1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RISC-V performance counter support. 4 * 5 * Copyright (C) 2021 Western Digital Corporation or its affiliates. 6 * 7 * This code is based on ARM perf event code which is in turn based on 8 * sparc64 and x86 code. 9 */ 10 11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt 12 13 #include <linux/mod_devicetable.h> 14 #include <linux/perf/riscv_pmu.h> 15 #include <linux/platform_device.h> 16 #include <linux/irq.h> 17 #include <linux/irqdomain.h> 18 #include <linux/of_irq.h> 19 #include <linux/of.h> 20 #include <linux/cpu_pm.h> 21 #include <linux/sched/clock.h> 22 #include <linux/soc/andes/irq.h> 23 #include <linux/workqueue.h> 24 25 #include <asm/errata_list.h> 26 #include <asm/sbi.h> 27 #include <asm/cpufeature.h> 28 #include <asm/vendor_extensions.h> 29 #include <asm/vendor_extensions/andes.h> 30 31 #define ALT_SBI_PMU_OVERFLOW(__ovl) \ 32 asm volatile(ALTERNATIVE_2( \ 33 "csrr %0, " __stringify(CSR_SCOUNTOVF), \ 34 "csrr %0, " __stringify(THEAD_C9XX_CSR_SCOUNTEROF), \ 35 THEAD_VENDOR_ID, ERRATA_THEAD_PMU, \ 36 CONFIG_ERRATA_THEAD_PMU, \ 37 "csrr %0, " __stringify(ANDES_CSR_SCOUNTEROF), \ 38 ANDES_VENDOR_ID, \ 39 RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \ 40 CONFIG_ANDES_CUSTOM_PMU) \ 41 : "=r" (__ovl) : \ 42 : "memory") 43 44 #define ALT_SBI_PMU_OVF_CLEAR_PENDING(__irq_mask) \ 45 asm volatile(ALTERNATIVE( \ 46 "csrc " __stringify(CSR_IP) ", %0\n\t", \ 47 "csrc " __stringify(ANDES_CSR_SLIP) ", %0\n\t", \ 48 ANDES_VENDOR_ID, \ 49 RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \ 50 CONFIG_ANDES_CUSTOM_PMU) \ 51 : : "r"(__irq_mask) \ 52 : "memory") 53 54 #define SYSCTL_NO_USER_ACCESS 0 55 #define SYSCTL_USER_ACCESS 1 56 #define SYSCTL_LEGACY 2 57 58 #define PERF_EVENT_FLAG_NO_USER_ACCESS BIT(SYSCTL_NO_USER_ACCESS) 59 #define PERF_EVENT_FLAG_USER_ACCESS BIT(SYSCTL_USER_ACCESS) 60 #define PERF_EVENT_FLAG_LEGACY BIT(SYSCTL_LEGACY) 61 62 PMU_FORMAT_ATTR(event, "config:0-47"); 63 PMU_FORMAT_ATTR(firmware, "config:63"); 64 65 static bool sbi_v2_available; 66 static DEFINE_STATIC_KEY_FALSE(sbi_pmu_snapshot_available); 67 #define sbi_pmu_snapshot_available() \ 68 static_branch_unlikely(&sbi_pmu_snapshot_available) 69 70 static struct attribute *riscv_arch_formats_attr[] = { 71 &format_attr_event.attr, 72 &format_attr_firmware.attr, 73 NULL, 74 }; 75 76 static struct attribute_group riscv_pmu_format_group = { 77 .name = "format", 78 .attrs = riscv_arch_formats_attr, 79 }; 80 81 static const struct attribute_group *riscv_pmu_attr_groups[] = { 82 &riscv_pmu_format_group, 83 NULL, 84 }; 85 86 /* Allow user mode access by default */ 87 static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS; 88 89 /* 90 * RISC-V doesn't have heterogeneous harts yet. This need to be part of 91 * per_cpu in case of harts with different pmu counters 92 */ 93 static union sbi_pmu_ctr_info *pmu_ctr_list; 94 static bool riscv_pmu_use_irq; 95 static unsigned int riscv_pmu_irq_num; 96 static unsigned int riscv_pmu_irq_mask; 97 static unsigned int riscv_pmu_irq; 98 99 /* Cache the available counters in a bitmask */ 100 static unsigned long cmask; 101 102 struct sbi_pmu_event_data { 103 union { 104 union { 105 struct hw_gen_event { 106 uint32_t event_code:16; 107 uint32_t event_type:4; 108 uint32_t reserved:12; 109 } hw_gen_event; 110 struct hw_cache_event { 111 uint32_t result_id:1; 112 uint32_t op_id:2; 113 uint32_t cache_id:13; 114 uint32_t event_type:4; 115 uint32_t reserved:12; 116 } hw_cache_event; 117 }; 118 uint32_t event_idx; 119 }; 120 }; 121 122 static struct sbi_pmu_event_data pmu_hw_event_map[] = { 123 [PERF_COUNT_HW_CPU_CYCLES] = {.hw_gen_event = { 124 SBI_PMU_HW_CPU_CYCLES, 125 SBI_PMU_EVENT_TYPE_HW, 0}}, 126 [PERF_COUNT_HW_INSTRUCTIONS] = {.hw_gen_event = { 127 SBI_PMU_HW_INSTRUCTIONS, 128 SBI_PMU_EVENT_TYPE_HW, 0}}, 129 [PERF_COUNT_HW_CACHE_REFERENCES] = {.hw_gen_event = { 130 SBI_PMU_HW_CACHE_REFERENCES, 131 SBI_PMU_EVENT_TYPE_HW, 0}}, 132 [PERF_COUNT_HW_CACHE_MISSES] = {.hw_gen_event = { 133 SBI_PMU_HW_CACHE_MISSES, 134 SBI_PMU_EVENT_TYPE_HW, 0}}, 135 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = {.hw_gen_event = { 136 SBI_PMU_HW_BRANCH_INSTRUCTIONS, 137 SBI_PMU_EVENT_TYPE_HW, 0}}, 138 [PERF_COUNT_HW_BRANCH_MISSES] = {.hw_gen_event = { 139 SBI_PMU_HW_BRANCH_MISSES, 140 SBI_PMU_EVENT_TYPE_HW, 0}}, 141 [PERF_COUNT_HW_BUS_CYCLES] = {.hw_gen_event = { 142 SBI_PMU_HW_BUS_CYCLES, 143 SBI_PMU_EVENT_TYPE_HW, 0}}, 144 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = {.hw_gen_event = { 145 SBI_PMU_HW_STALLED_CYCLES_FRONTEND, 146 SBI_PMU_EVENT_TYPE_HW, 0}}, 147 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = {.hw_gen_event = { 148 SBI_PMU_HW_STALLED_CYCLES_BACKEND, 149 SBI_PMU_EVENT_TYPE_HW, 0}}, 150 [PERF_COUNT_HW_REF_CPU_CYCLES] = {.hw_gen_event = { 151 SBI_PMU_HW_REF_CPU_CYCLES, 152 SBI_PMU_EVENT_TYPE_HW, 0}}, 153 }; 154 155 #define C(x) PERF_COUNT_HW_CACHE_##x 156 static struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX] 157 [PERF_COUNT_HW_CACHE_OP_MAX] 158 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 159 [C(L1D)] = { 160 [C(OP_READ)] = { 161 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 162 C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 163 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 164 C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 165 }, 166 [C(OP_WRITE)] = { 167 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 168 C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 169 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 170 C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 171 }, 172 [C(OP_PREFETCH)] = { 173 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 174 C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 175 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 176 C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 177 }, 178 }, 179 [C(L1I)] = { 180 [C(OP_READ)] = { 181 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 182 C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 183 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ), 184 C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 185 }, 186 [C(OP_WRITE)] = { 187 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 188 C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 189 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 190 C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 191 }, 192 [C(OP_PREFETCH)] = { 193 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 194 C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 195 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 196 C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 197 }, 198 }, 199 [C(LL)] = { 200 [C(OP_READ)] = { 201 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 202 C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 203 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 204 C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 205 }, 206 [C(OP_WRITE)] = { 207 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 208 C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 209 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 210 C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 211 }, 212 [C(OP_PREFETCH)] = { 213 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 214 C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 215 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 216 C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 217 }, 218 }, 219 [C(DTLB)] = { 220 [C(OP_READ)] = { 221 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 222 C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 223 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 224 C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 225 }, 226 [C(OP_WRITE)] = { 227 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 228 C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 229 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 230 C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 231 }, 232 [C(OP_PREFETCH)] = { 233 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 234 C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 235 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 236 C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 237 }, 238 }, 239 [C(ITLB)] = { 240 [C(OP_READ)] = { 241 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 242 C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 243 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 244 C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 245 }, 246 [C(OP_WRITE)] = { 247 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 248 C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 249 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 250 C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 251 }, 252 [C(OP_PREFETCH)] = { 253 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 254 C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 255 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 256 C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 257 }, 258 }, 259 [C(BPU)] = { 260 [C(OP_READ)] = { 261 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 262 C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 263 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 264 C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 265 }, 266 [C(OP_WRITE)] = { 267 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 268 C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 269 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 270 C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 271 }, 272 [C(OP_PREFETCH)] = { 273 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 274 C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 275 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 276 C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 277 }, 278 }, 279 [C(NODE)] = { 280 [C(OP_READ)] = { 281 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 282 C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 283 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 284 C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 285 }, 286 [C(OP_WRITE)] = { 287 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 288 C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 289 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 290 C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 291 }, 292 [C(OP_PREFETCH)] = { 293 [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS), 294 C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 295 [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), 296 C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}}, 297 }, 298 }, 299 }; 300 301 static void pmu_sbi_check_event(struct sbi_pmu_event_data *edata) 302 { 303 struct sbiret ret; 304 305 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, 306 0, cmask, 0, edata->event_idx, 0, 0); 307 if (!ret.error) { 308 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 309 ret.value, 0x1, SBI_PMU_STOP_FLAG_RESET, 0, 0, 0); 310 } else if (ret.error == SBI_ERR_NOT_SUPPORTED) { 311 /* This event cannot be monitored by any counter */ 312 edata->event_idx = -EINVAL; 313 } 314 } 315 316 static void pmu_sbi_check_std_events(struct work_struct *work) 317 { 318 for (int i = 0; i < ARRAY_SIZE(pmu_hw_event_map); i++) 319 pmu_sbi_check_event(&pmu_hw_event_map[i]); 320 321 for (int i = 0; i < ARRAY_SIZE(pmu_cache_event_map); i++) 322 for (int j = 0; j < ARRAY_SIZE(pmu_cache_event_map[i]); j++) 323 for (int k = 0; k < ARRAY_SIZE(pmu_cache_event_map[i][j]); k++) 324 pmu_sbi_check_event(&pmu_cache_event_map[i][j][k]); 325 } 326 327 static DECLARE_WORK(check_std_events_work, pmu_sbi_check_std_events); 328 329 static int pmu_sbi_ctr_get_width(int idx) 330 { 331 return pmu_ctr_list[idx].width; 332 } 333 334 static bool pmu_sbi_ctr_is_fw(int cidx) 335 { 336 union sbi_pmu_ctr_info *info; 337 338 info = &pmu_ctr_list[cidx]; 339 if (!info) 340 return false; 341 342 return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false; 343 } 344 345 /* 346 * Returns the counter width of a programmable counter and number of hardware 347 * counters. As we don't support heterogeneous CPUs yet, it is okay to just 348 * return the counter width of the first programmable counter. 349 */ 350 int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr) 351 { 352 int i; 353 union sbi_pmu_ctr_info *info; 354 u32 hpm_width = 0, hpm_count = 0; 355 356 if (!cmask) 357 return -EINVAL; 358 359 for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) { 360 info = &pmu_ctr_list[i]; 361 if (!info) 362 continue; 363 if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET) 364 hpm_width = info->width; 365 if (info->type == SBI_PMU_CTR_TYPE_HW) 366 hpm_count++; 367 } 368 369 *hw_ctr_width = hpm_width; 370 *num_hw_ctr = hpm_count; 371 372 return 0; 373 } 374 EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info); 375 376 static uint8_t pmu_sbi_csr_index(struct perf_event *event) 377 { 378 return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE; 379 } 380 381 static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event) 382 { 383 unsigned long cflags = 0; 384 bool guest_events = false; 385 386 if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS) 387 guest_events = true; 388 if (event->attr.exclude_kernel) 389 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH; 390 if (event->attr.exclude_user) 391 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH; 392 if (guest_events && event->attr.exclude_hv) 393 cflags |= SBI_PMU_CFG_FLAG_SET_SINH; 394 if (event->attr.exclude_host) 395 cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH; 396 if (event->attr.exclude_guest) 397 cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH; 398 399 return cflags; 400 } 401 402 static int pmu_sbi_ctr_get_idx(struct perf_event *event) 403 { 404 struct hw_perf_event *hwc = &event->hw; 405 struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu); 406 struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events); 407 struct sbiret ret; 408 int idx; 409 uint64_t cbase = 0, cmask = rvpmu->cmask; 410 unsigned long cflags = 0; 411 412 cflags = pmu_sbi_get_filter_flags(event); 413 414 /* 415 * In legacy mode, we have to force the fixed counters for those events 416 * but not in the user access mode as we want to use the other counters 417 * that support sampling/filtering. 418 */ 419 if (hwc->flags & PERF_EVENT_FLAG_LEGACY) { 420 if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 421 cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH; 422 cmask = 1; 423 } else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) { 424 cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH; 425 cmask = BIT(CSR_INSTRET - CSR_CYCLE); 426 } 427 } 428 429 /* retrieve the available counter index */ 430 #if defined(CONFIG_32BIT) 431 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase, 432 cmask, cflags, hwc->event_base, hwc->config, 433 hwc->config >> 32); 434 #else 435 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase, 436 cmask, cflags, hwc->event_base, hwc->config, 0); 437 #endif 438 if (ret.error) { 439 pr_debug("Not able to find a counter for event %lx config %llx\n", 440 hwc->event_base, hwc->config); 441 return sbi_err_map_linux_errno(ret.error); 442 } 443 444 idx = ret.value; 445 if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value) 446 return -ENOENT; 447 448 /* Additional sanity check for the counter id */ 449 if (pmu_sbi_ctr_is_fw(idx)) { 450 if (!test_and_set_bit(idx, cpuc->used_fw_ctrs)) 451 return idx; 452 } else { 453 if (!test_and_set_bit(idx, cpuc->used_hw_ctrs)) 454 return idx; 455 } 456 457 return -ENOENT; 458 } 459 460 static void pmu_sbi_ctr_clear_idx(struct perf_event *event) 461 { 462 463 struct hw_perf_event *hwc = &event->hw; 464 struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu); 465 struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events); 466 int idx = hwc->idx; 467 468 if (pmu_sbi_ctr_is_fw(idx)) 469 clear_bit(idx, cpuc->used_fw_ctrs); 470 else 471 clear_bit(idx, cpuc->used_hw_ctrs); 472 } 473 474 static int pmu_event_find_cache(u64 config) 475 { 476 unsigned int cache_type, cache_op, cache_result, ret; 477 478 cache_type = (config >> 0) & 0xff; 479 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 480 return -EINVAL; 481 482 cache_op = (config >> 8) & 0xff; 483 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 484 return -EINVAL; 485 486 cache_result = (config >> 16) & 0xff; 487 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 488 return -EINVAL; 489 490 ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx; 491 492 return ret; 493 } 494 495 static bool pmu_sbi_is_fw_event(struct perf_event *event) 496 { 497 u32 type = event->attr.type; 498 u64 config = event->attr.config; 499 500 if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1)) 501 return true; 502 else 503 return false; 504 } 505 506 static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig) 507 { 508 u32 type = event->attr.type; 509 u64 config = event->attr.config; 510 int bSoftware; 511 u64 raw_config_val; 512 int ret; 513 514 /* 515 * Ensure we are finished checking standard hardware events for 516 * validity before allowing userspace to configure any events. 517 */ 518 flush_work(&check_std_events_work); 519 520 switch (type) { 521 case PERF_TYPE_HARDWARE: 522 if (config >= PERF_COUNT_HW_MAX) 523 return -EINVAL; 524 ret = pmu_hw_event_map[event->attr.config].event_idx; 525 break; 526 case PERF_TYPE_HW_CACHE: 527 ret = pmu_event_find_cache(config); 528 break; 529 case PERF_TYPE_RAW: 530 /* 531 * As per SBI specification, the upper 16 bits must be unused for 532 * a raw event. Use the MSB (63b) to distinguish between hardware 533 * raw event and firmware events. 534 */ 535 bSoftware = config >> 63; 536 raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK; 537 if (bSoftware) { 538 ret = (raw_config_val & 0xFFFF) | 539 (SBI_PMU_EVENT_TYPE_FW << 16); 540 } else { 541 ret = RISCV_PMU_RAW_EVENT_IDX; 542 *econfig = raw_config_val; 543 } 544 break; 545 default: 546 ret = -EINVAL; 547 break; 548 } 549 550 return ret; 551 } 552 553 static void pmu_sbi_snapshot_free(struct riscv_pmu *pmu) 554 { 555 int cpu; 556 557 for_each_possible_cpu(cpu) { 558 struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu); 559 560 if (!cpu_hw_evt->snapshot_addr) 561 continue; 562 563 free_page((unsigned long)cpu_hw_evt->snapshot_addr); 564 cpu_hw_evt->snapshot_addr = NULL; 565 cpu_hw_evt->snapshot_addr_phys = 0; 566 } 567 } 568 569 static int pmu_sbi_snapshot_alloc(struct riscv_pmu *pmu) 570 { 571 int cpu; 572 struct page *snapshot_page; 573 574 for_each_possible_cpu(cpu) { 575 struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu); 576 577 snapshot_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 578 if (!snapshot_page) { 579 pmu_sbi_snapshot_free(pmu); 580 return -ENOMEM; 581 } 582 cpu_hw_evt->snapshot_addr = page_to_virt(snapshot_page); 583 cpu_hw_evt->snapshot_addr_phys = page_to_phys(snapshot_page); 584 } 585 586 return 0; 587 } 588 589 static int pmu_sbi_snapshot_disable(void) 590 { 591 struct sbiret ret; 592 593 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM, SBI_SHMEM_DISABLE, 594 SBI_SHMEM_DISABLE, 0, 0, 0, 0); 595 if (ret.error) { 596 pr_warn("failed to disable snapshot shared memory\n"); 597 return sbi_err_map_linux_errno(ret.error); 598 } 599 600 return 0; 601 } 602 603 static int pmu_sbi_snapshot_setup(struct riscv_pmu *pmu, int cpu) 604 { 605 struct cpu_hw_events *cpu_hw_evt; 606 struct sbiret ret = {0}; 607 608 cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu); 609 if (!cpu_hw_evt->snapshot_addr_phys) 610 return -EINVAL; 611 612 if (cpu_hw_evt->snapshot_set_done) 613 return 0; 614 615 if (IS_ENABLED(CONFIG_32BIT)) 616 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM, 617 cpu_hw_evt->snapshot_addr_phys, 618 (u64)(cpu_hw_evt->snapshot_addr_phys) >> 32, 0, 0, 0, 0); 619 else 620 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM, 621 cpu_hw_evt->snapshot_addr_phys, 0, 0, 0, 0, 0); 622 623 /* Free up the snapshot area memory and fall back to SBI PMU calls without snapshot */ 624 if (ret.error) { 625 if (ret.error != SBI_ERR_NOT_SUPPORTED) 626 pr_warn("pmu snapshot setup failed with error %ld\n", ret.error); 627 return sbi_err_map_linux_errno(ret.error); 628 } 629 630 memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS); 631 cpu_hw_evt->snapshot_set_done = true; 632 633 return 0; 634 } 635 636 static u64 pmu_sbi_ctr_read(struct perf_event *event) 637 { 638 struct hw_perf_event *hwc = &event->hw; 639 int idx = hwc->idx; 640 struct sbiret ret; 641 u64 val = 0; 642 struct riscv_pmu *pmu = to_riscv_pmu(event->pmu); 643 struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events); 644 struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr; 645 union sbi_pmu_ctr_info info = pmu_ctr_list[idx]; 646 647 /* Read the value from the shared memory directly only if counter is stopped */ 648 if (sbi_pmu_snapshot_available() && (hwc->state & PERF_HES_STOPPED)) { 649 val = sdata->ctr_values[idx]; 650 return val; 651 } 652 653 if (pmu_sbi_is_fw_event(event)) { 654 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ, 655 hwc->idx, 0, 0, 0, 0, 0); 656 if (ret.error) 657 return 0; 658 659 val = ret.value; 660 if (IS_ENABLED(CONFIG_32BIT) && sbi_v2_available && info.width >= 32) { 661 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ_HI, 662 hwc->idx, 0, 0, 0, 0, 0); 663 if (!ret.error) 664 val |= ((u64)ret.value << 32); 665 else 666 WARN_ONCE(1, "Unable to read upper 32 bits of firmware counter error: %ld\n", 667 ret.error); 668 } 669 } else { 670 val = riscv_pmu_ctr_read_csr(info.csr); 671 if (IS_ENABLED(CONFIG_32BIT)) 672 val |= ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 32; 673 } 674 675 return val; 676 } 677 678 static void pmu_sbi_set_scounteren(void *arg) 679 { 680 struct perf_event *event = (struct perf_event *)arg; 681 682 if (event->hw.idx != -1) 683 csr_write(CSR_SCOUNTEREN, 684 csr_read(CSR_SCOUNTEREN) | BIT(pmu_sbi_csr_index(event))); 685 } 686 687 static void pmu_sbi_reset_scounteren(void *arg) 688 { 689 struct perf_event *event = (struct perf_event *)arg; 690 691 if (event->hw.idx != -1) 692 csr_write(CSR_SCOUNTEREN, 693 csr_read(CSR_SCOUNTEREN) & ~BIT(pmu_sbi_csr_index(event))); 694 } 695 696 static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival) 697 { 698 struct sbiret ret; 699 struct hw_perf_event *hwc = &event->hw; 700 unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE; 701 702 /* There is no benefit setting SNAPSHOT FLAG for a single counter */ 703 #if defined(CONFIG_32BIT) 704 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx, 705 1, flag, ival, ival >> 32, 0); 706 #else 707 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx, 708 1, flag, ival, 0, 0); 709 #endif 710 if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED)) 711 pr_err("Starting counter idx %d failed with error %d\n", 712 hwc->idx, sbi_err_map_linux_errno(ret.error)); 713 714 if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) && 715 (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT)) 716 pmu_sbi_set_scounteren((void *)event); 717 } 718 719 static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag) 720 { 721 struct sbiret ret; 722 struct hw_perf_event *hwc = &event->hw; 723 struct riscv_pmu *pmu = to_riscv_pmu(event->pmu); 724 struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events); 725 struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr; 726 727 if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) && 728 (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT)) 729 pmu_sbi_reset_scounteren((void *)event); 730 731 if (sbi_pmu_snapshot_available()) 732 flag |= SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT; 733 734 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0); 735 if (!ret.error && sbi_pmu_snapshot_available()) { 736 /* 737 * The counter snapshot is based on the index base specified by hwc->idx. 738 * The actual counter value is updated in shared memory at index 0 when counter 739 * mask is 0x01. To ensure accurate counter values, it's necessary to transfer 740 * the counter value to shared memory. However, if hwc->idx is zero, the counter 741 * value is already correctly updated in shared memory, requiring no further 742 * adjustment. 743 */ 744 if (hwc->idx > 0) { 745 sdata->ctr_values[hwc->idx] = sdata->ctr_values[0]; 746 sdata->ctr_values[0] = 0; 747 } 748 } else if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) && 749 flag != SBI_PMU_STOP_FLAG_RESET) { 750 pr_err("Stopping counter idx %d failed with error %d\n", 751 hwc->idx, sbi_err_map_linux_errno(ret.error)); 752 } 753 } 754 755 static int pmu_sbi_find_num_ctrs(void) 756 { 757 struct sbiret ret; 758 759 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0); 760 if (!ret.error) 761 return ret.value; 762 else 763 return sbi_err_map_linux_errno(ret.error); 764 } 765 766 static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask) 767 { 768 struct sbiret ret; 769 int i, num_hw_ctr = 0, num_fw_ctr = 0; 770 union sbi_pmu_ctr_info cinfo; 771 772 pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL); 773 if (!pmu_ctr_list) 774 return -ENOMEM; 775 776 for (i = 0; i < nctr; i++) { 777 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0); 778 if (ret.error) 779 /* The logical counter ids are not expected to be contiguous */ 780 continue; 781 782 *mask |= BIT(i); 783 784 cinfo.value = ret.value; 785 if (cinfo.type == SBI_PMU_CTR_TYPE_FW) 786 num_fw_ctr++; 787 else 788 num_hw_ctr++; 789 pmu_ctr_list[i].value = cinfo.value; 790 } 791 792 pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr); 793 794 return 0; 795 } 796 797 static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu) 798 { 799 /* 800 * No need to check the error because we are disabling all the counters 801 * which may include counters that are not enabled yet. 802 */ 803 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 804 0, pmu->cmask, SBI_PMU_STOP_FLAG_RESET, 0, 0, 0); 805 } 806 807 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu) 808 { 809 struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events); 810 struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr; 811 unsigned long flag = 0; 812 int i, idx; 813 struct sbiret ret; 814 u64 temp_ctr_overflow_mask = 0; 815 816 if (sbi_pmu_snapshot_available()) 817 flag = SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT; 818 819 /* Reset the shadow copy to avoid save/restore any value from previous overflow */ 820 memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS); 821 822 for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) { 823 /* No need to check the error here as we can't do anything about the error */ 824 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, i * BITS_PER_LONG, 825 cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0); 826 if (!ret.error && sbi_pmu_snapshot_available()) { 827 /* Save the counter values to avoid clobbering */ 828 for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG) 829 cpu_hw_evt->snapshot_cval_shcopy[i * BITS_PER_LONG + idx] = 830 sdata->ctr_values[idx]; 831 /* Save the overflow mask to avoid clobbering */ 832 temp_ctr_overflow_mask |= sdata->ctr_overflow_mask << (i * BITS_PER_LONG); 833 } 834 } 835 836 /* Restore the counter values to the shared memory for used hw counters */ 837 if (sbi_pmu_snapshot_available()) { 838 for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) 839 sdata->ctr_values[idx] = cpu_hw_evt->snapshot_cval_shcopy[idx]; 840 if (temp_ctr_overflow_mask) 841 sdata->ctr_overflow_mask = temp_ctr_overflow_mask; 842 } 843 } 844 845 /* 846 * This function starts all the used counters in two step approach. 847 * Any counter that did not overflow can be start in a single step 848 * while the overflowed counters need to be started with updated initialization 849 * value. 850 */ 851 static inline void pmu_sbi_start_ovf_ctrs_sbi(struct cpu_hw_events *cpu_hw_evt, 852 u64 ctr_ovf_mask) 853 { 854 int idx = 0, i; 855 struct perf_event *event; 856 unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE; 857 unsigned long ctr_start_mask = 0; 858 uint64_t max_period; 859 struct hw_perf_event *hwc; 860 u64 init_val = 0; 861 862 for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) { 863 ctr_start_mask = cpu_hw_evt->used_hw_ctrs[i] & ~ctr_ovf_mask; 864 /* Start all the counters that did not overflow in a single shot */ 865 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, i * BITS_PER_LONG, ctr_start_mask, 866 0, 0, 0, 0); 867 } 868 869 /* Reinitialize and start all the counter that overflowed */ 870 while (ctr_ovf_mask) { 871 if (ctr_ovf_mask & 0x01) { 872 event = cpu_hw_evt->events[idx]; 873 hwc = &event->hw; 874 max_period = riscv_pmu_ctr_get_width_mask(event); 875 init_val = local64_read(&hwc->prev_count) & max_period; 876 #if defined(CONFIG_32BIT) 877 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1, 878 flag, init_val, init_val >> 32, 0); 879 #else 880 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1, 881 flag, init_val, 0, 0); 882 #endif 883 perf_event_update_userpage(event); 884 } 885 ctr_ovf_mask = ctr_ovf_mask >> 1; 886 idx++; 887 } 888 } 889 890 static inline void pmu_sbi_start_ovf_ctrs_snapshot(struct cpu_hw_events *cpu_hw_evt, 891 u64 ctr_ovf_mask) 892 { 893 int i, idx = 0; 894 struct perf_event *event; 895 unsigned long flag = SBI_PMU_START_FLAG_INIT_SNAPSHOT; 896 u64 max_period, init_val = 0; 897 struct hw_perf_event *hwc; 898 struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr; 899 900 for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) { 901 if (ctr_ovf_mask & BIT(idx)) { 902 event = cpu_hw_evt->events[idx]; 903 hwc = &event->hw; 904 max_period = riscv_pmu_ctr_get_width_mask(event); 905 init_val = local64_read(&hwc->prev_count) & max_period; 906 cpu_hw_evt->snapshot_cval_shcopy[idx] = init_val; 907 } 908 /* 909 * We do not need to update the non-overflow counters the previous 910 * value should have been there already. 911 */ 912 } 913 914 for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) { 915 /* Restore the counter values to relative indices for used hw counters */ 916 for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG) 917 sdata->ctr_values[idx] = 918 cpu_hw_evt->snapshot_cval_shcopy[idx + i * BITS_PER_LONG]; 919 /* Start all the counters in a single shot */ 920 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx * BITS_PER_LONG, 921 cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0); 922 } 923 } 924 925 static void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu, 926 u64 ctr_ovf_mask) 927 { 928 struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events); 929 930 if (sbi_pmu_snapshot_available()) 931 pmu_sbi_start_ovf_ctrs_snapshot(cpu_hw_evt, ctr_ovf_mask); 932 else 933 pmu_sbi_start_ovf_ctrs_sbi(cpu_hw_evt, ctr_ovf_mask); 934 } 935 936 static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev) 937 { 938 struct perf_sample_data data; 939 struct pt_regs *regs; 940 struct hw_perf_event *hw_evt; 941 union sbi_pmu_ctr_info *info; 942 int lidx, hidx, fidx; 943 struct riscv_pmu *pmu; 944 struct perf_event *event; 945 u64 overflow; 946 u64 overflowed_ctrs = 0; 947 struct cpu_hw_events *cpu_hw_evt = dev; 948 u64 start_clock = sched_clock(); 949 struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr; 950 951 if (WARN_ON_ONCE(!cpu_hw_evt)) 952 return IRQ_NONE; 953 954 /* Firmware counter don't support overflow yet */ 955 fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS); 956 if (fidx == RISCV_MAX_COUNTERS) { 957 csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num)); 958 return IRQ_NONE; 959 } 960 961 event = cpu_hw_evt->events[fidx]; 962 if (!event) { 963 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask); 964 return IRQ_NONE; 965 } 966 967 pmu = to_riscv_pmu(event->pmu); 968 pmu_sbi_stop_hw_ctrs(pmu); 969 970 /* Overflow status register should only be read after counter are stopped */ 971 if (sbi_pmu_snapshot_available()) 972 overflow = sdata->ctr_overflow_mask; 973 else 974 ALT_SBI_PMU_OVERFLOW(overflow); 975 976 /* 977 * Overflow interrupt pending bit should only be cleared after stopping 978 * all the counters to avoid any race condition. 979 */ 980 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask); 981 982 /* No overflow bit is set */ 983 if (!overflow) 984 return IRQ_NONE; 985 986 regs = get_irq_regs(); 987 988 for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) { 989 struct perf_event *event = cpu_hw_evt->events[lidx]; 990 991 /* Skip if invalid event or user did not request a sampling */ 992 if (!event || !is_sampling_event(event)) 993 continue; 994 995 info = &pmu_ctr_list[lidx]; 996 /* Do a sanity check */ 997 if (!info || info->type != SBI_PMU_CTR_TYPE_HW) 998 continue; 999 1000 if (sbi_pmu_snapshot_available()) 1001 /* SBI implementation already updated the logical indicies */ 1002 hidx = lidx; 1003 else 1004 /* compute hardware counter index */ 1005 hidx = info->csr - CSR_CYCLE; 1006 1007 /* check if the corresponding bit is set in sscountovf or overflow mask in shmem */ 1008 if (!(overflow & BIT(hidx))) 1009 continue; 1010 1011 /* 1012 * Keep a track of overflowed counters so that they can be started 1013 * with updated initial value. 1014 */ 1015 overflowed_ctrs |= BIT(lidx); 1016 hw_evt = &event->hw; 1017 /* Update the event states here so that we know the state while reading */ 1018 hw_evt->state |= PERF_HES_STOPPED; 1019 riscv_pmu_event_update(event); 1020 hw_evt->state |= PERF_HES_UPTODATE; 1021 perf_sample_data_init(&data, 0, hw_evt->last_period); 1022 if (riscv_pmu_event_set_period(event)) { 1023 /* 1024 * Unlike other ISAs, RISC-V don't have to disable interrupts 1025 * to avoid throttling here. As per the specification, the 1026 * interrupt remains disabled until the OF bit is set. 1027 * Interrupts are enabled again only during the start. 1028 * TODO: We will need to stop the guest counters once 1029 * virtualization support is added. 1030 */ 1031 perf_event_overflow(event, &data, regs); 1032 } 1033 /* Reset the state as we are going to start the counter after the loop */ 1034 hw_evt->state = 0; 1035 } 1036 1037 pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs); 1038 perf_sample_event_took(sched_clock() - start_clock); 1039 1040 return IRQ_HANDLED; 1041 } 1042 1043 static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node) 1044 { 1045 struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node); 1046 struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events); 1047 1048 /* 1049 * We keep enabling userspace access to CYCLE, TIME and INSTRET via the 1050 * legacy option but that will be removed in the future. 1051 */ 1052 if (sysctl_perf_user_access == SYSCTL_LEGACY) 1053 csr_write(CSR_SCOUNTEREN, 0x7); 1054 else 1055 csr_write(CSR_SCOUNTEREN, 0x2); 1056 1057 /* Stop all the counters so that they can be enabled from perf */ 1058 pmu_sbi_stop_all(pmu); 1059 1060 if (riscv_pmu_use_irq) { 1061 cpu_hw_evt->irq = riscv_pmu_irq; 1062 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask); 1063 enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE); 1064 } 1065 1066 if (sbi_pmu_snapshot_available()) 1067 return pmu_sbi_snapshot_setup(pmu, cpu); 1068 1069 return 0; 1070 } 1071 1072 static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node) 1073 { 1074 if (riscv_pmu_use_irq) { 1075 disable_percpu_irq(riscv_pmu_irq); 1076 } 1077 1078 /* Disable all counters access for user mode now */ 1079 csr_write(CSR_SCOUNTEREN, 0x0); 1080 1081 if (sbi_pmu_snapshot_available()) 1082 return pmu_sbi_snapshot_disable(); 1083 1084 return 0; 1085 } 1086 1087 static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev) 1088 { 1089 int ret; 1090 struct cpu_hw_events __percpu *hw_events = pmu->hw_events; 1091 struct irq_domain *domain = NULL; 1092 1093 if (riscv_isa_extension_available(NULL, SSCOFPMF)) { 1094 riscv_pmu_irq_num = RV_IRQ_PMU; 1095 riscv_pmu_use_irq = true; 1096 } else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) && 1097 riscv_cached_mvendorid(0) == THEAD_VENDOR_ID && 1098 riscv_cached_marchid(0) == 0 && 1099 riscv_cached_mimpid(0) == 0) { 1100 riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU; 1101 riscv_pmu_use_irq = true; 1102 } else if (riscv_has_vendor_extension_unlikely(ANDES_VENDOR_ID, 1103 RISCV_ISA_VENDOR_EXT_XANDESPMU) && 1104 IS_ENABLED(CONFIG_ANDES_CUSTOM_PMU)) { 1105 riscv_pmu_irq_num = ANDES_SLI_CAUSE_BASE + ANDES_RV_IRQ_PMOVI; 1106 riscv_pmu_use_irq = true; 1107 } 1108 1109 riscv_pmu_irq_mask = BIT(riscv_pmu_irq_num % BITS_PER_LONG); 1110 1111 if (!riscv_pmu_use_irq) 1112 return -EOPNOTSUPP; 1113 1114 domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(), 1115 DOMAIN_BUS_ANY); 1116 if (!domain) { 1117 pr_err("Failed to find INTC IRQ root domain\n"); 1118 return -ENODEV; 1119 } 1120 1121 riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num); 1122 if (!riscv_pmu_irq) { 1123 pr_err("Failed to map PMU interrupt for node\n"); 1124 return -ENODEV; 1125 } 1126 1127 ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events); 1128 if (ret) { 1129 pr_err("registering percpu irq failed [%d]\n", ret); 1130 return ret; 1131 } 1132 1133 return 0; 1134 } 1135 1136 #ifdef CONFIG_CPU_PM 1137 static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 1138 void *v) 1139 { 1140 struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb); 1141 struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events); 1142 int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS); 1143 struct perf_event *event; 1144 int idx; 1145 1146 if (!enabled) 1147 return NOTIFY_OK; 1148 1149 for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) { 1150 event = cpuc->events[idx]; 1151 if (!event) 1152 continue; 1153 1154 switch (cmd) { 1155 case CPU_PM_ENTER: 1156 /* 1157 * Stop and update the counter 1158 */ 1159 riscv_pmu_stop(event, PERF_EF_UPDATE); 1160 break; 1161 case CPU_PM_EXIT: 1162 case CPU_PM_ENTER_FAILED: 1163 /* 1164 * Restore and enable the counter. 1165 */ 1166 riscv_pmu_start(event, PERF_EF_RELOAD); 1167 break; 1168 default: 1169 break; 1170 } 1171 } 1172 1173 return NOTIFY_OK; 1174 } 1175 1176 static int riscv_pm_pmu_register(struct riscv_pmu *pmu) 1177 { 1178 pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify; 1179 return cpu_pm_register_notifier(&pmu->riscv_pm_nb); 1180 } 1181 1182 static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) 1183 { 1184 cpu_pm_unregister_notifier(&pmu->riscv_pm_nb); 1185 } 1186 #else 1187 static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; } 1188 static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { } 1189 #endif 1190 1191 static void riscv_pmu_destroy(struct riscv_pmu *pmu) 1192 { 1193 if (sbi_v2_available) { 1194 if (sbi_pmu_snapshot_available()) { 1195 pmu_sbi_snapshot_disable(); 1196 pmu_sbi_snapshot_free(pmu); 1197 } 1198 } 1199 riscv_pm_pmu_unregister(pmu); 1200 cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node); 1201 } 1202 1203 static void pmu_sbi_event_init(struct perf_event *event) 1204 { 1205 /* 1206 * The permissions are set at event_init so that we do not depend 1207 * on the sysctl value that can change. 1208 */ 1209 if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS) 1210 event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS; 1211 else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS) 1212 event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS; 1213 else 1214 event->hw.flags |= PERF_EVENT_FLAG_LEGACY; 1215 } 1216 1217 static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm) 1218 { 1219 if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS) 1220 return; 1221 1222 if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) { 1223 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES && 1224 event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) { 1225 return; 1226 } 1227 } 1228 1229 /* 1230 * The user mmapped the event to directly access it: this is where 1231 * we determine based on sysctl_perf_user_access if we grant userspace 1232 * the direct access to this event. That means that within the same 1233 * task, some events may be directly accessible and some other may not, 1234 * if the user changes the value of sysctl_perf_user_accesss in the 1235 * meantime. 1236 */ 1237 1238 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; 1239 1240 /* 1241 * We must enable userspace access *before* advertising in the user page 1242 * that it is possible to do so to avoid any race. 1243 * And we must notify all cpus here because threads that currently run 1244 * on other cpus will try to directly access the counter too without 1245 * calling pmu_sbi_ctr_start. 1246 */ 1247 if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS) 1248 on_each_cpu_mask(mm_cpumask(mm), 1249 pmu_sbi_set_scounteren, (void *)event, 1); 1250 } 1251 1252 static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm) 1253 { 1254 if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS) 1255 return; 1256 1257 if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) { 1258 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES && 1259 event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) { 1260 return; 1261 } 1262 } 1263 1264 /* 1265 * Here we can directly remove user access since the user does not have 1266 * access to the user page anymore so we avoid the racy window where the 1267 * user could have read cap_user_rdpmc to true right before we disable 1268 * it. 1269 */ 1270 event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT; 1271 1272 if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS) 1273 on_each_cpu_mask(mm_cpumask(mm), 1274 pmu_sbi_reset_scounteren, (void *)event, 1); 1275 } 1276 1277 static void riscv_pmu_update_counter_access(void *info) 1278 { 1279 if (sysctl_perf_user_access == SYSCTL_LEGACY) 1280 csr_write(CSR_SCOUNTEREN, 0x7); 1281 else 1282 csr_write(CSR_SCOUNTEREN, 0x2); 1283 } 1284 1285 static int riscv_pmu_proc_user_access_handler(const struct ctl_table *table, 1286 int write, void *buffer, 1287 size_t *lenp, loff_t *ppos) 1288 { 1289 int prev = sysctl_perf_user_access; 1290 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 1291 1292 /* 1293 * Test against the previous value since we clear SCOUNTEREN when 1294 * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should 1295 * not do that if that was already the case. 1296 */ 1297 if (ret || !write || prev == sysctl_perf_user_access) 1298 return ret; 1299 1300 on_each_cpu(riscv_pmu_update_counter_access, NULL, 1); 1301 1302 return 0; 1303 } 1304 1305 static struct ctl_table sbi_pmu_sysctl_table[] = { 1306 { 1307 .procname = "perf_user_access", 1308 .data = &sysctl_perf_user_access, 1309 .maxlen = sizeof(unsigned int), 1310 .mode = 0644, 1311 .proc_handler = riscv_pmu_proc_user_access_handler, 1312 .extra1 = SYSCTL_ZERO, 1313 .extra2 = SYSCTL_TWO, 1314 }, 1315 }; 1316 1317 static int pmu_sbi_device_probe(struct platform_device *pdev) 1318 { 1319 struct riscv_pmu *pmu = NULL; 1320 int ret = -ENODEV; 1321 int num_counters; 1322 1323 pr_info("SBI PMU extension is available\n"); 1324 pmu = riscv_pmu_alloc(); 1325 if (!pmu) 1326 return -ENOMEM; 1327 1328 num_counters = pmu_sbi_find_num_ctrs(); 1329 if (num_counters < 0) { 1330 pr_err("SBI PMU extension doesn't provide any counters\n"); 1331 goto out_free; 1332 } 1333 1334 /* It is possible to get from SBI more than max number of counters */ 1335 if (num_counters > RISCV_MAX_COUNTERS) { 1336 num_counters = RISCV_MAX_COUNTERS; 1337 pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters); 1338 } 1339 1340 /* cache all the information about counters now */ 1341 if (pmu_sbi_get_ctrinfo(num_counters, &cmask)) 1342 goto out_free; 1343 1344 ret = pmu_sbi_setup_irqs(pmu, pdev); 1345 if (ret < 0) { 1346 pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n"); 1347 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1348 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; 1349 } 1350 1351 pmu->pmu.attr_groups = riscv_pmu_attr_groups; 1352 pmu->pmu.parent = &pdev->dev; 1353 pmu->cmask = cmask; 1354 pmu->ctr_start = pmu_sbi_ctr_start; 1355 pmu->ctr_stop = pmu_sbi_ctr_stop; 1356 pmu->event_map = pmu_sbi_event_map; 1357 pmu->ctr_get_idx = pmu_sbi_ctr_get_idx; 1358 pmu->ctr_get_width = pmu_sbi_ctr_get_width; 1359 pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx; 1360 pmu->ctr_read = pmu_sbi_ctr_read; 1361 pmu->event_init = pmu_sbi_event_init; 1362 pmu->event_mapped = pmu_sbi_event_mapped; 1363 pmu->event_unmapped = pmu_sbi_event_unmapped; 1364 pmu->csr_index = pmu_sbi_csr_index; 1365 1366 ret = riscv_pm_pmu_register(pmu); 1367 if (ret) 1368 goto out_unregister; 1369 1370 ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW); 1371 if (ret) 1372 goto out_unregister; 1373 1374 /* SBI PMU Snapsphot is only available in SBI v2.0 */ 1375 if (sbi_v2_available) { 1376 ret = pmu_sbi_snapshot_alloc(pmu); 1377 if (ret) 1378 goto out_unregister; 1379 1380 ret = pmu_sbi_snapshot_setup(pmu, smp_processor_id()); 1381 if (ret) { 1382 /* Snapshot is an optional feature. Continue if not available */ 1383 pmu_sbi_snapshot_free(pmu); 1384 } else { 1385 pr_info("SBI PMU snapshot detected\n"); 1386 /* 1387 * We enable it once here for the boot cpu. If snapshot shmem setup 1388 * fails during cpu hotplug process, it will fail to start the cpu 1389 * as we can not handle hetergenous PMUs with different snapshot 1390 * capability. 1391 */ 1392 static_branch_enable(&sbi_pmu_snapshot_available); 1393 } 1394 } 1395 1396 register_sysctl("kernel", sbi_pmu_sysctl_table); 1397 1398 ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node); 1399 if (ret) 1400 goto out_unregister; 1401 1402 /* Asynchronously check which standard events are available */ 1403 schedule_work(&check_std_events_work); 1404 1405 return 0; 1406 1407 out_unregister: 1408 riscv_pmu_destroy(pmu); 1409 1410 out_free: 1411 kfree(pmu); 1412 return ret; 1413 } 1414 1415 static struct platform_driver pmu_sbi_driver = { 1416 .probe = pmu_sbi_device_probe, 1417 .driver = { 1418 .name = RISCV_PMU_SBI_PDEV_NAME, 1419 }, 1420 }; 1421 1422 static int __init pmu_sbi_devinit(void) 1423 { 1424 int ret; 1425 struct platform_device *pdev; 1426 1427 if (sbi_spec_version < sbi_mk_version(0, 3) || 1428 !sbi_probe_extension(SBI_EXT_PMU)) { 1429 return 0; 1430 } 1431 1432 if (sbi_spec_version >= sbi_mk_version(2, 0)) 1433 sbi_v2_available = true; 1434 1435 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING, 1436 "perf/riscv/pmu:starting", 1437 pmu_sbi_starting_cpu, pmu_sbi_dying_cpu); 1438 if (ret) { 1439 pr_err("CPU hotplug notifier could not be registered: %d\n", 1440 ret); 1441 return ret; 1442 } 1443 1444 ret = platform_driver_register(&pmu_sbi_driver); 1445 if (ret) 1446 return ret; 1447 1448 pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0); 1449 if (IS_ERR(pdev)) { 1450 platform_driver_unregister(&pmu_sbi_driver); 1451 return PTR_ERR(pdev); 1452 } 1453 1454 /* Notify legacy implementation that SBI pmu is available*/ 1455 riscv_pmu_legacy_skip_init(); 1456 1457 return ret; 1458 } 1459 device_initcall(pmu_sbi_devinit) 1460