1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RISC-V performance counter support. 4 * 5 * Copyright (C) 2021 Western Digital Corporation or its affiliates. 6 * 7 * This code is based on ARM perf event code which is in turn based on 8 * sparc64 and x86 code. 9 */ 10 11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt 12 13 #include <linux/mod_devicetable.h> 14 #include <linux/perf/riscv_pmu.h> 15 #include <linux/platform_device.h> 16 #include <linux/irq.h> 17 #include <linux/irqdomain.h> 18 #include <linux/of_irq.h> 19 #include <linux/of.h> 20 #include <linux/cpu_pm.h> 21 #include <linux/sched/clock.h> 22 23 #include <asm/errata_list.h> 24 #include <asm/sbi.h> 25 #include <asm/hwcap.h> 26 27 PMU_FORMAT_ATTR(event, "config:0-47"); 28 PMU_FORMAT_ATTR(firmware, "config:63"); 29 30 static struct attribute *riscv_arch_formats_attr[] = { 31 &format_attr_event.attr, 32 &format_attr_firmware.attr, 33 NULL, 34 }; 35 36 static struct attribute_group riscv_pmu_format_group = { 37 .name = "format", 38 .attrs = riscv_arch_formats_attr, 39 }; 40 41 static const struct attribute_group *riscv_pmu_attr_groups[] = { 42 &riscv_pmu_format_group, 43 NULL, 44 }; 45 46 /* 47 * RISC-V doesn't have heterogeneous harts yet. This need to be part of 48 * per_cpu in case of harts with different pmu counters 49 */ 50 static union sbi_pmu_ctr_info *pmu_ctr_list; 51 static bool riscv_pmu_use_irq; 52 static unsigned int riscv_pmu_irq_num; 53 static unsigned int riscv_pmu_irq; 54 55 /* Cache the available counters in a bitmask */ 56 static unsigned long cmask; 57 58 struct sbi_pmu_event_data { 59 union { 60 union { 61 struct hw_gen_event { 62 uint32_t event_code:16; 63 uint32_t event_type:4; 64 uint32_t reserved:12; 65 } hw_gen_event; 66 struct hw_cache_event { 67 uint32_t result_id:1; 68 uint32_t op_id:2; 69 uint32_t cache_id:13; 70 uint32_t event_type:4; 71 uint32_t reserved:12; 72 } hw_cache_event; 73 }; 74 uint32_t event_idx; 75 }; 76 }; 77 78 static const struct sbi_pmu_event_data pmu_hw_event_map[] = { 79 [PERF_COUNT_HW_CPU_CYCLES] = {.hw_gen_event = { 80 SBI_PMU_HW_CPU_CYCLES, 81 SBI_PMU_EVENT_TYPE_HW, 0}}, 82 [PERF_COUNT_HW_INSTRUCTIONS] = {.hw_gen_event = { 83 SBI_PMU_HW_INSTRUCTIONS, 84 SBI_PMU_EVENT_TYPE_HW, 0}}, 85 [PERF_COUNT_HW_CACHE_REFERENCES] = {.hw_gen_event = { 86 SBI_PMU_HW_CACHE_REFERENCES, 87 SBI_PMU_EVENT_TYPE_HW, 0}}, 88 [PERF_COUNT_HW_CACHE_MISSES] = {.hw_gen_event = { 89 SBI_PMU_HW_CACHE_MISSES, 90 SBI_PMU_EVENT_TYPE_HW, 0}}, 91 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = {.hw_gen_event = { 92 SBI_PMU_HW_BRANCH_INSTRUCTIONS, 93 SBI_PMU_EVENT_TYPE_HW, 0}}, 94 [PERF_COUNT_HW_BRANCH_MISSES] = {.hw_gen_event = { 95 SBI_PMU_HW_BRANCH_MISSES, 96 SBI_PMU_EVENT_TYPE_HW, 0}}, 97 [PERF_COUNT_HW_BUS_CYCLES] = {.hw_gen_event = { 98 SBI_PMU_HW_BUS_CYCLES, 99 SBI_PMU_EVENT_TYPE_HW, 0}}, 100 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = {.hw_gen_event = { 101 SBI_PMU_HW_STALLED_CYCLES_FRONTEND, 102 SBI_PMU_EVENT_TYPE_HW, 0}}, 103 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = {.hw_gen_event = { 104 SBI_PMU_HW_STALLED_CYCLES_BACKEND, 105 SBI_PMU_EVENT_TYPE_HW, 0}}, 106 [PERF_COUNT_HW_REF_CPU_CYCLES] = {.hw_gen_event = { 107 SBI_PMU_HW_REF_CPU_CYCLES, 108 SBI_PMU_EVENT_TYPE_HW, 0}}, 109 }; 110 111 #define C(x) PERF_COUNT_HW_CACHE_##x 112 static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX] 113 [PERF_COUNT_HW_CACHE_OP_MAX] 114 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 115 [C(L1D)] = { 116 [C(OP_READ)] = { 117 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 118 C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 119 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 120 C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 121 }, 122 [C(OP_WRITE)] = { 123 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 124 C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 125 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 126 C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 127 }, 128 [C(OP_PREFETCH)] = { 129 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 130 C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 131 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 132 C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 133 }, 134 }, 135 [C(L1I)] = { 136 [C(OP_READ)] = { 137 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 138 C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 139 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ), 140 C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 141 }, 142 [C(OP_WRITE)] = { 143 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 144 C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 145 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 146 C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 147 }, 148 [C(OP_PREFETCH)] = { 149 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 150 C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 151 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 152 C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 153 }, 154 }, 155 [C(LL)] = { 156 [C(OP_READ)] = { 157 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 158 C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 159 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 160 C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 161 }, 162 [C(OP_WRITE)] = { 163 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 164 C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 165 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 166 C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 167 }, 168 [C(OP_PREFETCH)] = { 169 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 170 C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 171 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 172 C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 173 }, 174 }, 175 [C(DTLB)] = { 176 [C(OP_READ)] = { 177 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 178 C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 179 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 180 C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 181 }, 182 [C(OP_WRITE)] = { 183 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 184 C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 185 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 186 C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 187 }, 188 [C(OP_PREFETCH)] = { 189 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 190 C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 191 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 192 C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 193 }, 194 }, 195 [C(ITLB)] = { 196 [C(OP_READ)] = { 197 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 198 C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 199 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 200 C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 201 }, 202 [C(OP_WRITE)] = { 203 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 204 C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 205 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 206 C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 207 }, 208 [C(OP_PREFETCH)] = { 209 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 210 C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 211 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 212 C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 213 }, 214 }, 215 [C(BPU)] = { 216 [C(OP_READ)] = { 217 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 218 C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 219 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 220 C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 221 }, 222 [C(OP_WRITE)] = { 223 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 224 C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 225 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 226 C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 227 }, 228 [C(OP_PREFETCH)] = { 229 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 230 C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 231 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 232 C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 233 }, 234 }, 235 [C(NODE)] = { 236 [C(OP_READ)] = { 237 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 238 C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 239 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 240 C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 241 }, 242 [C(OP_WRITE)] = { 243 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 244 C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 245 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 246 C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 247 }, 248 [C(OP_PREFETCH)] = { 249 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 250 C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 251 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 252 C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 253 }, 254 }, 255 }; 256 257 static int pmu_sbi_ctr_get_width(int idx) 258 { 259 return pmu_ctr_list[idx].width; 260 } 261 262 static bool pmu_sbi_ctr_is_fw(int cidx) 263 { 264 union sbi_pmu_ctr_info *info; 265 266 info = &pmu_ctr_list[cidx]; 267 if (!info) 268 return false; 269 270 return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false; 271 } 272 273 /* 274 * Returns the counter width of a programmable counter and number of hardware 275 * counters. As we don't support heterogeneous CPUs yet, it is okay to just 276 * return the counter width of the first programmable counter. 277 */ 278 int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr) 279 { 280 int i; 281 union sbi_pmu_ctr_info *info; 282 u32 hpm_width = 0, hpm_count = 0; 283 284 if (!cmask) 285 return -EINVAL; 286 287 for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) { 288 info = &pmu_ctr_list[i]; 289 if (!info) 290 continue; 291 if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET) 292 hpm_width = info->width; 293 if (info->type == SBI_PMU_CTR_TYPE_HW) 294 hpm_count++; 295 } 296 297 *hw_ctr_width = hpm_width; 298 *num_hw_ctr = hpm_count; 299 300 return 0; 301 } 302 EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info); 303 304 static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event) 305 { 306 unsigned long cflags = 0; 307 bool guest_events = false; 308 309 if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS) 310 guest_events = true; 311 if (event->attr.exclude_kernel) 312 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH; 313 if (event->attr.exclude_user) 314 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH; 315 if (guest_events && event->attr.exclude_hv) 316 cflags |= SBI_PMU_CFG_FLAG_SET_SINH; 317 if (event->attr.exclude_host) 318 cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH; 319 if (event->attr.exclude_guest) 320 cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH; 321 322 return cflags; 323 } 324 325 static int pmu_sbi_ctr_get_idx(struct perf_event *event) 326 { 327 struct hw_perf_event *hwc = &event->hw; 328 struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu); 329 struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events); 330 struct sbiret ret; 331 int idx; 332 uint64_t cbase = 0; 333 unsigned long cflags = 0; 334 335 cflags = pmu_sbi_get_filter_flags(event); 336 /* retrieve the available counter index */ 337 #if defined(CONFIG_32BIT) 338 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase, 339 rvpmu->cmask, cflags, hwc->event_base, hwc->config, 340 hwc->config >> 32); 341 #else 342 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase, 343 rvpmu->cmask, cflags, hwc->event_base, hwc->config, 0); 344 #endif 345 if (ret.error) { 346 pr_debug("Not able to find a counter for event %lx config %llx\n", 347 hwc->event_base, hwc->config); 348 return sbi_err_map_linux_errno(ret.error); 349 } 350 351 idx = ret.value; 352 if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value) 353 return -ENOENT; 354 355 /* Additional sanity check for the counter id */ 356 if (pmu_sbi_ctr_is_fw(idx)) { 357 if (!test_and_set_bit(idx, cpuc->used_fw_ctrs)) 358 return idx; 359 } else { 360 if (!test_and_set_bit(idx, cpuc->used_hw_ctrs)) 361 return idx; 362 } 363 364 return -ENOENT; 365 } 366 367 static void pmu_sbi_ctr_clear_idx(struct perf_event *event) 368 { 369 370 struct hw_perf_event *hwc = &event->hw; 371 struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu); 372 struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events); 373 int idx = hwc->idx; 374 375 if (pmu_sbi_ctr_is_fw(idx)) 376 clear_bit(idx, cpuc->used_fw_ctrs); 377 else 378 clear_bit(idx, cpuc->used_hw_ctrs); 379 } 380 381 static int pmu_event_find_cache(u64 config) 382 { 383 unsigned int cache_type, cache_op, cache_result, ret; 384 385 cache_type = (config >> 0) & 0xff; 386 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 387 return -EINVAL; 388 389 cache_op = (config >> 8) & 0xff; 390 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 391 return -EINVAL; 392 393 cache_result = (config >> 16) & 0xff; 394 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 395 return -EINVAL; 396 397 ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx; 398 399 return ret; 400 } 401 402 static bool pmu_sbi_is_fw_event(struct perf_event *event) 403 { 404 u32 type = event->attr.type; 405 u64 config = event->attr.config; 406 407 if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1)) 408 return true; 409 else 410 return false; 411 } 412 413 static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig) 414 { 415 u32 type = event->attr.type; 416 u64 config = event->attr.config; 417 int bSoftware; 418 u64 raw_config_val; 419 int ret; 420 421 switch (type) { 422 case PERF_TYPE_HARDWARE: 423 if (config >= PERF_COUNT_HW_MAX) 424 return -EINVAL; 425 ret = pmu_hw_event_map[event->attr.config].event_idx; 426 break; 427 case PERF_TYPE_HW_CACHE: 428 ret = pmu_event_find_cache(config); 429 break; 430 case PERF_TYPE_RAW: 431 /* 432 * As per SBI specification, the upper 16 bits must be unused for 433 * a raw event. Use the MSB (63b) to distinguish between hardware 434 * raw event and firmware events. 435 */ 436 bSoftware = config >> 63; 437 raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK; 438 if (bSoftware) { 439 ret = (raw_config_val & 0xFFFF) | 440 (SBI_PMU_EVENT_TYPE_FW << 16); 441 } else { 442 ret = RISCV_PMU_RAW_EVENT_IDX; 443 *econfig = raw_config_val; 444 } 445 break; 446 default: 447 ret = -EINVAL; 448 break; 449 } 450 451 return ret; 452 } 453 454 static u64 pmu_sbi_ctr_read(struct perf_event *event) 455 { 456 struct hw_perf_event *hwc = &event->hw; 457 int idx = hwc->idx; 458 struct sbiret ret; 459 union sbi_pmu_ctr_info info; 460 u64 val = 0; 461 462 if (pmu_sbi_is_fw_event(event)) { 463 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ, 464 hwc->idx, 0, 0, 0, 0, 0); 465 if (!ret.error) 466 val = ret.value; 467 } else { 468 info = pmu_ctr_list[idx]; 469 val = riscv_pmu_ctr_read_csr(info.csr); 470 if (IS_ENABLED(CONFIG_32BIT)) 471 val = ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 31 | val; 472 } 473 474 return val; 475 } 476 477 static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival) 478 { 479 struct sbiret ret; 480 struct hw_perf_event *hwc = &event->hw; 481 unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE; 482 483 #if defined(CONFIG_32BIT) 484 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx, 485 1, flag, ival, ival >> 32, 0); 486 #else 487 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx, 488 1, flag, ival, 0, 0); 489 #endif 490 if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED)) 491 pr_err("Starting counter idx %d failed with error %d\n", 492 hwc->idx, sbi_err_map_linux_errno(ret.error)); 493 } 494 495 static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag) 496 { 497 struct sbiret ret; 498 struct hw_perf_event *hwc = &event->hw; 499 500 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0); 501 if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) && 502 flag != SBI_PMU_STOP_FLAG_RESET) 503 pr_err("Stopping counter idx %d failed with error %d\n", 504 hwc->idx, sbi_err_map_linux_errno(ret.error)); 505 } 506 507 static int pmu_sbi_find_num_ctrs(void) 508 { 509 struct sbiret ret; 510 511 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0); 512 if (!ret.error) 513 return ret.value; 514 else 515 return sbi_err_map_linux_errno(ret.error); 516 } 517 518 static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask) 519 { 520 struct sbiret ret; 521 int i, num_hw_ctr = 0, num_fw_ctr = 0; 522 union sbi_pmu_ctr_info cinfo; 523 524 pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL); 525 if (!pmu_ctr_list) 526 return -ENOMEM; 527 528 for (i = 0; i < nctr; i++) { 529 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0); 530 if (ret.error) 531 /* The logical counter ids are not expected to be contiguous */ 532 continue; 533 534 *mask |= BIT(i); 535 536 cinfo.value = ret.value; 537 if (cinfo.type == SBI_PMU_CTR_TYPE_FW) 538 num_fw_ctr++; 539 else 540 num_hw_ctr++; 541 pmu_ctr_list[i].value = cinfo.value; 542 } 543 544 pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr); 545 546 return 0; 547 } 548 549 static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu) 550 { 551 /* 552 * No need to check the error because we are disabling all the counters 553 * which may include counters that are not enabled yet. 554 */ 555 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 556 0, pmu->cmask, 0, 0, 0, 0); 557 } 558 559 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu) 560 { 561 struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events); 562 563 /* No need to check the error here as we can't do anything about the error */ 564 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 0, 565 cpu_hw_evt->used_hw_ctrs[0], 0, 0, 0, 0); 566 } 567 568 /* 569 * This function starts all the used counters in two step approach. 570 * Any counter that did not overflow can be start in a single step 571 * while the overflowed counters need to be started with updated initialization 572 * value. 573 */ 574 static inline void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu, 575 unsigned long ctr_ovf_mask) 576 { 577 int idx = 0; 578 struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events); 579 struct perf_event *event; 580 unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE; 581 unsigned long ctr_start_mask = 0; 582 uint64_t max_period; 583 struct hw_perf_event *hwc; 584 u64 init_val = 0; 585 586 ctr_start_mask = cpu_hw_evt->used_hw_ctrs[0] & ~ctr_ovf_mask; 587 588 /* Start all the counters that did not overflow in a single shot */ 589 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, 0, ctr_start_mask, 590 0, 0, 0, 0); 591 592 /* Reinitialize and start all the counter that overflowed */ 593 while (ctr_ovf_mask) { 594 if (ctr_ovf_mask & 0x01) { 595 event = cpu_hw_evt->events[idx]; 596 hwc = &event->hw; 597 max_period = riscv_pmu_ctr_get_width_mask(event); 598 init_val = local64_read(&hwc->prev_count) & max_period; 599 #if defined(CONFIG_32BIT) 600 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1, 601 flag, init_val, init_val >> 32, 0); 602 #else 603 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1, 604 flag, init_val, 0, 0); 605 #endif 606 perf_event_update_userpage(event); 607 } 608 ctr_ovf_mask = ctr_ovf_mask >> 1; 609 idx++; 610 } 611 } 612 613 static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev) 614 { 615 struct perf_sample_data data; 616 struct pt_regs *regs; 617 struct hw_perf_event *hw_evt; 618 union sbi_pmu_ctr_info *info; 619 int lidx, hidx, fidx; 620 struct riscv_pmu *pmu; 621 struct perf_event *event; 622 unsigned long overflow; 623 unsigned long overflowed_ctrs = 0; 624 struct cpu_hw_events *cpu_hw_evt = dev; 625 u64 start_clock = sched_clock(); 626 627 if (WARN_ON_ONCE(!cpu_hw_evt)) 628 return IRQ_NONE; 629 630 /* Firmware counter don't support overflow yet */ 631 fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS); 632 event = cpu_hw_evt->events[fidx]; 633 if (!event) { 634 csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num)); 635 return IRQ_NONE; 636 } 637 638 pmu = to_riscv_pmu(event->pmu); 639 pmu_sbi_stop_hw_ctrs(pmu); 640 641 /* Overflow status register should only be read after counter are stopped */ 642 ALT_SBI_PMU_OVERFLOW(overflow); 643 644 /* 645 * Overflow interrupt pending bit should only be cleared after stopping 646 * all the counters to avoid any race condition. 647 */ 648 csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num)); 649 650 /* No overflow bit is set */ 651 if (!overflow) 652 return IRQ_NONE; 653 654 regs = get_irq_regs(); 655 656 for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) { 657 struct perf_event *event = cpu_hw_evt->events[lidx]; 658 659 /* Skip if invalid event or user did not request a sampling */ 660 if (!event || !is_sampling_event(event)) 661 continue; 662 663 info = &pmu_ctr_list[lidx]; 664 /* Do a sanity check */ 665 if (!info || info->type != SBI_PMU_CTR_TYPE_HW) 666 continue; 667 668 /* compute hardware counter index */ 669 hidx = info->csr - CSR_CYCLE; 670 /* check if the corresponding bit is set in sscountovf */ 671 if (!(overflow & (1 << hidx))) 672 continue; 673 674 /* 675 * Keep a track of overflowed counters so that they can be started 676 * with updated initial value. 677 */ 678 overflowed_ctrs |= 1 << lidx; 679 hw_evt = &event->hw; 680 riscv_pmu_event_update(event); 681 perf_sample_data_init(&data, 0, hw_evt->last_period); 682 if (riscv_pmu_event_set_period(event)) { 683 /* 684 * Unlike other ISAs, RISC-V don't have to disable interrupts 685 * to avoid throttling here. As per the specification, the 686 * interrupt remains disabled until the OF bit is set. 687 * Interrupts are enabled again only during the start. 688 * TODO: We will need to stop the guest counters once 689 * virtualization support is added. 690 */ 691 perf_event_overflow(event, &data, regs); 692 } 693 } 694 695 pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs); 696 perf_sample_event_took(sched_clock() - start_clock); 697 698 return IRQ_HANDLED; 699 } 700 701 static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node) 702 { 703 struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node); 704 struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events); 705 706 /* 707 * Enable the access for CYCLE, TIME, and INSTRET CSRs from userspace, 708 * as is necessary to maintain uABI compatibility. 709 */ 710 csr_write(CSR_SCOUNTEREN, 0x7); 711 712 /* Stop all the counters so that they can be enabled from perf */ 713 pmu_sbi_stop_all(pmu); 714 715 if (riscv_pmu_use_irq) { 716 cpu_hw_evt->irq = riscv_pmu_irq; 717 csr_clear(CSR_IP, BIT(riscv_pmu_irq_num)); 718 csr_set(CSR_IE, BIT(riscv_pmu_irq_num)); 719 enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE); 720 } 721 722 return 0; 723 } 724 725 static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node) 726 { 727 if (riscv_pmu_use_irq) { 728 disable_percpu_irq(riscv_pmu_irq); 729 csr_clear(CSR_IE, BIT(riscv_pmu_irq_num)); 730 } 731 732 /* Disable all counters access for user mode now */ 733 csr_write(CSR_SCOUNTEREN, 0x0); 734 735 return 0; 736 } 737 738 static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev) 739 { 740 int ret; 741 struct cpu_hw_events __percpu *hw_events = pmu->hw_events; 742 struct device_node *cpu, *child; 743 struct irq_domain *domain = NULL; 744 745 if (riscv_isa_extension_available(NULL, SSCOFPMF)) { 746 riscv_pmu_irq_num = RV_IRQ_PMU; 747 riscv_pmu_use_irq = true; 748 } else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) && 749 riscv_cached_mvendorid(0) == THEAD_VENDOR_ID && 750 riscv_cached_marchid(0) == 0 && 751 riscv_cached_mimpid(0) == 0) { 752 riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU; 753 riscv_pmu_use_irq = true; 754 } 755 756 if (!riscv_pmu_use_irq) 757 return -EOPNOTSUPP; 758 759 for_each_of_cpu_node(cpu) { 760 child = of_get_compatible_child(cpu, "riscv,cpu-intc"); 761 if (!child) { 762 pr_err("Failed to find INTC node\n"); 763 of_node_put(cpu); 764 return -ENODEV; 765 } 766 domain = irq_find_host(child); 767 of_node_put(child); 768 if (domain) { 769 of_node_put(cpu); 770 break; 771 } 772 } 773 if (!domain) { 774 pr_err("Failed to find INTC IRQ root domain\n"); 775 return -ENODEV; 776 } 777 778 riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num); 779 if (!riscv_pmu_irq) { 780 pr_err("Failed to map PMU interrupt for node\n"); 781 return -ENODEV; 782 } 783 784 ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events); 785 if (ret) { 786 pr_err("registering percpu irq failed [%d]\n", ret); 787 return ret; 788 } 789 790 return 0; 791 } 792 793 #ifdef CONFIG_CPU_PM 794 static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 795 void *v) 796 { 797 struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb); 798 struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events); 799 int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS); 800 struct perf_event *event; 801 int idx; 802 803 if (!enabled) 804 return NOTIFY_OK; 805 806 for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) { 807 event = cpuc->events[idx]; 808 if (!event) 809 continue; 810 811 switch (cmd) { 812 case CPU_PM_ENTER: 813 /* 814 * Stop and update the counter 815 */ 816 riscv_pmu_stop(event, PERF_EF_UPDATE); 817 break; 818 case CPU_PM_EXIT: 819 case CPU_PM_ENTER_FAILED: 820 /* 821 * Restore and enable the counter. 822 */ 823 riscv_pmu_start(event, PERF_EF_RELOAD); 824 break; 825 default: 826 break; 827 } 828 } 829 830 return NOTIFY_OK; 831 } 832 833 static int riscv_pm_pmu_register(struct riscv_pmu *pmu) 834 { 835 pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify; 836 return cpu_pm_register_notifier(&pmu->riscv_pm_nb); 837 } 838 839 static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) 840 { 841 cpu_pm_unregister_notifier(&pmu->riscv_pm_nb); 842 } 843 #else 844 static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; } 845 static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { } 846 #endif 847 848 static void riscv_pmu_destroy(struct riscv_pmu *pmu) 849 { 850 riscv_pm_pmu_unregister(pmu); 851 cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node); 852 } 853 854 static int pmu_sbi_device_probe(struct platform_device *pdev) 855 { 856 struct riscv_pmu *pmu = NULL; 857 int ret = -ENODEV; 858 int num_counters; 859 860 pr_info("SBI PMU extension is available\n"); 861 pmu = riscv_pmu_alloc(); 862 if (!pmu) 863 return -ENOMEM; 864 865 num_counters = pmu_sbi_find_num_ctrs(); 866 if (num_counters < 0) { 867 pr_err("SBI PMU extension doesn't provide any counters\n"); 868 goto out_free; 869 } 870 871 /* cache all the information about counters now */ 872 if (pmu_sbi_get_ctrinfo(num_counters, &cmask)) 873 goto out_free; 874 875 ret = pmu_sbi_setup_irqs(pmu, pdev); 876 if (ret < 0) { 877 pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n"); 878 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 879 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; 880 } 881 882 pmu->pmu.attr_groups = riscv_pmu_attr_groups; 883 pmu->cmask = cmask; 884 pmu->ctr_start = pmu_sbi_ctr_start; 885 pmu->ctr_stop = pmu_sbi_ctr_stop; 886 pmu->event_map = pmu_sbi_event_map; 887 pmu->ctr_get_idx = pmu_sbi_ctr_get_idx; 888 pmu->ctr_get_width = pmu_sbi_ctr_get_width; 889 pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx; 890 pmu->ctr_read = pmu_sbi_ctr_read; 891 892 ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node); 893 if (ret) 894 return ret; 895 896 ret = riscv_pm_pmu_register(pmu); 897 if (ret) 898 goto out_unregister; 899 900 ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW); 901 if (ret) 902 goto out_unregister; 903 904 return 0; 905 906 out_unregister: 907 riscv_pmu_destroy(pmu); 908 909 out_free: 910 kfree(pmu); 911 return ret; 912 } 913 914 static struct platform_driver pmu_sbi_driver = { 915 .probe = pmu_sbi_device_probe, 916 .driver = { 917 .name = RISCV_PMU_PDEV_NAME, 918 }, 919 }; 920 921 static int __init pmu_sbi_devinit(void) 922 { 923 int ret; 924 struct platform_device *pdev; 925 926 if (sbi_spec_version < sbi_mk_version(0, 3) || 927 !sbi_probe_extension(SBI_EXT_PMU)) { 928 return 0; 929 } 930 931 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING, 932 "perf/riscv/pmu:starting", 933 pmu_sbi_starting_cpu, pmu_sbi_dying_cpu); 934 if (ret) { 935 pr_err("CPU hotplug notifier could not be registered: %d\n", 936 ret); 937 return ret; 938 } 939 940 ret = platform_driver_register(&pmu_sbi_driver); 941 if (ret) 942 return ret; 943 944 pdev = platform_device_register_simple(RISCV_PMU_PDEV_NAME, -1, NULL, 0); 945 if (IS_ERR(pdev)) { 946 platform_driver_unregister(&pmu_sbi_driver); 947 return PTR_ERR(pdev); 948 } 949 950 /* Notify legacy implementation that SBI pmu is available*/ 951 riscv_pmu_legacy_skip_init(); 952 953 return ret; 954 } 955 device_initcall(pmu_sbi_devinit) 956