xref: /linux/drivers/perf/riscv_pmu_sbi.c (revision 5c2e7736e20d9b348a44cafbfa639fe2653fbc34)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This code is based on ARM perf event code which is in turn based on
8  * sparc64 and x86 code.
9  */
10 
11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
12 
13 #include <linux/mod_devicetable.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/platform_device.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/of_irq.h>
19 #include <linux/of.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/sched/clock.h>
22 #include <linux/soc/andes/irq.h>
23 #include <linux/workqueue.h>
24 
25 #include <asm/errata_list.h>
26 #include <asm/sbi.h>
27 #include <asm/cpufeature.h>
28 #include <asm/vendor_extensions.h>
29 #include <asm/vendor_extensions/andes.h>
30 
31 #define ALT_SBI_PMU_OVERFLOW(__ovl)					\
32 asm volatile(ALTERNATIVE_2(						\
33 	"csrr %0, " __stringify(CSR_SCOUNTOVF),				\
34 	"csrr %0, " __stringify(THEAD_C9XX_CSR_SCOUNTEROF),		\
35 		THEAD_VENDOR_ID, ERRATA_THEAD_PMU,			\
36 		CONFIG_ERRATA_THEAD_PMU,				\
37 	"csrr %0, " __stringify(ANDES_CSR_SCOUNTEROF),			\
38 		ANDES_VENDOR_ID,					\
39 		RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
40 		CONFIG_ANDES_CUSTOM_PMU)				\
41 	: "=r" (__ovl) :						\
42 	: "memory")
43 
44 #define ALT_SBI_PMU_OVF_CLEAR_PENDING(__irq_mask)			\
45 asm volatile(ALTERNATIVE(						\
46 	"csrc " __stringify(CSR_IP) ", %0\n\t",				\
47 	"csrc " __stringify(ANDES_CSR_SLIP) ", %0\n\t",			\
48 		ANDES_VENDOR_ID,					\
49 		RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
50 		CONFIG_ANDES_CUSTOM_PMU)				\
51 	: : "r"(__irq_mask)						\
52 	: "memory")
53 
54 #define SYSCTL_NO_USER_ACCESS	0
55 #define SYSCTL_USER_ACCESS	1
56 #define SYSCTL_LEGACY		2
57 
58 #define PERF_EVENT_FLAG_NO_USER_ACCESS	BIT(SYSCTL_NO_USER_ACCESS)
59 #define PERF_EVENT_FLAG_USER_ACCESS	BIT(SYSCTL_USER_ACCESS)
60 #define PERF_EVENT_FLAG_LEGACY		BIT(SYSCTL_LEGACY)
61 
62 PMU_FORMAT_ATTR(event, "config:0-47");
63 PMU_FORMAT_ATTR(firmware, "config:62-63");
64 
65 static bool sbi_v2_available;
66 static DEFINE_STATIC_KEY_FALSE(sbi_pmu_snapshot_available);
67 #define sbi_pmu_snapshot_available() \
68 	static_branch_unlikely(&sbi_pmu_snapshot_available)
69 
70 static struct attribute *riscv_arch_formats_attr[] = {
71 	&format_attr_event.attr,
72 	&format_attr_firmware.attr,
73 	NULL,
74 };
75 
76 static struct attribute_group riscv_pmu_format_group = {
77 	.name = "format",
78 	.attrs = riscv_arch_formats_attr,
79 };
80 
81 static const struct attribute_group *riscv_pmu_attr_groups[] = {
82 	&riscv_pmu_format_group,
83 	NULL,
84 };
85 
86 /* Allow user mode access by default */
87 static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS;
88 
89 /*
90  * RISC-V doesn't have heterogeneous harts yet. This need to be part of
91  * per_cpu in case of harts with different pmu counters
92  */
93 static union sbi_pmu_ctr_info *pmu_ctr_list;
94 static bool riscv_pmu_use_irq;
95 static unsigned int riscv_pmu_irq_num;
96 static unsigned int riscv_pmu_irq_mask;
97 static unsigned int riscv_pmu_irq;
98 
99 /* Cache the available counters in a bitmask */
100 static unsigned long cmask;
101 
102 struct sbi_pmu_event_data {
103 	union {
104 		union {
105 			struct hw_gen_event {
106 				uint32_t event_code:16;
107 				uint32_t event_type:4;
108 				uint32_t reserved:12;
109 			} hw_gen_event;
110 			struct hw_cache_event {
111 				uint32_t result_id:1;
112 				uint32_t op_id:2;
113 				uint32_t cache_id:13;
114 				uint32_t event_type:4;
115 				uint32_t reserved:12;
116 			} hw_cache_event;
117 		};
118 		uint32_t event_idx;
119 	};
120 };
121 
122 static struct sbi_pmu_event_data pmu_hw_event_map[] = {
123 	[PERF_COUNT_HW_CPU_CYCLES]		= {.hw_gen_event = {
124 							SBI_PMU_HW_CPU_CYCLES,
125 							SBI_PMU_EVENT_TYPE_HW, 0}},
126 	[PERF_COUNT_HW_INSTRUCTIONS]		= {.hw_gen_event = {
127 							SBI_PMU_HW_INSTRUCTIONS,
128 							SBI_PMU_EVENT_TYPE_HW, 0}},
129 	[PERF_COUNT_HW_CACHE_REFERENCES]	= {.hw_gen_event = {
130 							SBI_PMU_HW_CACHE_REFERENCES,
131 							SBI_PMU_EVENT_TYPE_HW, 0}},
132 	[PERF_COUNT_HW_CACHE_MISSES]		= {.hw_gen_event = {
133 							SBI_PMU_HW_CACHE_MISSES,
134 							SBI_PMU_EVENT_TYPE_HW, 0}},
135 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= {.hw_gen_event = {
136 							SBI_PMU_HW_BRANCH_INSTRUCTIONS,
137 							SBI_PMU_EVENT_TYPE_HW, 0}},
138 	[PERF_COUNT_HW_BRANCH_MISSES]		= {.hw_gen_event = {
139 							SBI_PMU_HW_BRANCH_MISSES,
140 							SBI_PMU_EVENT_TYPE_HW, 0}},
141 	[PERF_COUNT_HW_BUS_CYCLES]		= {.hw_gen_event = {
142 							SBI_PMU_HW_BUS_CYCLES,
143 							SBI_PMU_EVENT_TYPE_HW, 0}},
144 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= {.hw_gen_event = {
145 							SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
146 							SBI_PMU_EVENT_TYPE_HW, 0}},
147 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= {.hw_gen_event = {
148 							SBI_PMU_HW_STALLED_CYCLES_BACKEND,
149 							SBI_PMU_EVENT_TYPE_HW, 0}},
150 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= {.hw_gen_event = {
151 							SBI_PMU_HW_REF_CPU_CYCLES,
152 							SBI_PMU_EVENT_TYPE_HW, 0}},
153 };
154 
155 #define C(x) PERF_COUNT_HW_CACHE_##x
156 static struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
157 [PERF_COUNT_HW_CACHE_OP_MAX]
158 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
159 	[C(L1D)] = {
160 		[C(OP_READ)] = {
161 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
162 					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
163 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
164 					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
165 		},
166 		[C(OP_WRITE)] = {
167 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
168 					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
169 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
170 					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
171 		},
172 		[C(OP_PREFETCH)] = {
173 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
174 					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
175 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
176 					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
177 		},
178 	},
179 	[C(L1I)] = {
180 		[C(OP_READ)] = {
181 			[C(RESULT_ACCESS)] = {.hw_cache_event =	{C(RESULT_ACCESS),
182 					C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
183 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
184 					C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
185 		},
186 		[C(OP_WRITE)] = {
187 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
188 					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
189 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
190 					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
191 		},
192 		[C(OP_PREFETCH)] = {
193 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
194 					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
195 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
196 					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
197 		},
198 	},
199 	[C(LL)] = {
200 		[C(OP_READ)] = {
201 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
202 					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
203 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
204 					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
205 		},
206 		[C(OP_WRITE)] = {
207 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
208 					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
209 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
210 					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
211 		},
212 		[C(OP_PREFETCH)] = {
213 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
214 					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
215 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
216 					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
217 		},
218 	},
219 	[C(DTLB)] = {
220 		[C(OP_READ)] = {
221 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
222 					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
223 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
224 					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
225 		},
226 		[C(OP_WRITE)] = {
227 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
228 					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
229 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
230 					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
231 		},
232 		[C(OP_PREFETCH)] = {
233 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
234 					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
235 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
236 					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
237 		},
238 	},
239 	[C(ITLB)] = {
240 		[C(OP_READ)] = {
241 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
242 					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
243 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
244 					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
245 		},
246 		[C(OP_WRITE)] = {
247 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
248 					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
249 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
250 					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
251 		},
252 		[C(OP_PREFETCH)] = {
253 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
254 					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
255 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
256 					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
257 		},
258 	},
259 	[C(BPU)] = {
260 		[C(OP_READ)] = {
261 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
262 					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
263 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
264 					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
265 		},
266 		[C(OP_WRITE)] = {
267 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
268 					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
269 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
270 					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
271 		},
272 		[C(OP_PREFETCH)] = {
273 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
274 					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
275 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
276 					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
277 		},
278 	},
279 	[C(NODE)] = {
280 		[C(OP_READ)] = {
281 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
282 					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
283 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
284 					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
285 		},
286 		[C(OP_WRITE)] = {
287 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
288 					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
289 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
290 					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
291 		},
292 		[C(OP_PREFETCH)] = {
293 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
294 					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
295 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
296 					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
297 		},
298 	},
299 };
300 
301 static void pmu_sbi_check_event(struct sbi_pmu_event_data *edata)
302 {
303 	struct sbiret ret;
304 
305 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH,
306 			0, cmask, 0, edata->event_idx, 0, 0);
307 	if (!ret.error) {
308 		sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
309 			  ret.value, 0x1, SBI_PMU_STOP_FLAG_RESET, 0, 0, 0);
310 	} else if (ret.error == SBI_ERR_NOT_SUPPORTED) {
311 		/* This event cannot be monitored by any counter */
312 		edata->event_idx = -ENOENT;
313 	}
314 }
315 
316 static void pmu_sbi_check_std_events(struct work_struct *work)
317 {
318 	for (int i = 0; i < ARRAY_SIZE(pmu_hw_event_map); i++)
319 		pmu_sbi_check_event(&pmu_hw_event_map[i]);
320 
321 	for (int i = 0; i < ARRAY_SIZE(pmu_cache_event_map); i++)
322 		for (int j = 0; j < ARRAY_SIZE(pmu_cache_event_map[i]); j++)
323 			for (int k = 0; k < ARRAY_SIZE(pmu_cache_event_map[i][j]); k++)
324 				pmu_sbi_check_event(&pmu_cache_event_map[i][j][k]);
325 }
326 
327 static DECLARE_WORK(check_std_events_work, pmu_sbi_check_std_events);
328 
329 static int pmu_sbi_ctr_get_width(int idx)
330 {
331 	return pmu_ctr_list[idx].width;
332 }
333 
334 static bool pmu_sbi_ctr_is_fw(int cidx)
335 {
336 	union sbi_pmu_ctr_info *info;
337 
338 	info = &pmu_ctr_list[cidx];
339 	if (!info)
340 		return false;
341 
342 	return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
343 }
344 
345 /*
346  * Returns the counter width of a programmable counter and number of hardware
347  * counters. As we don't support heterogeneous CPUs yet, it is okay to just
348  * return the counter width of the first programmable counter.
349  */
350 int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr)
351 {
352 	int i;
353 	union sbi_pmu_ctr_info *info;
354 	u32 hpm_width = 0, hpm_count = 0;
355 
356 	if (!cmask)
357 		return -EINVAL;
358 
359 	for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) {
360 		info = &pmu_ctr_list[i];
361 		if (!info)
362 			continue;
363 		if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET)
364 			hpm_width = info->width;
365 		if (info->type == SBI_PMU_CTR_TYPE_HW)
366 			hpm_count++;
367 	}
368 
369 	*hw_ctr_width = hpm_width;
370 	*num_hw_ctr = hpm_count;
371 
372 	return 0;
373 }
374 EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info);
375 
376 static uint8_t pmu_sbi_csr_index(struct perf_event *event)
377 {
378 	return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE;
379 }
380 
381 static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event)
382 {
383 	unsigned long cflags = 0;
384 	bool guest_events = false;
385 
386 	if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS)
387 		guest_events = true;
388 	if (event->attr.exclude_kernel)
389 		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH;
390 	if (event->attr.exclude_user)
391 		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH;
392 	if (guest_events && event->attr.exclude_hv)
393 		cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
394 	if (event->attr.exclude_host)
395 		cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH;
396 	if (event->attr.exclude_guest)
397 		cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH;
398 
399 	return cflags;
400 }
401 
402 static int pmu_sbi_ctr_get_idx(struct perf_event *event)
403 {
404 	struct hw_perf_event *hwc = &event->hw;
405 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
406 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
407 	struct sbiret ret;
408 	int idx;
409 	uint64_t cbase = 0, cmask = rvpmu->cmask;
410 	unsigned long cflags = 0;
411 
412 	cflags = pmu_sbi_get_filter_flags(event);
413 
414 	/*
415 	 * In legacy mode, we have to force the fixed counters for those events
416 	 * but not in the user access mode as we want to use the other counters
417 	 * that support sampling/filtering.
418 	 */
419 	if ((hwc->flags & PERF_EVENT_FLAG_LEGACY) && (event->attr.type == PERF_TYPE_HARDWARE)) {
420 		if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
421 			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
422 			cmask = 1;
423 		} else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) {
424 			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
425 			cmask = BIT(CSR_INSTRET - CSR_CYCLE);
426 		}
427 	}
428 
429 	/* retrieve the available counter index */
430 #if defined(CONFIG_32BIT)
431 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
432 			cmask, cflags, hwc->event_base, hwc->config,
433 			hwc->config >> 32);
434 #else
435 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
436 			cmask, cflags, hwc->event_base, hwc->config, 0);
437 #endif
438 	if (ret.error) {
439 		pr_debug("Not able to find a counter for event %lx config %llx\n",
440 			hwc->event_base, hwc->config);
441 		return sbi_err_map_linux_errno(ret.error);
442 	}
443 
444 	idx = ret.value;
445 	if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
446 		return -ENOENT;
447 
448 	/* Additional sanity check for the counter id */
449 	if (pmu_sbi_ctr_is_fw(idx)) {
450 		if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
451 			return idx;
452 	} else {
453 		if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
454 			return idx;
455 	}
456 
457 	return -ENOENT;
458 }
459 
460 static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
461 {
462 
463 	struct hw_perf_event *hwc = &event->hw;
464 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
465 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
466 	int idx = hwc->idx;
467 
468 	if (pmu_sbi_ctr_is_fw(idx))
469 		clear_bit(idx, cpuc->used_fw_ctrs);
470 	else
471 		clear_bit(idx, cpuc->used_hw_ctrs);
472 }
473 
474 static int pmu_event_find_cache(u64 config)
475 {
476 	unsigned int cache_type, cache_op, cache_result, ret;
477 
478 	cache_type = (config >>  0) & 0xff;
479 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
480 		return -EINVAL;
481 
482 	cache_op = (config >>  8) & 0xff;
483 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
484 		return -EINVAL;
485 
486 	cache_result = (config >> 16) & 0xff;
487 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
488 		return -EINVAL;
489 
490 	ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
491 
492 	return ret;
493 }
494 
495 static bool pmu_sbi_is_fw_event(struct perf_event *event)
496 {
497 	u32 type = event->attr.type;
498 	u64 config = event->attr.config;
499 
500 	if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
501 		return true;
502 	else
503 		return false;
504 }
505 
506 static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
507 {
508 	u32 type = event->attr.type;
509 	u64 config = event->attr.config;
510 	u64 raw_config_val;
511 	int ret;
512 
513 	/*
514 	 * Ensure we are finished checking standard hardware events for
515 	 * validity before allowing userspace to configure any events.
516 	 */
517 	flush_work(&check_std_events_work);
518 
519 	switch (type) {
520 	case PERF_TYPE_HARDWARE:
521 		if (config >= PERF_COUNT_HW_MAX)
522 			return -EINVAL;
523 		ret = pmu_hw_event_map[event->attr.config].event_idx;
524 		break;
525 	case PERF_TYPE_HW_CACHE:
526 		ret = pmu_event_find_cache(config);
527 		break;
528 	case PERF_TYPE_RAW:
529 		/*
530 		 * As per SBI specification, the upper 16 bits must be unused
531 		 * for a raw event.
532 		 * Bits 63:62 are used to distinguish between raw events
533 		 * 00 - Hardware raw event
534 		 * 10 - SBI firmware events
535 		 * 11 - Risc-V platform specific firmware event
536 		 */
537 		raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
538 		switch (config >> 62) {
539 		case 0:
540 			ret = RISCV_PMU_RAW_EVENT_IDX;
541 			*econfig = raw_config_val;
542 			break;
543 		case 2:
544 			ret = (raw_config_val & 0xFFFF) |
545 				(SBI_PMU_EVENT_TYPE_FW << 16);
546 			break;
547 		case 3:
548 			/*
549 			 * For Risc-V platform specific firmware events
550 			 * Event code - 0xFFFF
551 			 * Event data - raw event encoding
552 			 */
553 			ret = SBI_PMU_EVENT_TYPE_FW << 16 | RISCV_PLAT_FW_EVENT;
554 			*econfig = raw_config_val;
555 			break;
556 		}
557 		break;
558 	default:
559 		ret = -ENOENT;
560 		break;
561 	}
562 
563 	return ret;
564 }
565 
566 static void pmu_sbi_snapshot_free(struct riscv_pmu *pmu)
567 {
568 	int cpu;
569 
570 	for_each_possible_cpu(cpu) {
571 		struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
572 
573 		if (!cpu_hw_evt->snapshot_addr)
574 			continue;
575 
576 		free_page((unsigned long)cpu_hw_evt->snapshot_addr);
577 		cpu_hw_evt->snapshot_addr = NULL;
578 		cpu_hw_evt->snapshot_addr_phys = 0;
579 	}
580 }
581 
582 static int pmu_sbi_snapshot_alloc(struct riscv_pmu *pmu)
583 {
584 	int cpu;
585 	struct page *snapshot_page;
586 
587 	for_each_possible_cpu(cpu) {
588 		struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
589 
590 		snapshot_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
591 		if (!snapshot_page) {
592 			pmu_sbi_snapshot_free(pmu);
593 			return -ENOMEM;
594 		}
595 		cpu_hw_evt->snapshot_addr = page_to_virt(snapshot_page);
596 		cpu_hw_evt->snapshot_addr_phys = page_to_phys(snapshot_page);
597 	}
598 
599 	return 0;
600 }
601 
602 static int pmu_sbi_snapshot_disable(void)
603 {
604 	struct sbiret ret;
605 
606 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM, SBI_SHMEM_DISABLE,
607 			SBI_SHMEM_DISABLE, 0, 0, 0, 0);
608 	if (ret.error) {
609 		pr_warn("failed to disable snapshot shared memory\n");
610 		return sbi_err_map_linux_errno(ret.error);
611 	}
612 
613 	return 0;
614 }
615 
616 static int pmu_sbi_snapshot_setup(struct riscv_pmu *pmu, int cpu)
617 {
618 	struct cpu_hw_events *cpu_hw_evt;
619 	struct sbiret ret = {0};
620 
621 	cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
622 	if (!cpu_hw_evt->snapshot_addr_phys)
623 		return -EINVAL;
624 
625 	if (cpu_hw_evt->snapshot_set_done)
626 		return 0;
627 
628 	if (IS_ENABLED(CONFIG_32BIT))
629 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM,
630 				cpu_hw_evt->snapshot_addr_phys,
631 				(u64)(cpu_hw_evt->snapshot_addr_phys) >> 32, 0, 0, 0, 0);
632 	else
633 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM,
634 				cpu_hw_evt->snapshot_addr_phys, 0, 0, 0, 0, 0);
635 
636 	/* Free up the snapshot area memory and fall back to SBI PMU calls without snapshot */
637 	if (ret.error) {
638 		if (ret.error != SBI_ERR_NOT_SUPPORTED)
639 			pr_warn("pmu snapshot setup failed with error %ld\n", ret.error);
640 		return sbi_err_map_linux_errno(ret.error);
641 	}
642 
643 	memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS);
644 	cpu_hw_evt->snapshot_set_done = true;
645 
646 	return 0;
647 }
648 
649 static u64 pmu_sbi_ctr_read(struct perf_event *event)
650 {
651 	struct hw_perf_event *hwc = &event->hw;
652 	int idx = hwc->idx;
653 	struct sbiret ret;
654 	u64 val = 0;
655 	struct riscv_pmu *pmu = to_riscv_pmu(event->pmu);
656 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
657 	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
658 	union sbi_pmu_ctr_info info = pmu_ctr_list[idx];
659 
660 	/* Read the value from the shared memory directly only if counter is stopped */
661 	if (sbi_pmu_snapshot_available() && (hwc->state & PERF_HES_STOPPED)) {
662 		val = sdata->ctr_values[idx];
663 		return val;
664 	}
665 
666 	if (pmu_sbi_is_fw_event(event)) {
667 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
668 				hwc->idx, 0, 0, 0, 0, 0);
669 		if (ret.error)
670 			return 0;
671 
672 		val = ret.value;
673 		if (IS_ENABLED(CONFIG_32BIT) && sbi_v2_available && info.width >= 32) {
674 			ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ_HI,
675 					hwc->idx, 0, 0, 0, 0, 0);
676 			if (!ret.error)
677 				val |= ((u64)ret.value << 32);
678 			else
679 				WARN_ONCE(1, "Unable to read upper 32 bits of firmware counter error: %ld\n",
680 					  ret.error);
681 		}
682 	} else {
683 		val = riscv_pmu_ctr_read_csr(info.csr);
684 		if (IS_ENABLED(CONFIG_32BIT))
685 			val |= ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 32;
686 	}
687 
688 	return val;
689 }
690 
691 static void pmu_sbi_set_scounteren(void *arg)
692 {
693 	struct perf_event *event = (struct perf_event *)arg;
694 
695 	if (event->hw.idx != -1)
696 		csr_write(CSR_SCOUNTEREN,
697 			  csr_read(CSR_SCOUNTEREN) | BIT(pmu_sbi_csr_index(event)));
698 }
699 
700 static void pmu_sbi_reset_scounteren(void *arg)
701 {
702 	struct perf_event *event = (struct perf_event *)arg;
703 
704 	if (event->hw.idx != -1)
705 		csr_write(CSR_SCOUNTEREN,
706 			  csr_read(CSR_SCOUNTEREN) & ~BIT(pmu_sbi_csr_index(event)));
707 }
708 
709 static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
710 {
711 	struct sbiret ret;
712 	struct hw_perf_event *hwc = &event->hw;
713 	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
714 
715 	/* There is no benefit setting SNAPSHOT FLAG for a single counter */
716 #if defined(CONFIG_32BIT)
717 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
718 			1, flag, ival, ival >> 32, 0);
719 #else
720 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
721 			1, flag, ival, 0, 0);
722 #endif
723 	if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
724 		pr_err("Starting counter idx %d failed with error %d\n",
725 			hwc->idx, sbi_err_map_linux_errno(ret.error));
726 
727 	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
728 	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
729 		pmu_sbi_set_scounteren((void *)event);
730 }
731 
732 static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
733 {
734 	struct sbiret ret;
735 	struct hw_perf_event *hwc = &event->hw;
736 	struct riscv_pmu *pmu = to_riscv_pmu(event->pmu);
737 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
738 	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
739 
740 	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
741 	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
742 		pmu_sbi_reset_scounteren((void *)event);
743 
744 	if (sbi_pmu_snapshot_available())
745 		flag |= SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT;
746 
747 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
748 	if (!ret.error && sbi_pmu_snapshot_available()) {
749 		/*
750 		 * The counter snapshot is based on the index base specified by hwc->idx.
751 		 * The actual counter value is updated in shared memory at index 0 when counter
752 		 * mask is 0x01. To ensure accurate counter values, it's necessary to transfer
753 		 * the counter value to shared memory. However, if hwc->idx is zero, the counter
754 		 * value is already correctly updated in shared memory, requiring no further
755 		 * adjustment.
756 		 */
757 		if (hwc->idx > 0) {
758 			sdata->ctr_values[hwc->idx] = sdata->ctr_values[0];
759 			sdata->ctr_values[0] = 0;
760 		}
761 	} else if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
762 		flag != SBI_PMU_STOP_FLAG_RESET) {
763 		pr_err("Stopping counter idx %d failed with error %d\n",
764 			hwc->idx, sbi_err_map_linux_errno(ret.error));
765 	}
766 }
767 
768 static int pmu_sbi_find_num_ctrs(void)
769 {
770 	struct sbiret ret;
771 
772 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
773 	if (!ret.error)
774 		return ret.value;
775 	else
776 		return sbi_err_map_linux_errno(ret.error);
777 }
778 
779 static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
780 {
781 	struct sbiret ret;
782 	int i, num_hw_ctr = 0, num_fw_ctr = 0;
783 	union sbi_pmu_ctr_info cinfo;
784 
785 	pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
786 	if (!pmu_ctr_list)
787 		return -ENOMEM;
788 
789 	for (i = 0; i < nctr; i++) {
790 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
791 		if (ret.error)
792 			/* The logical counter ids are not expected to be contiguous */
793 			continue;
794 
795 		*mask |= BIT(i);
796 
797 		cinfo.value = ret.value;
798 		if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
799 			num_fw_ctr++;
800 		else
801 			num_hw_ctr++;
802 		pmu_ctr_list[i].value = cinfo.value;
803 	}
804 
805 	pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
806 
807 	return 0;
808 }
809 
810 static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
811 {
812 	/*
813 	 * No need to check the error because we are disabling all the counters
814 	 * which may include counters that are not enabled yet.
815 	 */
816 	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
817 		  0, pmu->cmask, SBI_PMU_STOP_FLAG_RESET, 0, 0, 0);
818 }
819 
820 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
821 {
822 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
823 	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
824 	unsigned long flag = 0;
825 	int i, idx;
826 	struct sbiret ret;
827 	u64 temp_ctr_overflow_mask = 0;
828 
829 	if (sbi_pmu_snapshot_available())
830 		flag = SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT;
831 
832 	/* Reset the shadow copy to avoid save/restore any value from previous overflow */
833 	memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS);
834 
835 	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
836 		/* No need to check the error here as we can't do anything about the error */
837 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, i * BITS_PER_LONG,
838 				cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0);
839 		if (!ret.error && sbi_pmu_snapshot_available()) {
840 			/* Save the counter values to avoid clobbering */
841 			for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG)
842 				cpu_hw_evt->snapshot_cval_shcopy[i * BITS_PER_LONG + idx] =
843 							sdata->ctr_values[idx];
844 			/* Save the overflow mask to avoid clobbering */
845 			temp_ctr_overflow_mask |= sdata->ctr_overflow_mask << (i * BITS_PER_LONG);
846 		}
847 	}
848 
849 	/* Restore the counter values to the shared memory for used hw counters */
850 	if (sbi_pmu_snapshot_available()) {
851 		for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS)
852 			sdata->ctr_values[idx] = cpu_hw_evt->snapshot_cval_shcopy[idx];
853 		if (temp_ctr_overflow_mask)
854 			sdata->ctr_overflow_mask = temp_ctr_overflow_mask;
855 	}
856 }
857 
858 /*
859  * This function starts all the used counters in two step approach.
860  * Any counter that did not overflow can be start in a single step
861  * while the overflowed counters need to be started with updated initialization
862  * value.
863  */
864 static inline void pmu_sbi_start_ovf_ctrs_sbi(struct cpu_hw_events *cpu_hw_evt,
865 					      u64 ctr_ovf_mask)
866 {
867 	int idx = 0, i;
868 	struct perf_event *event;
869 	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
870 	unsigned long ctr_start_mask = 0;
871 	uint64_t max_period;
872 	struct hw_perf_event *hwc;
873 	u64 init_val = 0;
874 
875 	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
876 		ctr_start_mask = cpu_hw_evt->used_hw_ctrs[i] & ~ctr_ovf_mask;
877 		/* Start all the counters that did not overflow in a single shot */
878 		sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, i * BITS_PER_LONG, ctr_start_mask,
879 			0, 0, 0, 0);
880 	}
881 
882 	/* Reinitialize and start all the counter that overflowed */
883 	while (ctr_ovf_mask) {
884 		if (ctr_ovf_mask & 0x01) {
885 			event = cpu_hw_evt->events[idx];
886 			hwc = &event->hw;
887 			max_period = riscv_pmu_ctr_get_width_mask(event);
888 			init_val = local64_read(&hwc->prev_count) & max_period;
889 #if defined(CONFIG_32BIT)
890 			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
891 				  flag, init_val, init_val >> 32, 0);
892 #else
893 			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
894 				  flag, init_val, 0, 0);
895 #endif
896 			perf_event_update_userpage(event);
897 		}
898 		ctr_ovf_mask = ctr_ovf_mask >> 1;
899 		idx++;
900 	}
901 }
902 
903 static inline void pmu_sbi_start_ovf_ctrs_snapshot(struct cpu_hw_events *cpu_hw_evt,
904 						   u64 ctr_ovf_mask)
905 {
906 	int i, idx = 0;
907 	struct perf_event *event;
908 	unsigned long flag = SBI_PMU_START_FLAG_INIT_SNAPSHOT;
909 	u64 max_period, init_val = 0;
910 	struct hw_perf_event *hwc;
911 	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
912 
913 	for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
914 		if (ctr_ovf_mask & BIT(idx)) {
915 			event = cpu_hw_evt->events[idx];
916 			hwc = &event->hw;
917 			max_period = riscv_pmu_ctr_get_width_mask(event);
918 			init_val = local64_read(&hwc->prev_count) & max_period;
919 			cpu_hw_evt->snapshot_cval_shcopy[idx] = init_val;
920 		}
921 		/*
922 		 * We do not need to update the non-overflow counters the previous
923 		 * value should have been there already.
924 		 */
925 	}
926 
927 	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
928 		/* Restore the counter values to relative indices for used hw counters */
929 		for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG)
930 			sdata->ctr_values[idx] =
931 					cpu_hw_evt->snapshot_cval_shcopy[idx + i * BITS_PER_LONG];
932 		/* Start all the counters in a single shot */
933 		sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx * BITS_PER_LONG,
934 			  cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0);
935 	}
936 }
937 
938 static void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
939 					u64 ctr_ovf_mask)
940 {
941 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
942 
943 	if (sbi_pmu_snapshot_available())
944 		pmu_sbi_start_ovf_ctrs_snapshot(cpu_hw_evt, ctr_ovf_mask);
945 	else
946 		pmu_sbi_start_ovf_ctrs_sbi(cpu_hw_evt, ctr_ovf_mask);
947 }
948 
949 static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
950 {
951 	struct perf_sample_data data;
952 	struct pt_regs *regs;
953 	struct hw_perf_event *hw_evt;
954 	union sbi_pmu_ctr_info *info;
955 	int lidx, hidx, fidx;
956 	struct riscv_pmu *pmu;
957 	struct perf_event *event;
958 	u64 overflow;
959 	u64 overflowed_ctrs = 0;
960 	struct cpu_hw_events *cpu_hw_evt = dev;
961 	u64 start_clock = sched_clock();
962 	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
963 
964 	if (WARN_ON_ONCE(!cpu_hw_evt))
965 		return IRQ_NONE;
966 
967 	/* Firmware counter don't support overflow yet */
968 	fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
969 	if (fidx == RISCV_MAX_COUNTERS) {
970 		csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
971 		return IRQ_NONE;
972 	}
973 
974 	event = cpu_hw_evt->events[fidx];
975 	if (!event) {
976 		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
977 		return IRQ_NONE;
978 	}
979 
980 	pmu = to_riscv_pmu(event->pmu);
981 	pmu_sbi_stop_hw_ctrs(pmu);
982 
983 	/* Overflow status register should only be read after counter are stopped */
984 	if (sbi_pmu_snapshot_available())
985 		overflow = sdata->ctr_overflow_mask;
986 	else
987 		ALT_SBI_PMU_OVERFLOW(overflow);
988 
989 	/*
990 	 * Overflow interrupt pending bit should only be cleared after stopping
991 	 * all the counters to avoid any race condition.
992 	 */
993 	ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
994 
995 	/* No overflow bit is set */
996 	if (!overflow)
997 		return IRQ_NONE;
998 
999 	regs = get_irq_regs();
1000 
1001 	for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
1002 		struct perf_event *event = cpu_hw_evt->events[lidx];
1003 
1004 		/* Skip if invalid event or user did not request a sampling */
1005 		if (!event || !is_sampling_event(event))
1006 			continue;
1007 
1008 		info = &pmu_ctr_list[lidx];
1009 		/* Do a sanity check */
1010 		if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
1011 			continue;
1012 
1013 		if (sbi_pmu_snapshot_available())
1014 			/* SBI implementation already updated the logical indicies */
1015 			hidx = lidx;
1016 		else
1017 			/* compute hardware counter index */
1018 			hidx = info->csr - CSR_CYCLE;
1019 
1020 		/* check if the corresponding bit is set in sscountovf or overflow mask in shmem */
1021 		if (!(overflow & BIT(hidx)))
1022 			continue;
1023 
1024 		/*
1025 		 * Keep a track of overflowed counters so that they can be started
1026 		 * with updated initial value.
1027 		 */
1028 		overflowed_ctrs |= BIT(lidx);
1029 		hw_evt = &event->hw;
1030 		/* Update the event states here so that we know the state while reading */
1031 		hw_evt->state |= PERF_HES_STOPPED;
1032 		riscv_pmu_event_update(event);
1033 		hw_evt->state |= PERF_HES_UPTODATE;
1034 		perf_sample_data_init(&data, 0, hw_evt->last_period);
1035 		if (riscv_pmu_event_set_period(event)) {
1036 			/*
1037 			 * Unlike other ISAs, RISC-V don't have to disable interrupts
1038 			 * to avoid throttling here. As per the specification, the
1039 			 * interrupt remains disabled until the OF bit is set.
1040 			 * Interrupts are enabled again only during the start.
1041 			 * TODO: We will need to stop the guest counters once
1042 			 * virtualization support is added.
1043 			 */
1044 			perf_event_overflow(event, &data, regs);
1045 		}
1046 		/* Reset the state as we are going to start the counter after the loop */
1047 		hw_evt->state = 0;
1048 	}
1049 
1050 	pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
1051 	perf_sample_event_took(sched_clock() - start_clock);
1052 
1053 	return IRQ_HANDLED;
1054 }
1055 
1056 static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
1057 {
1058 	struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
1059 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
1060 
1061 	/*
1062 	 * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
1063 	 * legacy option but that will be removed in the future.
1064 	 */
1065 	if (sysctl_perf_user_access == SYSCTL_LEGACY)
1066 		csr_write(CSR_SCOUNTEREN, 0x7);
1067 	else
1068 		csr_write(CSR_SCOUNTEREN, 0x2);
1069 
1070 	/* Stop all the counters so that they can be enabled from perf */
1071 	pmu_sbi_stop_all(pmu);
1072 
1073 	if (riscv_pmu_use_irq) {
1074 		cpu_hw_evt->irq = riscv_pmu_irq;
1075 		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
1076 		enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
1077 	}
1078 
1079 	if (sbi_pmu_snapshot_available())
1080 		return pmu_sbi_snapshot_setup(pmu, cpu);
1081 
1082 	return 0;
1083 }
1084 
1085 static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
1086 {
1087 	if (riscv_pmu_use_irq) {
1088 		disable_percpu_irq(riscv_pmu_irq);
1089 	}
1090 
1091 	/* Disable all counters access for user mode now */
1092 	csr_write(CSR_SCOUNTEREN, 0x0);
1093 
1094 	if (sbi_pmu_snapshot_available())
1095 		return pmu_sbi_snapshot_disable();
1096 
1097 	return 0;
1098 }
1099 
1100 static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
1101 {
1102 	int ret;
1103 	struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
1104 	struct irq_domain *domain = NULL;
1105 
1106 	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
1107 		riscv_pmu_irq_num = RV_IRQ_PMU;
1108 		riscv_pmu_use_irq = true;
1109 	} else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
1110 		   riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
1111 		   riscv_cached_marchid(0) == 0 &&
1112 		   riscv_cached_mimpid(0) == 0) {
1113 		riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
1114 		riscv_pmu_use_irq = true;
1115 	} else if (riscv_has_vendor_extension_unlikely(ANDES_VENDOR_ID,
1116 						       RISCV_ISA_VENDOR_EXT_XANDESPMU) &&
1117 		   IS_ENABLED(CONFIG_ANDES_CUSTOM_PMU)) {
1118 		riscv_pmu_irq_num = ANDES_SLI_CAUSE_BASE + ANDES_RV_IRQ_PMOVI;
1119 		riscv_pmu_use_irq = true;
1120 	}
1121 
1122 	riscv_pmu_irq_mask = BIT(riscv_pmu_irq_num % BITS_PER_LONG);
1123 
1124 	if (!riscv_pmu_use_irq)
1125 		return -EOPNOTSUPP;
1126 
1127 	domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(),
1128 					  DOMAIN_BUS_ANY);
1129 	if (!domain) {
1130 		pr_err("Failed to find INTC IRQ root domain\n");
1131 		return -ENODEV;
1132 	}
1133 
1134 	riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
1135 	if (!riscv_pmu_irq) {
1136 		pr_err("Failed to map PMU interrupt for node\n");
1137 		return -ENODEV;
1138 	}
1139 
1140 	ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
1141 	if (ret) {
1142 		pr_err("registering percpu irq failed [%d]\n", ret);
1143 		return ret;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 #ifdef CONFIG_CPU_PM
1150 static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
1151 				void *v)
1152 {
1153 	struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
1154 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
1155 	int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
1156 	struct perf_event *event;
1157 	int idx;
1158 
1159 	if (!enabled)
1160 		return NOTIFY_OK;
1161 
1162 	for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
1163 		event = cpuc->events[idx];
1164 		if (!event)
1165 			continue;
1166 
1167 		switch (cmd) {
1168 		case CPU_PM_ENTER:
1169 			/*
1170 			 * Stop and update the counter
1171 			 */
1172 			riscv_pmu_stop(event, PERF_EF_UPDATE);
1173 			break;
1174 		case CPU_PM_EXIT:
1175 		case CPU_PM_ENTER_FAILED:
1176 			/*
1177 			 * Restore and enable the counter.
1178 			 */
1179 			riscv_pmu_start(event, PERF_EF_RELOAD);
1180 			break;
1181 		default:
1182 			break;
1183 		}
1184 	}
1185 
1186 	return NOTIFY_OK;
1187 }
1188 
1189 static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
1190 {
1191 	pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
1192 	return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
1193 }
1194 
1195 static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
1196 {
1197 	cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
1198 }
1199 #else
1200 static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
1201 static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
1202 #endif
1203 
1204 static void riscv_pmu_destroy(struct riscv_pmu *pmu)
1205 {
1206 	if (sbi_v2_available) {
1207 		if (sbi_pmu_snapshot_available()) {
1208 			pmu_sbi_snapshot_disable();
1209 			pmu_sbi_snapshot_free(pmu);
1210 		}
1211 	}
1212 	riscv_pm_pmu_unregister(pmu);
1213 	cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1214 }
1215 
1216 static void pmu_sbi_event_init(struct perf_event *event)
1217 {
1218 	/*
1219 	 * The permissions are set at event_init so that we do not depend
1220 	 * on the sysctl value that can change.
1221 	 */
1222 	if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS)
1223 		event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS;
1224 	else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS)
1225 		event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS;
1226 	else
1227 		event->hw.flags |= PERF_EVENT_FLAG_LEGACY;
1228 }
1229 
1230 static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm)
1231 {
1232 	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
1233 		return;
1234 
1235 	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
1236 		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
1237 		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
1238 			return;
1239 		}
1240 	}
1241 
1242 	/*
1243 	 * The user mmapped the event to directly access it: this is where
1244 	 * we determine based on sysctl_perf_user_access if we grant userspace
1245 	 * the direct access to this event. That means that within the same
1246 	 * task, some events may be directly accessible and some other may not,
1247 	 * if the user changes the value of sysctl_perf_user_accesss in the
1248 	 * meantime.
1249 	 */
1250 
1251 	event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1252 
1253 	/*
1254 	 * We must enable userspace access *before* advertising in the user page
1255 	 * that it is possible to do so to avoid any race.
1256 	 * And we must notify all cpus here because threads that currently run
1257 	 * on other cpus will try to directly access the counter too without
1258 	 * calling pmu_sbi_ctr_start.
1259 	 */
1260 	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
1261 		on_each_cpu_mask(mm_cpumask(mm),
1262 				 pmu_sbi_set_scounteren, (void *)event, 1);
1263 }
1264 
1265 static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm)
1266 {
1267 	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
1268 		return;
1269 
1270 	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
1271 		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
1272 		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
1273 			return;
1274 		}
1275 	}
1276 
1277 	/*
1278 	 * Here we can directly remove user access since the user does not have
1279 	 * access to the user page anymore so we avoid the racy window where the
1280 	 * user could have read cap_user_rdpmc to true right before we disable
1281 	 * it.
1282 	 */
1283 	event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT;
1284 
1285 	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
1286 		on_each_cpu_mask(mm_cpumask(mm),
1287 				 pmu_sbi_reset_scounteren, (void *)event, 1);
1288 }
1289 
1290 static void riscv_pmu_update_counter_access(void *info)
1291 {
1292 	if (sysctl_perf_user_access == SYSCTL_LEGACY)
1293 		csr_write(CSR_SCOUNTEREN, 0x7);
1294 	else
1295 		csr_write(CSR_SCOUNTEREN, 0x2);
1296 }
1297 
1298 static int riscv_pmu_proc_user_access_handler(const struct ctl_table *table,
1299 					      int write, void *buffer,
1300 					      size_t *lenp, loff_t *ppos)
1301 {
1302 	int prev = sysctl_perf_user_access;
1303 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1304 
1305 	/*
1306 	 * Test against the previous value since we clear SCOUNTEREN when
1307 	 * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
1308 	 * not do that if that was already the case.
1309 	 */
1310 	if (ret || !write || prev == sysctl_perf_user_access)
1311 		return ret;
1312 
1313 	on_each_cpu(riscv_pmu_update_counter_access, NULL, 1);
1314 
1315 	return 0;
1316 }
1317 
1318 static struct ctl_table sbi_pmu_sysctl_table[] = {
1319 	{
1320 		.procname       = "perf_user_access",
1321 		.data		= &sysctl_perf_user_access,
1322 		.maxlen		= sizeof(unsigned int),
1323 		.mode           = 0644,
1324 		.proc_handler	= riscv_pmu_proc_user_access_handler,
1325 		.extra1		= SYSCTL_ZERO,
1326 		.extra2		= SYSCTL_TWO,
1327 	},
1328 };
1329 
1330 static int pmu_sbi_device_probe(struct platform_device *pdev)
1331 {
1332 	struct riscv_pmu *pmu = NULL;
1333 	int ret = -ENODEV;
1334 	int num_counters;
1335 
1336 	pr_info("SBI PMU extension is available\n");
1337 	pmu = riscv_pmu_alloc();
1338 	if (!pmu)
1339 		return -ENOMEM;
1340 
1341 	num_counters = pmu_sbi_find_num_ctrs();
1342 	if (num_counters < 0) {
1343 		pr_err("SBI PMU extension doesn't provide any counters\n");
1344 		goto out_free;
1345 	}
1346 
1347 	/* It is possible to get from SBI more than max number of counters */
1348 	if (num_counters > RISCV_MAX_COUNTERS) {
1349 		num_counters = RISCV_MAX_COUNTERS;
1350 		pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters);
1351 	}
1352 
1353 	/* cache all the information about counters now */
1354 	if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
1355 		goto out_free;
1356 
1357 	ret = pmu_sbi_setup_irqs(pmu, pdev);
1358 	if (ret < 0) {
1359 		pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
1360 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1361 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
1362 	}
1363 
1364 	pmu->pmu.attr_groups = riscv_pmu_attr_groups;
1365 	pmu->pmu.parent = &pdev->dev;
1366 	pmu->cmask = cmask;
1367 	pmu->ctr_start = pmu_sbi_ctr_start;
1368 	pmu->ctr_stop = pmu_sbi_ctr_stop;
1369 	pmu->event_map = pmu_sbi_event_map;
1370 	pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
1371 	pmu->ctr_get_width = pmu_sbi_ctr_get_width;
1372 	pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
1373 	pmu->ctr_read = pmu_sbi_ctr_read;
1374 	pmu->event_init = pmu_sbi_event_init;
1375 	pmu->event_mapped = pmu_sbi_event_mapped;
1376 	pmu->event_unmapped = pmu_sbi_event_unmapped;
1377 	pmu->csr_index = pmu_sbi_csr_index;
1378 
1379 	ret = riscv_pm_pmu_register(pmu);
1380 	if (ret)
1381 		goto out_unregister;
1382 
1383 	ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
1384 	if (ret)
1385 		goto out_unregister;
1386 
1387 	/* SBI PMU Snapsphot is only available in SBI v2.0 */
1388 	if (sbi_v2_available) {
1389 		int cpu;
1390 
1391 		ret = pmu_sbi_snapshot_alloc(pmu);
1392 		if (ret)
1393 			goto out_unregister;
1394 
1395 		cpu = get_cpu();
1396 
1397 		ret = pmu_sbi_snapshot_setup(pmu, cpu);
1398 		if (ret) {
1399 			/* Snapshot is an optional feature. Continue if not available */
1400 			pmu_sbi_snapshot_free(pmu);
1401 		} else {
1402 			pr_info("SBI PMU snapshot detected\n");
1403 			/*
1404 			 * We enable it once here for the boot cpu. If snapshot shmem setup
1405 			 * fails during cpu hotplug process, it will fail to start the cpu
1406 			 * as we can not handle hetergenous PMUs with different snapshot
1407 			 * capability.
1408 			 */
1409 			static_branch_enable(&sbi_pmu_snapshot_available);
1410 		}
1411 		put_cpu();
1412 	}
1413 
1414 	register_sysctl("kernel", sbi_pmu_sysctl_table);
1415 
1416 	ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1417 	if (ret)
1418 		goto out_unregister;
1419 
1420 	/* Asynchronously check which standard events are available */
1421 	schedule_work(&check_std_events_work);
1422 
1423 	return 0;
1424 
1425 out_unregister:
1426 	riscv_pmu_destroy(pmu);
1427 
1428 out_free:
1429 	kfree(pmu);
1430 	return ret;
1431 }
1432 
1433 static struct platform_driver pmu_sbi_driver = {
1434 	.probe		= pmu_sbi_device_probe,
1435 	.driver		= {
1436 		.name	= RISCV_PMU_SBI_PDEV_NAME,
1437 	},
1438 };
1439 
1440 static int __init pmu_sbi_devinit(void)
1441 {
1442 	int ret;
1443 	struct platform_device *pdev;
1444 
1445 	if (sbi_spec_version < sbi_mk_version(0, 3) ||
1446 	    !sbi_probe_extension(SBI_EXT_PMU)) {
1447 		return 0;
1448 	}
1449 
1450 	if (sbi_spec_version >= sbi_mk_version(2, 0))
1451 		sbi_v2_available = true;
1452 
1453 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
1454 				      "perf/riscv/pmu:starting",
1455 				      pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
1456 	if (ret) {
1457 		pr_err("CPU hotplug notifier could not be registered: %d\n",
1458 		       ret);
1459 		return ret;
1460 	}
1461 
1462 	ret = platform_driver_register(&pmu_sbi_driver);
1463 	if (ret)
1464 		return ret;
1465 
1466 	pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0);
1467 	if (IS_ERR(pdev)) {
1468 		platform_driver_unregister(&pmu_sbi_driver);
1469 		return PTR_ERR(pdev);
1470 	}
1471 
1472 	/* Notify legacy implementation that SBI pmu is available*/
1473 	riscv_pmu_legacy_skip_init();
1474 
1475 	return ret;
1476 }
1477 device_initcall(pmu_sbi_devinit)
1478