REG102 0x0cc 435 #define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \ 436 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060)) 437 #define RXTX_REG114 0x0e4 438 #define RXTX_REG121 0x0f2 439 #define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1) 440 #define RXTX_REG125 0x0fa 441 #define RXTX_REG125_PQ_REG_SET(dst, src) \ 442 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00)) 443 #define RXTX_REG125_SIGN_PQ_SET(dst, src) \ 444 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) 445 #define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \ 446 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080)) 447 #define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \ 448 (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c)) 449 #define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \ 450 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 451 #define RXTX_REG127 0x0fe 452 #define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002 453 #define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004 454 #define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \ 455 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 456 #define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \ 457 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) 458 #define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \ 459 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 460 #define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \ 461 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) 462 #define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \ 463 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) 464 #define RXTX_REG128 0x100 465 #define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \ 466 (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c)) 467 #define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \ 468 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) 469 #define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \ 470 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) 471 #define RXTX_REG129 0x102 472 #define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \ 473 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) 474 #define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \ 475 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) 476 #define RXTX_REG130 0x104 477 #define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \ 478 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) 479 #define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \ 480 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) 481 #define RXTX_REG145 0x122 482 #define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \ 483 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) 484 #define RXTX_REG145_RXES_ENA_SET(dst, src) \ 485 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 486 #define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \ 487 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) 488 #define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \ 489 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) 490 #define RXTX_REG147 0x126 491 #define RXTX_REG148 0x128 492 493 /* Clock macro type */ 494 enum cmu_type_t { 495 REF_CMU = 0, /* Clock macro is the internal reference clock */ 496 PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */ 497 }; 498 499 enum mux_type_t { 500 MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */ 501 MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */ 502 }; 503 504 enum clk_type_t { 505 CLK_EXT_DIFF = 0, /* External differential */ 506 CLK_INT_DIFF = 1, /* Internal differential */ 507 CLK_INT_SING = 2, /* Internal single ended */ 508 }; 509 510 enum xgene_phy_mode { 511 MODE_SATA = 0, /* List them for simple reference */ 512 MODE_SGMII = 1, 513 MODE_PCIE = 2, 514 MODE_USB = 3, 515 MODE_XFI = 4, 516 MODE_MAX 517 }; 518 519 struct xgene_sata_override_param { 520 u32 speed[MAX_LANE]; /* Index for override parameter per lane */ 521 u32 txspeed[3]; /* Tx speed */ 522 u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */ 523 u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */ 524 u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */ 525 u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */ 526 u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */ 527 u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */ 528 u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */ 529 }; 530 531 struct xgene_phy_ctx { 532 struct device *dev; 533 struct phy *phy; 534 enum xgene_phy_mode mode; /* Mode of operation */ 535 enum clk_type_t clk_type; /* Input clock selection */ 536 void __iomem *sds_base; /* PHY CSR base addr */ 537 struct clk *clk; /* Optional clock */ 538 539 /* Override Serdes parameters */ 540 struct xgene_sata_override_param sata_param; 541 }; 542 543 /* 544 * For chip earlier than A3 version, enable this flag. 545 * To enable, pass boot argument phy_xgene.preA3Chip=1 546 */ 547 static int preA3Chip; 548 MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)"); 549 module_param_named(preA3Chip, preA3Chip, int, 0444); 550 551 static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg, 552 u32 indirect_data_reg, u32 addr, u32 data) 553 { 554 unsigned long deadline = jiffies + HZ; 555 u32 val; 556 u32 cmd; 557 558 cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK; 559 cmd = CFG_IND_ADDR_SET(cmd, addr); 560 writel(data, csr_base + indirect_data_reg); 561 readl(csr_base + indirect_data_reg); /* Force a barrier */ 562 writel(cmd, csr_base + indirect_cmd_reg); 563 readl(csr_base + indirect_cmd_reg); /* Force a barrier */ 564 do { 565 val = readl(csr_base + indirect_cmd_reg); 566 } while (!(val & CFG_IND_CMD_DONE_MASK) && 567 time_before(jiffies, deadline)); 568 if (!(val & CFG_IND_CMD_DONE_MASK)) 569 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n", 570 csr_base + indirect_cmd_reg, addr, data); 571 } 572 573 static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg, 574 u32 indirect_data_reg, u32 addr, u32 *data) 575 { 576 unsigned long deadline = jiffies + HZ; 577 u32 val; 578 u32 cmd; 579 580 cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK; 581 cmd = CFG_IND_ADDR_SET(cmd, addr); 582 writel(cmd, csr_base + indirect_cmd_reg); 583 readl(csr_base + indirect_cmd_reg); /* Force a barrier */ 584 do { 585 val = readl(csr_base + indirect_cmd_reg); 586 } while (!(val & CFG_IND_CMD_DONE_MASK) && 587 time_before(jiffies, deadline)); 588 *data = readl(csr_base + indirect_data_reg); 589 if (!(val & CFG_IND_CMD_DONE_MASK)) 590 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n", 591 csr_base + indirect_cmd_reg, addr, *data); 592 } 593 594 static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, 595 u32 reg, u32 data) 596 { 597 void __iomem *sds_base = ctx->sds_base; 598 u32 val; 599 600 if (cmu_type == REF_CMU) 601 reg += SERDES_PLL_REF_INDIRECT_OFFSET; 602 else 603 reg += SERDES_PLL_INDIRECT_OFFSET; 604 sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG, 605 SATA_ENET_SDS_IND_WDATA_REG, reg, data); 606 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, 607 SATA_ENET_SDS_IND_RDATA_REG, reg, &val); 608 pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val); 609 } 610 611 static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, 612 u32 reg, u32 *data) 613 { 614 void __iomem *sds_base = ctx->sds_base; 615 616 if (cmu_type == REF_CMU) 617 reg += SERDES_PLL_REF_INDIRECT_OFFSET; 618 else 619 reg += SERDES_PLL_INDIRECT_OFFSET; 620 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, 621 SATA_ENET_SDS_IND_RDATA_REG, reg, data); 622 pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data); 623 } 624 625 static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, 626 u32 reg, u32 bits) 627 { 628 u32 val; 629 630 cmu_rd(ctx, cmu_type, reg, &val); 631 val |= bits; 632 cmu_wr(ctx, cmu_type, reg, val); 633 cmu_rd(ctx, cmu_type, reg, &val); 634 val &= ~bits; 635 cmu_wr(ctx, cmu_type, reg, val); 636 } 637 638 static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, 639 u32 reg, u32 bits) 640 { 641 u32 val; 642 643 cmu_rd(ctx, cmu_type, reg, &val); 644 val &= ~bits; 645 cmu_wr(ctx, cmu_type, reg, val); 646 } 647 648 static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, 649 u32 reg, u32 bits) 650 { 651 u32 val; 652 653 cmu_rd(ctx, cmu_type, reg, &val); 654 val |= bits; 655 cmu_wr(ctx, cmu_type, reg, val); 656 } 657 658 static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data) 659 { 660 void __iomem *sds_base = ctx->sds_base; 661 u32 val; 662 663 reg += SERDES_INDIRECT_OFFSET; 664 reg += lane * SERDES_LANE_STRIDE; 665 sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG, 666 SATA_ENET_SDS_IND_WDATA_REG, reg, data); 667 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, 668 SATA_ENET_SDS_IND_RDATA_REG, reg, &val); 669 pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, 670 val); 671 } 672 673 static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data) 674 { 675 void __iomem *sds_base = ctx->sds_base; 676 677 reg += SERDES_INDIRECT_OFFSET; 678 reg += lane * SERDES_LANE_STRIDE; 679 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, 680 SATA_ENET_SDS_IND_RDATA_REG, reg, data); 681 pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data); 682 } 683 684 static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, 685 u32 bits) 686 { 687 u32 val; 688 689 serdes_rd(ctx, lane, reg, &val); 690 val &= ~bits; 691 serdes_wr(ctx, lane, reg, val); 692 } 693 694 static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, 695 u32 bits) 696 { 697 u32 val; 698 699 serdes_rd(ctx, lane, reg, &val); 700 val |= bits; 701 serdes_wr(ctx, lane, reg, val); 702 } 703 704 static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx, 705 enum cmu_type_t cmu_type, 706 enum clk_type_t clk_type) 707 { 708 u32 val; 709 710 /* Set the reset sequence delay for TX ready assertion */ 711 cmu_rd(ctx, cmu_type, CMU_REG12, &val); 712 val = CMU_REG12_STATE_DELAY9_SET(val, 0x1); 713 cmu_wr(ctx, cmu_type, CMU_REG12, val); 714 /* Set the programmable stage delays between various enable stages */ 715 cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222); 716 cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225); 717 718 /* Configure clock type */ 719 if (clk_type == CLK_EXT_DIFF) { 720 /* Select external clock mux */ 721 cmu_rd(ctx, cmu_type, CMU_REG0, &val); 722 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0); 723 cmu_wr(ctx, cmu_type, CMU_REG0, val); 724 /* Select CMOS as reference clock */ 725 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 726 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); 727 cmu_wr(ctx, cmu_type, CMU_REG1, val); 728 dev_dbg(ctx->dev, "Set external reference clock\n"); 729 } else if (clk_type == CLK_INT_DIFF) { 730 /* Select internal clock mux */ 731 cmu_rd(ctx, cmu_type, CMU_REG0, &val); 732 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1); 733 cmu_wr(ctx, cmu_type, CMU_REG0, val); 734 /* Select CMOS as reference clock */ 735 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 736 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); 737 cmu_wr(ctx, cmu_type, CMU_REG1, val); 738 dev_dbg(ctx->dev, "Set internal reference clock\n"); 739 } else if (clk_type == CLK_INT_SING) { 740 /* 741 * NOTE: This clock type is NOT support for controller 742 * whose internal clock shared in the PCIe controller 743 * 744 * Select internal clock mux 745 */ 746 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 747 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); 748 cmu_wr(ctx, cmu_type, CMU_REG1, val); 749 /* Select CML as reference clock */ 750 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 751 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); 752 cmu_wr(ctx, cmu_type, CMU_REG1, val); 753 dev_dbg(ctx->dev, 754 "Set internal single ended reference clock\n"); 755 } 756 } 757 758 static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx, 759 enum cmu_type_t cmu_type, 760 enum clk_type_t clk_type) 761 { 762 u32 val; 763 int ref_100MHz; 764 765 if (cmu_type == REF_CMU) { 766 /* Set VCO calibration voltage threshold */ 767 cmu_rd(ctx, cmu_type, CMU_REG34, &val); 768 val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7); 769 val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc); 770 val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3); 771 val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8); 772 cmu_wr(ctx, cmu_type, CMU_REG34, val); 773 } 774 775 /* Set the VCO calibration counter */ 776 cmu_rd(ctx, cmu_type, CMU_REG0, &val); 777 if (cmu_type == REF_CMU || preA3Chip) 778 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4); 779 else 780 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7); 781 cmu_wr(ctx, cmu_type, CMU_REG0, val); 782 783 /* Configure PLL for calibration */ 784 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 785 val = CMU_REG1_PLL_CP_SET(val, 0x1); 786 if (cmu_type == REF_CMU || preA3Chip) 787 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5); 788 else 789 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3); 790 if (cmu_type == REF_CMU) 791 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); 792 else 793 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1); 794 cmu_wr(ctx, cmu_type, CMU_REG1, val); 795 796 if (cmu_type != REF_CMU) 797 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); 798 799 /* Configure the PLL for either 100MHz or 50MHz */ 800 cmu_rd(ctx, cmu_type, CMU_REG2, &val); 801 if (cmu_type == REF_CMU) { 802 val = CMU_REG2_PLL_LFRES_SET(val, 0xa); 803 ref_100MHz = 1; 804 } else { 805 val = CMU_REG2_PLL_LFRES_SET(val, 0x3); 806 if (clk_type == CLK_EXT_DIFF) 807 ref_100MHz = 0; 808 else 809 ref_100MHz = 1; 810 } 811 if (ref_100MHz) { 812 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M); 813 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M); 814 } else { 815 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M); 816 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M); 817 } 818 cmu_wr(ctx, cmu_type, CMU_REG2, val); 819 820 /* Configure the VCO */ 821 cmu_rd(ctx, cmu_type, CMU_REG3, &val); 822 if (cmu_type == REF_CMU) { 823 val = CMU_REG3_VCOVARSEL_SET(val, 0x3); 824 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10); 825 } else { 826 val = CMU_REG3_VCOVARSEL_SET(val, 0xF); 827 if (preA3Chip) 828 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15); 829 else 830 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a); 831 val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15); 832 } 833 cmu_wr(ctx, cmu_type, CMU_REG3, val); 834 835 /* Disable force PLL lock */ 836 cmu_rd(ctx, cmu_type, CMU_REG26, &val); 837 val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0); 838 cmu_wr(ctx, cmu_type, CMU_REG26, val); 839 840 /* Setup PLL loop filter */ 841 cmu_rd(ctx, cmu_type, CMU_REG5, &val); 842 val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3); 843 val = CMU_REG5_PLL_LFCAP_SET(val, 0x3); 844 if (cmu_type == REF_CMU || !preA3Chip) 845 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7); 846 else 847 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4); 848 cmu_wr(ctx, cmu_type, CMU_REG5, val); 849 850 /* Enable or disable manual calibration */ 851 cmu_rd(ctx, cmu_type, CMU_REG6, &val); 852 val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2); 853 val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0); 854 cmu_wr(ctx, cmu_type, CMU_REG6, val); 855 856 /* Configure lane for 20-bits */ 857 if (cmu_type == PHY_CMU) { 858 cmu_rd(ctx, cmu_type, CMU_REG9, &val); 859 val = CMU_REG9_TX_WORD_MODE_CH1_SET(val, 860 CMU_REG9_WORD_LEN_20BIT); 861 val = CMU_REG9_TX_WORD_MODE_CH0_SET(val, 862 CMU_REG9_WORD_LEN_20BIT); 863 val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1); 864 if (!preA3Chip) { 865 val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0); 866 val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0); 867 } 868 cmu_wr(ctx, cmu_type, CMU_REG9, val); 869 870 if (!preA3Chip) { 871 cmu_rd(ctx, cmu_type, CMU_REG10, &val); 872 val = CMU_REG10_VREG_REFSEL_SET(val, 0x1); 873 cmu_wr(ctx, cmu_type, CMU_REG10, val); 874 } 875 } 876 877 cmu_rd(ctx, cmu_type, CMU_REG16, &val); 878 val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1); 879 val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1); 880 if (cmu_type == REF_CMU || preA3Chip) 881 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4); 882 else 883 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); 884 cmu_wr(ctx, cmu_type, CMU_REG16, val); 885 886 /* Configure for SATA */ 887 cmu_rd(ctx, cmu_type, CMU_REG30, &val); 888 val = CMU_REG30_PCIE_MODE_SET(val, 0x0); 889 val = CMU_REG30_LOCK_COUNT_SET(val, 0x3); 890 cmu_wr(ctx, cmu_type, CMU_REG30, val); 891 892 /* Disable state machine bypass */ 893 cmu_wr(ctx, cmu_type, CMU_REG31, 0xF); 894 895 cmu_rd(ctx, cmu_type, CMU_REG32, &val); 896 val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3); 897 if (cmu_type == REF_CMU || preA3Chip) 898 val = CMU_REG32_IREF_ADJ_SET(val, 0x3); 899 else 900 val = CMU_REG32_IREF_ADJ_SET(val, 0x1); 901 cmu_wr(ctx, cmu_type, CMU_REG32, val); 902 903 /* Set VCO calibration threshold */ 904 if (cmu_type != REF_CMU && preA3Chip) 905 cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27); 906 else 907 cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c); 908 909 /* Set CTLE Override and override waiting from state machine */ 910 cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F); 911 } 912 913 static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx, 914 enum cmu_type_t cmu_type) 915 { 916 u32 val; 917 918 /* Set SSC modulation value */ 919 cmu_rd(ctx, cmu_type, CMU_REG35, &val); 920 val = CMU_REG35_PLL_SSC_MOD_SET(val, 98); 921 cmu_wr(ctx, cmu_type, CMU_REG35, val); 922 923 /* Enable SSC, set vertical step and DSM value */ 924 cmu_rd(ctx, cmu_type, CMU_REG36, &val); 925 val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30); 926 val = CMU_REG36_PLL_SSC_EN_SET(val, 1); 927 val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1); 928 cmu_wr(ctx, cmu_type, CMU_REG36, val); 929 930 /* Reset the PLL */ 931 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); 932 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); 933 934 /* Force VCO calibration to restart */ 935 cmu_toggle1to0(ctx, cmu_type, CMU_REG32, 936 CMU_REG32_FORCE_VCOCAL_START_MASK); 937 } 938 939 static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx) 940 { 941 u32 val; 942 u32 reg; 943 int i; 944 int lane; 945 946 for (lane = 0; lane < MAX_LANE; lane++) { 947 serdes_wr(ctx, lane, RXTX_REG147, 0x6); 948 949 /* Set boost control for quarter, half, and full rate */ 950 serdes_rd(ctx, lane, RXTX_REG0, &val); 951 val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10); 952 val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10); 953 val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10); 954 serdes_wr(ctx, lane, RXTX_REG0, val); 955 956 /* Set boost control value */ 957 serdes_rd(ctx, lane, RXTX_REG1, &val); 958 val = RXTX_REG1_RXACVCM_SET(val, 0x7); 959 val = RXTX_REG1_CTLE_EQ_SET(val, 960 ctx->sata_param.txboostgain[lane * 3 + 961 ctx->sata_param.speed[lane]]); 962 serdes_wr(ctx, lane, RXTX_REG1, val); 963 964 /* Latch VTT value based on the termination to ground and 965 * enable TX FIFO 966 */ 967 serdes_rd(ctx, lane, RXTX_REG2, &val); 968 val = RXTX_REG2_VTT_ENA_SET(val, 0x1); 969 val = RXTX_REG2_VTT_SEL_SET(val, 0x1); 970 val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1); 971 serdes_wr(ctx, lane, RXTX_REG2, val); 972 973 /* Configure Tx for 20-bits */ 974 serdes_rd(ctx, lane, RXTX_REG4, &val); 975 val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); 976 serdes_wr(ctx, lane, RXTX_REG4, val); 977 978 if (!preA3Chip) { 979 serdes_rd(ctx, lane, RXTX_REG1, &val); 980 val = RXTX_REG1_RXVREG1_SET(val, 0x2); 981 val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2); 982 serdes_wr(ctx, lane, RXTX_REG1, val); 983 } 984 985 /* Set pre-emphasis first 1 and 2, and post-emphasis values */ 986 serdes_rd(ctx, lane, RXTX_REG5, &val); 987 val = RXTX_REG5_TX_CN1_SET(val, 988 ctx->sata_param.txprecursor_cn1[lane * 3 + 989 ctx->sata_param.speed[lane]]); 990 val = RXTX_REG5_TX_CP1_SET(val, 991 ctx->sata_param.txpostcursor_cp1[lane * 3 + 992 ctx->sata_param.speed[lane]]); 993 val = RXTX_REG5_TX_CN2_SET(val, 994 ctx->sata_param.txprecursor_cn2[lane * 3 + 995 ctx->sata_param.speed[lane]]); 996 serdes_wr(ctx, lane, RXTX_REG5, val); 997 998 /* Set TX amplitude value */ 999 serdes_rd(ctx, lane, RXTX_REG6, &val); 1000 val = RXTX_REG6_TXAMP_CNTL_SET(val, 1001 ctx->sata_param.txamplitude[lane * 3 + 1002 ctx->sata_param.speed[lane]]); 1003 val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1); 1004 val = RXTX_REG6_TX_IDLE_SET(val, 0x0); 1005 val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0); 1006 val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0); 1007 serdes_wr(ctx, lane, RXTX_REG6, val); 1008 1009 /* Configure Rx for 20-bits */ 1010 serdes_rd(ctx, lane, RXTX_REG7, &val); 1011 val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0); 1012 val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); 1013 serdes_wr(ctx, lane, RXTX_REG7, val); 1014 1015 /* Set CDR and LOS values and enable Rx SSC */ 1016 serdes_rd(ctx, lane, RXTX_REG8, &val); 1017 val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1); 1018 val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0); 1019 val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1); 1020 val = RXTX_REG8_SD_DISABLE_SET(val, 0x0); 1021 val = RXTX_REG8_SD_VREF_SET(val, 0x4); 1022 serdes_wr(ctx, lane, RXTX_REG8, val); 1023 1024 /* Set phase adjust upper/lower limits */ 1025 serdes_rd(ctx, lane, RXTX_REG11, &val); 1026 val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0); 1027 serdes_wr(ctx, lane, RXTX_REG11, val); 1028 1029 /* Enable Latch Off; disable SUMOS and Tx termination */ 1030 serdes_rd(ctx, lane, RXTX_REG12, &val); 1031 val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1); 1032 val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0); 1033 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0); 1034 serdes_wr(ctx, lane, RXTX_REG12, val); 1035 1036 /* Set period error latch to 512T and enable BWL */ 1037 serdes_rd(ctx, lane, RXTX_REG26, &val); 1038 val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0); 1039 val = RXTX_REG26_BLWC_ENA_SET(val, 0x1); 1040 serdes_wr(ctx, lane, RXTX_REG26, val); 1041 1042 serdes_wr(ctx, lane, RXTX_REG28, 0x0); 1043 1044 /* Set DFE loop preset value */ 1045 serdes_wr(ctx, lane, RXTX_REG31, 0x0); 1046 1047 /* Set Eye Monitor counter width to 12-bit */ 1048 serdes_rd(ctx, lane, RXTX_REG61, &val); 1049 val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1); 1050 val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0); 1051 val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0); 1052 serdes_wr(ctx, lane, RXTX_REG61, val); 1053 1054 serdes_rd(ctx, lane, RXTX_REG62, &val); 1055 val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0); 1056 serdes_wr(ctx, lane, RXTX_REG62, val); 1057 1058 /* Set BW select tap X for DFE loop */ 1059 for (i = 0; i < 9; i++) { 1060 reg = RXTX_REG81 + i * 2; 1061 serdes_rd(ctx, lane, reg, &val); 1062 val = RXTX_REG89_MU_TH7_SET(val, 0xe); 1063 val = RXTX_REG89_MU_TH8_SET(val, 0xe); 1064 val = RXTX_REG89_MU_TH9_SET(val, 0xe); 1065 serdes_wr(ctx, lane, reg, val); 1066 } 1067 1068 /* Set BW select tap X for frequency adjust loop */ 1069 for (i = 0; i < 3; i++) { 1070 reg = RXTX_REG96 + i * 2; 1071 serdes_rd(ctx, lane, reg, &val); 1072 val = RXTX_REG96_MU_FREQ1_SET(val, 0x10); 1073 val = RXTX_REG96_MU_FREQ2_SET(val, 0x10); 1074 val = RXTX_REG96_MU_FREQ3_SET(val, 0x10); 1075 serdes_wr(ctx, lane, reg, val); 1076 } 1077 1078 /* Set BW select tap X for phase adjust loop */ 1079 for (i = 0; i < 3; i++) { 1080 reg = RXTX_REG99 + i * 2; 1081 serdes_rd(ctx, lane, reg, &val); 1082 val = RXTX_REG99_MU_PHASE1_SET(val, 0x7); 1083 val = RXTX_REG99_MU_PHASE2_SET(val, 0x7); 1084 val = RXTX_REG99_MU_PHASE3_SET(val, 0x7); 1085 serdes_wr(ctx, lane, reg, val); 1086 } 1087 1088 serdes_rd(ctx, lane, RXTX_REG102, &val); 1089 val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0); 1090 serdes_wr(ctx, lane, RXTX_REG102, val); 1091 1092 serdes_wr(ctx, lane, RXTX_REG114, 0xffe0); 1093 1094 serdes_rd(ctx, lane, RXTX_REG125, &val); 1095 val = RXTX_REG125_SIGN_PQ_SET(val, 1096 ctx->sata_param.txeyedirection[lane * 3 + 1097 ctx->sata_param.speed[lane]]); 1098 val = RXTX_REG125_PQ_REG_SET(val, 1099 ctx->sata_param.txeyetuning[lane * 3 + 1100 ctx->sata_param.speed[lane]]); 1101 val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1); 1102 serdes_wr(ctx, lane, RXTX_REG125, val); 1103 1104 serdes_rd(ctx, lane, RXTX_REG127, &val); 1105 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0); 1106 serdes_wr(ctx, lane, RXTX_REG127, val); 1107 1108 serdes_rd(ctx, lane, RXTX_REG128, &val); 1109 val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3); 1110 serdes_wr(ctx, lane, RXTX_REG128, val); 1111 1112 serdes_rd(ctx, lane, RXTX_REG145, &val); 1113 val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3); 1114 val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0); 1115 if (preA3Chip) { 1116 val = RXTX_REG145_RXES_ENA_SET(val, 0x1); 1117 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1); 1118 } else { 1119 val = RXTX_REG145_RXES_ENA_SET(val, 0x0); 1120 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0); 1121 } 1122 serdes_wr(ctx, lane, RXTX_REG145, val); 1123 1124 /* 1125 * Set Rx LOS filter clock rate, sample rate, and threshold 1126 * windows 1127 */ 1128 for (i = 0; i < 4; i++) { 1129 reg = RXTX_REG148 + i * 2; 1130 serdes_wr(ctx, lane, reg, 0xFFFF); 1131 } 1132 } 1133 } 1134 1135 static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx, 1136 enum cmu_type_t cmu_type, 1137 enum clk_type_t clk_type) 1138 { 1139 void __iomem *csr_serdes = ctx->sds_base; 1140 int loop; 1141 u32 val; 1142 1143 /* Release PHY main reset */ 1144 writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL); 1145 readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ 1146 1147 if (cmu_type != REF_CMU) { 1148 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); 1149 /* 1150 * As per PHY design spec, the PLL reset requires a minimum 1151 * of 800us. 1152 */ 1153 usleep_range(800, 1000); 1154 1155 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 1156 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); 1157 cmu_wr(ctx, cmu_type, CMU_REG1, val); 1158 /* 1159 * As per PHY design spec, the PLL auto calibration requires 1160 * a minimum of 800us. 1161 */ 1162 usleep_range(800, 1000); 1163 1164 cmu_toggle1to0(ctx, cmu_type, CMU_REG32, 1165 CMU_REG32_FORCE_VCOCAL_START_MASK); 1166 /* 1167 * As per PHY design spec, the PLL requires a minimum of 1168 * 800us to settle. 1169 */ 1170 usleep_range(800, 1000); 1171 } 1172 1173 if (!preA3Chip) 1174 goto skip_manual_cal; 1175 1176 /* 1177 * Configure the termination resister calibration 1178 * The serial receive pins, RXP/RXN, have TERMination resistor 1179 * that is required to be calibrated. 1180 */ 1181 cmu_rd(ctx, cmu_type, CMU_REG17, &val); 1182 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12); 1183 val = CMU_REG17_RESERVED_7_SET(val, 0x0); 1184 cmu_wr(ctx, cmu_type, CMU_REG17, val); 1185 cmu_toggle1to0(ctx, cmu_type, CMU_REG17, 1186 CMU_REG17_PVT_TERM_MAN_ENA_MASK); 1187 /* 1188 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN 1189 * resistors that are required to the calibrated. 1190 * Configure the pull DOWN calibration 1191 */ 1192 cmu_rd(ctx, cmu_type, CMU_REG17, &val); 1193 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29); 1194 val = CMU_REG17_RESERVED_7_SET(val, 0x0); 1195 cmu_wr(ctx, cmu_type, CMU_REG17, val); 1196 cmu_toggle1to0(ctx, cmu_type, CMU_REG16, 1197 CMU_REG16_PVT_DN_MAN_ENA_MASK); 1198 /* Configure the pull UP calibration */ 1199 cmu_rd(ctx, cmu_type, CMU_REG17, &val); 1200 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28); 1201 val = CMU_REG17_RESERVED_7_SET(val, 0x0); 1202 cmu_wr(ctx, cmu_type, CMU_REG17, val); 1203 cmu_toggle1to0(ctx, cmu_type, CMU_REG16, 1204 CMU_REG16_PVT_UP_MAN_ENA_MASK); 1205 1206 skip_manual_cal: 1207 /* Poll the PLL calibration completion status for at least 1 ms */ 1208 loop = 100; 1209 do { 1210 cmu_rd(ctx, cmu_type, CMU_REG7, &val); 1211 if (CMU_REG7_PLL_CALIB_DONE_RD(val)) 1212 break; 1213 /* 1214 * As per PHY design spec, PLL calibration status requires 1215 * a minimum of 10us to be updated. 1216 */ 1217 usleep_range(10, 100); 1218 } while (--loop > 0); 1219 1220 cmu_rd(ctx, cmu_type, CMU_REG7, &val); 1221 dev_dbg(ctx->dev, "PLL calibration %s\n", 1222 CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed"); 1223 if (CMU_REG7_VCO_CAL_FAIL_RD(val)) { 1224 dev_err(ctx->dev, 1225 "PLL calibration failed due to VCO failure\n"); 1226 return -1; 1227 } 1228 dev_dbg(ctx->dev, "PLL calibration successful\n"); 1229 1230 cmu_rd(ctx, cmu_type, CMU_REG15, &val); 1231 dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not "); 1232 return 0; 1233 } 1234 1235 static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx, 1236 enum cmu_type_t cmu_type, 1237 enum clk_type_t clk_type) 1238 { 1239 u32 val; 1240 1241 dev_dbg(ctx->dev, "Reset VCO and re-start again\n"); 1242 if (cmu_type == PHY_CMU) { 1243 cmu_rd(ctx, cmu_type, CMU_REG16, &val); 1244 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); 1245 cmu_wr(ctx, cmu_type, CMU_REG16, val); 1246 } 1247 1248 cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK); 1249 cmu_toggle1to0(ctx, cmu_type, CMU_REG32, 1250 CMU_REG32_FORCE_VCOCAL_START_MASK); 1251 } 1252 1253 static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx, 1254 enum clk_type_t clk_type, int ssc_enable) 1255 { 1256 void __iomem *sds_base = ctx->sds_base; 1257 u32 val; 1258 int i; 1259 1260 /* Configure the PHY for operation */ 1261 dev_dbg(ctx->dev, "Reset PHY\n"); 1262 /* Place PHY into reset */ 1263 writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL); 1264 val = readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ 1265 /* Release PHY lane from reset (active high) */ 1266 writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL); 1267 readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ 1268 /* Release all PHY module out of reset except PHY main reset */ 1269 writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL); 1270 readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ 1271 1272 /* Set the operation speed */ 1273 val = readl(sds_base + SATA_ENET_SDS_CTL1); 1274 val = CFG_I_SPD_SEL_CDR_OVR1_SET(val, 1275 ctx->sata_param.txspeed[ctx->sata_param.speed[0]]); 1276 writel(val, sds_base + SATA_ENET_SDS_CTL1); 1277 1278 dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n"); 1279 val = readl(sds_base + SATA_ENET_SDS_CTL0); 1280 val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421); 1281 writel(val, sds_base + SATA_ENET_SDS_CTL0); 1282 1283 /* Configure the clock macro unit (CMU) clock type */ 1284 xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type); 1285 1286 /* Configure the clock macro */ 1287 xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type); 1288 1289 /* Enable SSC if enabled */ 1290 if (ssc_enable) 1291 xgene_phy_ssc_enable(ctx, PHY_CMU); 1292 1293 /* Configure PHY lanes */ 1294 xgene_phy_sata_cfg_lanes(ctx); 1295 1296 /* Set Rx/Tx 20-bit */ 1297 val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0); 1298 val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3); 1299 val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3); 1300 writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0); 1301 1302 /* Start PLL calibration and try for three times */ 1303 i = 10; 1304 do { 1305 if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type)) 1306 break; 1307 /* If failed, toggle the VCO power signal and start again */ 1308 xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type); 1309 } while (--i > 0); 1310 /* Even on failure, allow to continue any way */ 1311 if (i <= 0) 1312 dev_err(ctx->dev, "PLL calibration failed\n"); 1313 1314 return 0; 1315 } 1316 1317 static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx, 1318 enum clk_type_t clk_type, 1319 int ssc_enable) 1320 { 1321 int rc; 1322 1323 dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type); 1324 1325 if (ctx->mode == MODE_SATA) { 1326 rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable); 1327 if (rc) 1328 return rc; 1329 } else { 1330 dev_err(ctx->dev, "Un-supported customer pin mode %d\n", 1331 ctx->mode); 1332 return -ENODEV; 1333 } 1334 1335 return 0; 1336 } 1337 1338 /* 1339 * Receiver Offset Calibration: 1340 * 1341 * Calibrate the receiver signal path offset in two steps - summar and 1342 * latch calibrations 1343 */ 1344 static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane) 1345 { 1346 int i; 1347 static const struct { 1348 u32 reg; 1349 u32 val; 1350 } serdes_reg[] = { 1351 {RXTX_REG38, 0x0}, 1352 {RXTX_REG39, 0xff00}, 1353 {RXTX_REG40, 0xffff}, 1354 {RXTX_REG41, 0xffff}, 1355 {RXTX_REG42, 0xffff}, 1356 {RXTX_REG43, 0xffff}, 1357 {RXTX_REG44, 0xffff}, 1358 {RXTX_REG45, 0xffff}, 1359 {RXTX_REG46, 0xffff}, 1360 {RXTX_REG47, 0xfffc}, 1361 {RXTX_REG48, 0x0}, 1362 {RXTX_REG49, 0x0}, 1363 {RXTX_REG50, 0x0}, 1364 {RXTX_REG51, 0x0}, 1365 {RXTX_REG52, 0x0}, 1366 {RXTX_REG53, 0x0}, 1367 {RXTX_REG54, 0x0}, 1368 {RXTX_REG55, 0x0}, 1369 }; 1370 1371 /* Start SUMMER calibration */ 1372 serdes_setbits(ctx, lane, RXTX_REG127, 1373 RXTX_REG127_FORCE_SUM_CAL_START_MASK); 1374 /* 1375 * As per PHY design spec, the Summer calibration requires a minimum 1376 * of 100us to complete. 1377 */ 1378 usleep_range(100, 500); 1379 serdes_clrbits(ctx, lane, RXTX_REG127, 1380 RXTX_REG127_FORCE_SUM_CAL_START_MASK); 1381 /* 1382 * As per PHY design spec, the auto calibration requires a minimum 1383 * of 100us to complete. 1384 */ 1385 usleep_range(100, 500); 1386 1387 /* Start latch calibration */ 1388 serdes_setbits(ctx, lane, RXTX_REG127, 1389 RXTX_REG127_FORCE_LAT_CAL_START_MASK); 1390 /* 1391 * As per PHY design spec, the latch calibration requires a minimum 1392 * of 100us to complete. 1393 */ 1394 usleep_range(100, 500); 1395 serdes_clrbits(ctx, lane, RXTX_REG127, 1396 RXTX_REG127_FORCE_LAT_CAL_START_MASK); 1397 1398 /* Configure the PHY lane for calibration */ 1399 serdes_wr(ctx, lane, RXTX_REG28, 0x7); 1400 serdes_wr(ctx, lane, RXTX_REG31, 0x7e00); 1401 serdes_clrbits(ctx, lane, RXTX_REG4, 1402 RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK); 1403 serdes_clrbits(ctx, lane, RXTX_REG7, 1404 RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK); 1405 for (i = 0; i < ARRAY_SIZE(serdes_reg); i++) 1406 serdes_wr(ctx, lane, serdes_reg[i].reg, 1407 serdes_reg[i].val); 1408 } 1409 1410 static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane) 1411 { 1412 /* Reset digital Rx */ 1413 serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); 1414 /* As per PHY design spec, the reset requires a minimum of 100us. */ 1415 usleep_range(100, 150); 1416 serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); 1417 } 1418 1419 static int xgene_phy_get_avg(int accum, int samples) 1420 { 1421 return (accum + (samples / 2)) / samples; 1422 } 1423 1424 static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane) 1425 { 1426 int max_loop = 10; 1427 int avg_loop = 0; 1428 int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0; 1429 int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0; 1430 int sum_cal = 0; 1431 int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr; 1432 int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr; 1433 int sum_cal_itr; 1434 int fail_even; 1435 int fail_odd; 1436 u32 val; 1437 1438 dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n", 1439 lane); 1440 1441 /* Enable RX Hi-Z termination */ 1442 serdes_setbits(ctx, lane, RXTX_REG12, 1443 RXTX_REG12_RX_DET_TERM_ENABLE_MASK); 1444 /* Turn off DFE */ 1445 serdes_wr(ctx, lane, RXTX_REG28, 0x0000); 1446 /* DFE Presets to zero */ 1447 serdes_wr(ctx, lane, RXTX_REG31, 0x0000); 1448 1449 /* 1450 * Receiver Offset Calibration: 1451 * Calibrate the receiver signal path offset in two steps - summar 1452 * and latch calibration. 1453 * Runs the "Receiver Offset Calibration multiple times to determine 1454 * the average value to use. 1455 */ 1456 while (avg_loop < max_loop) { 1457 /* Start the calibration */ 1458 xgene_phy_force_lat_summer_cal(ctx, lane); 1459 1460 serdes_rd(ctx, lane, RXTX_REG21, &val); 1461 lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val); 1462 lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val); 1463 fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val); 1464 1465 serdes_rd(ctx, lane, RXTX_REG22, &val); 1466 lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val); 1467 lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val); 1468 fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val); 1469 1470 serdes_rd(ctx, lane, RXTX_REG23, &val); 1471 lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val); 1472 lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val); 1473 1474 serdes_rd(ctx, lane, RXTX_REG24, &val); 1475 lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val); 1476 lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val); 1477 1478 serdes_rd(ctx, lane, RXTX_REG121, &val); 1479 sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val); 1480 1481 /* Check for failure. If passed, sum them for averaging */ 1482 if ((fail_even == 0 || fail_even == 1) && 1483 (fail_odd == 0 || fail_odd == 1)) { 1484 lat_do += lat_do_itr; 1485 lat_xo += lat_xo_itr; 1486 lat_eo += lat_eo_itr; 1487 lat_so += lat_so_itr; 1488 lat_de += lat_de_itr; 1489 lat_xe += lat_xe_itr; 1490 lat_ee += lat_ee_itr; 1491 lat_se += lat_se_itr; 1492 sum_cal += sum_cal_itr; 1493 1494 dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop); 1495 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n", 1496 lat_do_itr, lat_xo_itr, lat_eo_itr, 1497 lat_so_itr); 1498 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n", 1499 lat_de_itr, lat_xe_itr, lat_ee_itr, 1500 lat_se_itr); 1501 dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr); 1502 ++avg_loop; 1503 } else { 1504 dev_err(ctx->dev, 1505 "Receiver calibration failed at %d loop\n", 1506 avg_loop); 1507 } 1508 xgene_phy_reset_rxd(ctx, lane); 1509 } 1510 1511 /* Update latch manual calibration with average value */ 1512 serdes_rd(ctx, lane, RXTX_REG127, &val); 1513 val = RXTX_REG127_DO_LATCH_MANCAL_SET(val, 1514 xgene_phy_get_avg(lat_do, max_loop)); 1515 val = RXTX_REG127_XO_LATCH_MANCAL_SET(val, 1516 xgene_phy_get_avg(lat_xo, max_loop)); 1517 serdes_wr(ctx, lane, RXTX_REG127, val); 1518 1519 serdes_rd(ctx, lane, RXTX_REG128, &val); 1520 val = RXTX_REG128_EO_LATCH_MANCAL_SET(val, 1521 xgene_phy_get_avg(lat_eo, max_loop)); 1522 val = RXTX_REG128_SO_LATCH_MANCAL_SET(val, 1523 xgene_phy_get_avg(lat_so, max_loop)); 1524 serdes_wr(ctx, lane, RXTX_REG128, val); 1525 1526 serdes_rd(ctx, lane, RXTX_REG129, &val); 1527 val = RXTX_REG129_DE_LATCH_MANCAL_SET(val, 1528 xgene_phy_get_avg(lat_de, max_loop)); 1529 val = RXTX_REG129_XE_LATCH_MANCAL_SET(val, 1530 xgene_phy_get_avg(lat_xe, max_loop)); 1531 serdes_wr(ctx, lane, RXTX_REG129, val); 1532 1533 serdes_rd(ctx, lane, RXTX_REG130, &val); 1534 val = RXTX_REG130_EE_LATCH_MANCAL_SET(val, 1535 xgene_phy_get_avg(lat_ee, max_loop)); 1536 val = RXTX_REG130_SE_LATCH_MANCAL_SET(val, 1537 xgene_phy_get_avg(lat_se, max_loop)); 1538 serdes_wr(ctx, lane, RXTX_REG130, val); 1539 1540 /* Update SUMMER calibration with average value */ 1541 serdes_rd(ctx, lane, RXTX_REG14, &val); 1542 val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val, 1543 xgene_phy_get_avg(sum_cal, max_loop)); 1544 serdes_wr(ctx, lane, RXTX_REG14, val); 1545 1546 dev_dbg(ctx->dev, "Average Value:\n"); 1547 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n", 1548 xgene_phy_get_avg(lat_do, max_loop), 1549 xgene_phy_get_avg(lat_xo, max_loop), 1550 xgene_phy_get_avg(lat_eo, max_loop), 1551 xgene_phy_get_avg(lat_so, max_loop)); 1552 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n", 1553 xgene_phy_get_avg(lat_de, max_loop), 1554 xgene_phy_get_avg(lat_xe, max_loop), 1555 xgene_phy_get_avg(lat_ee, max_loop), 1556 xgene_phy_get_avg(lat_se, max_loop)); 1557 dev_dbg(ctx->dev, "SUM 0x%x\n", 1558 xgene_phy_get_avg(sum_cal, max_loop)); 1559 1560 serdes_rd(ctx, lane, RXTX_REG14, &val); 1561 val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1); 1562 serdes_wr(ctx, lane, RXTX_REG14, val); 1563 dev_dbg(ctx->dev, "Enable Manual Summer calibration\n"); 1564 1565 serdes_rd(ctx, lane, RXTX_REG127, &val); 1566 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1); 1567 dev_dbg(ctx->dev, "Enable Manual Latch calibration\n"); 1568 serdes_wr(ctx, lane, RXTX_REG127, val); 1569 1570 /* Disable RX Hi-Z termination */ 1571 serdes_rd(ctx, lane, RXTX_REG12, &val); 1572 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0); 1573 serdes_wr(ctx, lane, RXTX_REG12, val); 1574 /* Turn on DFE */ 1575 serdes_wr(ctx, lane, RXTX_REG28, 0x0007); 1576 /* Set DFE preset */ 1577 serdes_wr(ctx, lane, RXTX_REG31, 0x7e00); 1578 } 1579 1580 static int xgene_phy_hw_init(struct phy *phy) 1581 { 1582 struct xgene_phy_ctx *ctx = phy_get_drvdata(phy); 1583 int rc; 1584 int i; 1585 1586 rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE); 1587 if (rc) { 1588 dev_err(ctx->dev, "PHY initialize failed %d\n", rc); 1589 return rc; 1590 } 1591 1592 /* Setup clock properly after PHY configuration */ 1593 if (!IS_ERR(ctx->clk)) { 1594 /* HW requires an toggle of the clock */ 1595 clk_prepare_enable(ctx->clk); 1596 clk_disable_unprepare(ctx->clk); 1597 clk_prepare_enable(ctx->clk); 1598 } 1599 1600 /* Compute average value */ 1601 for (i = 0; i < MAX_LANE; i++) 1602 xgene_phy_gen_avg_val(ctx, i); 1603 1604 dev_dbg(ctx->dev, "PHY initialized\n"); 1605 return 0; 1606 } 1607 1608 static const struct phy_ops xgene_phy_ops = { 1609 .init = xgene_phy_hw_init, 1610 .owner = THIS_MODULE, 1611 }; 1612 1613 static struct phy *xgene_phy_xlate(struct device *dev, 1614 struct of_phandle_args *args) 1615 { 1616 struct xgene_phy_ctx *ctx = dev_get_drvdata(dev); 1617 1618 if (args->args_count <= 0) 1619 return ERR_PTR(-EINVAL); 1620 if (args->args[0] >= MODE_MAX) 1621 return ERR_PTR(-EINVAL); 1622 1623 ctx->mode = args->args[0]; 1624 return ctx->phy; 1625 } 1626 1627 static void xgene_phy_get_param(struct platform_device *pdev, 1628 const char *name, u32 *buffer, 1629 int count, u32 *default_val, 1630 u32 conv_factor) 1631 { 1632 int i; 1633 1634 if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer, 1635 count)) { 1636 for (i = 0; i < count; i++) 1637 buffer[i] /= conv_factor; 1638 return; 1639 } 1640 /* Does not exist, load default */ 1641 for (i = 0; i < count; i++) 1642 buffer[i] = default_val[i % 3]; 1643 } 1644 1645 static int xgene_phy_probe(struct platform_device *pdev) 1646 { 1647 struct phy_provider *phy_provider; 1648 struct xgene_phy_ctx *ctx; 1649 u32 default_spd[] = DEFAULT_SATA_SPD_SEL; 1650 u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN; 1651 u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION; 1652 u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING; 1653 u32 default_txamp[] = DEFAULT_SATA_TXAMP; 1654 u32 default_txcn1[] = DEFAULT_SATA_TXCN1; 1655 u32 default_txcn2[] = DEFAULT_SATA_TXCN2; 1656 u32 default_txcp1[] = DEFAULT_SATA_TXCP1; 1657 int i; 1658 1659 ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); 1660 if (!ctx) 1661 return -ENOMEM; 1662 1663 ctx->dev = &pdev->dev; 1664 1665 ctx->sds_base = devm_platform_ioremap_resource(pdev, 0); 1666 if (IS_ERR(ctx->sds_base)) 1667 return PTR_ERR(ctx->sds_base); 1668 1669 /* Retrieve optional clock */ 1670 ctx->clk = clk_get(&pdev->dev, NULL); 1671 1672 /* Load override paramaters */ 1673 xgene_phy_get_param(pdev, "apm,tx-eye-tuning", 1674 ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1); 1675 xgene_phy_get_param(pdev, "apm,tx-eye-direction", 1676 ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1); 1677 xgene_phy_get_param(pdev, "apm,tx-boost-gain", 1678 ctx->sata_param.txboostgain, 6, default_txboost_gain, 1); 1679 xgene_phy_get_param(pdev, "apm,tx-amplitude", 1680 ctx->sata_param.txamplitude, 6, default_txamp, 13300); 1681 xgene_phy_get_param(pdev, "apm,tx-pre-cursor1", 1682 ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200); 1683 xgene_phy_get_param(pdev, "apm,tx-pre-cursor2", 1684 ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200); 1685 xgene_phy_get_param(pdev, "apm,tx-post-cursor", 1686 ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200); 1687 xgene_phy_get_param(pdev, "apm,tx-speed", 1688 ctx->sata_param.txspeed, 3, default_spd, 1); 1689 for (i = 0; i < MAX_LANE; i++) 1690 ctx->sata_param.speed[i] = 2; /* Default to Gen3 */ 1691 1692 platform_set_drvdata(pdev, ctx); 1693 1694 ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops); 1695 if (IS_ERR(ctx->phy)) { 1696 dev_dbg(&pdev->dev, "Failed to create PHY\n"); 1697 return PTR_ERR(ctx->phy); 1698 } 1699 phy_set_drvdata(ctx->phy, ctx); 1700 1701 phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate); 1702 return PTR_ERR_OR_ZERO(phy_provider); 1703 } 1704 1705 static const struct of_device_id xgene_phy_of_match[] = { 1706 {.compatible = "apm,xgene-phy",}, 1707 {}, 1708 }; 1709 MODULE_DEVICE_TABLE(of, xgene_phy_of_match); 1710 1711 static struct platform_driver xgene_phy_driver = { 1712 .probe = xgene_phy_probe, 1713 .driver = { 1714 .name = "xgene-phy", 1715 .of_match_table = xgene_phy_of_match, 1716 }, 1717 }; 1718 module_platform_driver(xgene_phy_driver); 1719 1720 MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver"); 1721 MODULE_AUTHOR("Loc Ho <lho@apm.com>"); 1722 MODULE_LICENSE("GPL v2"); 1723 MODULE_VERSION("0.1"); 1724