xref: /linux/drivers/perf/riscv_pmu.c (revision 88872790923e2d80edf29a00b4e440f1473fa8f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This implementation is based on old RISC-V perf and ARM perf event code
8  * which are in turn based on sparc64 and x86 code.
9  */
10 
11 #include <linux/cpumask.h>
12 #include <linux/irq.h>
13 #include <linux/irqdesc.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/printk.h>
16 #include <linux/smp.h>
17 #include <linux/sched_clock.h>
18 
19 #include <asm/sbi.h>
20 
21 static bool riscv_perf_user_access(struct perf_event *event)
22 {
23 	return ((event->attr.type == PERF_TYPE_HARDWARE) ||
24 		(event->attr.type == PERF_TYPE_HW_CACHE) ||
25 		(event->attr.type == PERF_TYPE_RAW)) &&
26 		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
27 }
28 
29 void arch_perf_update_userpage(struct perf_event *event,
30 			       struct perf_event_mmap_page *userpg, u64 now)
31 {
32 	struct clock_read_data *rd;
33 	unsigned int seq;
34 	u64 ns;
35 
36 	userpg->cap_user_time = 0;
37 	userpg->cap_user_time_zero = 0;
38 	userpg->cap_user_time_short = 0;
39 	userpg->cap_user_rdpmc = riscv_perf_user_access(event);
40 
41 #ifdef CONFIG_RISCV_PMU
42 	/*
43 	 * The counters are 64-bit but the priv spec doesn't mandate all the
44 	 * bits to be implemented: that's why, counter width can vary based on
45 	 * the cpu vendor.
46 	 */
47 	if (userpg->cap_user_rdpmc)
48 		userpg->pmc_width = to_riscv_pmu(event->pmu)->ctr_get_width(event->hw.idx) + 1;
49 #endif
50 
51 	do {
52 		rd = sched_clock_read_begin(&seq);
53 
54 		userpg->time_mult = rd->mult;
55 		userpg->time_shift = rd->shift;
56 		userpg->time_zero = rd->epoch_ns;
57 		userpg->time_cycles = rd->epoch_cyc;
58 		userpg->time_mask = rd->sched_clock_mask;
59 
60 		/*
61 		 * Subtract the cycle base, such that software that
62 		 * doesn't know about cap_user_time_short still 'works'
63 		 * assuming no wraps.
64 		 */
65 		ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
66 		userpg->time_zero -= ns;
67 
68 	} while (sched_clock_read_retry(seq));
69 
70 	userpg->time_offset = userpg->time_zero - now;
71 
72 	/*
73 	 * time_shift is not expected to be greater than 31 due to
74 	 * the original published conversion algorithm shifting a
75 	 * 32-bit value (now specifies a 64-bit value) - refer
76 	 * perf_event_mmap_page documentation in perf_event.h.
77 	 */
78 	if (userpg->time_shift == 32) {
79 		userpg->time_shift = 31;
80 		userpg->time_mult >>= 1;
81 	}
82 
83 	/*
84 	 * Internal timekeeping for enabled/running/stopped times
85 	 * is always computed with the sched_clock.
86 	 */
87 	userpg->cap_user_time = 1;
88 	userpg->cap_user_time_zero = 1;
89 	userpg->cap_user_time_short = 1;
90 }
91 
92 static unsigned long csr_read_num(int csr_num)
93 {
94 #define switchcase_csr_read(__csr_num, __val)		{\
95 	case __csr_num:					\
96 		__val = csr_read(__csr_num);		\
97 		break; }
98 #define switchcase_csr_read_2(__csr_num, __val)		{\
99 	switchcase_csr_read(__csr_num + 0, __val)	 \
100 	switchcase_csr_read(__csr_num + 1, __val)}
101 #define switchcase_csr_read_4(__csr_num, __val)		{\
102 	switchcase_csr_read_2(__csr_num + 0, __val)	 \
103 	switchcase_csr_read_2(__csr_num + 2, __val)}
104 #define switchcase_csr_read_8(__csr_num, __val)		{\
105 	switchcase_csr_read_4(__csr_num + 0, __val)	 \
106 	switchcase_csr_read_4(__csr_num + 4, __val)}
107 #define switchcase_csr_read_16(__csr_num, __val)	{\
108 	switchcase_csr_read_8(__csr_num + 0, __val)	 \
109 	switchcase_csr_read_8(__csr_num + 8, __val)}
110 #define switchcase_csr_read_32(__csr_num, __val)	{\
111 	switchcase_csr_read_16(__csr_num + 0, __val)	 \
112 	switchcase_csr_read_16(__csr_num + 16, __val)}
113 
114 	unsigned long ret = 0;
115 
116 	switch (csr_num) {
117 	switchcase_csr_read_32(CSR_CYCLE, ret)
118 	switchcase_csr_read_32(CSR_CYCLEH, ret)
119 	default :
120 		break;
121 	}
122 
123 	return ret;
124 #undef switchcase_csr_read_32
125 #undef switchcase_csr_read_16
126 #undef switchcase_csr_read_8
127 #undef switchcase_csr_read_4
128 #undef switchcase_csr_read_2
129 #undef switchcase_csr_read
130 }
131 
132 /*
133  * Read the CSR of a corresponding counter.
134  */
135 unsigned long riscv_pmu_ctr_read_csr(unsigned long csr)
136 {
137 	if (csr < CSR_CYCLE || csr > CSR_HPMCOUNTER31H ||
138 	   (csr > CSR_HPMCOUNTER31 && csr < CSR_CYCLEH)) {
139 		pr_err("Invalid performance counter csr %lx\n", csr);
140 		return -EINVAL;
141 	}
142 
143 	return csr_read_num(csr);
144 }
145 
146 u64 riscv_pmu_ctr_get_width_mask(struct perf_event *event)
147 {
148 	int cwidth;
149 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
150 	struct hw_perf_event *hwc = &event->hw;
151 
152 	if (!rvpmu->ctr_get_width)
153 	/**
154 	 * If the pmu driver doesn't support counter width, set it to default
155 	 * maximum allowed by the specification.
156 	 */
157 		cwidth = 63;
158 	else {
159 		if (hwc->idx == -1)
160 			/* Handle init case where idx is not initialized yet */
161 			cwidth = rvpmu->ctr_get_width(0);
162 		else
163 			cwidth = rvpmu->ctr_get_width(hwc->idx);
164 	}
165 
166 	return GENMASK_ULL(cwidth, 0);
167 }
168 
169 u64 riscv_pmu_event_update(struct perf_event *event)
170 {
171 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
172 	struct hw_perf_event *hwc = &event->hw;
173 	u64 prev_raw_count, new_raw_count;
174 	unsigned long cmask;
175 	u64 oldval, delta;
176 
177 	if (!rvpmu->ctr_read)
178 		return 0;
179 
180 	cmask = riscv_pmu_ctr_get_width_mask(event);
181 
182 	do {
183 		prev_raw_count = local64_read(&hwc->prev_count);
184 		new_raw_count = rvpmu->ctr_read(event);
185 		oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
186 					 new_raw_count);
187 	} while (oldval != prev_raw_count);
188 
189 	delta = (new_raw_count - prev_raw_count) & cmask;
190 	local64_add(delta, &event->count);
191 	local64_sub(delta, &hwc->period_left);
192 
193 	return delta;
194 }
195 
196 void riscv_pmu_stop(struct perf_event *event, int flags)
197 {
198 	struct hw_perf_event *hwc = &event->hw;
199 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
200 
201 	WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
202 
203 	if (!(hwc->state & PERF_HES_STOPPED)) {
204 		if (rvpmu->ctr_stop) {
205 			rvpmu->ctr_stop(event, 0);
206 			hwc->state |= PERF_HES_STOPPED;
207 		}
208 		riscv_pmu_event_update(event);
209 		hwc->state |= PERF_HES_UPTODATE;
210 	}
211 }
212 
213 int riscv_pmu_event_set_period(struct perf_event *event)
214 {
215 	struct hw_perf_event *hwc = &event->hw;
216 	s64 left = local64_read(&hwc->period_left);
217 	s64 period = hwc->sample_period;
218 	int overflow = 0;
219 	uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
220 
221 	if (unlikely(left <= -period)) {
222 		left = period;
223 		local64_set(&hwc->period_left, left);
224 		hwc->last_period = period;
225 		overflow = 1;
226 	}
227 
228 	if (unlikely(left <= 0)) {
229 		left += period;
230 		local64_set(&hwc->period_left, left);
231 		hwc->last_period = period;
232 		overflow = 1;
233 	}
234 
235 	/*
236 	 * Limit the maximum period to prevent the counter value
237 	 * from overtaking the one we are about to program. In
238 	 * effect we are reducing max_period to account for
239 	 * interrupt latency (and we are being very conservative).
240 	 */
241 	if (left > (max_period >> 1))
242 		left = (max_period >> 1);
243 
244 	local64_set(&hwc->prev_count, (u64)-left);
245 
246 	perf_event_update_userpage(event);
247 
248 	return overflow;
249 }
250 
251 void riscv_pmu_start(struct perf_event *event, int flags)
252 {
253 	struct hw_perf_event *hwc = &event->hw;
254 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
255 	uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
256 	u64 init_val;
257 
258 	if (flags & PERF_EF_RELOAD)
259 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
260 
261 	hwc->state = 0;
262 	riscv_pmu_event_set_period(event);
263 	init_val = local64_read(&hwc->prev_count) & max_period;
264 	rvpmu->ctr_start(event, init_val);
265 	perf_event_update_userpage(event);
266 }
267 
268 static int riscv_pmu_add(struct perf_event *event, int flags)
269 {
270 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
271 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
272 	struct hw_perf_event *hwc = &event->hw;
273 	int idx;
274 
275 	idx = rvpmu->ctr_get_idx(event);
276 	if (idx < 0)
277 		return idx;
278 
279 	hwc->idx = idx;
280 	cpuc->events[idx] = event;
281 	cpuc->n_events++;
282 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
283 	if (flags & PERF_EF_START)
284 		riscv_pmu_start(event, PERF_EF_RELOAD);
285 
286 	/* Propagate our changes to the userspace mapping. */
287 	perf_event_update_userpage(event);
288 
289 	return 0;
290 }
291 
292 static void riscv_pmu_del(struct perf_event *event, int flags)
293 {
294 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
295 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
296 	struct hw_perf_event *hwc = &event->hw;
297 
298 	riscv_pmu_stop(event, PERF_EF_UPDATE);
299 	cpuc->events[hwc->idx] = NULL;
300 	/* The firmware need to reset the counter mapping */
301 	if (rvpmu->ctr_stop)
302 		rvpmu->ctr_stop(event, RISCV_PMU_STOP_FLAG_RESET);
303 	cpuc->n_events--;
304 	if (rvpmu->ctr_clear_idx)
305 		rvpmu->ctr_clear_idx(event);
306 	perf_event_update_userpage(event);
307 	hwc->idx = -1;
308 }
309 
310 static void riscv_pmu_read(struct perf_event *event)
311 {
312 	riscv_pmu_event_update(event);
313 }
314 
315 static int riscv_pmu_event_init(struct perf_event *event)
316 {
317 	struct hw_perf_event *hwc = &event->hw;
318 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
319 	int mapped_event;
320 	u64 event_config = 0;
321 	uint64_t cmask;
322 
323 	hwc->flags = 0;
324 	mapped_event = rvpmu->event_map(event, &event_config);
325 	if (mapped_event < 0) {
326 		pr_debug("event %x:%llx not supported\n", event->attr.type,
327 			 event->attr.config);
328 		return mapped_event;
329 	}
330 
331 	/*
332 	 * idx is set to -1 because the index of a general event should not be
333 	 * decided until binding to some counter in pmu->add().
334 	 * config will contain the information about counter CSR
335 	 * the idx will contain the counter index
336 	 */
337 	hwc->config = event_config;
338 	hwc->idx = -1;
339 	hwc->event_base = mapped_event;
340 
341 	if (rvpmu->event_init)
342 		rvpmu->event_init(event);
343 
344 	if (!is_sampling_event(event)) {
345 		/*
346 		 * For non-sampling runs, limit the sample_period to half
347 		 * of the counter width. That way, the new counter value
348 		 * is far less likely to overtake the previous one unless
349 		 * you have some serious IRQ latency issues.
350 		 */
351 		cmask = riscv_pmu_ctr_get_width_mask(event);
352 		hwc->sample_period  =  cmask >> 1;
353 		hwc->last_period    = hwc->sample_period;
354 		local64_set(&hwc->period_left, hwc->sample_period);
355 	}
356 
357 	return 0;
358 }
359 
360 static int riscv_pmu_event_idx(struct perf_event *event)
361 {
362 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
363 
364 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
365 		return 0;
366 
367 	if (rvpmu->csr_index)
368 		return rvpmu->csr_index(event) + 1;
369 
370 	return 0;
371 }
372 
373 static void riscv_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
374 {
375 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
376 
377 	if (rvpmu->event_mapped) {
378 		rvpmu->event_mapped(event, mm);
379 		perf_event_update_userpage(event);
380 	}
381 }
382 
383 static void riscv_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
384 {
385 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
386 
387 	if (rvpmu->event_unmapped) {
388 		rvpmu->event_unmapped(event, mm);
389 		perf_event_update_userpage(event);
390 	}
391 }
392 
393 struct riscv_pmu *riscv_pmu_alloc(void)
394 {
395 	struct riscv_pmu *pmu;
396 	int cpuid, i;
397 	struct cpu_hw_events *cpuc;
398 
399 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
400 	if (!pmu)
401 		goto out;
402 
403 	pmu->hw_events = alloc_percpu_gfp(struct cpu_hw_events, GFP_KERNEL);
404 	if (!pmu->hw_events) {
405 		pr_info("failed to allocate per-cpu PMU data.\n");
406 		goto out_free_pmu;
407 	}
408 
409 	for_each_possible_cpu(cpuid) {
410 		cpuc = per_cpu_ptr(pmu->hw_events, cpuid);
411 		cpuc->n_events = 0;
412 		for (i = 0; i < RISCV_MAX_COUNTERS; i++)
413 			cpuc->events[i] = NULL;
414 	}
415 	pmu->pmu = (struct pmu) {
416 		.event_init	= riscv_pmu_event_init,
417 		.event_mapped	= riscv_pmu_event_mapped,
418 		.event_unmapped	= riscv_pmu_event_unmapped,
419 		.event_idx	= riscv_pmu_event_idx,
420 		.add		= riscv_pmu_add,
421 		.del		= riscv_pmu_del,
422 		.start		= riscv_pmu_start,
423 		.stop		= riscv_pmu_stop,
424 		.read		= riscv_pmu_read,
425 	};
426 
427 	return pmu;
428 
429 out_free_pmu:
430 	kfree(pmu);
431 out:
432 	return NULL;
433 }
434