1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HiSilicon SoC Hardware event counters support 4 * 5 * Copyright (C) 2017 Hisilicon Limited 6 * Author: Anurup M <anurup.m@huawei.com> 7 * Shaokun Zhang <zhangshaokun@hisilicon.com> 8 * 9 * This code is based on the uncore PMUs like arm-cci and arm-ccn. 10 */ 11 #include <linux/bitmap.h> 12 #include <linux/bitops.h> 13 #include <linux/bug.h> 14 #include <linux/err.h> 15 #include <linux/errno.h> 16 #include <linux/interrupt.h> 17 18 #include <asm/cputype.h> 19 #include <asm/local64.h> 20 21 #include "hisi_uncore_pmu.h" 22 23 #define HISI_GET_EVENTID(ev) (ev->hw.config_base & 0xff) 24 #define HISI_MAX_PERIOD(nr) (BIT_ULL(nr) - 1) 25 26 /* 27 * PMU format attributes 28 */ 29 ssize_t hisi_format_sysfs_show(struct device *dev, 30 struct device_attribute *attr, char *buf) 31 { 32 struct dev_ext_attribute *eattr; 33 34 eattr = container_of(attr, struct dev_ext_attribute, attr); 35 36 return sprintf(buf, "%s\n", (char *)eattr->var); 37 } 38 EXPORT_SYMBOL_GPL(hisi_format_sysfs_show); 39 40 /* 41 * PMU event attributes 42 */ 43 ssize_t hisi_event_sysfs_show(struct device *dev, 44 struct device_attribute *attr, char *page) 45 { 46 struct dev_ext_attribute *eattr; 47 48 eattr = container_of(attr, struct dev_ext_attribute, attr); 49 50 return sprintf(page, "config=0x%lx\n", (unsigned long)eattr->var); 51 } 52 EXPORT_SYMBOL_GPL(hisi_event_sysfs_show); 53 54 /* 55 * sysfs cpumask attributes. For uncore PMU, we only have a single CPU to show 56 */ 57 ssize_t hisi_cpumask_sysfs_show(struct device *dev, 58 struct device_attribute *attr, char *buf) 59 { 60 struct hisi_pmu *hisi_pmu = to_hisi_pmu(dev_get_drvdata(dev)); 61 62 return sprintf(buf, "%d\n", hisi_pmu->on_cpu); 63 } 64 EXPORT_SYMBOL_GPL(hisi_cpumask_sysfs_show); 65 66 static bool hisi_validate_event_group(struct perf_event *event) 67 { 68 struct perf_event *sibling, *leader = event->group_leader; 69 struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); 70 /* Include count for the event */ 71 int counters = 1; 72 73 if (!is_software_event(leader)) { 74 /* 75 * We must NOT create groups containing mixed PMUs, although 76 * software events are acceptable 77 */ 78 if (leader->pmu != event->pmu) 79 return false; 80 81 /* Increment counter for the leader */ 82 if (leader != event) 83 counters++; 84 } 85 86 for_each_sibling_event(sibling, event->group_leader) { 87 if (is_software_event(sibling)) 88 continue; 89 if (sibling->pmu != event->pmu) 90 return false; 91 /* Increment counter for each sibling */ 92 counters++; 93 } 94 95 /* The group can not count events more than the counters in the HW */ 96 return counters <= hisi_pmu->num_counters; 97 } 98 99 int hisi_uncore_pmu_counter_valid(struct hisi_pmu *hisi_pmu, int idx) 100 { 101 return idx >= 0 && idx < hisi_pmu->num_counters; 102 } 103 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_counter_valid); 104 105 int hisi_uncore_pmu_get_event_idx(struct perf_event *event) 106 { 107 struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); 108 unsigned long *used_mask = hisi_pmu->pmu_events.used_mask; 109 u32 num_counters = hisi_pmu->num_counters; 110 int idx; 111 112 idx = find_first_zero_bit(used_mask, num_counters); 113 if (idx == num_counters) 114 return -EAGAIN; 115 116 set_bit(idx, used_mask); 117 118 return idx; 119 } 120 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_get_event_idx); 121 122 ssize_t hisi_uncore_pmu_identifier_attr_show(struct device *dev, 123 struct device_attribute *attr, 124 char *page) 125 { 126 struct hisi_pmu *hisi_pmu = to_hisi_pmu(dev_get_drvdata(dev)); 127 128 return snprintf(page, PAGE_SIZE, "0x%08x\n", hisi_pmu->identifier); 129 } 130 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_identifier_attr_show); 131 132 static void hisi_uncore_pmu_clear_event_idx(struct hisi_pmu *hisi_pmu, int idx) 133 { 134 if (!hisi_uncore_pmu_counter_valid(hisi_pmu, idx)) { 135 dev_err(hisi_pmu->dev, "Unsupported event index:%d!\n", idx); 136 return; 137 } 138 139 clear_bit(idx, hisi_pmu->pmu_events.used_mask); 140 } 141 142 int hisi_uncore_pmu_event_init(struct perf_event *event) 143 { 144 struct hw_perf_event *hwc = &event->hw; 145 struct hisi_pmu *hisi_pmu; 146 147 if (event->attr.type != event->pmu->type) 148 return -ENOENT; 149 150 /* 151 * We do not support sampling as the counters are all 152 * shared by all CPU cores in a CPU die(SCCL). Also we 153 * do not support attach to a task(per-process mode) 154 */ 155 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) 156 return -EOPNOTSUPP; 157 158 /* 159 * The uncore counters not specific to any CPU, so cannot 160 * support per-task 161 */ 162 if (event->cpu < 0) 163 return -EINVAL; 164 165 /* 166 * Validate if the events in group does not exceed the 167 * available counters in hardware. 168 */ 169 if (!hisi_validate_event_group(event)) 170 return -EINVAL; 171 172 hisi_pmu = to_hisi_pmu(event->pmu); 173 if (event->attr.config > hisi_pmu->check_event) 174 return -EINVAL; 175 176 if (hisi_pmu->on_cpu == -1) 177 return -EINVAL; 178 /* 179 * We don't assign an index until we actually place the event onto 180 * hardware. Use -1 to signify that we haven't decided where to put it 181 * yet. 182 */ 183 hwc->idx = -1; 184 hwc->config_base = event->attr.config; 185 186 /* Enforce to use the same CPU for all events in this PMU */ 187 event->cpu = hisi_pmu->on_cpu; 188 189 return 0; 190 } 191 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_event_init); 192 193 /* 194 * Set the counter to count the event that we're interested in, 195 * and enable interrupt and counter. 196 */ 197 static void hisi_uncore_pmu_enable_event(struct perf_event *event) 198 { 199 struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); 200 struct hw_perf_event *hwc = &event->hw; 201 202 hisi_pmu->ops->write_evtype(hisi_pmu, hwc->idx, 203 HISI_GET_EVENTID(event)); 204 205 hisi_pmu->ops->enable_counter_int(hisi_pmu, hwc); 206 hisi_pmu->ops->enable_counter(hisi_pmu, hwc); 207 } 208 209 /* 210 * Disable counter and interrupt. 211 */ 212 static void hisi_uncore_pmu_disable_event(struct perf_event *event) 213 { 214 struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); 215 struct hw_perf_event *hwc = &event->hw; 216 217 hisi_pmu->ops->disable_counter(hisi_pmu, hwc); 218 hisi_pmu->ops->disable_counter_int(hisi_pmu, hwc); 219 } 220 221 void hisi_uncore_pmu_set_event_period(struct perf_event *event) 222 { 223 struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); 224 struct hw_perf_event *hwc = &event->hw; 225 226 /* 227 * The HiSilicon PMU counters support 32 bits or 48 bits, depending on 228 * the PMU. We reduce it to 2^(counter_bits - 1) to account for the 229 * extreme interrupt latency. So we could hopefully handle the overflow 230 * interrupt before another 2^(counter_bits - 1) events occur and the 231 * counter overtakes its previous value. 232 */ 233 u64 val = BIT_ULL(hisi_pmu->counter_bits - 1); 234 235 local64_set(&hwc->prev_count, val); 236 /* Write start value to the hardware event counter */ 237 hisi_pmu->ops->write_counter(hisi_pmu, hwc, val); 238 } 239 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_set_event_period); 240 241 void hisi_uncore_pmu_event_update(struct perf_event *event) 242 { 243 struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); 244 struct hw_perf_event *hwc = &event->hw; 245 u64 delta, prev_raw_count, new_raw_count; 246 247 do { 248 /* Read the count from the counter register */ 249 new_raw_count = hisi_pmu->ops->read_counter(hisi_pmu, hwc); 250 prev_raw_count = local64_read(&hwc->prev_count); 251 } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 252 new_raw_count) != prev_raw_count); 253 /* 254 * compute the delta 255 */ 256 delta = (new_raw_count - prev_raw_count) & 257 HISI_MAX_PERIOD(hisi_pmu->counter_bits); 258 local64_add(delta, &event->count); 259 } 260 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_event_update); 261 262 void hisi_uncore_pmu_start(struct perf_event *event, int flags) 263 { 264 struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); 265 struct hw_perf_event *hwc = &event->hw; 266 267 if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED))) 268 return; 269 270 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 271 hwc->state = 0; 272 hisi_uncore_pmu_set_event_period(event); 273 274 if (flags & PERF_EF_RELOAD) { 275 u64 prev_raw_count = local64_read(&hwc->prev_count); 276 277 hisi_pmu->ops->write_counter(hisi_pmu, hwc, prev_raw_count); 278 } 279 280 hisi_uncore_pmu_enable_event(event); 281 perf_event_update_userpage(event); 282 } 283 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_start); 284 285 void hisi_uncore_pmu_stop(struct perf_event *event, int flags) 286 { 287 struct hw_perf_event *hwc = &event->hw; 288 289 hisi_uncore_pmu_disable_event(event); 290 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 291 hwc->state |= PERF_HES_STOPPED; 292 293 if (hwc->state & PERF_HES_UPTODATE) 294 return; 295 296 /* Read hardware counter and update the perf counter statistics */ 297 hisi_uncore_pmu_event_update(event); 298 hwc->state |= PERF_HES_UPTODATE; 299 } 300 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_stop); 301 302 int hisi_uncore_pmu_add(struct perf_event *event, int flags) 303 { 304 struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); 305 struct hw_perf_event *hwc = &event->hw; 306 int idx; 307 308 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 309 310 /* Get an available counter index for counting */ 311 idx = hisi_pmu->ops->get_event_idx(event); 312 if (idx < 0) 313 return idx; 314 315 event->hw.idx = idx; 316 hisi_pmu->pmu_events.hw_events[idx] = event; 317 318 if (flags & PERF_EF_START) 319 hisi_uncore_pmu_start(event, PERF_EF_RELOAD); 320 321 return 0; 322 } 323 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_add); 324 325 void hisi_uncore_pmu_del(struct perf_event *event, int flags) 326 { 327 struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); 328 struct hw_perf_event *hwc = &event->hw; 329 330 hisi_uncore_pmu_stop(event, PERF_EF_UPDATE); 331 hisi_uncore_pmu_clear_event_idx(hisi_pmu, hwc->idx); 332 perf_event_update_userpage(event); 333 hisi_pmu->pmu_events.hw_events[hwc->idx] = NULL; 334 } 335 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_del); 336 337 void hisi_uncore_pmu_read(struct perf_event *event) 338 { 339 /* Read hardware counter and update the perf counter statistics */ 340 hisi_uncore_pmu_event_update(event); 341 } 342 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_read); 343 344 void hisi_uncore_pmu_enable(struct pmu *pmu) 345 { 346 struct hisi_pmu *hisi_pmu = to_hisi_pmu(pmu); 347 int enabled = bitmap_weight(hisi_pmu->pmu_events.used_mask, 348 hisi_pmu->num_counters); 349 350 if (!enabled) 351 return; 352 353 hisi_pmu->ops->start_counters(hisi_pmu); 354 } 355 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_enable); 356 357 void hisi_uncore_pmu_disable(struct pmu *pmu) 358 { 359 struct hisi_pmu *hisi_pmu = to_hisi_pmu(pmu); 360 361 hisi_pmu->ops->stop_counters(hisi_pmu); 362 } 363 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_disable); 364 365 366 /* 367 * The Super CPU Cluster (SCCL) and CPU Cluster (CCL) IDs can be 368 * determined from the MPIDR_EL1, but the encoding varies by CPU: 369 * 370 * - For MT variants of TSV110: 371 * SCCL is Aff2[7:3], CCL is Aff2[2:0] 372 * 373 * - For other MT parts: 374 * SCCL is Aff3[7:0], CCL is Aff2[7:0] 375 * 376 * - For non-MT parts: 377 * SCCL is Aff2[7:0], CCL is Aff1[7:0] 378 */ 379 static void hisi_read_sccl_and_ccl_id(int *scclp, int *cclp) 380 { 381 u64 mpidr = read_cpuid_mpidr(); 382 int aff3 = MPIDR_AFFINITY_LEVEL(mpidr, 3); 383 int aff2 = MPIDR_AFFINITY_LEVEL(mpidr, 2); 384 int aff1 = MPIDR_AFFINITY_LEVEL(mpidr, 1); 385 bool mt = mpidr & MPIDR_MT_BITMASK; 386 int sccl, ccl; 387 388 if (mt && read_cpuid_part_number() == HISI_CPU_PART_TSV110) { 389 sccl = aff2 >> 3; 390 ccl = aff2 & 0x7; 391 } else if (mt) { 392 sccl = aff3; 393 ccl = aff2; 394 } else { 395 sccl = aff2; 396 ccl = aff1; 397 } 398 399 if (scclp) 400 *scclp = sccl; 401 if (cclp) 402 *cclp = ccl; 403 } 404 405 /* 406 * Check whether the CPU is associated with this uncore PMU 407 */ 408 static bool hisi_pmu_cpu_is_associated_pmu(struct hisi_pmu *hisi_pmu) 409 { 410 int sccl_id, ccl_id; 411 412 if (hisi_pmu->ccl_id == -1) { 413 /* If CCL_ID is -1, the PMU only shares the same SCCL */ 414 hisi_read_sccl_and_ccl_id(&sccl_id, NULL); 415 416 return sccl_id == hisi_pmu->sccl_id; 417 } 418 419 hisi_read_sccl_and_ccl_id(&sccl_id, &ccl_id); 420 421 return sccl_id == hisi_pmu->sccl_id && ccl_id == hisi_pmu->ccl_id; 422 } 423 424 int hisi_uncore_pmu_online_cpu(unsigned int cpu, struct hlist_node *node) 425 { 426 struct hisi_pmu *hisi_pmu = hlist_entry_safe(node, struct hisi_pmu, 427 node); 428 429 if (!hisi_pmu_cpu_is_associated_pmu(hisi_pmu)) 430 return 0; 431 432 cpumask_set_cpu(cpu, &hisi_pmu->associated_cpus); 433 434 /* If another CPU is already managing this PMU, simply return. */ 435 if (hisi_pmu->on_cpu != -1) 436 return 0; 437 438 /* Use this CPU in cpumask for event counting */ 439 hisi_pmu->on_cpu = cpu; 440 441 /* Overflow interrupt also should use the same CPU */ 442 WARN_ON(irq_set_affinity_hint(hisi_pmu->irq, cpumask_of(cpu))); 443 444 return 0; 445 } 446 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_online_cpu); 447 448 int hisi_uncore_pmu_offline_cpu(unsigned int cpu, struct hlist_node *node) 449 { 450 struct hisi_pmu *hisi_pmu = hlist_entry_safe(node, struct hisi_pmu, 451 node); 452 cpumask_t pmu_online_cpus; 453 unsigned int target; 454 455 if (!cpumask_test_and_clear_cpu(cpu, &hisi_pmu->associated_cpus)) 456 return 0; 457 458 /* Nothing to do if this CPU doesn't own the PMU */ 459 if (hisi_pmu->on_cpu != cpu) 460 return 0; 461 462 /* Give up ownership of the PMU */ 463 hisi_pmu->on_cpu = -1; 464 465 /* Choose a new CPU to migrate ownership of the PMU to */ 466 cpumask_and(&pmu_online_cpus, &hisi_pmu->associated_cpus, 467 cpu_online_mask); 468 target = cpumask_any_but(&pmu_online_cpus, cpu); 469 if (target >= nr_cpu_ids) 470 return 0; 471 472 perf_pmu_migrate_context(&hisi_pmu->pmu, cpu, target); 473 /* Use this CPU for event counting */ 474 hisi_pmu->on_cpu = target; 475 WARN_ON(irq_set_affinity_hint(hisi_pmu->irq, cpumask_of(target))); 476 477 return 0; 478 } 479 EXPORT_SYMBOL_GPL(hisi_uncore_pmu_offline_cpu); 480 481 MODULE_LICENSE("GPL v2"); 482