xref: /linux/drivers/perf/riscv_pmu_sbi.c (revision 55c8a987dd73a7ef9e53119f3329620768d4a655)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This code is based on ARM perf event code which is in turn based on
8  * sparc64 and x86 code.
9  */
10 
11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
12 
13 #include <linux/mod_devicetable.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/platform_device.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/of_irq.h>
19 #include <linux/of.h>
20 #include <linux/cpu_pm.h>
21 
22 #include <asm/sbi.h>
23 #include <asm/hwcap.h>
24 
25 PMU_FORMAT_ATTR(event, "config:0-47");
26 PMU_FORMAT_ATTR(firmware, "config:63");
27 
28 static struct attribute *riscv_arch_formats_attr[] = {
29 	&format_attr_event.attr,
30 	&format_attr_firmware.attr,
31 	NULL,
32 };
33 
34 static struct attribute_group riscv_pmu_format_group = {
35 	.name = "format",
36 	.attrs = riscv_arch_formats_attr,
37 };
38 
39 static const struct attribute_group *riscv_pmu_attr_groups[] = {
40 	&riscv_pmu_format_group,
41 	NULL,
42 };
43 
44 /*
45  * RISC-V doesn't have hetergenous harts yet. This need to be part of
46  * per_cpu in case of harts with different pmu counters
47  */
48 static union sbi_pmu_ctr_info *pmu_ctr_list;
49 static unsigned int riscv_pmu_irq;
50 
51 struct sbi_pmu_event_data {
52 	union {
53 		union {
54 			struct hw_gen_event {
55 				uint32_t event_code:16;
56 				uint32_t event_type:4;
57 				uint32_t reserved:12;
58 			} hw_gen_event;
59 			struct hw_cache_event {
60 				uint32_t result_id:1;
61 				uint32_t op_id:2;
62 				uint32_t cache_id:13;
63 				uint32_t event_type:4;
64 				uint32_t reserved:12;
65 			} hw_cache_event;
66 		};
67 		uint32_t event_idx;
68 	};
69 };
70 
71 static const struct sbi_pmu_event_data pmu_hw_event_map[] = {
72 	[PERF_COUNT_HW_CPU_CYCLES]		= {.hw_gen_event = {
73 							SBI_PMU_HW_CPU_CYCLES,
74 							SBI_PMU_EVENT_TYPE_HW, 0}},
75 	[PERF_COUNT_HW_INSTRUCTIONS]		= {.hw_gen_event = {
76 							SBI_PMU_HW_INSTRUCTIONS,
77 							SBI_PMU_EVENT_TYPE_HW, 0}},
78 	[PERF_COUNT_HW_CACHE_REFERENCES]	= {.hw_gen_event = {
79 							SBI_PMU_HW_CACHE_REFERENCES,
80 							SBI_PMU_EVENT_TYPE_HW, 0}},
81 	[PERF_COUNT_HW_CACHE_MISSES]		= {.hw_gen_event = {
82 							SBI_PMU_HW_CACHE_MISSES,
83 							SBI_PMU_EVENT_TYPE_HW, 0}},
84 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= {.hw_gen_event = {
85 							SBI_PMU_HW_BRANCH_INSTRUCTIONS,
86 							SBI_PMU_EVENT_TYPE_HW, 0}},
87 	[PERF_COUNT_HW_BRANCH_MISSES]		= {.hw_gen_event = {
88 							SBI_PMU_HW_BRANCH_MISSES,
89 							SBI_PMU_EVENT_TYPE_HW, 0}},
90 	[PERF_COUNT_HW_BUS_CYCLES]		= {.hw_gen_event = {
91 							SBI_PMU_HW_BUS_CYCLES,
92 							SBI_PMU_EVENT_TYPE_HW, 0}},
93 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= {.hw_gen_event = {
94 							SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
95 							SBI_PMU_EVENT_TYPE_HW, 0}},
96 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= {.hw_gen_event = {
97 							SBI_PMU_HW_STALLED_CYCLES_BACKEND,
98 							SBI_PMU_EVENT_TYPE_HW, 0}},
99 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= {.hw_gen_event = {
100 							SBI_PMU_HW_REF_CPU_CYCLES,
101 							SBI_PMU_EVENT_TYPE_HW, 0}},
102 };
103 
104 #define C(x) PERF_COUNT_HW_CACHE_##x
105 static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
106 [PERF_COUNT_HW_CACHE_OP_MAX]
107 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
108 	[C(L1D)] = {
109 		[C(OP_READ)] = {
110 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
111 					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
112 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
113 					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
114 		},
115 		[C(OP_WRITE)] = {
116 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
117 					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
118 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
119 					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
120 		},
121 		[C(OP_PREFETCH)] = {
122 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
123 					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
124 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
125 					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
126 		},
127 	},
128 	[C(L1I)] = {
129 		[C(OP_READ)] = {
130 			[C(RESULT_ACCESS)] = {.hw_cache_event =	{C(RESULT_ACCESS),
131 					C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
132 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
133 					C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
134 		},
135 		[C(OP_WRITE)] = {
136 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
137 					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
138 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
139 					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
140 		},
141 		[C(OP_PREFETCH)] = {
142 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
143 					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
144 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
145 					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
146 		},
147 	},
148 	[C(LL)] = {
149 		[C(OP_READ)] = {
150 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
151 					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
152 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
153 					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
154 		},
155 		[C(OP_WRITE)] = {
156 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
157 					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
158 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
159 					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
160 		},
161 		[C(OP_PREFETCH)] = {
162 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
163 					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
164 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
165 					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
166 		},
167 	},
168 	[C(DTLB)] = {
169 		[C(OP_READ)] = {
170 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
171 					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
172 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
173 					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
174 		},
175 		[C(OP_WRITE)] = {
176 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
177 					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
178 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
179 					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
180 		},
181 		[C(OP_PREFETCH)] = {
182 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
183 					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
184 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
185 					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
186 		},
187 	},
188 	[C(ITLB)] = {
189 		[C(OP_READ)] = {
190 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
191 					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
192 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
193 					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
194 		},
195 		[C(OP_WRITE)] = {
196 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
197 					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
198 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
199 					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
200 		},
201 		[C(OP_PREFETCH)] = {
202 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
203 					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
204 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
205 					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
206 		},
207 	},
208 	[C(BPU)] = {
209 		[C(OP_READ)] = {
210 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
211 					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
212 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
213 					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
214 		},
215 		[C(OP_WRITE)] = {
216 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
217 					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
218 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
219 					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
220 		},
221 		[C(OP_PREFETCH)] = {
222 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
223 					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
224 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
225 					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
226 		},
227 	},
228 	[C(NODE)] = {
229 		[C(OP_READ)] = {
230 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
231 					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
232 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
233 					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
234 		},
235 		[C(OP_WRITE)] = {
236 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
237 					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
238 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
239 					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
240 		},
241 		[C(OP_PREFETCH)] = {
242 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
243 					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
244 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
245 					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
246 		},
247 	},
248 };
249 
250 static int pmu_sbi_ctr_get_width(int idx)
251 {
252 	return pmu_ctr_list[idx].width;
253 }
254 
255 static bool pmu_sbi_ctr_is_fw(int cidx)
256 {
257 	union sbi_pmu_ctr_info *info;
258 
259 	info = &pmu_ctr_list[cidx];
260 	if (!info)
261 		return false;
262 
263 	return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
264 }
265 
266 static int pmu_sbi_ctr_get_idx(struct perf_event *event)
267 {
268 	struct hw_perf_event *hwc = &event->hw;
269 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
270 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
271 	struct sbiret ret;
272 	int idx;
273 	uint64_t cbase = 0;
274 	uint64_t cmask = GENMASK_ULL(rvpmu->num_counters - 1, 0);
275 	unsigned long cflags = 0;
276 
277 	if (event->attr.exclude_kernel)
278 		cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
279 	if (event->attr.exclude_user)
280 		cflags |= SBI_PMU_CFG_FLAG_SET_UINH;
281 
282 	/* retrieve the available counter index */
283 #if defined(CONFIG_32BIT)
284 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase, cmask,
285 			cflags, hwc->event_base, hwc->config, hwc->config >> 32);
286 #else
287 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase, cmask,
288 			cflags, hwc->event_base, hwc->config, 0);
289 #endif
290 	if (ret.error) {
291 		pr_debug("Not able to find a counter for event %lx config %llx\n",
292 			hwc->event_base, hwc->config);
293 		return sbi_err_map_linux_errno(ret.error);
294 	}
295 
296 	idx = ret.value;
297 	if (idx >= rvpmu->num_counters || !pmu_ctr_list[idx].value)
298 		return -ENOENT;
299 
300 	/* Additional sanity check for the counter id */
301 	if (pmu_sbi_ctr_is_fw(idx)) {
302 		if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
303 			return idx;
304 	} else {
305 		if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
306 			return idx;
307 	}
308 
309 	return -ENOENT;
310 }
311 
312 static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
313 {
314 
315 	struct hw_perf_event *hwc = &event->hw;
316 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
317 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
318 	int idx = hwc->idx;
319 
320 	if (pmu_sbi_ctr_is_fw(idx))
321 		clear_bit(idx, cpuc->used_fw_ctrs);
322 	else
323 		clear_bit(idx, cpuc->used_hw_ctrs);
324 }
325 
326 static int pmu_event_find_cache(u64 config)
327 {
328 	unsigned int cache_type, cache_op, cache_result, ret;
329 
330 	cache_type = (config >>  0) & 0xff;
331 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
332 		return -EINVAL;
333 
334 	cache_op = (config >>  8) & 0xff;
335 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
336 		return -EINVAL;
337 
338 	cache_result = (config >> 16) & 0xff;
339 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
340 		return -EINVAL;
341 
342 	ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
343 
344 	return ret;
345 }
346 
347 static bool pmu_sbi_is_fw_event(struct perf_event *event)
348 {
349 	u32 type = event->attr.type;
350 	u64 config = event->attr.config;
351 
352 	if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
353 		return true;
354 	else
355 		return false;
356 }
357 
358 static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
359 {
360 	u32 type = event->attr.type;
361 	u64 config = event->attr.config;
362 	int bSoftware;
363 	u64 raw_config_val;
364 	int ret;
365 
366 	switch (type) {
367 	case PERF_TYPE_HARDWARE:
368 		if (config >= PERF_COUNT_HW_MAX)
369 			return -EINVAL;
370 		ret = pmu_hw_event_map[event->attr.config].event_idx;
371 		break;
372 	case PERF_TYPE_HW_CACHE:
373 		ret = pmu_event_find_cache(config);
374 		break;
375 	case PERF_TYPE_RAW:
376 		/*
377 		 * As per SBI specification, the upper 16 bits must be unused for
378 		 * a raw event. Use the MSB (63b) to distinguish between hardware
379 		 * raw event and firmware events.
380 		 */
381 		bSoftware = config >> 63;
382 		raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
383 		if (bSoftware) {
384 			if (raw_config_val < SBI_PMU_FW_MAX)
385 				ret = (raw_config_val & 0xFFFF) |
386 				      (SBI_PMU_EVENT_TYPE_FW << 16);
387 			else
388 				return -EINVAL;
389 		} else {
390 			ret = RISCV_PMU_RAW_EVENT_IDX;
391 			*econfig = raw_config_val;
392 		}
393 		break;
394 	default:
395 		ret = -EINVAL;
396 		break;
397 	}
398 
399 	return ret;
400 }
401 
402 static u64 pmu_sbi_ctr_read(struct perf_event *event)
403 {
404 	struct hw_perf_event *hwc = &event->hw;
405 	int idx = hwc->idx;
406 	struct sbiret ret;
407 	union sbi_pmu_ctr_info info;
408 	u64 val = 0;
409 
410 	if (pmu_sbi_is_fw_event(event)) {
411 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
412 				hwc->idx, 0, 0, 0, 0, 0);
413 		if (!ret.error)
414 			val = ret.value;
415 	} else {
416 		info = pmu_ctr_list[idx];
417 		val = riscv_pmu_ctr_read_csr(info.csr);
418 		if (IS_ENABLED(CONFIG_32BIT))
419 			val = ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 31 | val;
420 	}
421 
422 	return val;
423 }
424 
425 static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
426 {
427 	struct sbiret ret;
428 	struct hw_perf_event *hwc = &event->hw;
429 	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
430 
431 #if defined(CONFIG_32BIT)
432 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
433 			1, flag, ival, ival >> 32, 0);
434 #else
435 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
436 			1, flag, ival, 0, 0);
437 #endif
438 	if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
439 		pr_err("Starting counter idx %d failed with error %d\n",
440 			hwc->idx, sbi_err_map_linux_errno(ret.error));
441 }
442 
443 static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
444 {
445 	struct sbiret ret;
446 	struct hw_perf_event *hwc = &event->hw;
447 
448 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
449 	if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
450 		flag != SBI_PMU_STOP_FLAG_RESET)
451 		pr_err("Stopping counter idx %d failed with error %d\n",
452 			hwc->idx, sbi_err_map_linux_errno(ret.error));
453 }
454 
455 static int pmu_sbi_find_num_ctrs(void)
456 {
457 	struct sbiret ret;
458 
459 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
460 	if (!ret.error)
461 		return ret.value;
462 	else
463 		return sbi_err_map_linux_errno(ret.error);
464 }
465 
466 static int pmu_sbi_get_ctrinfo(int nctr)
467 {
468 	struct sbiret ret;
469 	int i, num_hw_ctr = 0, num_fw_ctr = 0;
470 	union sbi_pmu_ctr_info cinfo;
471 
472 	pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
473 	if (!pmu_ctr_list)
474 		return -ENOMEM;
475 
476 	for (i = 0; i <= nctr; i++) {
477 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
478 		if (ret.error)
479 			/* The logical counter ids are not expected to be contiguous */
480 			continue;
481 		cinfo.value = ret.value;
482 		if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
483 			num_fw_ctr++;
484 		else
485 			num_hw_ctr++;
486 		pmu_ctr_list[i].value = cinfo.value;
487 	}
488 
489 	pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
490 
491 	return 0;
492 }
493 
494 static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
495 {
496 	/*
497 	 * No need to check the error because we are disabling all the counters
498 	 * which may include counters that are not enabled yet.
499 	 */
500 	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
501 		  0, GENMASK_ULL(pmu->num_counters - 1, 0), 0, 0, 0, 0);
502 }
503 
504 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
505 {
506 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
507 
508 	/* No need to check the error here as we can't do anything about the error */
509 	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 0,
510 		  cpu_hw_evt->used_hw_ctrs[0], 0, 0, 0, 0);
511 }
512 
513 /*
514  * This function starts all the used counters in two step approach.
515  * Any counter that did not overflow can be start in a single step
516  * while the overflowed counters need to be started with updated initialization
517  * value.
518  */
519 static inline void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
520 					       unsigned long ctr_ovf_mask)
521 {
522 	int idx = 0;
523 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
524 	struct perf_event *event;
525 	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
526 	unsigned long ctr_start_mask = 0;
527 	uint64_t max_period;
528 	struct hw_perf_event *hwc;
529 	u64 init_val = 0;
530 
531 	ctr_start_mask = cpu_hw_evt->used_hw_ctrs[0] & ~ctr_ovf_mask;
532 
533 	/* Start all the counters that did not overflow in a single shot */
534 	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, 0, ctr_start_mask,
535 		  0, 0, 0, 0);
536 
537 	/* Reinitialize and start all the counter that overflowed */
538 	while (ctr_ovf_mask) {
539 		if (ctr_ovf_mask & 0x01) {
540 			event = cpu_hw_evt->events[idx];
541 			hwc = &event->hw;
542 			max_period = riscv_pmu_ctr_get_width_mask(event);
543 			init_val = local64_read(&hwc->prev_count) & max_period;
544 #if defined(CONFIG_32BIT)
545 			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
546 				  flag, init_val, init_val >> 32, 0);
547 #else
548 			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
549 				  flag, init_val, 0, 0);
550 #endif
551 			perf_event_update_userpage(event);
552 		}
553 		ctr_ovf_mask = ctr_ovf_mask >> 1;
554 		idx++;
555 	}
556 }
557 
558 static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
559 {
560 	struct perf_sample_data data;
561 	struct pt_regs *regs;
562 	struct hw_perf_event *hw_evt;
563 	union sbi_pmu_ctr_info *info;
564 	int lidx, hidx, fidx;
565 	struct riscv_pmu *pmu;
566 	struct perf_event *event;
567 	unsigned long overflow;
568 	unsigned long overflowed_ctrs = 0;
569 	struct cpu_hw_events *cpu_hw_evt = dev;
570 
571 	if (WARN_ON_ONCE(!cpu_hw_evt))
572 		return IRQ_NONE;
573 
574 	/* Firmware counter don't support overflow yet */
575 	fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
576 	event = cpu_hw_evt->events[fidx];
577 	if (!event) {
578 		csr_clear(CSR_SIP, SIP_LCOFIP);
579 		return IRQ_NONE;
580 	}
581 
582 	pmu = to_riscv_pmu(event->pmu);
583 	pmu_sbi_stop_hw_ctrs(pmu);
584 
585 	/* Overflow status register should only be read after counter are stopped */
586 	overflow = csr_read(CSR_SSCOUNTOVF);
587 
588 	/*
589 	 * Overflow interrupt pending bit should only be cleared after stopping
590 	 * all the counters to avoid any race condition.
591 	 */
592 	csr_clear(CSR_SIP, SIP_LCOFIP);
593 
594 	/* No overflow bit is set */
595 	if (!overflow)
596 		return IRQ_NONE;
597 
598 	regs = get_irq_regs();
599 
600 	for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
601 		struct perf_event *event = cpu_hw_evt->events[lidx];
602 
603 		/* Skip if invalid event or user did not request a sampling */
604 		if (!event || !is_sampling_event(event))
605 			continue;
606 
607 		info = &pmu_ctr_list[lidx];
608 		/* Do a sanity check */
609 		if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
610 			continue;
611 
612 		/* compute hardware counter index */
613 		hidx = info->csr - CSR_CYCLE;
614 		/* check if the corresponding bit is set in sscountovf */
615 		if (!(overflow & (1 << hidx)))
616 			continue;
617 
618 		/*
619 		 * Keep a track of overflowed counters so that they can be started
620 		 * with updated initial value.
621 		 */
622 		overflowed_ctrs |= 1 << lidx;
623 		hw_evt = &event->hw;
624 		riscv_pmu_event_update(event);
625 		perf_sample_data_init(&data, 0, hw_evt->last_period);
626 		if (riscv_pmu_event_set_period(event)) {
627 			/*
628 			 * Unlike other ISAs, RISC-V don't have to disable interrupts
629 			 * to avoid throttling here. As per the specification, the
630 			 * interrupt remains disabled until the OF bit is set.
631 			 * Interrupts are enabled again only during the start.
632 			 * TODO: We will need to stop the guest counters once
633 			 * virtualization support is added.
634 			 */
635 			perf_event_overflow(event, &data, regs);
636 		}
637 	}
638 	pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
639 
640 	return IRQ_HANDLED;
641 }
642 
643 static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
644 {
645 	struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
646 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
647 
648 	/* Enable the access for TIME csr only from the user mode now */
649 	csr_write(CSR_SCOUNTEREN, 0x2);
650 
651 	/* Stop all the counters so that they can be enabled from perf */
652 	pmu_sbi_stop_all(pmu);
653 
654 	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
655 		cpu_hw_evt->irq = riscv_pmu_irq;
656 		csr_clear(CSR_IP, BIT(RV_IRQ_PMU));
657 		csr_set(CSR_IE, BIT(RV_IRQ_PMU));
658 		enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
659 	}
660 
661 	return 0;
662 }
663 
664 static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
665 {
666 	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
667 		disable_percpu_irq(riscv_pmu_irq);
668 		csr_clear(CSR_IE, BIT(RV_IRQ_PMU));
669 	}
670 
671 	/* Disable all counters access for user mode now */
672 	csr_write(CSR_SCOUNTEREN, 0x0);
673 
674 	return 0;
675 }
676 
677 static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
678 {
679 	int ret;
680 	struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
681 	struct device_node *cpu, *child;
682 	struct irq_domain *domain = NULL;
683 
684 	if (!riscv_isa_extension_available(NULL, SSCOFPMF))
685 		return -EOPNOTSUPP;
686 
687 	for_each_of_cpu_node(cpu) {
688 		child = of_get_compatible_child(cpu, "riscv,cpu-intc");
689 		if (!child) {
690 			pr_err("Failed to find INTC node\n");
691 			of_node_put(cpu);
692 			return -ENODEV;
693 		}
694 		domain = irq_find_host(child);
695 		of_node_put(child);
696 		if (domain) {
697 			of_node_put(cpu);
698 			break;
699 		}
700 	}
701 	if (!domain) {
702 		pr_err("Failed to find INTC IRQ root domain\n");
703 		return -ENODEV;
704 	}
705 
706 	riscv_pmu_irq = irq_create_mapping(domain, RV_IRQ_PMU);
707 	if (!riscv_pmu_irq) {
708 		pr_err("Failed to map PMU interrupt for node\n");
709 		return -ENODEV;
710 	}
711 
712 	ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
713 	if (ret) {
714 		pr_err("registering percpu irq failed [%d]\n", ret);
715 		return ret;
716 	}
717 
718 	return 0;
719 }
720 
721 #ifdef CONFIG_CPU_PM
722 static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
723 				void *v)
724 {
725 	struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
726 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
727 	int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
728 	struct perf_event *event;
729 	int idx;
730 
731 	if (!enabled)
732 		return NOTIFY_OK;
733 
734 	for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
735 		event = cpuc->events[idx];
736 		if (!event)
737 			continue;
738 
739 		switch (cmd) {
740 		case CPU_PM_ENTER:
741 			/*
742 			 * Stop and update the counter
743 			 */
744 			riscv_pmu_stop(event, PERF_EF_UPDATE);
745 			break;
746 		case CPU_PM_EXIT:
747 		case CPU_PM_ENTER_FAILED:
748 			/*
749 			 * Restore and enable the counter.
750 			 *
751 			 * Requires RCU read locking to be functional,
752 			 * wrap the call within RCU_NONIDLE to make the
753 			 * RCU subsystem aware this cpu is not idle from
754 			 * an RCU perspective for the riscv_pmu_start() call
755 			 * duration.
756 			 */
757 			RCU_NONIDLE(riscv_pmu_start(event, PERF_EF_RELOAD));
758 			break;
759 		default:
760 			break;
761 		}
762 	}
763 
764 	return NOTIFY_OK;
765 }
766 
767 static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
768 {
769 	pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
770 	return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
771 }
772 
773 static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
774 {
775 	cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
776 }
777 #else
778 static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
779 static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
780 #endif
781 
782 static void riscv_pmu_destroy(struct riscv_pmu *pmu)
783 {
784 	riscv_pm_pmu_unregister(pmu);
785 	cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
786 }
787 
788 static int pmu_sbi_device_probe(struct platform_device *pdev)
789 {
790 	struct riscv_pmu *pmu = NULL;
791 	int num_counters;
792 	int ret = -ENODEV;
793 
794 	pr_info("SBI PMU extension is available\n");
795 	pmu = riscv_pmu_alloc();
796 	if (!pmu)
797 		return -ENOMEM;
798 
799 	num_counters = pmu_sbi_find_num_ctrs();
800 	if (num_counters < 0) {
801 		pr_err("SBI PMU extension doesn't provide any counters\n");
802 		goto out_free;
803 	}
804 
805 	/* cache all the information about counters now */
806 	if (pmu_sbi_get_ctrinfo(num_counters))
807 		goto out_free;
808 
809 	ret = pmu_sbi_setup_irqs(pmu, pdev);
810 	if (ret < 0) {
811 		pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
812 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
813 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
814 	}
815 	pmu->pmu.attr_groups = riscv_pmu_attr_groups;
816 	pmu->num_counters = num_counters;
817 	pmu->ctr_start = pmu_sbi_ctr_start;
818 	pmu->ctr_stop = pmu_sbi_ctr_stop;
819 	pmu->event_map = pmu_sbi_event_map;
820 	pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
821 	pmu->ctr_get_width = pmu_sbi_ctr_get_width;
822 	pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
823 	pmu->ctr_read = pmu_sbi_ctr_read;
824 
825 	ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
826 	if (ret)
827 		return ret;
828 
829 	ret = riscv_pm_pmu_register(pmu);
830 	if (ret)
831 		goto out_unregister;
832 
833 	ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
834 	if (ret)
835 		goto out_unregister;
836 
837 	return 0;
838 
839 out_unregister:
840 	riscv_pmu_destroy(pmu);
841 
842 out_free:
843 	kfree(pmu);
844 	return ret;
845 }
846 
847 static struct platform_driver pmu_sbi_driver = {
848 	.probe		= pmu_sbi_device_probe,
849 	.driver		= {
850 		.name	= RISCV_PMU_PDEV_NAME,
851 	},
852 };
853 
854 static int __init pmu_sbi_devinit(void)
855 {
856 	int ret;
857 	struct platform_device *pdev;
858 
859 	if (sbi_spec_version < sbi_mk_version(0, 3) ||
860 	    sbi_probe_extension(SBI_EXT_PMU) <= 0) {
861 		return 0;
862 	}
863 
864 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
865 				      "perf/riscv/pmu:starting",
866 				      pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
867 	if (ret) {
868 		pr_err("CPU hotplug notifier could not be registered: %d\n",
869 		       ret);
870 		return ret;
871 	}
872 
873 	ret = platform_driver_register(&pmu_sbi_driver);
874 	if (ret)
875 		return ret;
876 
877 	pdev = platform_device_register_simple(RISCV_PMU_PDEV_NAME, -1, NULL, 0);
878 	if (IS_ERR(pdev)) {
879 		platform_driver_unregister(&pmu_sbi_driver);
880 		return PTR_ERR(pdev);
881 	}
882 
883 	/* Notify legacy implementation that SBI pmu is available*/
884 	riscv_pmu_legacy_skip_init();
885 
886 	return ret;
887 }
888 device_initcall(pmu_sbi_devinit)
889