xref: /linux/drivers/perf/riscv_pmu_sbi.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This code is based on ARM perf event code which is in turn based on
8  * sparc64 and x86 code.
9  */
10 
11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
12 
13 #include <linux/mod_devicetable.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/platform_device.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/of_irq.h>
19 #include <linux/of.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/sched/clock.h>
22 #include <linux/soc/andes/irq.h>
23 
24 #include <asm/errata_list.h>
25 #include <asm/sbi.h>
26 #include <asm/cpufeature.h>
27 
28 #define ALT_SBI_PMU_OVERFLOW(__ovl)					\
29 asm volatile(ALTERNATIVE_2(						\
30 	"csrr %0, " __stringify(CSR_SCOUNTOVF),				\
31 	"csrr %0, " __stringify(THEAD_C9XX_CSR_SCOUNTEROF),		\
32 		THEAD_VENDOR_ID, ERRATA_THEAD_PMU,			\
33 		CONFIG_ERRATA_THEAD_PMU,				\
34 	"csrr %0, " __stringify(ANDES_CSR_SCOUNTEROF),			\
35 		0, RISCV_ISA_EXT_XANDESPMU,				\
36 		CONFIG_ANDES_CUSTOM_PMU)				\
37 	: "=r" (__ovl) :						\
38 	: "memory")
39 
40 #define ALT_SBI_PMU_OVF_CLEAR_PENDING(__irq_mask)			\
41 asm volatile(ALTERNATIVE(						\
42 	"csrc " __stringify(CSR_IP) ", %0\n\t",				\
43 	"csrc " __stringify(ANDES_CSR_SLIP) ", %0\n\t",			\
44 		0, RISCV_ISA_EXT_XANDESPMU,				\
45 		CONFIG_ANDES_CUSTOM_PMU)				\
46 	: : "r"(__irq_mask)						\
47 	: "memory")
48 
49 #define SYSCTL_NO_USER_ACCESS	0
50 #define SYSCTL_USER_ACCESS	1
51 #define SYSCTL_LEGACY		2
52 
53 #define PERF_EVENT_FLAG_NO_USER_ACCESS	BIT(SYSCTL_NO_USER_ACCESS)
54 #define PERF_EVENT_FLAG_USER_ACCESS	BIT(SYSCTL_USER_ACCESS)
55 #define PERF_EVENT_FLAG_LEGACY		BIT(SYSCTL_LEGACY)
56 
57 PMU_FORMAT_ATTR(event, "config:0-47");
58 PMU_FORMAT_ATTR(firmware, "config:63");
59 
60 static bool sbi_v2_available;
61 static DEFINE_STATIC_KEY_FALSE(sbi_pmu_snapshot_available);
62 #define sbi_pmu_snapshot_available() \
63 	static_branch_unlikely(&sbi_pmu_snapshot_available)
64 
65 static struct attribute *riscv_arch_formats_attr[] = {
66 	&format_attr_event.attr,
67 	&format_attr_firmware.attr,
68 	NULL,
69 };
70 
71 static struct attribute_group riscv_pmu_format_group = {
72 	.name = "format",
73 	.attrs = riscv_arch_formats_attr,
74 };
75 
76 static const struct attribute_group *riscv_pmu_attr_groups[] = {
77 	&riscv_pmu_format_group,
78 	NULL,
79 };
80 
81 /* Allow user mode access by default */
82 static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS;
83 
84 /*
85  * RISC-V doesn't have heterogeneous harts yet. This need to be part of
86  * per_cpu in case of harts with different pmu counters
87  */
88 static union sbi_pmu_ctr_info *pmu_ctr_list;
89 static bool riscv_pmu_use_irq;
90 static unsigned int riscv_pmu_irq_num;
91 static unsigned int riscv_pmu_irq_mask;
92 static unsigned int riscv_pmu_irq;
93 
94 /* Cache the available counters in a bitmask */
95 static unsigned long cmask;
96 
97 struct sbi_pmu_event_data {
98 	union {
99 		union {
100 			struct hw_gen_event {
101 				uint32_t event_code:16;
102 				uint32_t event_type:4;
103 				uint32_t reserved:12;
104 			} hw_gen_event;
105 			struct hw_cache_event {
106 				uint32_t result_id:1;
107 				uint32_t op_id:2;
108 				uint32_t cache_id:13;
109 				uint32_t event_type:4;
110 				uint32_t reserved:12;
111 			} hw_cache_event;
112 		};
113 		uint32_t event_idx;
114 	};
115 };
116 
117 static const struct sbi_pmu_event_data pmu_hw_event_map[] = {
118 	[PERF_COUNT_HW_CPU_CYCLES]		= {.hw_gen_event = {
119 							SBI_PMU_HW_CPU_CYCLES,
120 							SBI_PMU_EVENT_TYPE_HW, 0}},
121 	[PERF_COUNT_HW_INSTRUCTIONS]		= {.hw_gen_event = {
122 							SBI_PMU_HW_INSTRUCTIONS,
123 							SBI_PMU_EVENT_TYPE_HW, 0}},
124 	[PERF_COUNT_HW_CACHE_REFERENCES]	= {.hw_gen_event = {
125 							SBI_PMU_HW_CACHE_REFERENCES,
126 							SBI_PMU_EVENT_TYPE_HW, 0}},
127 	[PERF_COUNT_HW_CACHE_MISSES]		= {.hw_gen_event = {
128 							SBI_PMU_HW_CACHE_MISSES,
129 							SBI_PMU_EVENT_TYPE_HW, 0}},
130 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= {.hw_gen_event = {
131 							SBI_PMU_HW_BRANCH_INSTRUCTIONS,
132 							SBI_PMU_EVENT_TYPE_HW, 0}},
133 	[PERF_COUNT_HW_BRANCH_MISSES]		= {.hw_gen_event = {
134 							SBI_PMU_HW_BRANCH_MISSES,
135 							SBI_PMU_EVENT_TYPE_HW, 0}},
136 	[PERF_COUNT_HW_BUS_CYCLES]		= {.hw_gen_event = {
137 							SBI_PMU_HW_BUS_CYCLES,
138 							SBI_PMU_EVENT_TYPE_HW, 0}},
139 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= {.hw_gen_event = {
140 							SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
141 							SBI_PMU_EVENT_TYPE_HW, 0}},
142 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= {.hw_gen_event = {
143 							SBI_PMU_HW_STALLED_CYCLES_BACKEND,
144 							SBI_PMU_EVENT_TYPE_HW, 0}},
145 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= {.hw_gen_event = {
146 							SBI_PMU_HW_REF_CPU_CYCLES,
147 							SBI_PMU_EVENT_TYPE_HW, 0}},
148 };
149 
150 #define C(x) PERF_COUNT_HW_CACHE_##x
151 static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
152 [PERF_COUNT_HW_CACHE_OP_MAX]
153 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
154 	[C(L1D)] = {
155 		[C(OP_READ)] = {
156 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
157 					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
158 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
159 					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
160 		},
161 		[C(OP_WRITE)] = {
162 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
163 					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
164 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
165 					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
166 		},
167 		[C(OP_PREFETCH)] = {
168 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
169 					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
170 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
171 					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
172 		},
173 	},
174 	[C(L1I)] = {
175 		[C(OP_READ)] = {
176 			[C(RESULT_ACCESS)] = {.hw_cache_event =	{C(RESULT_ACCESS),
177 					C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
178 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
179 					C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
180 		},
181 		[C(OP_WRITE)] = {
182 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
183 					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
184 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
185 					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
186 		},
187 		[C(OP_PREFETCH)] = {
188 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
189 					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
190 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
191 					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
192 		},
193 	},
194 	[C(LL)] = {
195 		[C(OP_READ)] = {
196 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
197 					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
198 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
199 					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
200 		},
201 		[C(OP_WRITE)] = {
202 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
203 					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
204 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
205 					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
206 		},
207 		[C(OP_PREFETCH)] = {
208 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
209 					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
210 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
211 					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
212 		},
213 	},
214 	[C(DTLB)] = {
215 		[C(OP_READ)] = {
216 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
217 					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
218 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
219 					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
220 		},
221 		[C(OP_WRITE)] = {
222 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
223 					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
224 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
225 					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
226 		},
227 		[C(OP_PREFETCH)] = {
228 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
229 					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
230 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
231 					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
232 		},
233 	},
234 	[C(ITLB)] = {
235 		[C(OP_READ)] = {
236 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
237 					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
238 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
239 					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
240 		},
241 		[C(OP_WRITE)] = {
242 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
243 					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
244 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
245 					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
246 		},
247 		[C(OP_PREFETCH)] = {
248 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
249 					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
250 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
251 					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
252 		},
253 	},
254 	[C(BPU)] = {
255 		[C(OP_READ)] = {
256 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
257 					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
258 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
259 					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
260 		},
261 		[C(OP_WRITE)] = {
262 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
263 					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
264 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
265 					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
266 		},
267 		[C(OP_PREFETCH)] = {
268 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
269 					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
270 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
271 					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
272 		},
273 	},
274 	[C(NODE)] = {
275 		[C(OP_READ)] = {
276 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
277 					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
278 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
279 					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
280 		},
281 		[C(OP_WRITE)] = {
282 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
283 					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
284 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
285 					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
286 		},
287 		[C(OP_PREFETCH)] = {
288 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
289 					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
290 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
291 					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
292 		},
293 	},
294 };
295 
296 static int pmu_sbi_ctr_get_width(int idx)
297 {
298 	return pmu_ctr_list[idx].width;
299 }
300 
301 static bool pmu_sbi_ctr_is_fw(int cidx)
302 {
303 	union sbi_pmu_ctr_info *info;
304 
305 	info = &pmu_ctr_list[cidx];
306 	if (!info)
307 		return false;
308 
309 	return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
310 }
311 
312 /*
313  * Returns the counter width of a programmable counter and number of hardware
314  * counters. As we don't support heterogeneous CPUs yet, it is okay to just
315  * return the counter width of the first programmable counter.
316  */
317 int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr)
318 {
319 	int i;
320 	union sbi_pmu_ctr_info *info;
321 	u32 hpm_width = 0, hpm_count = 0;
322 
323 	if (!cmask)
324 		return -EINVAL;
325 
326 	for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) {
327 		info = &pmu_ctr_list[i];
328 		if (!info)
329 			continue;
330 		if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET)
331 			hpm_width = info->width;
332 		if (info->type == SBI_PMU_CTR_TYPE_HW)
333 			hpm_count++;
334 	}
335 
336 	*hw_ctr_width = hpm_width;
337 	*num_hw_ctr = hpm_count;
338 
339 	return 0;
340 }
341 EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info);
342 
343 static uint8_t pmu_sbi_csr_index(struct perf_event *event)
344 {
345 	return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE;
346 }
347 
348 static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event)
349 {
350 	unsigned long cflags = 0;
351 	bool guest_events = false;
352 
353 	if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS)
354 		guest_events = true;
355 	if (event->attr.exclude_kernel)
356 		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH;
357 	if (event->attr.exclude_user)
358 		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH;
359 	if (guest_events && event->attr.exclude_hv)
360 		cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
361 	if (event->attr.exclude_host)
362 		cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH;
363 	if (event->attr.exclude_guest)
364 		cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH;
365 
366 	return cflags;
367 }
368 
369 static int pmu_sbi_ctr_get_idx(struct perf_event *event)
370 {
371 	struct hw_perf_event *hwc = &event->hw;
372 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
373 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
374 	struct sbiret ret;
375 	int idx;
376 	uint64_t cbase = 0, cmask = rvpmu->cmask;
377 	unsigned long cflags = 0;
378 
379 	cflags = pmu_sbi_get_filter_flags(event);
380 
381 	/*
382 	 * In legacy mode, we have to force the fixed counters for those events
383 	 * but not in the user access mode as we want to use the other counters
384 	 * that support sampling/filtering.
385 	 */
386 	if (hwc->flags & PERF_EVENT_FLAG_LEGACY) {
387 		if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
388 			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
389 			cmask = 1;
390 		} else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) {
391 			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
392 			cmask = BIT(CSR_INSTRET - CSR_CYCLE);
393 		}
394 	}
395 
396 	/* retrieve the available counter index */
397 #if defined(CONFIG_32BIT)
398 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
399 			cmask, cflags, hwc->event_base, hwc->config,
400 			hwc->config >> 32);
401 #else
402 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
403 			cmask, cflags, hwc->event_base, hwc->config, 0);
404 #endif
405 	if (ret.error) {
406 		pr_debug("Not able to find a counter for event %lx config %llx\n",
407 			hwc->event_base, hwc->config);
408 		return sbi_err_map_linux_errno(ret.error);
409 	}
410 
411 	idx = ret.value;
412 	if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
413 		return -ENOENT;
414 
415 	/* Additional sanity check for the counter id */
416 	if (pmu_sbi_ctr_is_fw(idx)) {
417 		if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
418 			return idx;
419 	} else {
420 		if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
421 			return idx;
422 	}
423 
424 	return -ENOENT;
425 }
426 
427 static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
428 {
429 
430 	struct hw_perf_event *hwc = &event->hw;
431 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
432 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
433 	int idx = hwc->idx;
434 
435 	if (pmu_sbi_ctr_is_fw(idx))
436 		clear_bit(idx, cpuc->used_fw_ctrs);
437 	else
438 		clear_bit(idx, cpuc->used_hw_ctrs);
439 }
440 
441 static int pmu_event_find_cache(u64 config)
442 {
443 	unsigned int cache_type, cache_op, cache_result, ret;
444 
445 	cache_type = (config >>  0) & 0xff;
446 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
447 		return -EINVAL;
448 
449 	cache_op = (config >>  8) & 0xff;
450 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
451 		return -EINVAL;
452 
453 	cache_result = (config >> 16) & 0xff;
454 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
455 		return -EINVAL;
456 
457 	ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
458 
459 	return ret;
460 }
461 
462 static bool pmu_sbi_is_fw_event(struct perf_event *event)
463 {
464 	u32 type = event->attr.type;
465 	u64 config = event->attr.config;
466 
467 	if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
468 		return true;
469 	else
470 		return false;
471 }
472 
473 static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
474 {
475 	u32 type = event->attr.type;
476 	u64 config = event->attr.config;
477 	int bSoftware;
478 	u64 raw_config_val;
479 	int ret;
480 
481 	switch (type) {
482 	case PERF_TYPE_HARDWARE:
483 		if (config >= PERF_COUNT_HW_MAX)
484 			return -EINVAL;
485 		ret = pmu_hw_event_map[event->attr.config].event_idx;
486 		break;
487 	case PERF_TYPE_HW_CACHE:
488 		ret = pmu_event_find_cache(config);
489 		break;
490 	case PERF_TYPE_RAW:
491 		/*
492 		 * As per SBI specification, the upper 16 bits must be unused for
493 		 * a raw event. Use the MSB (63b) to distinguish between hardware
494 		 * raw event and firmware events.
495 		 */
496 		bSoftware = config >> 63;
497 		raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
498 		if (bSoftware) {
499 			ret = (raw_config_val & 0xFFFF) |
500 				(SBI_PMU_EVENT_TYPE_FW << 16);
501 		} else {
502 			ret = RISCV_PMU_RAW_EVENT_IDX;
503 			*econfig = raw_config_val;
504 		}
505 		break;
506 	default:
507 		ret = -EINVAL;
508 		break;
509 	}
510 
511 	return ret;
512 }
513 
514 static void pmu_sbi_snapshot_free(struct riscv_pmu *pmu)
515 {
516 	int cpu;
517 
518 	for_each_possible_cpu(cpu) {
519 		struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
520 
521 		if (!cpu_hw_evt->snapshot_addr)
522 			continue;
523 
524 		free_page((unsigned long)cpu_hw_evt->snapshot_addr);
525 		cpu_hw_evt->snapshot_addr = NULL;
526 		cpu_hw_evt->snapshot_addr_phys = 0;
527 	}
528 }
529 
530 static int pmu_sbi_snapshot_alloc(struct riscv_pmu *pmu)
531 {
532 	int cpu;
533 	struct page *snapshot_page;
534 
535 	for_each_possible_cpu(cpu) {
536 		struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
537 
538 		snapshot_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
539 		if (!snapshot_page) {
540 			pmu_sbi_snapshot_free(pmu);
541 			return -ENOMEM;
542 		}
543 		cpu_hw_evt->snapshot_addr = page_to_virt(snapshot_page);
544 		cpu_hw_evt->snapshot_addr_phys = page_to_phys(snapshot_page);
545 	}
546 
547 	return 0;
548 }
549 
550 static int pmu_sbi_snapshot_disable(void)
551 {
552 	struct sbiret ret;
553 
554 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM, SBI_SHMEM_DISABLE,
555 			SBI_SHMEM_DISABLE, 0, 0, 0, 0);
556 	if (ret.error) {
557 		pr_warn("failed to disable snapshot shared memory\n");
558 		return sbi_err_map_linux_errno(ret.error);
559 	}
560 
561 	return 0;
562 }
563 
564 static int pmu_sbi_snapshot_setup(struct riscv_pmu *pmu, int cpu)
565 {
566 	struct cpu_hw_events *cpu_hw_evt;
567 	struct sbiret ret = {0};
568 
569 	cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
570 	if (!cpu_hw_evt->snapshot_addr_phys)
571 		return -EINVAL;
572 
573 	if (cpu_hw_evt->snapshot_set_done)
574 		return 0;
575 
576 	if (IS_ENABLED(CONFIG_32BIT))
577 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM,
578 				cpu_hw_evt->snapshot_addr_phys,
579 				(u64)(cpu_hw_evt->snapshot_addr_phys) >> 32, 0, 0, 0, 0);
580 	else
581 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM,
582 				cpu_hw_evt->snapshot_addr_phys, 0, 0, 0, 0, 0);
583 
584 	/* Free up the snapshot area memory and fall back to SBI PMU calls without snapshot */
585 	if (ret.error) {
586 		if (ret.error != SBI_ERR_NOT_SUPPORTED)
587 			pr_warn("pmu snapshot setup failed with error %ld\n", ret.error);
588 		return sbi_err_map_linux_errno(ret.error);
589 	}
590 
591 	memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS);
592 	cpu_hw_evt->snapshot_set_done = true;
593 
594 	return 0;
595 }
596 
597 static u64 pmu_sbi_ctr_read(struct perf_event *event)
598 {
599 	struct hw_perf_event *hwc = &event->hw;
600 	int idx = hwc->idx;
601 	struct sbiret ret;
602 	u64 val = 0;
603 	struct riscv_pmu *pmu = to_riscv_pmu(event->pmu);
604 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
605 	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
606 	union sbi_pmu_ctr_info info = pmu_ctr_list[idx];
607 
608 	/* Read the value from the shared memory directly only if counter is stopped */
609 	if (sbi_pmu_snapshot_available() && (hwc->state & PERF_HES_STOPPED)) {
610 		val = sdata->ctr_values[idx];
611 		return val;
612 	}
613 
614 	if (pmu_sbi_is_fw_event(event)) {
615 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
616 				hwc->idx, 0, 0, 0, 0, 0);
617 		if (ret.error)
618 			return 0;
619 
620 		val = ret.value;
621 		if (IS_ENABLED(CONFIG_32BIT) && sbi_v2_available && info.width >= 32) {
622 			ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ_HI,
623 					hwc->idx, 0, 0, 0, 0, 0);
624 			if (!ret.error)
625 				val |= ((u64)ret.value << 32);
626 			else
627 				WARN_ONCE(1, "Unable to read upper 32 bits of firmware counter error: %ld\n",
628 					  ret.error);
629 		}
630 	} else {
631 		val = riscv_pmu_ctr_read_csr(info.csr);
632 		if (IS_ENABLED(CONFIG_32BIT))
633 			val |= ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 32;
634 	}
635 
636 	return val;
637 }
638 
639 static void pmu_sbi_set_scounteren(void *arg)
640 {
641 	struct perf_event *event = (struct perf_event *)arg;
642 
643 	if (event->hw.idx != -1)
644 		csr_write(CSR_SCOUNTEREN,
645 			  csr_read(CSR_SCOUNTEREN) | BIT(pmu_sbi_csr_index(event)));
646 }
647 
648 static void pmu_sbi_reset_scounteren(void *arg)
649 {
650 	struct perf_event *event = (struct perf_event *)arg;
651 
652 	if (event->hw.idx != -1)
653 		csr_write(CSR_SCOUNTEREN,
654 			  csr_read(CSR_SCOUNTEREN) & ~BIT(pmu_sbi_csr_index(event)));
655 }
656 
657 static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
658 {
659 	struct sbiret ret;
660 	struct hw_perf_event *hwc = &event->hw;
661 	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
662 
663 	/* There is no benefit setting SNAPSHOT FLAG for a single counter */
664 #if defined(CONFIG_32BIT)
665 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
666 			1, flag, ival, ival >> 32, 0);
667 #else
668 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
669 			1, flag, ival, 0, 0);
670 #endif
671 	if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
672 		pr_err("Starting counter idx %d failed with error %d\n",
673 			hwc->idx, sbi_err_map_linux_errno(ret.error));
674 
675 	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
676 	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
677 		pmu_sbi_set_scounteren((void *)event);
678 }
679 
680 static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
681 {
682 	struct sbiret ret;
683 	struct hw_perf_event *hwc = &event->hw;
684 	struct riscv_pmu *pmu = to_riscv_pmu(event->pmu);
685 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
686 	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
687 
688 	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
689 	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
690 		pmu_sbi_reset_scounteren((void *)event);
691 
692 	if (sbi_pmu_snapshot_available())
693 		flag |= SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT;
694 
695 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
696 	if (!ret.error && sbi_pmu_snapshot_available()) {
697 		/*
698 		 * The counter snapshot is based on the index base specified by hwc->idx.
699 		 * The actual counter value is updated in shared memory at index 0 when counter
700 		 * mask is 0x01. To ensure accurate counter values, it's necessary to transfer
701 		 * the counter value to shared memory. However, if hwc->idx is zero, the counter
702 		 * value is already correctly updated in shared memory, requiring no further
703 		 * adjustment.
704 		 */
705 		if (hwc->idx > 0) {
706 			sdata->ctr_values[hwc->idx] = sdata->ctr_values[0];
707 			sdata->ctr_values[0] = 0;
708 		}
709 	} else if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
710 		flag != SBI_PMU_STOP_FLAG_RESET) {
711 		pr_err("Stopping counter idx %d failed with error %d\n",
712 			hwc->idx, sbi_err_map_linux_errno(ret.error));
713 	}
714 }
715 
716 static int pmu_sbi_find_num_ctrs(void)
717 {
718 	struct sbiret ret;
719 
720 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
721 	if (!ret.error)
722 		return ret.value;
723 	else
724 		return sbi_err_map_linux_errno(ret.error);
725 }
726 
727 static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
728 {
729 	struct sbiret ret;
730 	int i, num_hw_ctr = 0, num_fw_ctr = 0;
731 	union sbi_pmu_ctr_info cinfo;
732 
733 	pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
734 	if (!pmu_ctr_list)
735 		return -ENOMEM;
736 
737 	for (i = 0; i < nctr; i++) {
738 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
739 		if (ret.error)
740 			/* The logical counter ids are not expected to be contiguous */
741 			continue;
742 
743 		*mask |= BIT(i);
744 
745 		cinfo.value = ret.value;
746 		if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
747 			num_fw_ctr++;
748 		else
749 			num_hw_ctr++;
750 		pmu_ctr_list[i].value = cinfo.value;
751 	}
752 
753 	pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
754 
755 	return 0;
756 }
757 
758 static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
759 {
760 	/*
761 	 * No need to check the error because we are disabling all the counters
762 	 * which may include counters that are not enabled yet.
763 	 */
764 	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
765 		  0, pmu->cmask, 0, 0, 0, 0);
766 }
767 
768 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
769 {
770 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
771 	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
772 	unsigned long flag = 0;
773 	int i, idx;
774 	struct sbiret ret;
775 	u64 temp_ctr_overflow_mask = 0;
776 
777 	if (sbi_pmu_snapshot_available())
778 		flag = SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT;
779 
780 	/* Reset the shadow copy to avoid save/restore any value from previous overflow */
781 	memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS);
782 
783 	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
784 		/* No need to check the error here as we can't do anything about the error */
785 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, i * BITS_PER_LONG,
786 				cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0);
787 		if (!ret.error && sbi_pmu_snapshot_available()) {
788 			/* Save the counter values to avoid clobbering */
789 			for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG)
790 				cpu_hw_evt->snapshot_cval_shcopy[i * BITS_PER_LONG + idx] =
791 							sdata->ctr_values[idx];
792 			/* Save the overflow mask to avoid clobbering */
793 			temp_ctr_overflow_mask |= sdata->ctr_overflow_mask << (i * BITS_PER_LONG);
794 		}
795 	}
796 
797 	/* Restore the counter values to the shared memory for used hw counters */
798 	if (sbi_pmu_snapshot_available()) {
799 		for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS)
800 			sdata->ctr_values[idx] = cpu_hw_evt->snapshot_cval_shcopy[idx];
801 		if (temp_ctr_overflow_mask)
802 			sdata->ctr_overflow_mask = temp_ctr_overflow_mask;
803 	}
804 }
805 
806 /*
807  * This function starts all the used counters in two step approach.
808  * Any counter that did not overflow can be start in a single step
809  * while the overflowed counters need to be started with updated initialization
810  * value.
811  */
812 static inline void pmu_sbi_start_ovf_ctrs_sbi(struct cpu_hw_events *cpu_hw_evt,
813 					      u64 ctr_ovf_mask)
814 {
815 	int idx = 0, i;
816 	struct perf_event *event;
817 	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
818 	unsigned long ctr_start_mask = 0;
819 	uint64_t max_period;
820 	struct hw_perf_event *hwc;
821 	u64 init_val = 0;
822 
823 	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
824 		ctr_start_mask = cpu_hw_evt->used_hw_ctrs[i] & ~ctr_ovf_mask;
825 		/* Start all the counters that did not overflow in a single shot */
826 		sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, i * BITS_PER_LONG, ctr_start_mask,
827 			0, 0, 0, 0);
828 	}
829 
830 	/* Reinitialize and start all the counter that overflowed */
831 	while (ctr_ovf_mask) {
832 		if (ctr_ovf_mask & 0x01) {
833 			event = cpu_hw_evt->events[idx];
834 			hwc = &event->hw;
835 			max_period = riscv_pmu_ctr_get_width_mask(event);
836 			init_val = local64_read(&hwc->prev_count) & max_period;
837 #if defined(CONFIG_32BIT)
838 			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
839 				  flag, init_val, init_val >> 32, 0);
840 #else
841 			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
842 				  flag, init_val, 0, 0);
843 #endif
844 			perf_event_update_userpage(event);
845 		}
846 		ctr_ovf_mask = ctr_ovf_mask >> 1;
847 		idx++;
848 	}
849 }
850 
851 static inline void pmu_sbi_start_ovf_ctrs_snapshot(struct cpu_hw_events *cpu_hw_evt,
852 						   u64 ctr_ovf_mask)
853 {
854 	int i, idx = 0;
855 	struct perf_event *event;
856 	unsigned long flag = SBI_PMU_START_FLAG_INIT_SNAPSHOT;
857 	u64 max_period, init_val = 0;
858 	struct hw_perf_event *hwc;
859 	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
860 
861 	for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
862 		if (ctr_ovf_mask & BIT(idx)) {
863 			event = cpu_hw_evt->events[idx];
864 			hwc = &event->hw;
865 			max_period = riscv_pmu_ctr_get_width_mask(event);
866 			init_val = local64_read(&hwc->prev_count) & max_period;
867 			cpu_hw_evt->snapshot_cval_shcopy[idx] = init_val;
868 		}
869 		/*
870 		 * We do not need to update the non-overflow counters the previous
871 		 * value should have been there already.
872 		 */
873 	}
874 
875 	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
876 		/* Restore the counter values to relative indices for used hw counters */
877 		for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG)
878 			sdata->ctr_values[idx] =
879 					cpu_hw_evt->snapshot_cval_shcopy[idx + i * BITS_PER_LONG];
880 		/* Start all the counters in a single shot */
881 		sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx * BITS_PER_LONG,
882 			  cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0);
883 	}
884 }
885 
886 static void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
887 					u64 ctr_ovf_mask)
888 {
889 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
890 
891 	if (sbi_pmu_snapshot_available())
892 		pmu_sbi_start_ovf_ctrs_snapshot(cpu_hw_evt, ctr_ovf_mask);
893 	else
894 		pmu_sbi_start_ovf_ctrs_sbi(cpu_hw_evt, ctr_ovf_mask);
895 }
896 
897 static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
898 {
899 	struct perf_sample_data data;
900 	struct pt_regs *regs;
901 	struct hw_perf_event *hw_evt;
902 	union sbi_pmu_ctr_info *info;
903 	int lidx, hidx, fidx;
904 	struct riscv_pmu *pmu;
905 	struct perf_event *event;
906 	u64 overflow;
907 	u64 overflowed_ctrs = 0;
908 	struct cpu_hw_events *cpu_hw_evt = dev;
909 	u64 start_clock = sched_clock();
910 	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
911 
912 	if (WARN_ON_ONCE(!cpu_hw_evt))
913 		return IRQ_NONE;
914 
915 	/* Firmware counter don't support overflow yet */
916 	fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
917 	if (fidx == RISCV_MAX_COUNTERS) {
918 		csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
919 		return IRQ_NONE;
920 	}
921 
922 	event = cpu_hw_evt->events[fidx];
923 	if (!event) {
924 		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
925 		return IRQ_NONE;
926 	}
927 
928 	pmu = to_riscv_pmu(event->pmu);
929 	pmu_sbi_stop_hw_ctrs(pmu);
930 
931 	/* Overflow status register should only be read after counter are stopped */
932 	if (sbi_pmu_snapshot_available())
933 		overflow = sdata->ctr_overflow_mask;
934 	else
935 		ALT_SBI_PMU_OVERFLOW(overflow);
936 
937 	/*
938 	 * Overflow interrupt pending bit should only be cleared after stopping
939 	 * all the counters to avoid any race condition.
940 	 */
941 	ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
942 
943 	/* No overflow bit is set */
944 	if (!overflow)
945 		return IRQ_NONE;
946 
947 	regs = get_irq_regs();
948 
949 	for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
950 		struct perf_event *event = cpu_hw_evt->events[lidx];
951 
952 		/* Skip if invalid event or user did not request a sampling */
953 		if (!event || !is_sampling_event(event))
954 			continue;
955 
956 		info = &pmu_ctr_list[lidx];
957 		/* Do a sanity check */
958 		if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
959 			continue;
960 
961 		if (sbi_pmu_snapshot_available())
962 			/* SBI implementation already updated the logical indicies */
963 			hidx = lidx;
964 		else
965 			/* compute hardware counter index */
966 			hidx = info->csr - CSR_CYCLE;
967 
968 		/* check if the corresponding bit is set in sscountovf or overflow mask in shmem */
969 		if (!(overflow & BIT(hidx)))
970 			continue;
971 
972 		/*
973 		 * Keep a track of overflowed counters so that they can be started
974 		 * with updated initial value.
975 		 */
976 		overflowed_ctrs |= BIT(lidx);
977 		hw_evt = &event->hw;
978 		/* Update the event states here so that we know the state while reading */
979 		hw_evt->state |= PERF_HES_STOPPED;
980 		riscv_pmu_event_update(event);
981 		hw_evt->state |= PERF_HES_UPTODATE;
982 		perf_sample_data_init(&data, 0, hw_evt->last_period);
983 		if (riscv_pmu_event_set_period(event)) {
984 			/*
985 			 * Unlike other ISAs, RISC-V don't have to disable interrupts
986 			 * to avoid throttling here. As per the specification, the
987 			 * interrupt remains disabled until the OF bit is set.
988 			 * Interrupts are enabled again only during the start.
989 			 * TODO: We will need to stop the guest counters once
990 			 * virtualization support is added.
991 			 */
992 			perf_event_overflow(event, &data, regs);
993 		}
994 		/* Reset the state as we are going to start the counter after the loop */
995 		hw_evt->state = 0;
996 	}
997 
998 	pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
999 	perf_sample_event_took(sched_clock() - start_clock);
1000 
1001 	return IRQ_HANDLED;
1002 }
1003 
1004 static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
1005 {
1006 	struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
1007 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
1008 
1009 	/*
1010 	 * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
1011 	 * legacy option but that will be removed in the future.
1012 	 */
1013 	if (sysctl_perf_user_access == SYSCTL_LEGACY)
1014 		csr_write(CSR_SCOUNTEREN, 0x7);
1015 	else
1016 		csr_write(CSR_SCOUNTEREN, 0x2);
1017 
1018 	/* Stop all the counters so that they can be enabled from perf */
1019 	pmu_sbi_stop_all(pmu);
1020 
1021 	if (riscv_pmu_use_irq) {
1022 		cpu_hw_evt->irq = riscv_pmu_irq;
1023 		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
1024 		enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
1025 	}
1026 
1027 	if (sbi_pmu_snapshot_available())
1028 		return pmu_sbi_snapshot_setup(pmu, cpu);
1029 
1030 	return 0;
1031 }
1032 
1033 static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
1034 {
1035 	if (riscv_pmu_use_irq) {
1036 		disable_percpu_irq(riscv_pmu_irq);
1037 	}
1038 
1039 	/* Disable all counters access for user mode now */
1040 	csr_write(CSR_SCOUNTEREN, 0x0);
1041 
1042 	if (sbi_pmu_snapshot_available())
1043 		return pmu_sbi_snapshot_disable();
1044 
1045 	return 0;
1046 }
1047 
1048 static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
1049 {
1050 	int ret;
1051 	struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
1052 	struct irq_domain *domain = NULL;
1053 
1054 	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
1055 		riscv_pmu_irq_num = RV_IRQ_PMU;
1056 		riscv_pmu_use_irq = true;
1057 	} else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
1058 		   riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
1059 		   riscv_cached_marchid(0) == 0 &&
1060 		   riscv_cached_mimpid(0) == 0) {
1061 		riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
1062 		riscv_pmu_use_irq = true;
1063 	} else if (riscv_isa_extension_available(NULL, XANDESPMU) &&
1064 		   IS_ENABLED(CONFIG_ANDES_CUSTOM_PMU)) {
1065 		riscv_pmu_irq_num = ANDES_SLI_CAUSE_BASE + ANDES_RV_IRQ_PMOVI;
1066 		riscv_pmu_use_irq = true;
1067 	}
1068 
1069 	riscv_pmu_irq_mask = BIT(riscv_pmu_irq_num % BITS_PER_LONG);
1070 
1071 	if (!riscv_pmu_use_irq)
1072 		return -EOPNOTSUPP;
1073 
1074 	domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(),
1075 					  DOMAIN_BUS_ANY);
1076 	if (!domain) {
1077 		pr_err("Failed to find INTC IRQ root domain\n");
1078 		return -ENODEV;
1079 	}
1080 
1081 	riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
1082 	if (!riscv_pmu_irq) {
1083 		pr_err("Failed to map PMU interrupt for node\n");
1084 		return -ENODEV;
1085 	}
1086 
1087 	ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
1088 	if (ret) {
1089 		pr_err("registering percpu irq failed [%d]\n", ret);
1090 		return ret;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 #ifdef CONFIG_CPU_PM
1097 static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
1098 				void *v)
1099 {
1100 	struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
1101 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
1102 	int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
1103 	struct perf_event *event;
1104 	int idx;
1105 
1106 	if (!enabled)
1107 		return NOTIFY_OK;
1108 
1109 	for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
1110 		event = cpuc->events[idx];
1111 		if (!event)
1112 			continue;
1113 
1114 		switch (cmd) {
1115 		case CPU_PM_ENTER:
1116 			/*
1117 			 * Stop and update the counter
1118 			 */
1119 			riscv_pmu_stop(event, PERF_EF_UPDATE);
1120 			break;
1121 		case CPU_PM_EXIT:
1122 		case CPU_PM_ENTER_FAILED:
1123 			/*
1124 			 * Restore and enable the counter.
1125 			 */
1126 			riscv_pmu_start(event, PERF_EF_RELOAD);
1127 			break;
1128 		default:
1129 			break;
1130 		}
1131 	}
1132 
1133 	return NOTIFY_OK;
1134 }
1135 
1136 static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
1137 {
1138 	pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
1139 	return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
1140 }
1141 
1142 static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
1143 {
1144 	cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
1145 }
1146 #else
1147 static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
1148 static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
1149 #endif
1150 
1151 static void riscv_pmu_destroy(struct riscv_pmu *pmu)
1152 {
1153 	if (sbi_v2_available) {
1154 		if (sbi_pmu_snapshot_available()) {
1155 			pmu_sbi_snapshot_disable();
1156 			pmu_sbi_snapshot_free(pmu);
1157 		}
1158 	}
1159 	riscv_pm_pmu_unregister(pmu);
1160 	cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1161 }
1162 
1163 static void pmu_sbi_event_init(struct perf_event *event)
1164 {
1165 	/*
1166 	 * The permissions are set at event_init so that we do not depend
1167 	 * on the sysctl value that can change.
1168 	 */
1169 	if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS)
1170 		event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS;
1171 	else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS)
1172 		event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS;
1173 	else
1174 		event->hw.flags |= PERF_EVENT_FLAG_LEGACY;
1175 }
1176 
1177 static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm)
1178 {
1179 	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
1180 		return;
1181 
1182 	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
1183 		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
1184 		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
1185 			return;
1186 		}
1187 	}
1188 
1189 	/*
1190 	 * The user mmapped the event to directly access it: this is where
1191 	 * we determine based on sysctl_perf_user_access if we grant userspace
1192 	 * the direct access to this event. That means that within the same
1193 	 * task, some events may be directly accessible and some other may not,
1194 	 * if the user changes the value of sysctl_perf_user_accesss in the
1195 	 * meantime.
1196 	 */
1197 
1198 	event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1199 
1200 	/*
1201 	 * We must enable userspace access *before* advertising in the user page
1202 	 * that it is possible to do so to avoid any race.
1203 	 * And we must notify all cpus here because threads that currently run
1204 	 * on other cpus will try to directly access the counter too without
1205 	 * calling pmu_sbi_ctr_start.
1206 	 */
1207 	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
1208 		on_each_cpu_mask(mm_cpumask(mm),
1209 				 pmu_sbi_set_scounteren, (void *)event, 1);
1210 }
1211 
1212 static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm)
1213 {
1214 	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
1215 		return;
1216 
1217 	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
1218 		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
1219 		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
1220 			return;
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * Here we can directly remove user access since the user does not have
1226 	 * access to the user page anymore so we avoid the racy window where the
1227 	 * user could have read cap_user_rdpmc to true right before we disable
1228 	 * it.
1229 	 */
1230 	event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT;
1231 
1232 	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
1233 		on_each_cpu_mask(mm_cpumask(mm),
1234 				 pmu_sbi_reset_scounteren, (void *)event, 1);
1235 }
1236 
1237 static void riscv_pmu_update_counter_access(void *info)
1238 {
1239 	if (sysctl_perf_user_access == SYSCTL_LEGACY)
1240 		csr_write(CSR_SCOUNTEREN, 0x7);
1241 	else
1242 		csr_write(CSR_SCOUNTEREN, 0x2);
1243 }
1244 
1245 static int riscv_pmu_proc_user_access_handler(struct ctl_table *table,
1246 					      int write, void *buffer,
1247 					      size_t *lenp, loff_t *ppos)
1248 {
1249 	int prev = sysctl_perf_user_access;
1250 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1251 
1252 	/*
1253 	 * Test against the previous value since we clear SCOUNTEREN when
1254 	 * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
1255 	 * not do that if that was already the case.
1256 	 */
1257 	if (ret || !write || prev == sysctl_perf_user_access)
1258 		return ret;
1259 
1260 	on_each_cpu(riscv_pmu_update_counter_access, NULL, 1);
1261 
1262 	return 0;
1263 }
1264 
1265 static struct ctl_table sbi_pmu_sysctl_table[] = {
1266 	{
1267 		.procname       = "perf_user_access",
1268 		.data		= &sysctl_perf_user_access,
1269 		.maxlen		= sizeof(unsigned int),
1270 		.mode           = 0644,
1271 		.proc_handler	= riscv_pmu_proc_user_access_handler,
1272 		.extra1		= SYSCTL_ZERO,
1273 		.extra2		= SYSCTL_TWO,
1274 	},
1275 };
1276 
1277 static int pmu_sbi_device_probe(struct platform_device *pdev)
1278 {
1279 	struct riscv_pmu *pmu = NULL;
1280 	int ret = -ENODEV;
1281 	int num_counters;
1282 
1283 	pr_info("SBI PMU extension is available\n");
1284 	pmu = riscv_pmu_alloc();
1285 	if (!pmu)
1286 		return -ENOMEM;
1287 
1288 	num_counters = pmu_sbi_find_num_ctrs();
1289 	if (num_counters < 0) {
1290 		pr_err("SBI PMU extension doesn't provide any counters\n");
1291 		goto out_free;
1292 	}
1293 
1294 	/* It is possible to get from SBI more than max number of counters */
1295 	if (num_counters > RISCV_MAX_COUNTERS) {
1296 		num_counters = RISCV_MAX_COUNTERS;
1297 		pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters);
1298 	}
1299 
1300 	/* cache all the information about counters now */
1301 	if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
1302 		goto out_free;
1303 
1304 	ret = pmu_sbi_setup_irqs(pmu, pdev);
1305 	if (ret < 0) {
1306 		pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
1307 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1308 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
1309 	}
1310 
1311 	pmu->pmu.attr_groups = riscv_pmu_attr_groups;
1312 	pmu->pmu.parent = &pdev->dev;
1313 	pmu->cmask = cmask;
1314 	pmu->ctr_start = pmu_sbi_ctr_start;
1315 	pmu->ctr_stop = pmu_sbi_ctr_stop;
1316 	pmu->event_map = pmu_sbi_event_map;
1317 	pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
1318 	pmu->ctr_get_width = pmu_sbi_ctr_get_width;
1319 	pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
1320 	pmu->ctr_read = pmu_sbi_ctr_read;
1321 	pmu->event_init = pmu_sbi_event_init;
1322 	pmu->event_mapped = pmu_sbi_event_mapped;
1323 	pmu->event_unmapped = pmu_sbi_event_unmapped;
1324 	pmu->csr_index = pmu_sbi_csr_index;
1325 
1326 	ret = riscv_pm_pmu_register(pmu);
1327 	if (ret)
1328 		goto out_unregister;
1329 
1330 	ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
1331 	if (ret)
1332 		goto out_unregister;
1333 
1334 	/* SBI PMU Snapsphot is only available in SBI v2.0 */
1335 	if (sbi_v2_available) {
1336 		ret = pmu_sbi_snapshot_alloc(pmu);
1337 		if (ret)
1338 			goto out_unregister;
1339 
1340 		ret = pmu_sbi_snapshot_setup(pmu, smp_processor_id());
1341 		if (ret) {
1342 			/* Snapshot is an optional feature. Continue if not available */
1343 			pmu_sbi_snapshot_free(pmu);
1344 		} else {
1345 			pr_info("SBI PMU snapshot detected\n");
1346 			/*
1347 			 * We enable it once here for the boot cpu. If snapshot shmem setup
1348 			 * fails during cpu hotplug process, it will fail to start the cpu
1349 			 * as we can not handle hetergenous PMUs with different snapshot
1350 			 * capability.
1351 			 */
1352 			static_branch_enable(&sbi_pmu_snapshot_available);
1353 		}
1354 	}
1355 
1356 	register_sysctl("kernel", sbi_pmu_sysctl_table);
1357 
1358 	ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1359 	if (ret)
1360 		goto out_unregister;
1361 
1362 	return 0;
1363 
1364 out_unregister:
1365 	riscv_pmu_destroy(pmu);
1366 
1367 out_free:
1368 	kfree(pmu);
1369 	return ret;
1370 }
1371 
1372 static struct platform_driver pmu_sbi_driver = {
1373 	.probe		= pmu_sbi_device_probe,
1374 	.driver		= {
1375 		.name	= RISCV_PMU_SBI_PDEV_NAME,
1376 	},
1377 };
1378 
1379 static int __init pmu_sbi_devinit(void)
1380 {
1381 	int ret;
1382 	struct platform_device *pdev;
1383 
1384 	if (sbi_spec_version < sbi_mk_version(0, 3) ||
1385 	    !sbi_probe_extension(SBI_EXT_PMU)) {
1386 		return 0;
1387 	}
1388 
1389 	if (sbi_spec_version >= sbi_mk_version(2, 0))
1390 		sbi_v2_available = true;
1391 
1392 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
1393 				      "perf/riscv/pmu:starting",
1394 				      pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
1395 	if (ret) {
1396 		pr_err("CPU hotplug notifier could not be registered: %d\n",
1397 		       ret);
1398 		return ret;
1399 	}
1400 
1401 	ret = platform_driver_register(&pmu_sbi_driver);
1402 	if (ret)
1403 		return ret;
1404 
1405 	pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0);
1406 	if (IS_ERR(pdev)) {
1407 		platform_driver_unregister(&pmu_sbi_driver);
1408 		return PTR_ERR(pdev);
1409 	}
1410 
1411 	/* Notify legacy implementation that SBI pmu is available*/
1412 	riscv_pmu_legacy_skip_init();
1413 
1414 	return ret;
1415 }
1416 device_initcall(pmu_sbi_devinit)
1417