1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Perf support for the Statistical Profiling Extension, introduced as 4 * part of ARMv8.2. 5 * 6 * Copyright (C) 2016 ARM Limited 7 * 8 * Author: Will Deacon <will.deacon@arm.com> 9 */ 10 11 #define PMUNAME "arm_spe" 12 #define DRVNAME PMUNAME "_pmu" 13 #define pr_fmt(fmt) DRVNAME ": " fmt 14 15 #include <linux/bitfield.h> 16 #include <linux/bitops.h> 17 #include <linux/bug.h> 18 #include <linux/capability.h> 19 #include <linux/cpuhotplug.h> 20 #include <linux/cpumask.h> 21 #include <linux/device.h> 22 #include <linux/errno.h> 23 #include <linux/interrupt.h> 24 #include <linux/irq.h> 25 #include <linux/kernel.h> 26 #include <linux/list.h> 27 #include <linux/module.h> 28 #include <linux/of.h> 29 #include <linux/perf_event.h> 30 #include <linux/perf/arm_pmu.h> 31 #include <linux/platform_device.h> 32 #include <linux/printk.h> 33 #include <linux/slab.h> 34 #include <linux/smp.h> 35 #include <linux/vmalloc.h> 36 37 #include <asm/barrier.h> 38 #include <asm/cpufeature.h> 39 #include <asm/mmu.h> 40 #include <asm/sysreg.h> 41 42 /* 43 * Cache if the event is allowed to trace Context information. 44 * This allows us to perform the check, i.e, perf_allow_kernel(), 45 * in the context of the event owner, once, during the event_init(). 46 */ 47 #define SPE_PMU_HW_FLAGS_CX 0x00001 48 49 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX); 50 51 static void set_spe_event_has_cx(struct perf_event *event) 52 { 53 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && !perf_allow_kernel(&event->attr)) 54 event->hw.flags |= SPE_PMU_HW_FLAGS_CX; 55 } 56 57 static bool get_spe_event_has_cx(struct perf_event *event) 58 { 59 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX); 60 } 61 62 #define ARM_SPE_BUF_PAD_BYTE 0 63 64 struct arm_spe_pmu_buf { 65 int nr_pages; 66 bool snapshot; 67 void *base; 68 }; 69 70 struct arm_spe_pmu { 71 struct pmu pmu; 72 struct platform_device *pdev; 73 cpumask_t supported_cpus; 74 struct hlist_node hotplug_node; 75 76 int irq; /* PPI */ 77 u16 pmsver; 78 u16 min_period; 79 u16 counter_sz; 80 81 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0) 82 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1) 83 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2) 84 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3) 85 #define SPE_PMU_FEAT_LDS (1UL << 4) 86 #define SPE_PMU_FEAT_ERND (1UL << 5) 87 #define SPE_PMU_FEAT_INV_FILT_EVT (1UL << 6) 88 #define SPE_PMU_FEAT_DISCARD (1UL << 7) 89 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63) 90 u64 features; 91 92 u16 max_record_sz; 93 u16 align; 94 struct perf_output_handle __percpu *handle; 95 }; 96 97 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) 98 99 /* Convert a free-running index from perf into an SPE buffer offset */ 100 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 101 102 /* Keep track of our dynamic hotplug state */ 103 static enum cpuhp_state arm_spe_pmu_online; 104 105 enum arm_spe_pmu_buf_fault_action { 106 SPE_PMU_BUF_FAULT_ACT_SPURIOUS, 107 SPE_PMU_BUF_FAULT_ACT_FATAL, 108 SPE_PMU_BUF_FAULT_ACT_OK, 109 }; 110 111 /* This sysfs gunk was really good fun to write. */ 112 enum arm_spe_pmu_capabilities { 113 SPE_PMU_CAP_ARCH_INST = 0, 114 SPE_PMU_CAP_ERND, 115 SPE_PMU_CAP_FEAT_MAX, 116 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, 117 SPE_PMU_CAP_MIN_IVAL, 118 }; 119 120 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { 121 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST, 122 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND, 123 }; 124 125 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) 126 { 127 if (cap < SPE_PMU_CAP_FEAT_MAX) 128 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); 129 130 switch (cap) { 131 case SPE_PMU_CAP_CNT_SZ: 132 return spe_pmu->counter_sz; 133 case SPE_PMU_CAP_MIN_IVAL: 134 return spe_pmu->min_period; 135 default: 136 WARN(1, "unknown cap %d\n", cap); 137 } 138 139 return 0; 140 } 141 142 static ssize_t arm_spe_pmu_cap_show(struct device *dev, 143 struct device_attribute *attr, 144 char *buf) 145 { 146 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 147 struct dev_ext_attribute *ea = 148 container_of(attr, struct dev_ext_attribute, attr); 149 int cap = (long)ea->var; 150 151 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap)); 152 } 153 154 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \ 155 &((struct dev_ext_attribute[]) { \ 156 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \ 157 })[0].attr.attr 158 159 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \ 160 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) 161 162 static struct attribute *arm_spe_pmu_cap_attr[] = { 163 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), 164 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), 165 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), 166 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), 167 NULL, 168 }; 169 170 static const struct attribute_group arm_spe_pmu_cap_group = { 171 .name = "caps", 172 .attrs = arm_spe_pmu_cap_attr, 173 }; 174 175 /* User ABI */ 176 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */ 177 #define ATTR_CFG_FLD_ts_enable_LO 0 178 #define ATTR_CFG_FLD_ts_enable_HI 0 179 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */ 180 #define ATTR_CFG_FLD_pa_enable_LO 1 181 #define ATTR_CFG_FLD_pa_enable_HI 1 182 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */ 183 #define ATTR_CFG_FLD_pct_enable_LO 2 184 #define ATTR_CFG_FLD_pct_enable_HI 2 185 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */ 186 #define ATTR_CFG_FLD_jitter_LO 16 187 #define ATTR_CFG_FLD_jitter_HI 16 188 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */ 189 #define ATTR_CFG_FLD_branch_filter_LO 32 190 #define ATTR_CFG_FLD_branch_filter_HI 32 191 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */ 192 #define ATTR_CFG_FLD_load_filter_LO 33 193 #define ATTR_CFG_FLD_load_filter_HI 33 194 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */ 195 #define ATTR_CFG_FLD_store_filter_LO 34 196 #define ATTR_CFG_FLD_store_filter_HI 34 197 #define ATTR_CFG_FLD_discard_CFG config /* PMBLIMITR_EL1.FM = DISCARD */ 198 #define ATTR_CFG_FLD_discard_LO 35 199 #define ATTR_CFG_FLD_discard_HI 35 200 201 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */ 202 #define ATTR_CFG_FLD_event_filter_LO 0 203 #define ATTR_CFG_FLD_event_filter_HI 63 204 205 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */ 206 #define ATTR_CFG_FLD_min_latency_LO 0 207 #define ATTR_CFG_FLD_min_latency_HI 11 208 209 #define ATTR_CFG_FLD_inv_event_filter_CFG config3 /* PMSNEVFR_EL1 */ 210 #define ATTR_CFG_FLD_inv_event_filter_LO 0 211 #define ATTR_CFG_FLD_inv_event_filter_HI 63 212 213 GEN_PMU_FORMAT_ATTR(ts_enable); 214 GEN_PMU_FORMAT_ATTR(pa_enable); 215 GEN_PMU_FORMAT_ATTR(pct_enable); 216 GEN_PMU_FORMAT_ATTR(jitter); 217 GEN_PMU_FORMAT_ATTR(branch_filter); 218 GEN_PMU_FORMAT_ATTR(load_filter); 219 GEN_PMU_FORMAT_ATTR(store_filter); 220 GEN_PMU_FORMAT_ATTR(event_filter); 221 GEN_PMU_FORMAT_ATTR(inv_event_filter); 222 GEN_PMU_FORMAT_ATTR(min_latency); 223 GEN_PMU_FORMAT_ATTR(discard); 224 225 static struct attribute *arm_spe_pmu_formats_attr[] = { 226 &format_attr_ts_enable.attr, 227 &format_attr_pa_enable.attr, 228 &format_attr_pct_enable.attr, 229 &format_attr_jitter.attr, 230 &format_attr_branch_filter.attr, 231 &format_attr_load_filter.attr, 232 &format_attr_store_filter.attr, 233 &format_attr_event_filter.attr, 234 &format_attr_inv_event_filter.attr, 235 &format_attr_min_latency.attr, 236 &format_attr_discard.attr, 237 NULL, 238 }; 239 240 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj, 241 struct attribute *attr, 242 int unused) 243 { 244 struct device *dev = kobj_to_dev(kobj); 245 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 246 247 if (attr == &format_attr_discard.attr && !(spe_pmu->features & SPE_PMU_FEAT_DISCARD)) 248 return 0; 249 250 if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT)) 251 return 0; 252 253 return attr->mode; 254 } 255 256 static const struct attribute_group arm_spe_pmu_format_group = { 257 .name = "format", 258 .is_visible = arm_spe_pmu_format_attr_is_visible, 259 .attrs = arm_spe_pmu_formats_attr, 260 }; 261 262 static ssize_t cpumask_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 266 267 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); 268 } 269 static DEVICE_ATTR_RO(cpumask); 270 271 static struct attribute *arm_spe_pmu_attrs[] = { 272 &dev_attr_cpumask.attr, 273 NULL, 274 }; 275 276 static const struct attribute_group arm_spe_pmu_group = { 277 .attrs = arm_spe_pmu_attrs, 278 }; 279 280 static const struct attribute_group *arm_spe_pmu_attr_groups[] = { 281 &arm_spe_pmu_group, 282 &arm_spe_pmu_cap_group, 283 &arm_spe_pmu_format_group, 284 NULL, 285 }; 286 287 /* Convert between user ABI and register values */ 288 static u64 arm_spe_event_to_pmscr(struct perf_event *event) 289 { 290 struct perf_event_attr *attr = &event->attr; 291 u64 reg = 0; 292 293 reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable)); 294 reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable)); 295 reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable)); 296 297 if (!attr->exclude_user) 298 reg |= PMSCR_EL1_E0SPE; 299 300 if (!attr->exclude_kernel) 301 reg |= PMSCR_EL1_E1SPE; 302 303 if (get_spe_event_has_cx(event)) 304 reg |= PMSCR_EL1_CX; 305 306 return reg; 307 } 308 309 static void arm_spe_event_sanitise_period(struct perf_event *event) 310 { 311 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 312 u64 period = event->hw.sample_period; 313 u64 max_period = PMSIRR_EL1_INTERVAL_MASK; 314 315 if (period < spe_pmu->min_period) 316 period = spe_pmu->min_period; 317 else if (period > max_period) 318 period = max_period; 319 else 320 period &= max_period; 321 322 event->hw.sample_period = period; 323 } 324 325 static u64 arm_spe_event_to_pmsirr(struct perf_event *event) 326 { 327 struct perf_event_attr *attr = &event->attr; 328 u64 reg = 0; 329 330 arm_spe_event_sanitise_period(event); 331 332 reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter)); 333 reg |= event->hw.sample_period; 334 335 return reg; 336 } 337 338 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) 339 { 340 struct perf_event_attr *attr = &event->attr; 341 u64 reg = 0; 342 343 reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter)); 344 reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter)); 345 reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter)); 346 347 if (reg) 348 reg |= PMSFCR_EL1_FT; 349 350 if (ATTR_CFG_GET_FLD(attr, event_filter)) 351 reg |= PMSFCR_EL1_FE; 352 353 if (ATTR_CFG_GET_FLD(attr, inv_event_filter)) 354 reg |= PMSFCR_EL1_FnE; 355 356 if (ATTR_CFG_GET_FLD(attr, min_latency)) 357 reg |= PMSFCR_EL1_FL; 358 359 return reg; 360 } 361 362 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) 363 { 364 struct perf_event_attr *attr = &event->attr; 365 return ATTR_CFG_GET_FLD(attr, event_filter); 366 } 367 368 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event) 369 { 370 struct perf_event_attr *attr = &event->attr; 371 return ATTR_CFG_GET_FLD(attr, inv_event_filter); 372 } 373 374 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) 375 { 376 struct perf_event_attr *attr = &event->attr; 377 return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency)); 378 } 379 380 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) 381 { 382 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 383 u64 head = PERF_IDX2OFF(handle->head, buf); 384 385 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); 386 if (!buf->snapshot) 387 perf_aux_output_skip(handle, len); 388 } 389 390 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) 391 { 392 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 393 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 394 u64 head = PERF_IDX2OFF(handle->head, buf); 395 u64 limit = buf->nr_pages * PAGE_SIZE; 396 397 /* 398 * The trace format isn't parseable in reverse, so clamp 399 * the limit to half of the buffer size in snapshot mode 400 * so that the worst case is half a buffer of records, as 401 * opposed to a single record. 402 */ 403 if (head < limit >> 1) 404 limit >>= 1; 405 406 /* 407 * If we're within max_record_sz of the limit, we must 408 * pad, move the head index and recompute the limit. 409 */ 410 if (limit - head < spe_pmu->max_record_sz) { 411 arm_spe_pmu_pad_buf(handle, limit - head); 412 handle->head = PERF_IDX2OFF(limit, buf); 413 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; 414 } 415 416 return limit; 417 } 418 419 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) 420 { 421 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 422 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 423 const u64 bufsize = buf->nr_pages * PAGE_SIZE; 424 u64 limit = bufsize; 425 u64 head, tail, wakeup; 426 427 /* 428 * The head can be misaligned for two reasons: 429 * 430 * 1. The hardware left PMBPTR pointing to the first byte after 431 * a record when generating a buffer management event. 432 * 433 * 2. We used perf_aux_output_skip to consume handle->size bytes 434 * and CIRC_SPACE was used to compute the size, which always 435 * leaves one entry free. 436 * 437 * Deal with this by padding to the next alignment boundary and 438 * moving the head index. If we run out of buffer space, we'll 439 * reduce handle->size to zero and end up reporting truncation. 440 */ 441 head = PERF_IDX2OFF(handle->head, buf); 442 if (!IS_ALIGNED(head, spe_pmu->align)) { 443 unsigned long delta = roundup(head, spe_pmu->align) - head; 444 445 delta = min(delta, handle->size); 446 arm_spe_pmu_pad_buf(handle, delta); 447 head = PERF_IDX2OFF(handle->head, buf); 448 } 449 450 /* If we've run out of free space, then nothing more to do */ 451 if (!handle->size) 452 goto no_space; 453 454 /* Compute the tail and wakeup indices now that we've aligned head */ 455 tail = PERF_IDX2OFF(handle->head + handle->size, buf); 456 wakeup = PERF_IDX2OFF(handle->wakeup, buf); 457 458 /* 459 * Avoid clobbering unconsumed data. We know we have space, so 460 * if we see head == tail we know that the buffer is empty. If 461 * head > tail, then there's nothing to clobber prior to 462 * wrapping. 463 */ 464 if (head < tail) 465 limit = round_down(tail, PAGE_SIZE); 466 467 /* 468 * Wakeup may be arbitrarily far into the future. If it's not in 469 * the current generation, either we'll wrap before hitting it, 470 * or it's in the past and has been handled already. 471 * 472 * If there's a wakeup before we wrap, arrange to be woken up by 473 * the page boundary following it. Keep the tail boundary if 474 * that's lower. 475 */ 476 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) 477 limit = min(limit, round_up(wakeup, PAGE_SIZE)); 478 479 if (limit > head) 480 return limit; 481 482 arm_spe_pmu_pad_buf(handle, handle->size); 483 no_space: 484 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 485 perf_aux_output_end(handle, 0); 486 return 0; 487 } 488 489 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) 490 { 491 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 492 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 493 u64 limit = __arm_spe_pmu_next_off(handle); 494 u64 head = PERF_IDX2OFF(handle->head, buf); 495 496 /* 497 * If the head has come too close to the end of the buffer, 498 * then pad to the end and recompute the limit. 499 */ 500 if (limit && (limit - head < spe_pmu->max_record_sz)) { 501 arm_spe_pmu_pad_buf(handle, limit - head); 502 limit = __arm_spe_pmu_next_off(handle); 503 } 504 505 return limit; 506 } 507 508 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, 509 struct perf_event *event) 510 { 511 u64 base, limit; 512 struct arm_spe_pmu_buf *buf; 513 514 if (ATTR_CFG_GET_FLD(&event->attr, discard)) { 515 limit = FIELD_PREP(PMBLIMITR_EL1_FM, PMBLIMITR_EL1_FM_DISCARD); 516 limit |= PMBLIMITR_EL1_E; 517 goto out_write_limit; 518 } 519 520 /* Start a new aux session */ 521 buf = perf_aux_output_begin(handle, event); 522 if (!buf) { 523 event->hw.state |= PERF_HES_STOPPED; 524 /* 525 * We still need to clear the limit pointer, since the 526 * profiler might only be disabled by virtue of a fault. 527 */ 528 limit = 0; 529 goto out_write_limit; 530 } 531 532 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) 533 : arm_spe_pmu_next_off(handle); 534 if (limit) 535 limit |= PMBLIMITR_EL1_E; 536 537 limit += (u64)buf->base; 538 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); 539 write_sysreg_s(base, SYS_PMBPTR_EL1); 540 541 out_write_limit: 542 write_sysreg_s(limit, SYS_PMBLIMITR_EL1); 543 } 544 545 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) 546 { 547 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 548 u64 offset, size; 549 550 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; 551 size = offset - PERF_IDX2OFF(handle->head, buf); 552 553 if (buf->snapshot) 554 handle->head = offset; 555 556 perf_aux_output_end(handle, size); 557 } 558 559 static void arm_spe_pmu_disable_and_drain_local(void) 560 { 561 /* Disable profiling at EL0 and EL1 */ 562 write_sysreg_s(0, SYS_PMSCR_EL1); 563 isb(); 564 565 /* Drain any buffered data */ 566 psb_csync(); 567 dsb(nsh); 568 569 /* Disable the profiling buffer */ 570 write_sysreg_s(0, SYS_PMBLIMITR_EL1); 571 isb(); 572 } 573 574 /* IRQ handling */ 575 static enum arm_spe_pmu_buf_fault_action 576 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) 577 { 578 const char *err_str; 579 u64 pmbsr; 580 enum arm_spe_pmu_buf_fault_action ret; 581 582 /* 583 * Ensure new profiling data is visible to the CPU and any external 584 * aborts have been resolved. 585 */ 586 psb_csync(); 587 dsb(nsh); 588 589 /* Ensure hardware updates to PMBPTR_EL1 are visible */ 590 isb(); 591 592 /* Service required? */ 593 pmbsr = read_sysreg_s(SYS_PMBSR_EL1); 594 if (!FIELD_GET(PMBSR_EL1_S, pmbsr)) 595 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; 596 597 /* 598 * If we've lost data, disable profiling and also set the PARTIAL 599 * flag to indicate that the last record is corrupted. 600 */ 601 if (FIELD_GET(PMBSR_EL1_DL, pmbsr)) 602 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | 603 PERF_AUX_FLAG_PARTIAL); 604 605 /* Report collisions to userspace so that it can up the period */ 606 if (FIELD_GET(PMBSR_EL1_COLL, pmbsr)) 607 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); 608 609 /* We only expect buffer management events */ 610 switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) { 611 case PMBSR_EL1_EC_BUF: 612 /* Handled below */ 613 break; 614 case PMBSR_EL1_EC_FAULT_S1: 615 case PMBSR_EL1_EC_FAULT_S2: 616 err_str = "Unexpected buffer fault"; 617 goto out_err; 618 default: 619 err_str = "Unknown error code"; 620 goto out_err; 621 } 622 623 /* Buffer management event */ 624 switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) { 625 case PMBSR_EL1_BUF_BSC_FULL: 626 ret = SPE_PMU_BUF_FAULT_ACT_OK; 627 goto out_stop; 628 default: 629 err_str = "Unknown buffer status code"; 630 } 631 632 out_err: 633 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", 634 err_str, smp_processor_id(), pmbsr, 635 read_sysreg_s(SYS_PMBPTR_EL1), 636 read_sysreg_s(SYS_PMBLIMITR_EL1)); 637 ret = SPE_PMU_BUF_FAULT_ACT_FATAL; 638 639 out_stop: 640 arm_spe_perf_aux_output_end(handle); 641 return ret; 642 } 643 644 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) 645 { 646 struct perf_output_handle *handle = dev; 647 struct perf_event *event = handle->event; 648 enum arm_spe_pmu_buf_fault_action act; 649 650 if (!perf_get_aux(handle)) 651 return IRQ_NONE; 652 653 act = arm_spe_pmu_buf_get_fault_act(handle); 654 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 655 return IRQ_NONE; 656 657 /* 658 * Ensure perf callbacks have completed, which may disable the 659 * profiling buffer in response to a TRUNCATION flag. 660 */ 661 irq_work_run(); 662 663 switch (act) { 664 case SPE_PMU_BUF_FAULT_ACT_FATAL: 665 /* 666 * If a fatal exception occurred then leaving the profiling 667 * buffer enabled is a recipe waiting to happen. Since 668 * fatal faults don't always imply truncation, make sure 669 * that the profiling buffer is disabled explicitly before 670 * clearing the syndrome register. 671 */ 672 arm_spe_pmu_disable_and_drain_local(); 673 break; 674 case SPE_PMU_BUF_FAULT_ACT_OK: 675 /* 676 * We handled the fault (the buffer was full), so resume 677 * profiling as long as we didn't detect truncation. 678 * PMBPTR might be misaligned, but we'll burn that bridge 679 * when we get to it. 680 */ 681 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { 682 arm_spe_perf_aux_output_begin(handle, event); 683 isb(); 684 } 685 break; 686 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: 687 /* We've seen you before, but GCC has the memory of a sieve. */ 688 break; 689 } 690 691 /* The buffer pointers are now sane, so resume profiling. */ 692 write_sysreg_s(0, SYS_PMBSR_EL1); 693 return IRQ_HANDLED; 694 } 695 696 static u64 arm_spe_pmsevfr_res0(u16 pmsver) 697 { 698 switch (pmsver) { 699 case ID_AA64DFR0_EL1_PMSVer_IMP: 700 return PMSEVFR_EL1_RES0_IMP; 701 case ID_AA64DFR0_EL1_PMSVer_V1P1: 702 return PMSEVFR_EL1_RES0_V1P1; 703 case ID_AA64DFR0_EL1_PMSVer_V1P2: 704 /* Return the highest version we support in default */ 705 default: 706 return PMSEVFR_EL1_RES0_V1P2; 707 } 708 } 709 710 /* Perf callbacks */ 711 static int arm_spe_pmu_event_init(struct perf_event *event) 712 { 713 u64 reg; 714 struct perf_event_attr *attr = &event->attr; 715 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 716 717 /* This is, of course, deeply driver-specific */ 718 if (attr->type != event->pmu->type) 719 return -ENOENT; 720 721 if (event->cpu >= 0 && 722 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) 723 return -ENOENT; 724 725 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver)) 726 return -EOPNOTSUPP; 727 728 if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver)) 729 return -EOPNOTSUPP; 730 731 if (attr->exclude_idle) 732 return -EOPNOTSUPP; 733 734 /* 735 * Feedback-directed frequency throttling doesn't work when we 736 * have a buffer of samples. We'd need to manually count the 737 * samples in the buffer when it fills up and adjust the event 738 * count to reflect that. Instead, just force the user to specify 739 * a sample period. 740 */ 741 if (attr->freq) 742 return -EINVAL; 743 744 reg = arm_spe_event_to_pmsfcr(event); 745 if ((FIELD_GET(PMSFCR_EL1_FE, reg)) && 746 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) 747 return -EOPNOTSUPP; 748 749 if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) && 750 !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT)) 751 return -EOPNOTSUPP; 752 753 if ((FIELD_GET(PMSFCR_EL1_FT, reg)) && 754 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) 755 return -EOPNOTSUPP; 756 757 if ((FIELD_GET(PMSFCR_EL1_FL, reg)) && 758 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) 759 return -EOPNOTSUPP; 760 761 if (ATTR_CFG_GET_FLD(&event->attr, discard) && 762 !(spe_pmu->features & SPE_PMU_FEAT_DISCARD)) 763 return -EOPNOTSUPP; 764 765 set_spe_event_has_cx(event); 766 reg = arm_spe_event_to_pmscr(event); 767 if (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT)) 768 return perf_allow_kernel(&event->attr); 769 770 return 0; 771 } 772 773 static void arm_spe_pmu_start(struct perf_event *event, int flags) 774 { 775 u64 reg; 776 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 777 struct hw_perf_event *hwc = &event->hw; 778 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 779 780 hwc->state = 0; 781 arm_spe_perf_aux_output_begin(handle, event); 782 if (hwc->state) 783 return; 784 785 reg = arm_spe_event_to_pmsfcr(event); 786 write_sysreg_s(reg, SYS_PMSFCR_EL1); 787 788 reg = arm_spe_event_to_pmsevfr(event); 789 write_sysreg_s(reg, SYS_PMSEVFR_EL1); 790 791 if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) { 792 reg = arm_spe_event_to_pmsnevfr(event); 793 write_sysreg_s(reg, SYS_PMSNEVFR_EL1); 794 } 795 796 reg = arm_spe_event_to_pmslatfr(event); 797 write_sysreg_s(reg, SYS_PMSLATFR_EL1); 798 799 if (flags & PERF_EF_RELOAD) { 800 reg = arm_spe_event_to_pmsirr(event); 801 write_sysreg_s(reg, SYS_PMSIRR_EL1); 802 isb(); 803 reg = local64_read(&hwc->period_left); 804 write_sysreg_s(reg, SYS_PMSICR_EL1); 805 } 806 807 reg = arm_spe_event_to_pmscr(event); 808 isb(); 809 write_sysreg_s(reg, SYS_PMSCR_EL1); 810 } 811 812 static void arm_spe_pmu_stop(struct perf_event *event, int flags) 813 { 814 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 815 struct hw_perf_event *hwc = &event->hw; 816 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 817 818 /* If we're already stopped, then nothing to do */ 819 if (hwc->state & PERF_HES_STOPPED) 820 return; 821 822 /* Stop all trace generation */ 823 arm_spe_pmu_disable_and_drain_local(); 824 825 if (flags & PERF_EF_UPDATE) { 826 /* 827 * If there's a fault pending then ensure we contain it 828 * to this buffer, since we might be on the context-switch 829 * path. 830 */ 831 if (perf_get_aux(handle)) { 832 enum arm_spe_pmu_buf_fault_action act; 833 834 act = arm_spe_pmu_buf_get_fault_act(handle); 835 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 836 arm_spe_perf_aux_output_end(handle); 837 else 838 write_sysreg_s(0, SYS_PMBSR_EL1); 839 } 840 841 /* 842 * This may also contain ECOUNT, but nobody else should 843 * be looking at period_left, since we forbid frequency 844 * based sampling. 845 */ 846 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); 847 hwc->state |= PERF_HES_UPTODATE; 848 } 849 850 hwc->state |= PERF_HES_STOPPED; 851 } 852 853 static int arm_spe_pmu_add(struct perf_event *event, int flags) 854 { 855 int ret = 0; 856 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 857 struct hw_perf_event *hwc = &event->hw; 858 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; 859 860 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 861 return -ENOENT; 862 863 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 864 865 if (flags & PERF_EF_START) { 866 arm_spe_pmu_start(event, PERF_EF_RELOAD); 867 if (hwc->state & PERF_HES_STOPPED) 868 ret = -EINVAL; 869 } 870 871 return ret; 872 } 873 874 static void arm_spe_pmu_del(struct perf_event *event, int flags) 875 { 876 arm_spe_pmu_stop(event, PERF_EF_UPDATE); 877 } 878 879 static void arm_spe_pmu_read(struct perf_event *event) 880 { 881 } 882 883 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages, 884 int nr_pages, bool snapshot) 885 { 886 int i, cpu = event->cpu; 887 struct page **pglist; 888 struct arm_spe_pmu_buf *buf; 889 890 /* We need at least two pages for this to work. */ 891 if (nr_pages < 2) 892 return NULL; 893 894 /* 895 * We require an even number of pages for snapshot mode, so that 896 * we can effectively treat the buffer as consisting of two equal 897 * parts and give userspace a fighting chance of getting some 898 * useful data out of it. 899 */ 900 if (snapshot && (nr_pages & 1)) 901 return NULL; 902 903 if (cpu == -1) 904 cpu = raw_smp_processor_id(); 905 906 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); 907 if (!buf) 908 return NULL; 909 910 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); 911 if (!pglist) 912 goto out_free_buf; 913 914 for (i = 0; i < nr_pages; ++i) 915 pglist[i] = virt_to_page(pages[i]); 916 917 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); 918 if (!buf->base) 919 goto out_free_pglist; 920 921 buf->nr_pages = nr_pages; 922 buf->snapshot = snapshot; 923 924 kfree(pglist); 925 return buf; 926 927 out_free_pglist: 928 kfree(pglist); 929 out_free_buf: 930 kfree(buf); 931 return NULL; 932 } 933 934 static void arm_spe_pmu_free_aux(void *aux) 935 { 936 struct arm_spe_pmu_buf *buf = aux; 937 938 vunmap(buf->base); 939 kfree(buf); 940 } 941 942 /* Initialisation and teardown functions */ 943 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) 944 { 945 static atomic_t pmu_idx = ATOMIC_INIT(-1); 946 947 int idx; 948 char *name; 949 struct device *dev = &spe_pmu->pdev->dev; 950 951 spe_pmu->pmu = (struct pmu) { 952 .module = THIS_MODULE, 953 .parent = &spe_pmu->pdev->dev, 954 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, 955 .attr_groups = arm_spe_pmu_attr_groups, 956 /* 957 * We hitch a ride on the software context here, so that 958 * we can support per-task profiling (which is not possible 959 * with the invalid context as it doesn't get sched callbacks). 960 * This requires that userspace either uses a dummy event for 961 * perf_event_open, since the aux buffer is not setup until 962 * a subsequent mmap, or creates the profiling event in a 963 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it 964 * once the buffer has been created. 965 */ 966 .task_ctx_nr = perf_sw_context, 967 .event_init = arm_spe_pmu_event_init, 968 .add = arm_spe_pmu_add, 969 .del = arm_spe_pmu_del, 970 .start = arm_spe_pmu_start, 971 .stop = arm_spe_pmu_stop, 972 .read = arm_spe_pmu_read, 973 .setup_aux = arm_spe_pmu_setup_aux, 974 .free_aux = arm_spe_pmu_free_aux, 975 }; 976 977 idx = atomic_inc_return(&pmu_idx); 978 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); 979 if (!name) { 980 dev_err(dev, "failed to allocate name for pmu %d\n", idx); 981 return -ENOMEM; 982 } 983 984 return perf_pmu_register(&spe_pmu->pmu, name, -1); 985 } 986 987 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) 988 { 989 perf_pmu_unregister(&spe_pmu->pmu); 990 } 991 992 static void __arm_spe_pmu_dev_probe(void *info) 993 { 994 int fld; 995 u64 reg; 996 struct arm_spe_pmu *spe_pmu = info; 997 struct device *dev = &spe_pmu->pdev->dev; 998 999 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), 1000 ID_AA64DFR0_EL1_PMSVer_SHIFT); 1001 if (!fld) { 1002 dev_err(dev, 1003 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", 1004 fld, smp_processor_id()); 1005 return; 1006 } 1007 spe_pmu->pmsver = (u16)fld; 1008 1009 /* Read PMBIDR first to determine whether or not we have access */ 1010 reg = read_sysreg_s(SYS_PMBIDR_EL1); 1011 if (FIELD_GET(PMBIDR_EL1_P, reg)) { 1012 dev_err(dev, 1013 "profiling buffer owned by higher exception level\n"); 1014 return; 1015 } 1016 1017 /* Minimum alignment. If it's out-of-range, then fail the probe */ 1018 fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg); 1019 spe_pmu->align = 1 << fld; 1020 if (spe_pmu->align > SZ_2K) { 1021 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", 1022 fld, smp_processor_id()); 1023 return; 1024 } 1025 1026 /* It's now safe to read PMSIDR and figure out what we've got */ 1027 reg = read_sysreg_s(SYS_PMSIDR_EL1); 1028 if (FIELD_GET(PMSIDR_EL1_FE, reg)) 1029 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; 1030 1031 if (FIELD_GET(PMSIDR_EL1_FnE, reg)) 1032 spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT; 1033 1034 if (FIELD_GET(PMSIDR_EL1_FT, reg)) 1035 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; 1036 1037 if (FIELD_GET(PMSIDR_EL1_FL, reg)) 1038 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; 1039 1040 if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg)) 1041 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; 1042 1043 if (FIELD_GET(PMSIDR_EL1_LDS, reg)) 1044 spe_pmu->features |= SPE_PMU_FEAT_LDS; 1045 1046 if (FIELD_GET(PMSIDR_EL1_ERND, reg)) 1047 spe_pmu->features |= SPE_PMU_FEAT_ERND; 1048 1049 if (spe_pmu->pmsver >= ID_AA64DFR0_EL1_PMSVer_V1P2) 1050 spe_pmu->features |= SPE_PMU_FEAT_DISCARD; 1051 1052 /* This field has a spaced out encoding, so just use a look-up */ 1053 fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg); 1054 switch (fld) { 1055 case PMSIDR_EL1_INTERVAL_256: 1056 spe_pmu->min_period = 256; 1057 break; 1058 case PMSIDR_EL1_INTERVAL_512: 1059 spe_pmu->min_period = 512; 1060 break; 1061 case PMSIDR_EL1_INTERVAL_768: 1062 spe_pmu->min_period = 768; 1063 break; 1064 case PMSIDR_EL1_INTERVAL_1024: 1065 spe_pmu->min_period = 1024; 1066 break; 1067 case PMSIDR_EL1_INTERVAL_1536: 1068 spe_pmu->min_period = 1536; 1069 break; 1070 case PMSIDR_EL1_INTERVAL_2048: 1071 spe_pmu->min_period = 2048; 1072 break; 1073 case PMSIDR_EL1_INTERVAL_3072: 1074 spe_pmu->min_period = 3072; 1075 break; 1076 default: 1077 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", 1078 fld); 1079 fallthrough; 1080 case PMSIDR_EL1_INTERVAL_4096: 1081 spe_pmu->min_period = 4096; 1082 } 1083 1084 /* Maximum record size. If it's out-of-range, then fail the probe */ 1085 fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg); 1086 spe_pmu->max_record_sz = 1 << fld; 1087 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { 1088 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", 1089 fld, smp_processor_id()); 1090 return; 1091 } 1092 1093 fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg); 1094 switch (fld) { 1095 default: 1096 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", 1097 fld); 1098 fallthrough; 1099 case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT: 1100 spe_pmu->counter_sz = 12; 1101 break; 1102 case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT: 1103 spe_pmu->counter_sz = 16; 1104 } 1105 1106 dev_info(dev, 1107 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", 1108 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus), 1109 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); 1110 1111 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; 1112 } 1113 1114 static void __arm_spe_pmu_reset_local(void) 1115 { 1116 /* 1117 * This is probably overkill, as we have no idea where we're 1118 * draining any buffered data to... 1119 */ 1120 arm_spe_pmu_disable_and_drain_local(); 1121 1122 /* Reset the buffer base pointer */ 1123 write_sysreg_s(0, SYS_PMBPTR_EL1); 1124 isb(); 1125 1126 /* Clear any pending management interrupts */ 1127 write_sysreg_s(0, SYS_PMBSR_EL1); 1128 isb(); 1129 } 1130 1131 static void __arm_spe_pmu_setup_one(void *info) 1132 { 1133 struct arm_spe_pmu *spe_pmu = info; 1134 1135 __arm_spe_pmu_reset_local(); 1136 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); 1137 } 1138 1139 static void __arm_spe_pmu_stop_one(void *info) 1140 { 1141 struct arm_spe_pmu *spe_pmu = info; 1142 1143 disable_percpu_irq(spe_pmu->irq); 1144 __arm_spe_pmu_reset_local(); 1145 } 1146 1147 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) 1148 { 1149 struct arm_spe_pmu *spe_pmu; 1150 1151 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1152 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1153 return 0; 1154 1155 __arm_spe_pmu_setup_one(spe_pmu); 1156 return 0; 1157 } 1158 1159 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1160 { 1161 struct arm_spe_pmu *spe_pmu; 1162 1163 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1164 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1165 return 0; 1166 1167 __arm_spe_pmu_stop_one(spe_pmu); 1168 return 0; 1169 } 1170 1171 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) 1172 { 1173 int ret; 1174 cpumask_t *mask = &spe_pmu->supported_cpus; 1175 1176 /* Make sure we probe the hardware on a relevant CPU */ 1177 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1); 1178 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) 1179 return -ENXIO; 1180 1181 /* Request our PPIs (note that the IRQ is still disabled) */ 1182 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, 1183 spe_pmu->handle); 1184 if (ret) 1185 return ret; 1186 1187 /* 1188 * Register our hotplug notifier now so we don't miss any events. 1189 * This will enable the IRQ for any supported CPUs that are already 1190 * up. 1191 */ 1192 ret = cpuhp_state_add_instance(arm_spe_pmu_online, 1193 &spe_pmu->hotplug_node); 1194 if (ret) 1195 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1196 1197 return ret; 1198 } 1199 1200 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) 1201 { 1202 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); 1203 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1204 } 1205 1206 /* Driver and device probing */ 1207 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) 1208 { 1209 struct platform_device *pdev = spe_pmu->pdev; 1210 int irq = platform_get_irq(pdev, 0); 1211 1212 if (irq < 0) 1213 return -ENXIO; 1214 1215 if (!irq_is_percpu(irq)) { 1216 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); 1217 return -EINVAL; 1218 } 1219 1220 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { 1221 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); 1222 return -EINVAL; 1223 } 1224 1225 spe_pmu->irq = irq; 1226 return 0; 1227 } 1228 1229 static const struct of_device_id arm_spe_pmu_of_match[] = { 1230 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, 1231 { /* Sentinel */ }, 1232 }; 1233 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match); 1234 1235 static const struct platform_device_id arm_spe_match[] = { 1236 { ARMV8_SPE_PDEV_NAME, 0}, 1237 { } 1238 }; 1239 MODULE_DEVICE_TABLE(platform, arm_spe_match); 1240 1241 static int arm_spe_pmu_device_probe(struct platform_device *pdev) 1242 { 1243 int ret; 1244 struct arm_spe_pmu *spe_pmu; 1245 struct device *dev = &pdev->dev; 1246 1247 /* 1248 * If kernelspace is unmapped when running at EL0, then the SPE 1249 * buffer will fault and prematurely terminate the AUX session. 1250 */ 1251 if (arm64_kernel_unmapped_at_el0()) { 1252 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); 1253 return -EPERM; 1254 } 1255 1256 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); 1257 if (!spe_pmu) 1258 return -ENOMEM; 1259 1260 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); 1261 if (!spe_pmu->handle) 1262 return -ENOMEM; 1263 1264 spe_pmu->pdev = pdev; 1265 platform_set_drvdata(pdev, spe_pmu); 1266 1267 ret = arm_spe_pmu_irq_probe(spe_pmu); 1268 if (ret) 1269 goto out_free_handle; 1270 1271 ret = arm_spe_pmu_dev_init(spe_pmu); 1272 if (ret) 1273 goto out_free_handle; 1274 1275 ret = arm_spe_pmu_perf_init(spe_pmu); 1276 if (ret) 1277 goto out_teardown_dev; 1278 1279 return 0; 1280 1281 out_teardown_dev: 1282 arm_spe_pmu_dev_teardown(spe_pmu); 1283 out_free_handle: 1284 free_percpu(spe_pmu->handle); 1285 return ret; 1286 } 1287 1288 static void arm_spe_pmu_device_remove(struct platform_device *pdev) 1289 { 1290 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 1291 1292 arm_spe_pmu_perf_destroy(spe_pmu); 1293 arm_spe_pmu_dev_teardown(spe_pmu); 1294 free_percpu(spe_pmu->handle); 1295 } 1296 1297 static struct platform_driver arm_spe_pmu_driver = { 1298 .id_table = arm_spe_match, 1299 .driver = { 1300 .name = DRVNAME, 1301 .of_match_table = of_match_ptr(arm_spe_pmu_of_match), 1302 .suppress_bind_attrs = true, 1303 }, 1304 .probe = arm_spe_pmu_device_probe, 1305 .remove = arm_spe_pmu_device_remove, 1306 }; 1307 1308 static int __init arm_spe_pmu_init(void) 1309 { 1310 int ret; 1311 1312 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, 1313 arm_spe_pmu_cpu_startup, 1314 arm_spe_pmu_cpu_teardown); 1315 if (ret < 0) 1316 return ret; 1317 arm_spe_pmu_online = ret; 1318 1319 ret = platform_driver_register(&arm_spe_pmu_driver); 1320 if (ret) 1321 cpuhp_remove_multi_state(arm_spe_pmu_online); 1322 1323 return ret; 1324 } 1325 1326 static void __exit arm_spe_pmu_exit(void) 1327 { 1328 platform_driver_unregister(&arm_spe_pmu_driver); 1329 cpuhp_remove_multi_state(arm_spe_pmu_online); 1330 } 1331 1332 module_init(arm_spe_pmu_init); 1333 module_exit(arm_spe_pmu_exit); 1334 1335 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); 1336 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); 1337 MODULE_LICENSE("GPL v2"); 1338