xref: /linux/drivers/perf/qcom_l3_pmu.c (revision 46ff24efe04ac96a129dd01138640c3447a525e1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the L3 cache PMUs in Qualcomm Technologies chips.
4  *
5  * The driver supports a distributed cache architecture where the overall
6  * cache for a socket is comprised of multiple slices each with its own PMU.
7  * Access to each individual PMU is provided even though all CPUs share all
8  * the slices. User space needs to aggregate to individual counts to provide
9  * a global picture.
10  *
11  * See Documentation/admin-guide/perf/qcom_l3_pmu.rst for more details.
12  *
13  * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
14  */
15 
16 #include <linux/acpi.h>
17 #include <linux/bitops.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/perf_event.h>
23 #include <linux/platform_device.h>
24 
25 /*
26  * General constants
27  */
28 
29 /* Number of counters on each PMU */
30 #define L3_NUM_COUNTERS  8
31 /* Mask for the event type field within perf_event_attr.config and EVTYPE reg */
32 #define L3_EVTYPE_MASK   0xFF
33 /*
34  * Bit position of the 'long counter' flag within perf_event_attr.config.
35  * Reserve some space between the event type and this flag to allow expansion
36  * in the event type field.
37  */
38 #define L3_EVENT_LC_BIT  32
39 
40 /*
41  * Register offsets
42  */
43 
44 /* Perfmon registers */
45 #define L3_HML3_PM_CR       0x000
46 #define L3_HML3_PM_EVCNTR(__cntr) (0x420 + ((__cntr) & 0x7) * 8)
47 #define L3_HML3_PM_CNTCTL(__cntr) (0x120 + ((__cntr) & 0x7) * 8)
48 #define L3_HML3_PM_EVTYPE(__cntr) (0x220 + ((__cntr) & 0x7) * 8)
49 #define L3_HML3_PM_FILTRA   0x300
50 #define L3_HML3_PM_FILTRB   0x308
51 #define L3_HML3_PM_FILTRC   0x310
52 #define L3_HML3_PM_FILTRAM  0x304
53 #define L3_HML3_PM_FILTRBM  0x30C
54 #define L3_HML3_PM_FILTRCM  0x314
55 
56 /* Basic counter registers */
57 #define L3_M_BC_CR         0x500
58 #define L3_M_BC_SATROLL_CR 0x504
59 #define L3_M_BC_CNTENSET   0x508
60 #define L3_M_BC_CNTENCLR   0x50C
61 #define L3_M_BC_INTENSET   0x510
62 #define L3_M_BC_INTENCLR   0x514
63 #define L3_M_BC_GANG       0x718
64 #define L3_M_BC_OVSR       0x740
65 #define L3_M_BC_IRQCTL     0x96C
66 
67 /*
68  * Bit field definitions
69  */
70 
71 /* L3_HML3_PM_CR */
72 #define PM_CR_RESET           (0)
73 
74 /* L3_HML3_PM_XCNTCTL/L3_HML3_PM_CNTCTLx */
75 #define PMCNT_RESET           (0)
76 
77 /* L3_HML3_PM_EVTYPEx */
78 #define EVSEL(__val)          ((__val) & L3_EVTYPE_MASK)
79 
80 /* Reset value for all the filter registers */
81 #define PM_FLTR_RESET         (0)
82 
83 /* L3_M_BC_CR */
84 #define BC_RESET              (1UL << 1)
85 #define BC_ENABLE             (1UL << 0)
86 
87 /* L3_M_BC_SATROLL_CR */
88 #define BC_SATROLL_CR_RESET   (0)
89 
90 /* L3_M_BC_CNTENSET */
91 #define PMCNTENSET(__cntr)    (1UL << ((__cntr) & 0x7))
92 
93 /* L3_M_BC_CNTENCLR */
94 #define PMCNTENCLR(__cntr)    (1UL << ((__cntr) & 0x7))
95 #define BC_CNTENCLR_RESET     (0xFF)
96 
97 /* L3_M_BC_INTENSET */
98 #define PMINTENSET(__cntr)    (1UL << ((__cntr) & 0x7))
99 
100 /* L3_M_BC_INTENCLR */
101 #define PMINTENCLR(__cntr)    (1UL << ((__cntr) & 0x7))
102 #define BC_INTENCLR_RESET     (0xFF)
103 
104 /* L3_M_BC_GANG */
105 #define GANG_EN(__cntr)       (1UL << ((__cntr) & 0x7))
106 #define BC_GANG_RESET         (0)
107 
108 /* L3_M_BC_OVSR */
109 #define PMOVSRCLR(__cntr)     (1UL << ((__cntr) & 0x7))
110 #define PMOVSRCLR_RESET       (0xFF)
111 
112 /* L3_M_BC_IRQCTL */
113 #define PMIRQONMSBEN(__cntr)  (1UL << ((__cntr) & 0x7))
114 #define BC_IRQCTL_RESET       (0x0)
115 
116 /*
117  * Events
118  */
119 
120 #define L3_EVENT_CYCLES		0x01
121 #define L3_EVENT_READ_HIT		0x20
122 #define L3_EVENT_READ_MISS		0x21
123 #define L3_EVENT_READ_HIT_D		0x22
124 #define L3_EVENT_READ_MISS_D		0x23
125 #define L3_EVENT_WRITE_HIT		0x24
126 #define L3_EVENT_WRITE_MISS		0x25
127 
128 /*
129  * Decoding of settings from perf_event_attr
130  *
131  * The config format for perf events is:
132  * - config: bits 0-7: event type
133  *           bit  32:  HW counter size requested, 0: 32 bits, 1: 64 bits
134  */
135 
136 static inline u32 get_event_type(struct perf_event *event)
137 {
138 	return (event->attr.config) & L3_EVTYPE_MASK;
139 }
140 
141 static inline bool event_uses_long_counter(struct perf_event *event)
142 {
143 	return !!(event->attr.config & BIT_ULL(L3_EVENT_LC_BIT));
144 }
145 
146 static inline int event_num_counters(struct perf_event *event)
147 {
148 	return event_uses_long_counter(event) ? 2 : 1;
149 }
150 
151 /*
152  * Main PMU, inherits from the core perf PMU type
153  */
154 struct l3cache_pmu {
155 	struct pmu		pmu;
156 	struct hlist_node	node;
157 	void __iomem		*regs;
158 	struct perf_event	*events[L3_NUM_COUNTERS];
159 	unsigned long		used_mask[BITS_TO_LONGS(L3_NUM_COUNTERS)];
160 	cpumask_t		cpumask;
161 };
162 
163 #define to_l3cache_pmu(p) (container_of(p, struct l3cache_pmu, pmu))
164 
165 /*
166  * Type used to group hardware counter operations
167  *
168  * Used to implement two types of hardware counters, standard (32bits) and
169  * long (64bits). The hardware supports counter chaining which we use to
170  * implement long counters. This support is exposed via the 'lc' flag field
171  * in perf_event_attr.config.
172  */
173 struct l3cache_event_ops {
174 	/* Called to start event monitoring */
175 	void (*start)(struct perf_event *event);
176 	/* Called to stop event monitoring */
177 	void (*stop)(struct perf_event *event, int flags);
178 	/* Called to update the perf_event */
179 	void (*update)(struct perf_event *event);
180 };
181 
182 /*
183  * Implementation of long counter operations
184  *
185  * 64bit counters are implemented by chaining two of the 32bit physical
186  * counters. The PMU only supports chaining of adjacent even/odd pairs
187  * and for simplicity the driver always configures the odd counter to
188  * count the overflows of the lower-numbered even counter. Note that since
189  * the resulting hardware counter is 64bits no IRQs are required to maintain
190  * the software counter which is also 64bits.
191  */
192 
193 static void qcom_l3_cache__64bit_counter_start(struct perf_event *event)
194 {
195 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
196 	int idx = event->hw.idx;
197 	u32 evsel = get_event_type(event);
198 	u32 gang;
199 
200 	/* Set the odd counter to count the overflows of the even counter */
201 	gang = readl_relaxed(l3pmu->regs + L3_M_BC_GANG);
202 	gang |= GANG_EN(idx + 1);
203 	writel_relaxed(gang, l3pmu->regs + L3_M_BC_GANG);
204 
205 	/* Initialize the hardware counters and reset prev_count*/
206 	local64_set(&event->hw.prev_count, 0);
207 	writel_relaxed(0, l3pmu->regs + L3_HML3_PM_EVCNTR(idx + 1));
208 	writel_relaxed(0, l3pmu->regs + L3_HML3_PM_EVCNTR(idx));
209 
210 	/*
211 	 * Set the event types, the upper half must use zero and the lower
212 	 * half the actual event type
213 	 */
214 	writel_relaxed(EVSEL(0), l3pmu->regs + L3_HML3_PM_EVTYPE(idx + 1));
215 	writel_relaxed(EVSEL(evsel), l3pmu->regs + L3_HML3_PM_EVTYPE(idx));
216 
217 	/* Finally, enable the counters */
218 	writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(idx + 1));
219 	writel_relaxed(PMCNTENSET(idx + 1), l3pmu->regs + L3_M_BC_CNTENSET);
220 	writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(idx));
221 	writel_relaxed(PMCNTENSET(idx), l3pmu->regs + L3_M_BC_CNTENSET);
222 }
223 
224 static void qcom_l3_cache__64bit_counter_stop(struct perf_event *event,
225 					      int flags)
226 {
227 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
228 	int idx = event->hw.idx;
229 	u32 gang = readl_relaxed(l3pmu->regs + L3_M_BC_GANG);
230 
231 	/* Disable the counters */
232 	writel_relaxed(PMCNTENCLR(idx), l3pmu->regs + L3_M_BC_CNTENCLR);
233 	writel_relaxed(PMCNTENCLR(idx + 1), l3pmu->regs + L3_M_BC_CNTENCLR);
234 
235 	/* Disable chaining */
236 	writel_relaxed(gang & ~GANG_EN(idx + 1), l3pmu->regs + L3_M_BC_GANG);
237 }
238 
239 static void qcom_l3_cache__64bit_counter_update(struct perf_event *event)
240 {
241 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
242 	int idx = event->hw.idx;
243 	u32 hi, lo;
244 	u64 prev, new;
245 
246 	do {
247 		prev = local64_read(&event->hw.prev_count);
248 		do {
249 			hi = readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx + 1));
250 			lo = readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx));
251 		} while (hi != readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx + 1)));
252 		new = ((u64)hi << 32) | lo;
253 	} while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev);
254 
255 	local64_add(new - prev, &event->count);
256 }
257 
258 static const struct l3cache_event_ops event_ops_long = {
259 	.start = qcom_l3_cache__64bit_counter_start,
260 	.stop = qcom_l3_cache__64bit_counter_stop,
261 	.update = qcom_l3_cache__64bit_counter_update,
262 };
263 
264 /*
265  * Implementation of standard counter operations
266  *
267  * 32bit counters use a single physical counter and a hardware feature that
268  * asserts the overflow IRQ on the toggling of the most significant bit in
269  * the counter. This feature allows the counters to be left free-running
270  * without needing the usual reprogramming required to properly handle races
271  * during concurrent calls to update.
272  */
273 
274 static void qcom_l3_cache__32bit_counter_start(struct perf_event *event)
275 {
276 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
277 	int idx = event->hw.idx;
278 	u32 evsel = get_event_type(event);
279 	u32 irqctl = readl_relaxed(l3pmu->regs + L3_M_BC_IRQCTL);
280 
281 	/* Set the counter to assert the overflow IRQ on MSB toggling */
282 	writel_relaxed(irqctl | PMIRQONMSBEN(idx), l3pmu->regs + L3_M_BC_IRQCTL);
283 
284 	/* Initialize the hardware counter and reset prev_count*/
285 	local64_set(&event->hw.prev_count, 0);
286 	writel_relaxed(0, l3pmu->regs + L3_HML3_PM_EVCNTR(idx));
287 
288 	/* Set the event type */
289 	writel_relaxed(EVSEL(evsel), l3pmu->regs + L3_HML3_PM_EVTYPE(idx));
290 
291 	/* Enable interrupt generation by this counter */
292 	writel_relaxed(PMINTENSET(idx), l3pmu->regs + L3_M_BC_INTENSET);
293 
294 	/* Finally, enable the counter */
295 	writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(idx));
296 	writel_relaxed(PMCNTENSET(idx), l3pmu->regs + L3_M_BC_CNTENSET);
297 }
298 
299 static void qcom_l3_cache__32bit_counter_stop(struct perf_event *event,
300 					      int flags)
301 {
302 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
303 	int idx = event->hw.idx;
304 	u32 irqctl = readl_relaxed(l3pmu->regs + L3_M_BC_IRQCTL);
305 
306 	/* Disable the counter */
307 	writel_relaxed(PMCNTENCLR(idx), l3pmu->regs + L3_M_BC_CNTENCLR);
308 
309 	/* Disable interrupt generation by this counter */
310 	writel_relaxed(PMINTENCLR(idx), l3pmu->regs + L3_M_BC_INTENCLR);
311 
312 	/* Set the counter to not assert the overflow IRQ on MSB toggling */
313 	writel_relaxed(irqctl & ~PMIRQONMSBEN(idx), l3pmu->regs + L3_M_BC_IRQCTL);
314 }
315 
316 static void qcom_l3_cache__32bit_counter_update(struct perf_event *event)
317 {
318 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
319 	int idx = event->hw.idx;
320 	u32 prev, new;
321 
322 	do {
323 		prev = local64_read(&event->hw.prev_count);
324 		new = readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx));
325 	} while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev);
326 
327 	local64_add(new - prev, &event->count);
328 }
329 
330 static const struct l3cache_event_ops event_ops_std = {
331 	.start = qcom_l3_cache__32bit_counter_start,
332 	.stop = qcom_l3_cache__32bit_counter_stop,
333 	.update = qcom_l3_cache__32bit_counter_update,
334 };
335 
336 /* Retrieve the appropriate operations for the given event */
337 static
338 const struct l3cache_event_ops *l3cache_event_get_ops(struct perf_event *event)
339 {
340 	if (event_uses_long_counter(event))
341 		return &event_ops_long;
342 	else
343 		return &event_ops_std;
344 }
345 
346 /*
347  * Top level PMU functions.
348  */
349 
350 static inline void qcom_l3_cache__init(struct l3cache_pmu *l3pmu)
351 {
352 	int i;
353 
354 	writel_relaxed(BC_RESET, l3pmu->regs + L3_M_BC_CR);
355 
356 	/*
357 	 * Use writel for the first programming command to ensure the basic
358 	 * counter unit is stopped before proceeding
359 	 */
360 	writel(BC_SATROLL_CR_RESET, l3pmu->regs + L3_M_BC_SATROLL_CR);
361 
362 	writel_relaxed(BC_CNTENCLR_RESET, l3pmu->regs + L3_M_BC_CNTENCLR);
363 	writel_relaxed(BC_INTENCLR_RESET, l3pmu->regs + L3_M_BC_INTENCLR);
364 	writel_relaxed(PMOVSRCLR_RESET, l3pmu->regs + L3_M_BC_OVSR);
365 	writel_relaxed(BC_GANG_RESET, l3pmu->regs + L3_M_BC_GANG);
366 	writel_relaxed(BC_IRQCTL_RESET, l3pmu->regs + L3_M_BC_IRQCTL);
367 	writel_relaxed(PM_CR_RESET, l3pmu->regs + L3_HML3_PM_CR);
368 
369 	for (i = 0; i < L3_NUM_COUNTERS; ++i) {
370 		writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(i));
371 		writel_relaxed(EVSEL(0), l3pmu->regs + L3_HML3_PM_EVTYPE(i));
372 	}
373 
374 	writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRA);
375 	writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRAM);
376 	writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRB);
377 	writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRBM);
378 	writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRC);
379 	writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRCM);
380 
381 	/*
382 	 * Use writel here to ensure all programming commands are done
383 	 *  before proceeding
384 	 */
385 	writel(BC_ENABLE, l3pmu->regs + L3_M_BC_CR);
386 }
387 
388 static irqreturn_t qcom_l3_cache__handle_irq(int irq_num, void *data)
389 {
390 	struct l3cache_pmu *l3pmu = data;
391 	/* Read the overflow status register */
392 	long status = readl_relaxed(l3pmu->regs + L3_M_BC_OVSR);
393 	int idx;
394 
395 	if (status == 0)
396 		return IRQ_NONE;
397 
398 	/* Clear the bits we read on the overflow status register */
399 	writel_relaxed(status, l3pmu->regs + L3_M_BC_OVSR);
400 
401 	for_each_set_bit(idx, &status, L3_NUM_COUNTERS) {
402 		struct perf_event *event;
403 		const struct l3cache_event_ops *ops;
404 
405 		event = l3pmu->events[idx];
406 		if (!event)
407 			continue;
408 
409 		/*
410 		 * Since the IRQ is not enabled for events using long counters
411 		 * we should never see one of those here, however, be consistent
412 		 * and use the ops indirections like in the other operations.
413 		 */
414 
415 		ops = l3cache_event_get_ops(event);
416 		ops->update(event);
417 	}
418 
419 	return IRQ_HANDLED;
420 }
421 
422 /*
423  * Implementation of abstract pmu functionality required by
424  * the core perf events code.
425  */
426 
427 static void qcom_l3_cache__pmu_enable(struct pmu *pmu)
428 {
429 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(pmu);
430 
431 	/* Ensure the other programming commands are observed before enabling */
432 	wmb();
433 
434 	writel_relaxed(BC_ENABLE, l3pmu->regs + L3_M_BC_CR);
435 }
436 
437 static void qcom_l3_cache__pmu_disable(struct pmu *pmu)
438 {
439 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(pmu);
440 
441 	writel_relaxed(0, l3pmu->regs + L3_M_BC_CR);
442 
443 	/* Ensure the basic counter unit is stopped before proceeding */
444 	wmb();
445 }
446 
447 /*
448  * We must NOT create groups containing events from multiple hardware PMUs,
449  * although mixing different software and hardware PMUs is allowed.
450  */
451 static bool qcom_l3_cache__validate_event_group(struct perf_event *event)
452 {
453 	struct perf_event *leader = event->group_leader;
454 	struct perf_event *sibling;
455 	int counters = 0;
456 
457 	if (leader->pmu != event->pmu && !is_software_event(leader))
458 		return false;
459 
460 	counters = event_num_counters(event);
461 	counters += event_num_counters(leader);
462 
463 	for_each_sibling_event(sibling, leader) {
464 		if (is_software_event(sibling))
465 			continue;
466 		if (sibling->pmu != event->pmu)
467 			return false;
468 		counters += event_num_counters(sibling);
469 	}
470 
471 	/*
472 	 * If the group requires more counters than the HW has, it
473 	 * cannot ever be scheduled.
474 	 */
475 	return counters <= L3_NUM_COUNTERS;
476 }
477 
478 static int qcom_l3_cache__event_init(struct perf_event *event)
479 {
480 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
481 	struct hw_perf_event *hwc = &event->hw;
482 
483 	/*
484 	 * Is the event for this PMU?
485 	 */
486 	if (event->attr.type != event->pmu->type)
487 		return -ENOENT;
488 
489 	/*
490 	 * Sampling not supported since these events are not core-attributable.
491 	 */
492 	if (hwc->sample_period)
493 		return -EINVAL;
494 
495 	/*
496 	 * Task mode not available, we run the counters as socket counters,
497 	 * not attributable to any CPU and therefore cannot attribute per-task.
498 	 */
499 	if (event->cpu < 0)
500 		return -EINVAL;
501 
502 	/* Validate the group */
503 	if (!qcom_l3_cache__validate_event_group(event))
504 		return -EINVAL;
505 
506 	hwc->idx = -1;
507 
508 	/*
509 	 * Many perf core operations (eg. events rotation) operate on a
510 	 * single CPU context. This is obvious for CPU PMUs, where one
511 	 * expects the same sets of events being observed on all CPUs,
512 	 * but can lead to issues for off-core PMUs, like this one, where
513 	 * each event could be theoretically assigned to a different CPU.
514 	 * To mitigate this, we enforce CPU assignment to one designated
515 	 * processor (the one described in the "cpumask" attribute exported
516 	 * by the PMU device). perf user space tools honor this and avoid
517 	 * opening more than one copy of the events.
518 	 */
519 	event->cpu = cpumask_first(&l3pmu->cpumask);
520 
521 	return 0;
522 }
523 
524 static void qcom_l3_cache__event_start(struct perf_event *event, int flags)
525 {
526 	struct hw_perf_event *hwc = &event->hw;
527 	const struct l3cache_event_ops *ops = l3cache_event_get_ops(event);
528 
529 	hwc->state = 0;
530 	ops->start(event);
531 }
532 
533 static void qcom_l3_cache__event_stop(struct perf_event *event, int flags)
534 {
535 	struct hw_perf_event *hwc = &event->hw;
536 	const struct l3cache_event_ops *ops = l3cache_event_get_ops(event);
537 
538 	if (hwc->state & PERF_HES_STOPPED)
539 		return;
540 
541 	ops->stop(event, flags);
542 	if (flags & PERF_EF_UPDATE)
543 		ops->update(event);
544 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
545 }
546 
547 static int qcom_l3_cache__event_add(struct perf_event *event, int flags)
548 {
549 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
550 	struct hw_perf_event *hwc = &event->hw;
551 	int order = event_uses_long_counter(event) ? 1 : 0;
552 	int idx;
553 
554 	/*
555 	 * Try to allocate a counter.
556 	 */
557 	idx = bitmap_find_free_region(l3pmu->used_mask, L3_NUM_COUNTERS, order);
558 	if (idx < 0)
559 		/* The counters are all in use. */
560 		return -EAGAIN;
561 
562 	hwc->idx = idx;
563 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
564 	l3pmu->events[idx] = event;
565 
566 	if (flags & PERF_EF_START)
567 		qcom_l3_cache__event_start(event, 0);
568 
569 	/* Propagate changes to the userspace mapping. */
570 	perf_event_update_userpage(event);
571 
572 	return 0;
573 }
574 
575 static void qcom_l3_cache__event_del(struct perf_event *event, int flags)
576 {
577 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
578 	struct hw_perf_event *hwc = &event->hw;
579 	int order = event_uses_long_counter(event) ? 1 : 0;
580 
581 	/* Stop and clean up */
582 	qcom_l3_cache__event_stop(event,  flags | PERF_EF_UPDATE);
583 	l3pmu->events[hwc->idx] = NULL;
584 	bitmap_release_region(l3pmu->used_mask, hwc->idx, order);
585 
586 	/* Propagate changes to the userspace mapping. */
587 	perf_event_update_userpage(event);
588 }
589 
590 static void qcom_l3_cache__event_read(struct perf_event *event)
591 {
592 	const struct l3cache_event_ops *ops = l3cache_event_get_ops(event);
593 
594 	ops->update(event);
595 }
596 
597 /*
598  * Add sysfs attributes
599  *
600  * We export:
601  * - formats, used by perf user space and other tools to configure events
602  * - events, used by perf user space and other tools to create events
603  *   symbolically, e.g.:
604  *     perf stat -a -e l3cache_0_0/event=read-miss/ ls
605  *     perf stat -a -e l3cache_0_0/event=0x21/ ls
606  * - cpumask, used by perf user space and other tools to know on which CPUs
607  *   to open the events
608  */
609 
610 /* formats */
611 
612 static ssize_t l3cache_pmu_format_show(struct device *dev,
613 				       struct device_attribute *attr, char *buf)
614 {
615 	struct dev_ext_attribute *eattr;
616 
617 	eattr = container_of(attr, struct dev_ext_attribute, attr);
618 	return sysfs_emit(buf, "%s\n", (char *) eattr->var);
619 }
620 
621 #define L3CACHE_PMU_FORMAT_ATTR(_name, _config)				      \
622 	(&((struct dev_ext_attribute[]) {				      \
623 		{ .attr = __ATTR(_name, 0444, l3cache_pmu_format_show, NULL), \
624 		  .var = (void *) _config, }				      \
625 	})[0].attr.attr)
626 
627 static struct attribute *qcom_l3_cache_pmu_formats[] = {
628 	L3CACHE_PMU_FORMAT_ATTR(event, "config:0-7"),
629 	L3CACHE_PMU_FORMAT_ATTR(lc, "config:" __stringify(L3_EVENT_LC_BIT)),
630 	NULL,
631 };
632 
633 static const struct attribute_group qcom_l3_cache_pmu_format_group = {
634 	.name = "format",
635 	.attrs = qcom_l3_cache_pmu_formats,
636 };
637 
638 /* events */
639 
640 static ssize_t l3cache_pmu_event_show(struct device *dev,
641 				     struct device_attribute *attr, char *page)
642 {
643 	struct perf_pmu_events_attr *pmu_attr;
644 
645 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
646 	return sysfs_emit(page, "event=0x%02llx\n", pmu_attr->id);
647 }
648 
649 #define L3CACHE_EVENT_ATTR(_name, _id)					     \
650 	PMU_EVENT_ATTR_ID(_name, l3cache_pmu_event_show, _id)
651 
652 static struct attribute *qcom_l3_cache_pmu_events[] = {
653 	L3CACHE_EVENT_ATTR(cycles, L3_EVENT_CYCLES),
654 	L3CACHE_EVENT_ATTR(read-hit, L3_EVENT_READ_HIT),
655 	L3CACHE_EVENT_ATTR(read-miss, L3_EVENT_READ_MISS),
656 	L3CACHE_EVENT_ATTR(read-hit-d-side, L3_EVENT_READ_HIT_D),
657 	L3CACHE_EVENT_ATTR(read-miss-d-side, L3_EVENT_READ_MISS_D),
658 	L3CACHE_EVENT_ATTR(write-hit, L3_EVENT_WRITE_HIT),
659 	L3CACHE_EVENT_ATTR(write-miss, L3_EVENT_WRITE_MISS),
660 	NULL
661 };
662 
663 static const struct attribute_group qcom_l3_cache_pmu_events_group = {
664 	.name = "events",
665 	.attrs = qcom_l3_cache_pmu_events,
666 };
667 
668 /* cpumask */
669 
670 static ssize_t cpumask_show(struct device *dev,
671 			    struct device_attribute *attr, char *buf)
672 {
673 	struct l3cache_pmu *l3pmu = to_l3cache_pmu(dev_get_drvdata(dev));
674 
675 	return cpumap_print_to_pagebuf(true, buf, &l3pmu->cpumask);
676 }
677 
678 static DEVICE_ATTR_RO(cpumask);
679 
680 static struct attribute *qcom_l3_cache_pmu_cpumask_attrs[] = {
681 	&dev_attr_cpumask.attr,
682 	NULL,
683 };
684 
685 static const struct attribute_group qcom_l3_cache_pmu_cpumask_attr_group = {
686 	.attrs = qcom_l3_cache_pmu_cpumask_attrs,
687 };
688 
689 /*
690  * Per PMU device attribute groups
691  */
692 static const struct attribute_group *qcom_l3_cache_pmu_attr_grps[] = {
693 	&qcom_l3_cache_pmu_format_group,
694 	&qcom_l3_cache_pmu_events_group,
695 	&qcom_l3_cache_pmu_cpumask_attr_group,
696 	NULL,
697 };
698 
699 /*
700  * Probing functions and data.
701  */
702 
703 static int qcom_l3_cache_pmu_online_cpu(unsigned int cpu, struct hlist_node *node)
704 {
705 	struct l3cache_pmu *l3pmu = hlist_entry_safe(node, struct l3cache_pmu, node);
706 
707 	/* If there is not a CPU/PMU association pick this CPU */
708 	if (cpumask_empty(&l3pmu->cpumask))
709 		cpumask_set_cpu(cpu, &l3pmu->cpumask);
710 
711 	return 0;
712 }
713 
714 static int qcom_l3_cache_pmu_offline_cpu(unsigned int cpu, struct hlist_node *node)
715 {
716 	struct l3cache_pmu *l3pmu = hlist_entry_safe(node, struct l3cache_pmu, node);
717 	unsigned int target;
718 
719 	if (!cpumask_test_and_clear_cpu(cpu, &l3pmu->cpumask))
720 		return 0;
721 	target = cpumask_any_but(cpu_online_mask, cpu);
722 	if (target >= nr_cpu_ids)
723 		return 0;
724 	perf_pmu_migrate_context(&l3pmu->pmu, cpu, target);
725 	cpumask_set_cpu(target, &l3pmu->cpumask);
726 	return 0;
727 }
728 
729 static int qcom_l3_cache_pmu_probe(struct platform_device *pdev)
730 {
731 	struct l3cache_pmu *l3pmu;
732 	struct acpi_device *acpi_dev;
733 	struct resource *memrc;
734 	int ret;
735 	char *name;
736 
737 	/* Initialize the PMU data structures */
738 
739 	acpi_dev = ACPI_COMPANION(&pdev->dev);
740 	if (!acpi_dev)
741 		return -ENODEV;
742 
743 	l3pmu = devm_kzalloc(&pdev->dev, sizeof(*l3pmu), GFP_KERNEL);
744 	name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "l3cache_%s_%s",
745 		      acpi_dev_parent(acpi_dev)->pnp.unique_id,
746 		      acpi_dev->pnp.unique_id);
747 	if (!l3pmu || !name)
748 		return -ENOMEM;
749 
750 	l3pmu->pmu = (struct pmu) {
751 		.task_ctx_nr	= perf_invalid_context,
752 
753 		.pmu_enable	= qcom_l3_cache__pmu_enable,
754 		.pmu_disable	= qcom_l3_cache__pmu_disable,
755 		.event_init	= qcom_l3_cache__event_init,
756 		.add		= qcom_l3_cache__event_add,
757 		.del		= qcom_l3_cache__event_del,
758 		.start		= qcom_l3_cache__event_start,
759 		.stop		= qcom_l3_cache__event_stop,
760 		.read		= qcom_l3_cache__event_read,
761 
762 		.attr_groups	= qcom_l3_cache_pmu_attr_grps,
763 		.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
764 	};
765 
766 	memrc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
767 	l3pmu->regs = devm_ioremap_resource(&pdev->dev, memrc);
768 	if (IS_ERR(l3pmu->regs))
769 		return PTR_ERR(l3pmu->regs);
770 
771 	qcom_l3_cache__init(l3pmu);
772 
773 	ret = platform_get_irq(pdev, 0);
774 	if (ret <= 0)
775 		return ret;
776 
777 	ret = devm_request_irq(&pdev->dev, ret, qcom_l3_cache__handle_irq, 0,
778 			       name, l3pmu);
779 	if (ret) {
780 		dev_err(&pdev->dev, "Request for IRQ failed for slice @%pa\n",
781 			&memrc->start);
782 		return ret;
783 	}
784 
785 	/* Add this instance to the list used by the offline callback */
786 	ret = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_QCOM_L3_ONLINE, &l3pmu->node);
787 	if (ret) {
788 		dev_err(&pdev->dev, "Error %d registering hotplug", ret);
789 		return ret;
790 	}
791 
792 	ret = perf_pmu_register(&l3pmu->pmu, name, -1);
793 	if (ret < 0) {
794 		dev_err(&pdev->dev, "Failed to register L3 cache PMU (%d)\n", ret);
795 		return ret;
796 	}
797 
798 	dev_info(&pdev->dev, "Registered %s, type: %d\n", name, l3pmu->pmu.type);
799 
800 	return 0;
801 }
802 
803 static const struct acpi_device_id qcom_l3_cache_pmu_acpi_match[] = {
804 	{ "QCOM8081", },
805 	{ }
806 };
807 MODULE_DEVICE_TABLE(acpi, qcom_l3_cache_pmu_acpi_match);
808 
809 static struct platform_driver qcom_l3_cache_pmu_driver = {
810 	.driver = {
811 		.name = "qcom-l3cache-pmu",
812 		.acpi_match_table = ACPI_PTR(qcom_l3_cache_pmu_acpi_match),
813 		.suppress_bind_attrs = true,
814 	},
815 	.probe = qcom_l3_cache_pmu_probe,
816 };
817 
818 static int __init register_qcom_l3_cache_pmu_driver(void)
819 {
820 	int ret;
821 
822 	/* Install a hook to update the reader CPU in case it goes offline */
823 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_QCOM_L3_ONLINE,
824 				      "perf/qcom/l3cache:online",
825 				      qcom_l3_cache_pmu_online_cpu,
826 				      qcom_l3_cache_pmu_offline_cpu);
827 	if (ret)
828 		return ret;
829 
830 	return platform_driver_register(&qcom_l3_cache_pmu_driver);
831 }
832 device_initcall(register_qcom_l3_cache_pmu_driver);
833