xref: /linux/drivers/perf/riscv_pmu.c (revision f69e98a91a01fd7c5755dd710e94a17d6e9f583f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This implementation is based on old RISC-V perf and ARM perf event code
8  * which are in turn based on sparc64 and x86 code.
9  */
10 
11 #include <linux/cpumask.h>
12 #include <linux/irq.h>
13 #include <linux/irqdesc.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/printk.h>
16 #include <linux/smp.h>
17 
18 #include <asm/sbi.h>
19 
20 static unsigned long csr_read_num(int csr_num)
21 {
22 #define switchcase_csr_read(__csr_num, __val)		{\
23 	case __csr_num:					\
24 		__val = csr_read(__csr_num);		\
25 		break; }
26 #define switchcase_csr_read_2(__csr_num, __val)		{\
27 	switchcase_csr_read(__csr_num + 0, __val)	 \
28 	switchcase_csr_read(__csr_num + 1, __val)}
29 #define switchcase_csr_read_4(__csr_num, __val)		{\
30 	switchcase_csr_read_2(__csr_num + 0, __val)	 \
31 	switchcase_csr_read_2(__csr_num + 2, __val)}
32 #define switchcase_csr_read_8(__csr_num, __val)		{\
33 	switchcase_csr_read_4(__csr_num + 0, __val)	 \
34 	switchcase_csr_read_4(__csr_num + 4, __val)}
35 #define switchcase_csr_read_16(__csr_num, __val)	{\
36 	switchcase_csr_read_8(__csr_num + 0, __val)	 \
37 	switchcase_csr_read_8(__csr_num + 8, __val)}
38 #define switchcase_csr_read_32(__csr_num, __val)	{\
39 	switchcase_csr_read_16(__csr_num + 0, __val)	 \
40 	switchcase_csr_read_16(__csr_num + 16, __val)}
41 
42 	unsigned long ret = 0;
43 
44 	switch (csr_num) {
45 	switchcase_csr_read_32(CSR_CYCLE, ret)
46 	switchcase_csr_read_32(CSR_CYCLEH, ret)
47 	default :
48 		break;
49 	}
50 
51 	return ret;
52 #undef switchcase_csr_read_32
53 #undef switchcase_csr_read_16
54 #undef switchcase_csr_read_8
55 #undef switchcase_csr_read_4
56 #undef switchcase_csr_read_2
57 #undef switchcase_csr_read
58 }
59 
60 /*
61  * Read the CSR of a corresponding counter.
62  */
63 unsigned long riscv_pmu_ctr_read_csr(unsigned long csr)
64 {
65 	if (csr < CSR_CYCLE || csr > CSR_HPMCOUNTER31H ||
66 	   (csr > CSR_HPMCOUNTER31 && csr < CSR_CYCLEH)) {
67 		pr_err("Invalid performance counter csr %lx\n", csr);
68 		return -EINVAL;
69 	}
70 
71 	return csr_read_num(csr);
72 }
73 
74 u64 riscv_pmu_ctr_get_width_mask(struct perf_event *event)
75 {
76 	int cwidth;
77 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
78 	struct hw_perf_event *hwc = &event->hw;
79 
80 	if (!rvpmu->ctr_get_width)
81 	/**
82 	 * If the pmu driver doesn't support counter width, set it to default
83 	 * maximum allowed by the specification.
84 	 */
85 		cwidth = 63;
86 	else {
87 		if (hwc->idx == -1)
88 			/* Handle init case where idx is not initialized yet */
89 			cwidth = rvpmu->ctr_get_width(0);
90 		else
91 			cwidth = rvpmu->ctr_get_width(hwc->idx);
92 	}
93 
94 	return GENMASK_ULL(cwidth, 0);
95 }
96 
97 u64 riscv_pmu_event_update(struct perf_event *event)
98 {
99 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
100 	struct hw_perf_event *hwc = &event->hw;
101 	u64 prev_raw_count, new_raw_count;
102 	unsigned long cmask;
103 	u64 oldval, delta;
104 
105 	if (!rvpmu->ctr_read)
106 		return 0;
107 
108 	cmask = riscv_pmu_ctr_get_width_mask(event);
109 
110 	do {
111 		prev_raw_count = local64_read(&hwc->prev_count);
112 		new_raw_count = rvpmu->ctr_read(event);
113 		oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
114 					 new_raw_count);
115 	} while (oldval != prev_raw_count);
116 
117 	delta = (new_raw_count - prev_raw_count) & cmask;
118 	local64_add(delta, &event->count);
119 	local64_sub(delta, &hwc->period_left);
120 
121 	return delta;
122 }
123 
124 static void riscv_pmu_stop(struct perf_event *event, int flags)
125 {
126 	struct hw_perf_event *hwc = &event->hw;
127 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
128 
129 	WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
130 
131 	if (!(hwc->state & PERF_HES_STOPPED)) {
132 		if (rvpmu->ctr_stop) {
133 			rvpmu->ctr_stop(event, 0);
134 			hwc->state |= PERF_HES_STOPPED;
135 		}
136 		riscv_pmu_event_update(event);
137 		hwc->state |= PERF_HES_UPTODATE;
138 	}
139 }
140 
141 int riscv_pmu_event_set_period(struct perf_event *event)
142 {
143 	struct hw_perf_event *hwc = &event->hw;
144 	s64 left = local64_read(&hwc->period_left);
145 	s64 period = hwc->sample_period;
146 	int overflow = 0;
147 	uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
148 
149 	if (unlikely(left <= -period)) {
150 		left = period;
151 		local64_set(&hwc->period_left, left);
152 		hwc->last_period = period;
153 		overflow = 1;
154 	}
155 
156 	if (unlikely(left <= 0)) {
157 		left += period;
158 		local64_set(&hwc->period_left, left);
159 		hwc->last_period = period;
160 		overflow = 1;
161 	}
162 
163 	/*
164 	 * Limit the maximum period to prevent the counter value
165 	 * from overtaking the one we are about to program. In
166 	 * effect we are reducing max_period to account for
167 	 * interrupt latency (and we are being very conservative).
168 	 */
169 	if (left > (max_period >> 1))
170 		left = (max_period >> 1);
171 
172 	local64_set(&hwc->prev_count, (u64)-left);
173 	perf_event_update_userpage(event);
174 
175 	return overflow;
176 }
177 
178 static void riscv_pmu_start(struct perf_event *event, int flags)
179 {
180 	struct hw_perf_event *hwc = &event->hw;
181 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
182 	uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
183 	u64 init_val;
184 
185 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
186 		return;
187 
188 	if (flags & PERF_EF_RELOAD)
189 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
190 
191 	hwc->state = 0;
192 	riscv_pmu_event_set_period(event);
193 	init_val = local64_read(&hwc->prev_count) & max_period;
194 	rvpmu->ctr_start(event, init_val);
195 	perf_event_update_userpage(event);
196 }
197 
198 static int riscv_pmu_add(struct perf_event *event, int flags)
199 {
200 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
201 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
202 	struct hw_perf_event *hwc = &event->hw;
203 	int idx;
204 
205 	idx = rvpmu->ctr_get_idx(event);
206 	if (idx < 0)
207 		return idx;
208 
209 	hwc->idx = idx;
210 	cpuc->events[idx] = event;
211 	cpuc->n_events++;
212 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
213 	if (flags & PERF_EF_START)
214 		riscv_pmu_start(event, PERF_EF_RELOAD);
215 
216 	/* Propagate our changes to the userspace mapping. */
217 	perf_event_update_userpage(event);
218 
219 	return 0;
220 }
221 
222 static void riscv_pmu_del(struct perf_event *event, int flags)
223 {
224 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
225 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
226 	struct hw_perf_event *hwc = &event->hw;
227 
228 	riscv_pmu_stop(event, PERF_EF_UPDATE);
229 	cpuc->events[hwc->idx] = NULL;
230 	/* The firmware need to reset the counter mapping */
231 	if (rvpmu->ctr_stop)
232 		rvpmu->ctr_stop(event, RISCV_PMU_STOP_FLAG_RESET);
233 	cpuc->n_events--;
234 	if (rvpmu->ctr_clear_idx)
235 		rvpmu->ctr_clear_idx(event);
236 	perf_event_update_userpage(event);
237 	hwc->idx = -1;
238 }
239 
240 static void riscv_pmu_read(struct perf_event *event)
241 {
242 	riscv_pmu_event_update(event);
243 }
244 
245 static int riscv_pmu_event_init(struct perf_event *event)
246 {
247 	struct hw_perf_event *hwc = &event->hw;
248 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
249 	int mapped_event;
250 	u64 event_config = 0;
251 	uint64_t cmask;
252 
253 	hwc->flags = 0;
254 	mapped_event = rvpmu->event_map(event, &event_config);
255 	if (mapped_event < 0) {
256 		pr_debug("event %x:%llx not supported\n", event->attr.type,
257 			 event->attr.config);
258 		return mapped_event;
259 	}
260 
261 	/*
262 	 * idx is set to -1 because the index of a general event should not be
263 	 * decided until binding to some counter in pmu->add().
264 	 * config will contain the information about counter CSR
265 	 * the idx will contain the counter index
266 	 */
267 	hwc->config = event_config;
268 	hwc->idx = -1;
269 	hwc->event_base = mapped_event;
270 
271 	if (!is_sampling_event(event)) {
272 		/*
273 		 * For non-sampling runs, limit the sample_period to half
274 		 * of the counter width. That way, the new counter value
275 		 * is far less likely to overtake the previous one unless
276 		 * you have some serious IRQ latency issues.
277 		 */
278 		cmask = riscv_pmu_ctr_get_width_mask(event);
279 		hwc->sample_period  =  cmask >> 1;
280 		hwc->last_period    = hwc->sample_period;
281 		local64_set(&hwc->period_left, hwc->sample_period);
282 	}
283 
284 	return 0;
285 }
286 
287 struct riscv_pmu *riscv_pmu_alloc(void)
288 {
289 	struct riscv_pmu *pmu;
290 	int cpuid, i;
291 	struct cpu_hw_events *cpuc;
292 
293 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
294 	if (!pmu)
295 		goto out;
296 
297 	pmu->hw_events = alloc_percpu_gfp(struct cpu_hw_events, GFP_KERNEL);
298 	if (!pmu->hw_events) {
299 		pr_info("failed to allocate per-cpu PMU data.\n");
300 		goto out_free_pmu;
301 	}
302 
303 	for_each_possible_cpu(cpuid) {
304 		cpuc = per_cpu_ptr(pmu->hw_events, cpuid);
305 		cpuc->n_events = 0;
306 		for (i = 0; i < RISCV_MAX_COUNTERS; i++)
307 			cpuc->events[i] = NULL;
308 	}
309 	pmu->pmu = (struct pmu) {
310 		.event_init	= riscv_pmu_event_init,
311 		.add		= riscv_pmu_add,
312 		.del		= riscv_pmu_del,
313 		.start		= riscv_pmu_start,
314 		.stop		= riscv_pmu_stop,
315 		.read		= riscv_pmu_read,
316 	};
317 
318 	return pmu;
319 
320 out_free_pmu:
321 	kfree(pmu);
322 out:
323 	return NULL;
324 }
325