1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RISC-V performance counter support. 4 * 5 * Copyright (C) 2021 Western Digital Corporation or its affiliates. 6 * 7 * This code is based on ARM perf event code which is in turn based on 8 * sparc64 and x86 code. 9 */ 10 11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt 12 13 #include <linux/mod_devicetable.h> 14 #include <linux/perf/riscv_pmu.h> 15 #include <linux/platform_device.h> 16 #include <linux/irq.h> 17 #include <linux/irqdomain.h> 18 #include <linux/of_irq.h> 19 #include <linux/of.h> 20 #include <linux/cpu_pm.h> 21 #include <linux/sched/clock.h> 22 23 #include <asm/errata_list.h> 24 #include <asm/sbi.h> 25 #include <asm/hwcap.h> 26 27 #define SYSCTL_NO_USER_ACCESS 0 28 #define SYSCTL_USER_ACCESS 1 29 #define SYSCTL_LEGACY 2 30 31 #define PERF_EVENT_FLAG_NO_USER_ACCESS BIT(SYSCTL_NO_USER_ACCESS) 32 #define PERF_EVENT_FLAG_USER_ACCESS BIT(SYSCTL_USER_ACCESS) 33 #define PERF_EVENT_FLAG_LEGACY BIT(SYSCTL_LEGACY) 34 35 PMU_FORMAT_ATTR(event, "config:0-47"); 36 PMU_FORMAT_ATTR(firmware, "config:63"); 37 38 static struct attribute *riscv_arch_formats_attr[] = { 39 &format_attr_event.attr, 40 &format_attr_firmware.attr, 41 NULL, 42 }; 43 44 static struct attribute_group riscv_pmu_format_group = { 45 .name = "format", 46 .attrs = riscv_arch_formats_attr, 47 }; 48 49 static const struct attribute_group *riscv_pmu_attr_groups[] = { 50 &riscv_pmu_format_group, 51 NULL, 52 }; 53 54 /* Allow user mode access by default */ 55 static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS; 56 57 /* 58 * RISC-V doesn't have heterogeneous harts yet. This need to be part of 59 * per_cpu in case of harts with different pmu counters 60 */ 61 static union sbi_pmu_ctr_info *pmu_ctr_list; 62 static bool riscv_pmu_use_irq; 63 static unsigned int riscv_pmu_irq_num; 64 static unsigned int riscv_pmu_irq; 65 66 /* Cache the available counters in a bitmask */ 67 static unsigned long cmask; 68 69 struct sbi_pmu_event_data { 70 union { 71 union { 72 struct hw_gen_event { 73 uint32_t event_code:16; 74 uint32_t event_type:4; 75 uint32_t reserved:12; 76 } hw_gen_event; 77 struct hw_cache_event { 78 uint32_t result_id:1; 79 uint32_t op_id:2; 80 uint32_t cache_id:13; 81 uint32_t event_type:4; 82 uint32_t reserved:12; 83 } hw_cache_event; 84 }; 85 uint32_t event_idx; 86 }; 87 }; 88 89 static const struct sbi_pmu_event_data pmu_hw_event_map[] = { 90 [PERF_COUNT_HW_CPU_CYCLES] = {.hw_gen_event = { 91 SBI_PMU_HW_CPU_CYCLES, 92 SBI_PMU_EVENT_TYPE_HW, 0}}, 93 [PERF_COUNT_HW_INSTRUCTIONS] = {.hw_gen_event = { 94 SBI_PMU_HW_INSTRUCTIONS, 95 SBI_PMU_EVENT_TYPE_HW, 0}}, 96 [PERF_COUNT_HW_CACHE_REFERENCES] = {.hw_gen_event = { 97 SBI_PMU_HW_CACHE_REFERENCES, 98 SBI_PMU_EVENT_TYPE_HW, 0}}, 99 [PERF_COUNT_HW_CACHE_MISSES] = {.hw_gen_event = { 100 SBI_PMU_HW_CACHE_MISSES, 101 SBI_PMU_EVENT_TYPE_HW, 0}}, 102 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = {.hw_gen_event = { 103 SBI_PMU_HW_BRANCH_INSTRUCTIONS, 104 SBI_PMU_EVENT_TYPE_HW, 0}}, 105 [PERF_COUNT_HW_BRANCH_MISSES] = {.hw_gen_event = { 106 SBI_PMU_HW_BRANCH_MISSES, 107 SBI_PMU_EVENT_TYPE_HW, 0}}, 108 [PERF_COUNT_HW_BUS_CYCLES] = {.hw_gen_event = { 109 SBI_PMU_HW_BUS_CYCLES, 110 SBI_PMU_EVENT_TYPE_HW, 0}}, 111 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = {.hw_gen_event = { 112 SBI_PMU_HW_STALLED_CYCLES_FRONTEND, 113 SBI_PMU_EVENT_TYPE_HW, 0}}, 114 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = {.hw_gen_event = { 115 SBI_PMU_HW_STALLED_CYCLES_BACKEND, 116 SBI_PMU_EVENT_TYPE_HW, 0}}, 117 [PERF_COUNT_HW_REF_CPU_CYCLES] = {.hw_gen_event = { 118 SBI_PMU_HW_REF_CPU_CYCLES, 119 SBI_PMU_EVENT_TYPE_HW, 0}}, 120 }; 121 122 #define C(x) PERF_COUNT_HW_CACHE_##x 123 static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX] 124 [PERF_COUNT_HW_CACHE_OP_MAX] 125 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 126 [C(L1D)] = { 127 [C(OP_READ)] = { 128 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 129 C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 130 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 131 C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 132 }, 133 [C(OP_WRITE)] = { 134 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 135 C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 136 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 137 C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 138 }, 139 [C(OP_PREFETCH)] = { 140 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 141 C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 142 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 143 C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 144 }, 145 }, 146 [C(L1I)] = { 147 [C(OP_READ)] = { 148 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 149 C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 150 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ), 151 C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 152 }, 153 [C(OP_WRITE)] = { 154 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 155 C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 156 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 157 C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 158 }, 159 [C(OP_PREFETCH)] = { 160 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 161 C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 162 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 163 C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 164 }, 165 }, 166 [C(LL)] = { 167 [C(OP_READ)] = { 168 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 169 C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 170 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 171 C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 172 }, 173 [C(OP_WRITE)] = { 174 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 175 C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 176 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 177 C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 178 }, 179 [C(OP_PREFETCH)] = { 180 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 181 C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 182 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 183 C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 184 }, 185 }, 186 [C(DTLB)] = { 187 [C(OP_READ)] = { 188 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 189 C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 190 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 191 C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 192 }, 193 [C(OP_WRITE)] = { 194 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 195 C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 196 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 197 C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 198 }, 199 [C(OP_PREFETCH)] = { 200 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 201 C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 202 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 203 C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 204 }, 205 }, 206 [C(ITLB)] = { 207 [C(OP_READ)] = { 208 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 209 C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 210 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 211 C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 212 }, 213 [C(OP_WRITE)] = { 214 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 215 C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 216 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 217 C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 218 }, 219 [C(OP_PREFETCH)] = { 220 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 221 C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 222 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 223 C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 224 }, 225 }, 226 [C(BPU)] = { 227 [C(OP_READ)] = { 228 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 229 C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 230 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 231 C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 232 }, 233 [C(OP_WRITE)] = { 234 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 235 C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 236 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 237 C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 238 }, 239 [C(OP_PREFETCH)] = { 240 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 241 C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 242 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 243 C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 244 }, 245 }, 246 [C(NODE)] = { 247 [C(OP_READ)] = { 248 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 249 C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 250 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 251 C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 252 }, 253 [C(OP_WRITE)] = { 254 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 255 C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 256 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 257 C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 258 }, 259 [C(OP_PREFETCH)] = { 260 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 261 C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 262 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 263 C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 264 }, 265 }, 266 }; 267 268 static int pmu_sbi_ctr_get_width(int idx) 269 { 270 return pmu_ctr_list[idx].width; 271 } 272 273 static bool pmu_sbi_ctr_is_fw(int cidx) 274 { 275 union sbi_pmu_ctr_info *info; 276 277 info = &pmu_ctr_list[cidx]; 278 if (!info) 279 return false; 280 281 return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false; 282 } 283 284 /* 285 * Returns the counter width of a programmable counter and number of hardware 286 * counters. As we don't support heterogeneous CPUs yet, it is okay to just 287 * return the counter width of the first programmable counter. 288 */ 289 int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr) 290 { 291 int i; 292 union sbi_pmu_ctr_info *info; 293 u32 hpm_width = 0, hpm_count = 0; 294 295 if (!cmask) 296 return -EINVAL; 297 298 for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) { 299 info = &pmu_ctr_list[i]; 300 if (!info) 301 continue; 302 if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET) 303 hpm_width = info->width; 304 if (info->type == SBI_PMU_CTR_TYPE_HW) 305 hpm_count++; 306 } 307 308 *hw_ctr_width = hpm_width; 309 *num_hw_ctr = hpm_count; 310 311 return 0; 312 } 313 EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info); 314 315 static uint8_t pmu_sbi_csr_index(struct perf_event *event) 316 { 317 return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE; 318 } 319 320 static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event) 321 { 322 unsigned long cflags = 0; 323 bool guest_events = false; 324 325 if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS) 326 guest_events = true; 327 if (event->attr.exclude_kernel) 328 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH; 329 if (event->attr.exclude_user) 330 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH; 331 if (guest_events && event->attr.exclude_hv) 332 cflags |= SBI_PMU_CFG_FLAG_SET_SINH; 333 if (event->attr.exclude_host) 334 cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH; 335 if (event->attr.exclude_guest) 336 cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH; 337 338 return cflags; 339 } 340 341 static int pmu_sbi_ctr_get_idx(struct perf_event *event) 342 { 343 struct hw_perf_event *hwc = &event->hw; 344 struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu); 345 struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events); 346 struct sbiret ret; 347 int idx; 348 uint64_t cbase = 0, cmask = rvpmu->cmask; 349 unsigned long cflags = 0; 350 351 cflags = pmu_sbi_get_filter_flags(event); 352 353 /* 354 * In legacy mode, we have to force the fixed counters for those events 355 * but not in the user access mode as we want to use the other counters 356 * that support sampling/filtering. 357 */ 358 if (hwc->flags & PERF_EVENT_FLAG_LEGACY) { 359 if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 360 cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH; 361 cmask = 1; 362 } else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) { 363 cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH; 364 cmask = 1UL << (CSR_INSTRET - CSR_CYCLE); 365 } 366 } 367 368 /* retrieve the available counter index */ 369 #if defined(CONFIG_32BIT) 370 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase, 371 cmask, cflags, hwc->event_base, hwc->config, 372 hwc->config >> 32); 373 #else 374 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase, 375 cmask, cflags, hwc->event_base, hwc->config, 0); 376 #endif 377 if (ret.error) { 378 pr_debug("Not able to find a counter for event %lx config %llx\n", 379 hwc->event_base, hwc->config); 380 return sbi_err_map_linux_errno(ret.error); 381 } 382 383 idx = ret.value; 384 if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value) 385 return -ENOENT; 386 387 /* Additional sanity check for the counter id */ 388 if (pmu_sbi_ctr_is_fw(idx)) { 389 if (!test_and_set_bit(idx, cpuc->used_fw_ctrs)) 390 return idx; 391 } else { 392 if (!test_and_set_bit(idx, cpuc->used_hw_ctrs)) 393 return idx; 394 } 395 396 return -ENOENT; 397 } 398 399 static void pmu_sbi_ctr_clear_idx(struct perf_event *event) 400 { 401 402 struct hw_perf_event *hwc = &event->hw; 403 struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu); 404 struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events); 405 int idx = hwc->idx; 406 407 if (pmu_sbi_ctr_is_fw(idx)) 408 clear_bit(idx, cpuc->used_fw_ctrs); 409 else 410 clear_bit(idx, cpuc->used_hw_ctrs); 411 } 412 413 static int pmu_event_find_cache(u64 config) 414 { 415 unsigned int cache_type, cache_op, cache_result, ret; 416 417 cache_type = (config >> 0) & 0xff; 418 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 419 return -EINVAL; 420 421 cache_op = (config >> 8) & 0xff; 422 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 423 return -EINVAL; 424 425 cache_result = (config >> 16) & 0xff; 426 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 427 return -EINVAL; 428 429 ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx; 430 431 return ret; 432 } 433 434 static bool pmu_sbi_is_fw_event(struct perf_event *event) 435 { 436 u32 type = event->attr.type; 437 u64 config = event->attr.config; 438 439 if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1)) 440 return true; 441 else 442 return false; 443 } 444 445 static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig) 446 { 447 u32 type = event->attr.type; 448 u64 config = event->attr.config; 449 int bSoftware; 450 u64 raw_config_val; 451 int ret; 452 453 switch (type) { 454 case PERF_TYPE_HARDWARE: 455 if (config >= PERF_COUNT_HW_MAX) 456 return -EINVAL; 457 ret = pmu_hw_event_map[event->attr.config].event_idx; 458 break; 459 case PERF_TYPE_HW_CACHE: 460 ret = pmu_event_find_cache(config); 461 break; 462 case PERF_TYPE_RAW: 463 /* 464 * As per SBI specification, the upper 16 bits must be unused for 465 * a raw event. Use the MSB (63b) to distinguish between hardware 466 * raw event and firmware events. 467 */ 468 bSoftware = config >> 63; 469 raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK; 470 if (bSoftware) { 471 ret = (raw_config_val & 0xFFFF) | 472 (SBI_PMU_EVENT_TYPE_FW << 16); 473 } else { 474 ret = RISCV_PMU_RAW_EVENT_IDX; 475 *econfig = raw_config_val; 476 } 477 break; 478 default: 479 ret = -EINVAL; 480 break; 481 } 482 483 return ret; 484 } 485 486 static u64 pmu_sbi_ctr_read(struct perf_event *event) 487 { 488 struct hw_perf_event *hwc = &event->hw; 489 int idx = hwc->idx; 490 struct sbiret ret; 491 union sbi_pmu_ctr_info info; 492 u64 val = 0; 493 494 if (pmu_sbi_is_fw_event(event)) { 495 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ, 496 hwc->idx, 0, 0, 0, 0, 0); 497 if (!ret.error) 498 val = ret.value; 499 } else { 500 info = pmu_ctr_list[idx]; 501 val = riscv_pmu_ctr_read_csr(info.csr); 502 if (IS_ENABLED(CONFIG_32BIT)) 503 val = ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 31 | val; 504 } 505 506 return val; 507 } 508 509 static void pmu_sbi_set_scounteren(void *arg) 510 { 511 struct perf_event *event = (struct perf_event *)arg; 512 513 if (event->hw.idx != -1) 514 csr_write(CSR_SCOUNTEREN, 515 csr_read(CSR_SCOUNTEREN) | (1 << pmu_sbi_csr_index(event))); 516 } 517 518 static void pmu_sbi_reset_scounteren(void *arg) 519 { 520 struct perf_event *event = (struct perf_event *)arg; 521 522 if (event->hw.idx != -1) 523 csr_write(CSR_SCOUNTEREN, 524 csr_read(CSR_SCOUNTEREN) & ~(1 << pmu_sbi_csr_index(event))); 525 } 526 527 static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival) 528 { 529 struct sbiret ret; 530 struct hw_perf_event *hwc = &event->hw; 531 unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE; 532 533 #if defined(CONFIG_32BIT) 534 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx, 535 1, flag, ival, ival >> 32, 0); 536 #else 537 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx, 538 1, flag, ival, 0, 0); 539 #endif 540 if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED)) 541 pr_err("Starting counter idx %d failed with error %d\n", 542 hwc->idx, sbi_err_map_linux_errno(ret.error)); 543 544 if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) && 545 (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT)) 546 on_each_cpu_mask(mm_cpumask(event->owner->mm), 547 pmu_sbi_set_scounteren, (void *)event, 1); 548 } 549 550 static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag) 551 { 552 struct sbiret ret; 553 struct hw_perf_event *hwc = &event->hw; 554 555 if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) && 556 (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT)) 557 on_each_cpu_mask(mm_cpumask(event->owner->mm), 558 pmu_sbi_reset_scounteren, (void *)event, 1); 559 560 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0); 561 if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) && 562 flag != SBI_PMU_STOP_FLAG_RESET) 563 pr_err("Stopping counter idx %d failed with error %d\n", 564 hwc->idx, sbi_err_map_linux_errno(ret.error)); 565 } 566 567 static int pmu_sbi_find_num_ctrs(void) 568 { 569 struct sbiret ret; 570 571 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0); 572 if (!ret.error) 573 return ret.value; 574 else 575 return sbi_err_map_linux_errno(ret.error); 576 } 577 578 static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask) 579 { 580 struct sbiret ret; 581 int i, num_hw_ctr = 0, num_fw_ctr = 0; 582 union sbi_pmu_ctr_info cinfo; 583 584 pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL); 585 if (!pmu_ctr_list) 586 return -ENOMEM; 587 588 for (i = 0; i < nctr; i++) { 589 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0); 590 if (ret.error) 591 /* The logical counter ids are not expected to be contiguous */ 592 continue; 593 594 *mask |= BIT(i); 595 596 cinfo.value = ret.value; 597 if (cinfo.type == SBI_PMU_CTR_TYPE_FW) 598 num_fw_ctr++; 599 else 600 num_hw_ctr++; 601 pmu_ctr_list[i].value = cinfo.value; 602 } 603 604 pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr); 605 606 return 0; 607 } 608 609 static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu) 610 { 611 /* 612 * No need to check the error because we are disabling all the counters 613 * which may include counters that are not enabled yet. 614 */ 615 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 616 0, pmu->cmask, 0, 0, 0, 0); 617 } 618 619 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu) 620 { 621 struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events); 622 623 /* No need to check the error here as we can't do anything about the error */ 624 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 0, 625 cpu_hw_evt->used_hw_ctrs[0], 0, 0, 0, 0); 626 } 627 628 /* 629 * This function starts all the used counters in two step approach. 630 * Any counter that did not overflow can be start in a single step 631 * while the overflowed counters need to be started with updated initialization 632 * value. 633 */ 634 static inline void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu, 635 unsigned long ctr_ovf_mask) 636 { 637 int idx = 0; 638 struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events); 639 struct perf_event *event; 640 unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE; 641 unsigned long ctr_start_mask = 0; 642 uint64_t max_period; 643 struct hw_perf_event *hwc; 644 u64 init_val = 0; 645 646 ctr_start_mask = cpu_hw_evt->used_hw_ctrs[0] & ~ctr_ovf_mask; 647 648 /* Start all the counters that did not overflow in a single shot */ 649 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, 0, ctr_start_mask, 650 0, 0, 0, 0); 651 652 /* Reinitialize and start all the counter that overflowed */ 653 while (ctr_ovf_mask) { 654 if (ctr_ovf_mask & 0x01) { 655 event = cpu_hw_evt->events[idx]; 656 hwc = &event->hw; 657 max_period = riscv_pmu_ctr_get_width_mask(event); 658 init_val = local64_read(&hwc->prev_count) & max_period; 659 #if defined(CONFIG_32BIT) 660 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1, 661 flag, init_val, init_val >> 32, 0); 662 #else 663 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1, 664 flag, init_val, 0, 0); 665 #endif 666 perf_event_update_userpage(event); 667 } 668 ctr_ovf_mask = ctr_ovf_mask >> 1; 669 idx++; 670 } 671 } 672 673 static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev) 674 { 675 struct perf_sample_data data; 676 struct pt_regs *regs; 677 struct hw_perf_event *hw_evt; 678 union sbi_pmu_ctr_info *info; 679 int lidx, hidx, fidx; 680 struct riscv_pmu *pmu; 681 struct perf_event *event; 682 unsigned long overflow; 683 unsigned long overflowed_ctrs = 0; 684 struct cpu_hw_events *cpu_hw_evt = dev; 685 u64 start_clock = sched_clock(); 686 687 if (WARN_ON_ONCE(!cpu_hw_evt)) 688 return IRQ_NONE; 689 690 /* Firmware counter don't support overflow yet */ 691 fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS); 692 event = cpu_hw_evt->events[fidx]; 693 if (!event) { 694 csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num)); 695 return IRQ_NONE; 696 } 697 698 pmu = to_riscv_pmu(event->pmu); 699 pmu_sbi_stop_hw_ctrs(pmu); 700 701 /* Overflow status register should only be read after counter are stopped */ 702 ALT_SBI_PMU_OVERFLOW(overflow); 703 704 /* 705 * Overflow interrupt pending bit should only be cleared after stopping 706 * all the counters to avoid any race condition. 707 */ 708 csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num)); 709 710 /* No overflow bit is set */ 711 if (!overflow) 712 return IRQ_NONE; 713 714 regs = get_irq_regs(); 715 716 for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) { 717 struct perf_event *event = cpu_hw_evt->events[lidx]; 718 719 /* Skip if invalid event or user did not request a sampling */ 720 if (!event || !is_sampling_event(event)) 721 continue; 722 723 info = &pmu_ctr_list[lidx]; 724 /* Do a sanity check */ 725 if (!info || info->type != SBI_PMU_CTR_TYPE_HW) 726 continue; 727 728 /* compute hardware counter index */ 729 hidx = info->csr - CSR_CYCLE; 730 /* check if the corresponding bit is set in sscountovf */ 731 if (!(overflow & (1 << hidx))) 732 continue; 733 734 /* 735 * Keep a track of overflowed counters so that they can be started 736 * with updated initial value. 737 */ 738 overflowed_ctrs |= 1 << lidx; 739 hw_evt = &event->hw; 740 riscv_pmu_event_update(event); 741 perf_sample_data_init(&data, 0, hw_evt->last_period); 742 if (riscv_pmu_event_set_period(event)) { 743 /* 744 * Unlike other ISAs, RISC-V don't have to disable interrupts 745 * to avoid throttling here. As per the specification, the 746 * interrupt remains disabled until the OF bit is set. 747 * Interrupts are enabled again only during the start. 748 * TODO: We will need to stop the guest counters once 749 * virtualization support is added. 750 */ 751 perf_event_overflow(event, &data, regs); 752 } 753 } 754 755 pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs); 756 perf_sample_event_took(sched_clock() - start_clock); 757 758 return IRQ_HANDLED; 759 } 760 761 static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node) 762 { 763 struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node); 764 struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events); 765 766 /* 767 * We keep enabling userspace access to CYCLE, TIME and INSTRET via the 768 * legacy option but that will be removed in the future. 769 */ 770 if (sysctl_perf_user_access == SYSCTL_LEGACY) 771 csr_write(CSR_SCOUNTEREN, 0x7); 772 else 773 csr_write(CSR_SCOUNTEREN, 0x2); 774 775 /* Stop all the counters so that they can be enabled from perf */ 776 pmu_sbi_stop_all(pmu); 777 778 if (riscv_pmu_use_irq) { 779 cpu_hw_evt->irq = riscv_pmu_irq; 780 csr_clear(CSR_IP, BIT(riscv_pmu_irq_num)); 781 csr_set(CSR_IE, BIT(riscv_pmu_irq_num)); 782 enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE); 783 } 784 785 return 0; 786 } 787 788 static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node) 789 { 790 if (riscv_pmu_use_irq) { 791 disable_percpu_irq(riscv_pmu_irq); 792 csr_clear(CSR_IE, BIT(riscv_pmu_irq_num)); 793 } 794 795 /* Disable all counters access for user mode now */ 796 csr_write(CSR_SCOUNTEREN, 0x0); 797 798 return 0; 799 } 800 801 static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev) 802 { 803 int ret; 804 struct cpu_hw_events __percpu *hw_events = pmu->hw_events; 805 struct irq_domain *domain = NULL; 806 807 if (riscv_isa_extension_available(NULL, SSCOFPMF)) { 808 riscv_pmu_irq_num = RV_IRQ_PMU; 809 riscv_pmu_use_irq = true; 810 } else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) && 811 riscv_cached_mvendorid(0) == THEAD_VENDOR_ID && 812 riscv_cached_marchid(0) == 0 && 813 riscv_cached_mimpid(0) == 0) { 814 riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU; 815 riscv_pmu_use_irq = true; 816 } 817 818 if (!riscv_pmu_use_irq) 819 return -EOPNOTSUPP; 820 821 domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(), 822 DOMAIN_BUS_ANY); 823 if (!domain) { 824 pr_err("Failed to find INTC IRQ root domain\n"); 825 return -ENODEV; 826 } 827 828 riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num); 829 if (!riscv_pmu_irq) { 830 pr_err("Failed to map PMU interrupt for node\n"); 831 return -ENODEV; 832 } 833 834 ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events); 835 if (ret) { 836 pr_err("registering percpu irq failed [%d]\n", ret); 837 return ret; 838 } 839 840 return 0; 841 } 842 843 #ifdef CONFIG_CPU_PM 844 static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 845 void *v) 846 { 847 struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb); 848 struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events); 849 int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS); 850 struct perf_event *event; 851 int idx; 852 853 if (!enabled) 854 return NOTIFY_OK; 855 856 for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) { 857 event = cpuc->events[idx]; 858 if (!event) 859 continue; 860 861 switch (cmd) { 862 case CPU_PM_ENTER: 863 /* 864 * Stop and update the counter 865 */ 866 riscv_pmu_stop(event, PERF_EF_UPDATE); 867 break; 868 case CPU_PM_EXIT: 869 case CPU_PM_ENTER_FAILED: 870 /* 871 * Restore and enable the counter. 872 */ 873 riscv_pmu_start(event, PERF_EF_RELOAD); 874 break; 875 default: 876 break; 877 } 878 } 879 880 return NOTIFY_OK; 881 } 882 883 static int riscv_pm_pmu_register(struct riscv_pmu *pmu) 884 { 885 pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify; 886 return cpu_pm_register_notifier(&pmu->riscv_pm_nb); 887 } 888 889 static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) 890 { 891 cpu_pm_unregister_notifier(&pmu->riscv_pm_nb); 892 } 893 #else 894 static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; } 895 static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { } 896 #endif 897 898 static void riscv_pmu_destroy(struct riscv_pmu *pmu) 899 { 900 riscv_pm_pmu_unregister(pmu); 901 cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node); 902 } 903 904 static void pmu_sbi_event_init(struct perf_event *event) 905 { 906 /* 907 * The permissions are set at event_init so that we do not depend 908 * on the sysctl value that can change. 909 */ 910 if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS) 911 event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS; 912 else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS) 913 event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS; 914 else 915 event->hw.flags |= PERF_EVENT_FLAG_LEGACY; 916 } 917 918 static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm) 919 { 920 if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS) 921 return; 922 923 if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) { 924 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES && 925 event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) { 926 return; 927 } 928 } 929 930 /* 931 * The user mmapped the event to directly access it: this is where 932 * we determine based on sysctl_perf_user_access if we grant userspace 933 * the direct access to this event. That means that within the same 934 * task, some events may be directly accessible and some other may not, 935 * if the user changes the value of sysctl_perf_user_accesss in the 936 * meantime. 937 */ 938 939 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; 940 941 /* 942 * We must enable userspace access *before* advertising in the user page 943 * that it is possible to do so to avoid any race. 944 * And we must notify all cpus here because threads that currently run 945 * on other cpus will try to directly access the counter too without 946 * calling pmu_sbi_ctr_start. 947 */ 948 if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS) 949 on_each_cpu_mask(mm_cpumask(mm), 950 pmu_sbi_set_scounteren, (void *)event, 1); 951 } 952 953 static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm) 954 { 955 if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS) 956 return; 957 958 if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) { 959 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES && 960 event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) { 961 return; 962 } 963 } 964 965 /* 966 * Here we can directly remove user access since the user does not have 967 * access to the user page anymore so we avoid the racy window where the 968 * user could have read cap_user_rdpmc to true right before we disable 969 * it. 970 */ 971 event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT; 972 973 if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS) 974 on_each_cpu_mask(mm_cpumask(mm), 975 pmu_sbi_reset_scounteren, (void *)event, 1); 976 } 977 978 static void riscv_pmu_update_counter_access(void *info) 979 { 980 if (sysctl_perf_user_access == SYSCTL_LEGACY) 981 csr_write(CSR_SCOUNTEREN, 0x7); 982 else 983 csr_write(CSR_SCOUNTEREN, 0x2); 984 } 985 986 static int riscv_pmu_proc_user_access_handler(struct ctl_table *table, 987 int write, void *buffer, 988 size_t *lenp, loff_t *ppos) 989 { 990 int prev = sysctl_perf_user_access; 991 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 992 993 /* 994 * Test against the previous value since we clear SCOUNTEREN when 995 * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should 996 * not do that if that was already the case. 997 */ 998 if (ret || !write || prev == sysctl_perf_user_access) 999 return ret; 1000 1001 on_each_cpu(riscv_pmu_update_counter_access, NULL, 1); 1002 1003 return 0; 1004 } 1005 1006 static struct ctl_table sbi_pmu_sysctl_table[] = { 1007 { 1008 .procname = "perf_user_access", 1009 .data = &sysctl_perf_user_access, 1010 .maxlen = sizeof(unsigned int), 1011 .mode = 0644, 1012 .proc_handler = riscv_pmu_proc_user_access_handler, 1013 .extra1 = SYSCTL_ZERO, 1014 .extra2 = SYSCTL_TWO, 1015 }, 1016 { } 1017 }; 1018 1019 static int pmu_sbi_device_probe(struct platform_device *pdev) 1020 { 1021 struct riscv_pmu *pmu = NULL; 1022 int ret = -ENODEV; 1023 int num_counters; 1024 1025 pr_info("SBI PMU extension is available\n"); 1026 pmu = riscv_pmu_alloc(); 1027 if (!pmu) 1028 return -ENOMEM; 1029 1030 num_counters = pmu_sbi_find_num_ctrs(); 1031 if (num_counters < 0) { 1032 pr_err("SBI PMU extension doesn't provide any counters\n"); 1033 goto out_free; 1034 } 1035 1036 /* It is possible to get from SBI more than max number of counters */ 1037 if (num_counters > RISCV_MAX_COUNTERS) { 1038 num_counters = RISCV_MAX_COUNTERS; 1039 pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters); 1040 } 1041 1042 /* cache all the information about counters now */ 1043 if (pmu_sbi_get_ctrinfo(num_counters, &cmask)) 1044 goto out_free; 1045 1046 ret = pmu_sbi_setup_irqs(pmu, pdev); 1047 if (ret < 0) { 1048 pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n"); 1049 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1050 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; 1051 } 1052 1053 pmu->pmu.attr_groups = riscv_pmu_attr_groups; 1054 pmu->cmask = cmask; 1055 pmu->ctr_start = pmu_sbi_ctr_start; 1056 pmu->ctr_stop = pmu_sbi_ctr_stop; 1057 pmu->event_map = pmu_sbi_event_map; 1058 pmu->ctr_get_idx = pmu_sbi_ctr_get_idx; 1059 pmu->ctr_get_width = pmu_sbi_ctr_get_width; 1060 pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx; 1061 pmu->ctr_read = pmu_sbi_ctr_read; 1062 pmu->event_init = pmu_sbi_event_init; 1063 pmu->event_mapped = pmu_sbi_event_mapped; 1064 pmu->event_unmapped = pmu_sbi_event_unmapped; 1065 pmu->csr_index = pmu_sbi_csr_index; 1066 1067 ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node); 1068 if (ret) 1069 return ret; 1070 1071 ret = riscv_pm_pmu_register(pmu); 1072 if (ret) 1073 goto out_unregister; 1074 1075 ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW); 1076 if (ret) 1077 goto out_unregister; 1078 1079 register_sysctl("kernel", sbi_pmu_sysctl_table); 1080 1081 return 0; 1082 1083 out_unregister: 1084 riscv_pmu_destroy(pmu); 1085 1086 out_free: 1087 kfree(pmu); 1088 return ret; 1089 } 1090 1091 static struct platform_driver pmu_sbi_driver = { 1092 .probe = pmu_sbi_device_probe, 1093 .driver = { 1094 .name = RISCV_PMU_SBI_PDEV_NAME, 1095 }, 1096 }; 1097 1098 static int __init pmu_sbi_devinit(void) 1099 { 1100 int ret; 1101 struct platform_device *pdev; 1102 1103 if (sbi_spec_version < sbi_mk_version(0, 3) || 1104 !sbi_probe_extension(SBI_EXT_PMU)) { 1105 return 0; 1106 } 1107 1108 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING, 1109 "perf/riscv/pmu:starting", 1110 pmu_sbi_starting_cpu, pmu_sbi_dying_cpu); 1111 if (ret) { 1112 pr_err("CPU hotplug notifier could not be registered: %d\n", 1113 ret); 1114 return ret; 1115 } 1116 1117 ret = platform_driver_register(&pmu_sbi_driver); 1118 if (ret) 1119 return ret; 1120 1121 pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0); 1122 if (IS_ERR(pdev)) { 1123 platform_driver_unregister(&pmu_sbi_driver); 1124 return PTR_ERR(pdev); 1125 } 1126 1127 /* Notify legacy implementation that SBI pmu is available*/ 1128 riscv_pmu_legacy_skip_init(); 1129 1130 return ret; 1131 } 1132 device_initcall(pmu_sbi_devinit) 1133