xref: /linux/drivers/perf/arm_spe_pmu.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10 
11 #define PMUNAME					"arm_spe"
12 #define DRVNAME					PMUNAME "_pmu"
13 #define pr_fmt(fmt)				DRVNAME ": " fmt
14 
15 #include <linux/bitfield.h>
16 #include <linux/bitops.h>
17 #include <linux/bug.h>
18 #include <linux/capability.h>
19 #include <linux/cpuhotplug.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41 
42 /*
43  * Cache if the event is allowed to trace Context information.
44  * This allows us to perform the check, i.e, perf_allow_kernel(),
45  * in the context of the event owner, once, during the event_init().
46  */
47 #define SPE_PMU_HW_FLAGS_CX			0x00001
48 
49 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
50 
51 static void set_spe_event_has_cx(struct perf_event *event)
52 {
53 	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && !perf_allow_kernel(&event->attr))
54 		event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55 }
56 
57 static bool get_spe_event_has_cx(struct perf_event *event)
58 {
59 	return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60 }
61 
62 #define ARM_SPE_BUF_PAD_BYTE			0
63 
64 struct arm_spe_pmu_buf {
65 	int					nr_pages;
66 	bool					snapshot;
67 	void					*base;
68 };
69 
70 struct arm_spe_pmu {
71 	struct pmu				pmu;
72 	struct platform_device			*pdev;
73 	cpumask_t				supported_cpus;
74 	struct hlist_node			hotplug_node;
75 
76 	int					irq; /* PPI */
77 	u16					pmsver;
78 	u16					min_period;
79 	u16					counter_sz;
80 
81 #define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
82 #define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
83 #define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
84 #define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
85 #define SPE_PMU_FEAT_LDS			(1UL << 4)
86 #define SPE_PMU_FEAT_ERND			(1UL << 5)
87 #define SPE_PMU_FEAT_INV_FILT_EVT		(1UL << 6)
88 #define SPE_PMU_FEAT_DISCARD			(1UL << 7)
89 #define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
90 	u64					features;
91 
92 	u16					max_record_sz;
93 	u16					align;
94 	struct perf_output_handle __percpu	*handle;
95 };
96 
97 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
98 
99 /* Convert a free-running index from perf into an SPE buffer offset */
100 #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
101 
102 /* Keep track of our dynamic hotplug state */
103 static enum cpuhp_state arm_spe_pmu_online;
104 
105 enum arm_spe_pmu_buf_fault_action {
106 	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
107 	SPE_PMU_BUF_FAULT_ACT_FATAL,
108 	SPE_PMU_BUF_FAULT_ACT_OK,
109 };
110 
111 /* This sysfs gunk was really good fun to write. */
112 enum arm_spe_pmu_capabilities {
113 	SPE_PMU_CAP_ARCH_INST = 0,
114 	SPE_PMU_CAP_ERND,
115 	SPE_PMU_CAP_FEAT_MAX,
116 	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
117 	SPE_PMU_CAP_MIN_IVAL,
118 };
119 
120 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
121 	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
122 	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
123 };
124 
125 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
126 {
127 	if (cap < SPE_PMU_CAP_FEAT_MAX)
128 		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
129 
130 	switch (cap) {
131 	case SPE_PMU_CAP_CNT_SZ:
132 		return spe_pmu->counter_sz;
133 	case SPE_PMU_CAP_MIN_IVAL:
134 		return spe_pmu->min_period;
135 	default:
136 		WARN(1, "unknown cap %d\n", cap);
137 	}
138 
139 	return 0;
140 }
141 
142 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
143 				    struct device_attribute *attr,
144 				    char *buf)
145 {
146 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
147 	struct dev_ext_attribute *ea =
148 		container_of(attr, struct dev_ext_attribute, attr);
149 	int cap = (long)ea->var;
150 
151 	return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
152 }
153 
154 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
155 	&((struct dev_ext_attribute[]) {				\
156 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
157 	})[0].attr.attr
158 
159 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
160 	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
161 
162 static struct attribute *arm_spe_pmu_cap_attr[] = {
163 	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
164 	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
165 	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
166 	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
167 	NULL,
168 };
169 
170 static const struct attribute_group arm_spe_pmu_cap_group = {
171 	.name	= "caps",
172 	.attrs	= arm_spe_pmu_cap_attr,
173 };
174 
175 /* User ABI */
176 #define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
177 #define ATTR_CFG_FLD_ts_enable_LO		0
178 #define ATTR_CFG_FLD_ts_enable_HI		0
179 #define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
180 #define ATTR_CFG_FLD_pa_enable_LO		1
181 #define ATTR_CFG_FLD_pa_enable_HI		1
182 #define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
183 #define ATTR_CFG_FLD_pct_enable_LO		2
184 #define ATTR_CFG_FLD_pct_enable_HI		2
185 #define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
186 #define ATTR_CFG_FLD_jitter_LO			16
187 #define ATTR_CFG_FLD_jitter_HI			16
188 #define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
189 #define ATTR_CFG_FLD_branch_filter_LO		32
190 #define ATTR_CFG_FLD_branch_filter_HI		32
191 #define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
192 #define ATTR_CFG_FLD_load_filter_LO		33
193 #define ATTR_CFG_FLD_load_filter_HI		33
194 #define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
195 #define ATTR_CFG_FLD_store_filter_LO		34
196 #define ATTR_CFG_FLD_store_filter_HI		34
197 #define ATTR_CFG_FLD_discard_CFG		config	/* PMBLIMITR_EL1.FM = DISCARD */
198 #define ATTR_CFG_FLD_discard_LO			35
199 #define ATTR_CFG_FLD_discard_HI			35
200 
201 #define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
202 #define ATTR_CFG_FLD_event_filter_LO		0
203 #define ATTR_CFG_FLD_event_filter_HI		63
204 
205 #define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
206 #define ATTR_CFG_FLD_min_latency_LO		0
207 #define ATTR_CFG_FLD_min_latency_HI		11
208 
209 #define ATTR_CFG_FLD_inv_event_filter_CFG	config3	/* PMSNEVFR_EL1 */
210 #define ATTR_CFG_FLD_inv_event_filter_LO	0
211 #define ATTR_CFG_FLD_inv_event_filter_HI	63
212 
213 GEN_PMU_FORMAT_ATTR(ts_enable);
214 GEN_PMU_FORMAT_ATTR(pa_enable);
215 GEN_PMU_FORMAT_ATTR(pct_enable);
216 GEN_PMU_FORMAT_ATTR(jitter);
217 GEN_PMU_FORMAT_ATTR(branch_filter);
218 GEN_PMU_FORMAT_ATTR(load_filter);
219 GEN_PMU_FORMAT_ATTR(store_filter);
220 GEN_PMU_FORMAT_ATTR(event_filter);
221 GEN_PMU_FORMAT_ATTR(inv_event_filter);
222 GEN_PMU_FORMAT_ATTR(min_latency);
223 GEN_PMU_FORMAT_ATTR(discard);
224 
225 static struct attribute *arm_spe_pmu_formats_attr[] = {
226 	&format_attr_ts_enable.attr,
227 	&format_attr_pa_enable.attr,
228 	&format_attr_pct_enable.attr,
229 	&format_attr_jitter.attr,
230 	&format_attr_branch_filter.attr,
231 	&format_attr_load_filter.attr,
232 	&format_attr_store_filter.attr,
233 	&format_attr_event_filter.attr,
234 	&format_attr_inv_event_filter.attr,
235 	&format_attr_min_latency.attr,
236 	&format_attr_discard.attr,
237 	NULL,
238 };
239 
240 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
241 						  struct attribute *attr,
242 						  int unused)
243 	{
244 	struct device *dev = kobj_to_dev(kobj);
245 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
246 
247 	if (attr == &format_attr_discard.attr && !(spe_pmu->features & SPE_PMU_FEAT_DISCARD))
248 		return 0;
249 
250 	if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
251 		return 0;
252 
253 	return attr->mode;
254 }
255 
256 static const struct attribute_group arm_spe_pmu_format_group = {
257 	.name	= "format",
258 	.is_visible = arm_spe_pmu_format_attr_is_visible,
259 	.attrs	= arm_spe_pmu_formats_attr,
260 };
261 
262 static ssize_t cpumask_show(struct device *dev,
263 			    struct device_attribute *attr, char *buf)
264 {
265 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
266 
267 	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
268 }
269 static DEVICE_ATTR_RO(cpumask);
270 
271 static struct attribute *arm_spe_pmu_attrs[] = {
272 	&dev_attr_cpumask.attr,
273 	NULL,
274 };
275 
276 static const struct attribute_group arm_spe_pmu_group = {
277 	.attrs	= arm_spe_pmu_attrs,
278 };
279 
280 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
281 	&arm_spe_pmu_group,
282 	&arm_spe_pmu_cap_group,
283 	&arm_spe_pmu_format_group,
284 	NULL,
285 };
286 
287 /* Convert between user ABI and register values */
288 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
289 {
290 	struct perf_event_attr *attr = &event->attr;
291 	u64 reg = 0;
292 
293 	reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
294 	reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
295 	reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
296 
297 	if (!attr->exclude_user)
298 		reg |= PMSCR_EL1_E0SPE;
299 
300 	if (!attr->exclude_kernel)
301 		reg |= PMSCR_EL1_E1SPE;
302 
303 	if (get_spe_event_has_cx(event))
304 		reg |= PMSCR_EL1_CX;
305 
306 	return reg;
307 }
308 
309 static void arm_spe_event_sanitise_period(struct perf_event *event)
310 {
311 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
312 	u64 period = event->hw.sample_period;
313 	u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
314 
315 	if (period < spe_pmu->min_period)
316 		period = spe_pmu->min_period;
317 	else if (period > max_period)
318 		period = max_period;
319 	else
320 		period &= max_period;
321 
322 	event->hw.sample_period = period;
323 }
324 
325 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
326 {
327 	struct perf_event_attr *attr = &event->attr;
328 	u64 reg = 0;
329 
330 	arm_spe_event_sanitise_period(event);
331 
332 	reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
333 	reg |= event->hw.sample_period;
334 
335 	return reg;
336 }
337 
338 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
339 {
340 	struct perf_event_attr *attr = &event->attr;
341 	u64 reg = 0;
342 
343 	reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
344 	reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
345 	reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
346 
347 	if (reg)
348 		reg |= PMSFCR_EL1_FT;
349 
350 	if (ATTR_CFG_GET_FLD(attr, event_filter))
351 		reg |= PMSFCR_EL1_FE;
352 
353 	if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
354 		reg |= PMSFCR_EL1_FnE;
355 
356 	if (ATTR_CFG_GET_FLD(attr, min_latency))
357 		reg |= PMSFCR_EL1_FL;
358 
359 	return reg;
360 }
361 
362 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
363 {
364 	struct perf_event_attr *attr = &event->attr;
365 	return ATTR_CFG_GET_FLD(attr, event_filter);
366 }
367 
368 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
369 {
370 	struct perf_event_attr *attr = &event->attr;
371 	return ATTR_CFG_GET_FLD(attr, inv_event_filter);
372 }
373 
374 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
375 {
376 	struct perf_event_attr *attr = &event->attr;
377 	return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
378 }
379 
380 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
381 {
382 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
383 	u64 head = PERF_IDX2OFF(handle->head, buf);
384 
385 	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
386 	if (!buf->snapshot)
387 		perf_aux_output_skip(handle, len);
388 }
389 
390 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
391 {
392 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
393 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
394 	u64 head = PERF_IDX2OFF(handle->head, buf);
395 	u64 limit = buf->nr_pages * PAGE_SIZE;
396 
397 	/*
398 	 * The trace format isn't parseable in reverse, so clamp
399 	 * the limit to half of the buffer size in snapshot mode
400 	 * so that the worst case is half a buffer of records, as
401 	 * opposed to a single record.
402 	 */
403 	if (head < limit >> 1)
404 		limit >>= 1;
405 
406 	/*
407 	 * If we're within max_record_sz of the limit, we must
408 	 * pad, move the head index and recompute the limit.
409 	 */
410 	if (limit - head < spe_pmu->max_record_sz) {
411 		arm_spe_pmu_pad_buf(handle, limit - head);
412 		handle->head = PERF_IDX2OFF(limit, buf);
413 		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
414 	}
415 
416 	return limit;
417 }
418 
419 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
420 {
421 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
422 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
423 	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
424 	u64 limit = bufsize;
425 	u64 head, tail, wakeup;
426 
427 	/*
428 	 * The head can be misaligned for two reasons:
429 	 *
430 	 * 1. The hardware left PMBPTR pointing to the first byte after
431 	 *    a record when generating a buffer management event.
432 	 *
433 	 * 2. We used perf_aux_output_skip to consume handle->size bytes
434 	 *    and CIRC_SPACE was used to compute the size, which always
435 	 *    leaves one entry free.
436 	 *
437 	 * Deal with this by padding to the next alignment boundary and
438 	 * moving the head index. If we run out of buffer space, we'll
439 	 * reduce handle->size to zero and end up reporting truncation.
440 	 */
441 	head = PERF_IDX2OFF(handle->head, buf);
442 	if (!IS_ALIGNED(head, spe_pmu->align)) {
443 		unsigned long delta = roundup(head, spe_pmu->align) - head;
444 
445 		delta = min(delta, handle->size);
446 		arm_spe_pmu_pad_buf(handle, delta);
447 		head = PERF_IDX2OFF(handle->head, buf);
448 	}
449 
450 	/* If we've run out of free space, then nothing more to do */
451 	if (!handle->size)
452 		goto no_space;
453 
454 	/* Compute the tail and wakeup indices now that we've aligned head */
455 	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
456 	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
457 
458 	/*
459 	 * Avoid clobbering unconsumed data. We know we have space, so
460 	 * if we see head == tail we know that the buffer is empty. If
461 	 * head > tail, then there's nothing to clobber prior to
462 	 * wrapping.
463 	 */
464 	if (head < tail)
465 		limit = round_down(tail, PAGE_SIZE);
466 
467 	/*
468 	 * Wakeup may be arbitrarily far into the future. If it's not in
469 	 * the current generation, either we'll wrap before hitting it,
470 	 * or it's in the past and has been handled already.
471 	 *
472 	 * If there's a wakeup before we wrap, arrange to be woken up by
473 	 * the page boundary following it. Keep the tail boundary if
474 	 * that's lower.
475 	 */
476 	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
477 		limit = min(limit, round_up(wakeup, PAGE_SIZE));
478 
479 	if (limit > head)
480 		return limit;
481 
482 	arm_spe_pmu_pad_buf(handle, handle->size);
483 no_space:
484 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
485 	perf_aux_output_end(handle, 0);
486 	return 0;
487 }
488 
489 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
490 {
491 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
492 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
493 	u64 limit = __arm_spe_pmu_next_off(handle);
494 	u64 head = PERF_IDX2OFF(handle->head, buf);
495 
496 	/*
497 	 * If the head has come too close to the end of the buffer,
498 	 * then pad to the end and recompute the limit.
499 	 */
500 	if (limit && (limit - head < spe_pmu->max_record_sz)) {
501 		arm_spe_pmu_pad_buf(handle, limit - head);
502 		limit = __arm_spe_pmu_next_off(handle);
503 	}
504 
505 	return limit;
506 }
507 
508 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
509 					  struct perf_event *event)
510 {
511 	u64 base, limit;
512 	struct arm_spe_pmu_buf *buf;
513 
514 	if (ATTR_CFG_GET_FLD(&event->attr, discard)) {
515 		limit = FIELD_PREP(PMBLIMITR_EL1_FM, PMBLIMITR_EL1_FM_DISCARD);
516 		limit |= PMBLIMITR_EL1_E;
517 		goto out_write_limit;
518 	}
519 
520 	/* Start a new aux session */
521 	buf = perf_aux_output_begin(handle, event);
522 	if (!buf) {
523 		event->hw.state |= PERF_HES_STOPPED;
524 		/*
525 		 * We still need to clear the limit pointer, since the
526 		 * profiler might only be disabled by virtue of a fault.
527 		 */
528 		limit = 0;
529 		goto out_write_limit;
530 	}
531 
532 	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
533 			      : arm_spe_pmu_next_off(handle);
534 	if (limit)
535 		limit |= PMBLIMITR_EL1_E;
536 
537 	limit += (u64)buf->base;
538 	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
539 	write_sysreg_s(base, SYS_PMBPTR_EL1);
540 
541 out_write_limit:
542 	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
543 }
544 
545 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
546 {
547 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
548 	u64 offset, size;
549 
550 	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
551 	size = offset - PERF_IDX2OFF(handle->head, buf);
552 
553 	if (buf->snapshot)
554 		handle->head = offset;
555 
556 	perf_aux_output_end(handle, size);
557 }
558 
559 static void arm_spe_pmu_disable_and_drain_local(void)
560 {
561 	/* Disable profiling at EL0 and EL1 */
562 	write_sysreg_s(0, SYS_PMSCR_EL1);
563 	isb();
564 
565 	/* Drain any buffered data */
566 	psb_csync();
567 	dsb(nsh);
568 
569 	/* Disable the profiling buffer */
570 	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
571 	isb();
572 }
573 
574 /* IRQ handling */
575 static enum arm_spe_pmu_buf_fault_action
576 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
577 {
578 	const char *err_str;
579 	u64 pmbsr;
580 	enum arm_spe_pmu_buf_fault_action ret;
581 
582 	/*
583 	 * Ensure new profiling data is visible to the CPU and any external
584 	 * aborts have been resolved.
585 	 */
586 	psb_csync();
587 	dsb(nsh);
588 
589 	/* Ensure hardware updates to PMBPTR_EL1 are visible */
590 	isb();
591 
592 	/* Service required? */
593 	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
594 	if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
595 		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
596 
597 	/*
598 	 * If we've lost data, disable profiling and also set the PARTIAL
599 	 * flag to indicate that the last record is corrupted.
600 	 */
601 	if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
602 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
603 					     PERF_AUX_FLAG_PARTIAL);
604 
605 	/* Report collisions to userspace so that it can up the period */
606 	if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
607 		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
608 
609 	/* We only expect buffer management events */
610 	switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
611 	case PMBSR_EL1_EC_BUF:
612 		/* Handled below */
613 		break;
614 	case PMBSR_EL1_EC_FAULT_S1:
615 	case PMBSR_EL1_EC_FAULT_S2:
616 		err_str = "Unexpected buffer fault";
617 		goto out_err;
618 	default:
619 		err_str = "Unknown error code";
620 		goto out_err;
621 	}
622 
623 	/* Buffer management event */
624 	switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
625 	case PMBSR_EL1_BUF_BSC_FULL:
626 		ret = SPE_PMU_BUF_FAULT_ACT_OK;
627 		goto out_stop;
628 	default:
629 		err_str = "Unknown buffer status code";
630 	}
631 
632 out_err:
633 	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
634 			   err_str, smp_processor_id(), pmbsr,
635 			   read_sysreg_s(SYS_PMBPTR_EL1),
636 			   read_sysreg_s(SYS_PMBLIMITR_EL1));
637 	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
638 
639 out_stop:
640 	arm_spe_perf_aux_output_end(handle);
641 	return ret;
642 }
643 
644 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
645 {
646 	struct perf_output_handle *handle = dev;
647 	struct perf_event *event = handle->event;
648 	enum arm_spe_pmu_buf_fault_action act;
649 
650 	if (!perf_get_aux(handle))
651 		return IRQ_NONE;
652 
653 	act = arm_spe_pmu_buf_get_fault_act(handle);
654 	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
655 		return IRQ_NONE;
656 
657 	/*
658 	 * Ensure perf callbacks have completed, which may disable the
659 	 * profiling buffer in response to a TRUNCATION flag.
660 	 */
661 	irq_work_run();
662 
663 	switch (act) {
664 	case SPE_PMU_BUF_FAULT_ACT_FATAL:
665 		/*
666 		 * If a fatal exception occurred then leaving the profiling
667 		 * buffer enabled is a recipe waiting to happen. Since
668 		 * fatal faults don't always imply truncation, make sure
669 		 * that the profiling buffer is disabled explicitly before
670 		 * clearing the syndrome register.
671 		 */
672 		arm_spe_pmu_disable_and_drain_local();
673 		break;
674 	case SPE_PMU_BUF_FAULT_ACT_OK:
675 		/*
676 		 * We handled the fault (the buffer was full), so resume
677 		 * profiling as long as we didn't detect truncation.
678 		 * PMBPTR might be misaligned, but we'll burn that bridge
679 		 * when we get to it.
680 		 */
681 		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
682 			arm_spe_perf_aux_output_begin(handle, event);
683 			isb();
684 		}
685 		break;
686 	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
687 		/* We've seen you before, but GCC has the memory of a sieve. */
688 		break;
689 	}
690 
691 	/* The buffer pointers are now sane, so resume profiling. */
692 	write_sysreg_s(0, SYS_PMBSR_EL1);
693 	return IRQ_HANDLED;
694 }
695 
696 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
697 {
698 	switch (pmsver) {
699 	case ID_AA64DFR0_EL1_PMSVer_IMP:
700 		return PMSEVFR_EL1_RES0_IMP;
701 	case ID_AA64DFR0_EL1_PMSVer_V1P1:
702 		return PMSEVFR_EL1_RES0_V1P1;
703 	case ID_AA64DFR0_EL1_PMSVer_V1P2:
704 	/* Return the highest version we support in default */
705 	default:
706 		return PMSEVFR_EL1_RES0_V1P2;
707 	}
708 }
709 
710 /* Perf callbacks */
711 static int arm_spe_pmu_event_init(struct perf_event *event)
712 {
713 	u64 reg;
714 	struct perf_event_attr *attr = &event->attr;
715 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
716 
717 	/* This is, of course, deeply driver-specific */
718 	if (attr->type != event->pmu->type)
719 		return -ENOENT;
720 
721 	if (event->cpu >= 0 &&
722 	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
723 		return -ENOENT;
724 
725 	if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
726 		return -EOPNOTSUPP;
727 
728 	if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
729 		return -EOPNOTSUPP;
730 
731 	if (attr->exclude_idle)
732 		return -EOPNOTSUPP;
733 
734 	/*
735 	 * Feedback-directed frequency throttling doesn't work when we
736 	 * have a buffer of samples. We'd need to manually count the
737 	 * samples in the buffer when it fills up and adjust the event
738 	 * count to reflect that. Instead, just force the user to specify
739 	 * a sample period.
740 	 */
741 	if (attr->freq)
742 		return -EINVAL;
743 
744 	reg = arm_spe_event_to_pmsfcr(event);
745 	if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
746 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
747 		return -EOPNOTSUPP;
748 
749 	if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
750 	    !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
751 		return -EOPNOTSUPP;
752 
753 	if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
754 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
755 		return -EOPNOTSUPP;
756 
757 	if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
758 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
759 		return -EOPNOTSUPP;
760 
761 	if (ATTR_CFG_GET_FLD(&event->attr, discard) &&
762 	    !(spe_pmu->features & SPE_PMU_FEAT_DISCARD))
763 		return -EOPNOTSUPP;
764 
765 	set_spe_event_has_cx(event);
766 	reg = arm_spe_event_to_pmscr(event);
767 	if (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT))
768 		return perf_allow_kernel(&event->attr);
769 
770 	return 0;
771 }
772 
773 static void arm_spe_pmu_start(struct perf_event *event, int flags)
774 {
775 	u64 reg;
776 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
777 	struct hw_perf_event *hwc = &event->hw;
778 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
779 
780 	hwc->state = 0;
781 	arm_spe_perf_aux_output_begin(handle, event);
782 	if (hwc->state)
783 		return;
784 
785 	reg = arm_spe_event_to_pmsfcr(event);
786 	write_sysreg_s(reg, SYS_PMSFCR_EL1);
787 
788 	reg = arm_spe_event_to_pmsevfr(event);
789 	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
790 
791 	if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
792 		reg = arm_spe_event_to_pmsnevfr(event);
793 		write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
794 	}
795 
796 	reg = arm_spe_event_to_pmslatfr(event);
797 	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
798 
799 	if (flags & PERF_EF_RELOAD) {
800 		reg = arm_spe_event_to_pmsirr(event);
801 		write_sysreg_s(reg, SYS_PMSIRR_EL1);
802 		isb();
803 		reg = local64_read(&hwc->period_left);
804 		write_sysreg_s(reg, SYS_PMSICR_EL1);
805 	}
806 
807 	reg = arm_spe_event_to_pmscr(event);
808 	isb();
809 	write_sysreg_s(reg, SYS_PMSCR_EL1);
810 }
811 
812 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
813 {
814 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
815 	struct hw_perf_event *hwc = &event->hw;
816 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
817 
818 	/* If we're already stopped, then nothing to do */
819 	if (hwc->state & PERF_HES_STOPPED)
820 		return;
821 
822 	/* Stop all trace generation */
823 	arm_spe_pmu_disable_and_drain_local();
824 
825 	if (flags & PERF_EF_UPDATE) {
826 		/*
827 		 * If there's a fault pending then ensure we contain it
828 		 * to this buffer, since we might be on the context-switch
829 		 * path.
830 		 */
831 		if (perf_get_aux(handle)) {
832 			enum arm_spe_pmu_buf_fault_action act;
833 
834 			act = arm_spe_pmu_buf_get_fault_act(handle);
835 			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
836 				arm_spe_perf_aux_output_end(handle);
837 			else
838 				write_sysreg_s(0, SYS_PMBSR_EL1);
839 		}
840 
841 		/*
842 		 * This may also contain ECOUNT, but nobody else should
843 		 * be looking at period_left, since we forbid frequency
844 		 * based sampling.
845 		 */
846 		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
847 		hwc->state |= PERF_HES_UPTODATE;
848 	}
849 
850 	hwc->state |= PERF_HES_STOPPED;
851 }
852 
853 static int arm_spe_pmu_add(struct perf_event *event, int flags)
854 {
855 	int ret = 0;
856 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
857 	struct hw_perf_event *hwc = &event->hw;
858 	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
859 
860 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
861 		return -ENOENT;
862 
863 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
864 
865 	if (flags & PERF_EF_START) {
866 		arm_spe_pmu_start(event, PERF_EF_RELOAD);
867 		if (hwc->state & PERF_HES_STOPPED)
868 			ret = -EINVAL;
869 	}
870 
871 	return ret;
872 }
873 
874 static void arm_spe_pmu_del(struct perf_event *event, int flags)
875 {
876 	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
877 }
878 
879 static void arm_spe_pmu_read(struct perf_event *event)
880 {
881 }
882 
883 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
884 				   int nr_pages, bool snapshot)
885 {
886 	int i, cpu = event->cpu;
887 	struct page **pglist;
888 	struct arm_spe_pmu_buf *buf;
889 
890 	/* We need at least two pages for this to work. */
891 	if (nr_pages < 2)
892 		return NULL;
893 
894 	/*
895 	 * We require an even number of pages for snapshot mode, so that
896 	 * we can effectively treat the buffer as consisting of two equal
897 	 * parts and give userspace a fighting chance of getting some
898 	 * useful data out of it.
899 	 */
900 	if (snapshot && (nr_pages & 1))
901 		return NULL;
902 
903 	if (cpu == -1)
904 		cpu = raw_smp_processor_id();
905 
906 	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
907 	if (!buf)
908 		return NULL;
909 
910 	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
911 	if (!pglist)
912 		goto out_free_buf;
913 
914 	for (i = 0; i < nr_pages; ++i)
915 		pglist[i] = virt_to_page(pages[i]);
916 
917 	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
918 	if (!buf->base)
919 		goto out_free_pglist;
920 
921 	buf->nr_pages	= nr_pages;
922 	buf->snapshot	= snapshot;
923 
924 	kfree(pglist);
925 	return buf;
926 
927 out_free_pglist:
928 	kfree(pglist);
929 out_free_buf:
930 	kfree(buf);
931 	return NULL;
932 }
933 
934 static void arm_spe_pmu_free_aux(void *aux)
935 {
936 	struct arm_spe_pmu_buf *buf = aux;
937 
938 	vunmap(buf->base);
939 	kfree(buf);
940 }
941 
942 /* Initialisation and teardown functions */
943 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
944 {
945 	static atomic_t pmu_idx = ATOMIC_INIT(-1);
946 
947 	int idx;
948 	char *name;
949 	struct device *dev = &spe_pmu->pdev->dev;
950 
951 	spe_pmu->pmu = (struct pmu) {
952 		.module = THIS_MODULE,
953 		.parent		= &spe_pmu->pdev->dev,
954 		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
955 		.attr_groups	= arm_spe_pmu_attr_groups,
956 		/*
957 		 * We hitch a ride on the software context here, so that
958 		 * we can support per-task profiling (which is not possible
959 		 * with the invalid context as it doesn't get sched callbacks).
960 		 * This requires that userspace either uses a dummy event for
961 		 * perf_event_open, since the aux buffer is not setup until
962 		 * a subsequent mmap, or creates the profiling event in a
963 		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
964 		 * once the buffer has been created.
965 		 */
966 		.task_ctx_nr	= perf_sw_context,
967 		.event_init	= arm_spe_pmu_event_init,
968 		.add		= arm_spe_pmu_add,
969 		.del		= arm_spe_pmu_del,
970 		.start		= arm_spe_pmu_start,
971 		.stop		= arm_spe_pmu_stop,
972 		.read		= arm_spe_pmu_read,
973 		.setup_aux	= arm_spe_pmu_setup_aux,
974 		.free_aux	= arm_spe_pmu_free_aux,
975 	};
976 
977 	idx = atomic_inc_return(&pmu_idx);
978 	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
979 	if (!name) {
980 		dev_err(dev, "failed to allocate name for pmu %d\n", idx);
981 		return -ENOMEM;
982 	}
983 
984 	return perf_pmu_register(&spe_pmu->pmu, name, -1);
985 }
986 
987 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
988 {
989 	perf_pmu_unregister(&spe_pmu->pmu);
990 }
991 
992 static void __arm_spe_pmu_dev_probe(void *info)
993 {
994 	int fld;
995 	u64 reg;
996 	struct arm_spe_pmu *spe_pmu = info;
997 	struct device *dev = &spe_pmu->pdev->dev;
998 
999 	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
1000 						   ID_AA64DFR0_EL1_PMSVer_SHIFT);
1001 	if (!fld) {
1002 		dev_err(dev,
1003 			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
1004 			fld, smp_processor_id());
1005 		return;
1006 	}
1007 	spe_pmu->pmsver = (u16)fld;
1008 
1009 	/* Read PMBIDR first to determine whether or not we have access */
1010 	reg = read_sysreg_s(SYS_PMBIDR_EL1);
1011 	if (FIELD_GET(PMBIDR_EL1_P, reg)) {
1012 		dev_err(dev,
1013 			"profiling buffer owned by higher exception level\n");
1014 		return;
1015 	}
1016 
1017 	/* Minimum alignment. If it's out-of-range, then fail the probe */
1018 	fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1019 	spe_pmu->align = 1 << fld;
1020 	if (spe_pmu->align > SZ_2K) {
1021 		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1022 			fld, smp_processor_id());
1023 		return;
1024 	}
1025 
1026 	/* It's now safe to read PMSIDR and figure out what we've got */
1027 	reg = read_sysreg_s(SYS_PMSIDR_EL1);
1028 	if (FIELD_GET(PMSIDR_EL1_FE, reg))
1029 		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1030 
1031 	if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1032 		spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1033 
1034 	if (FIELD_GET(PMSIDR_EL1_FT, reg))
1035 		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1036 
1037 	if (FIELD_GET(PMSIDR_EL1_FL, reg))
1038 		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1039 
1040 	if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1041 		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1042 
1043 	if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1044 		spe_pmu->features |= SPE_PMU_FEAT_LDS;
1045 
1046 	if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1047 		spe_pmu->features |= SPE_PMU_FEAT_ERND;
1048 
1049 	if (spe_pmu->pmsver >= ID_AA64DFR0_EL1_PMSVer_V1P2)
1050 		spe_pmu->features |= SPE_PMU_FEAT_DISCARD;
1051 
1052 	/* This field has a spaced out encoding, so just use a look-up */
1053 	fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1054 	switch (fld) {
1055 	case PMSIDR_EL1_INTERVAL_256:
1056 		spe_pmu->min_period = 256;
1057 		break;
1058 	case PMSIDR_EL1_INTERVAL_512:
1059 		spe_pmu->min_period = 512;
1060 		break;
1061 	case PMSIDR_EL1_INTERVAL_768:
1062 		spe_pmu->min_period = 768;
1063 		break;
1064 	case PMSIDR_EL1_INTERVAL_1024:
1065 		spe_pmu->min_period = 1024;
1066 		break;
1067 	case PMSIDR_EL1_INTERVAL_1536:
1068 		spe_pmu->min_period = 1536;
1069 		break;
1070 	case PMSIDR_EL1_INTERVAL_2048:
1071 		spe_pmu->min_period = 2048;
1072 		break;
1073 	case PMSIDR_EL1_INTERVAL_3072:
1074 		spe_pmu->min_period = 3072;
1075 		break;
1076 	default:
1077 		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1078 			 fld);
1079 		fallthrough;
1080 	case PMSIDR_EL1_INTERVAL_4096:
1081 		spe_pmu->min_period = 4096;
1082 	}
1083 
1084 	/* Maximum record size. If it's out-of-range, then fail the probe */
1085 	fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1086 	spe_pmu->max_record_sz = 1 << fld;
1087 	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1088 		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1089 			fld, smp_processor_id());
1090 		return;
1091 	}
1092 
1093 	fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1094 	switch (fld) {
1095 	default:
1096 		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1097 			 fld);
1098 		fallthrough;
1099 	case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1100 		spe_pmu->counter_sz = 12;
1101 		break;
1102 	case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1103 		spe_pmu->counter_sz = 16;
1104 	}
1105 
1106 	dev_info(dev,
1107 		 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1108 		 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1109 		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1110 
1111 	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1112 }
1113 
1114 static void __arm_spe_pmu_reset_local(void)
1115 {
1116 	/*
1117 	 * This is probably overkill, as we have no idea where we're
1118 	 * draining any buffered data to...
1119 	 */
1120 	arm_spe_pmu_disable_and_drain_local();
1121 
1122 	/* Reset the buffer base pointer */
1123 	write_sysreg_s(0, SYS_PMBPTR_EL1);
1124 	isb();
1125 
1126 	/* Clear any pending management interrupts */
1127 	write_sysreg_s(0, SYS_PMBSR_EL1);
1128 	isb();
1129 }
1130 
1131 static void __arm_spe_pmu_setup_one(void *info)
1132 {
1133 	struct arm_spe_pmu *spe_pmu = info;
1134 
1135 	__arm_spe_pmu_reset_local();
1136 	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1137 }
1138 
1139 static void __arm_spe_pmu_stop_one(void *info)
1140 {
1141 	struct arm_spe_pmu *spe_pmu = info;
1142 
1143 	disable_percpu_irq(spe_pmu->irq);
1144 	__arm_spe_pmu_reset_local();
1145 }
1146 
1147 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1148 {
1149 	struct arm_spe_pmu *spe_pmu;
1150 
1151 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1152 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1153 		return 0;
1154 
1155 	__arm_spe_pmu_setup_one(spe_pmu);
1156 	return 0;
1157 }
1158 
1159 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1160 {
1161 	struct arm_spe_pmu *spe_pmu;
1162 
1163 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1164 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1165 		return 0;
1166 
1167 	__arm_spe_pmu_stop_one(spe_pmu);
1168 	return 0;
1169 }
1170 
1171 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1172 {
1173 	int ret;
1174 	cpumask_t *mask = &spe_pmu->supported_cpus;
1175 
1176 	/* Make sure we probe the hardware on a relevant CPU */
1177 	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1178 	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1179 		return -ENXIO;
1180 
1181 	/* Request our PPIs (note that the IRQ is still disabled) */
1182 	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1183 				 spe_pmu->handle);
1184 	if (ret)
1185 		return ret;
1186 
1187 	/*
1188 	 * Register our hotplug notifier now so we don't miss any events.
1189 	 * This will enable the IRQ for any supported CPUs that are already
1190 	 * up.
1191 	 */
1192 	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1193 				       &spe_pmu->hotplug_node);
1194 	if (ret)
1195 		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1196 
1197 	return ret;
1198 }
1199 
1200 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1201 {
1202 	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1203 	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1204 }
1205 
1206 /* Driver and device probing */
1207 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1208 {
1209 	struct platform_device *pdev = spe_pmu->pdev;
1210 	int irq = platform_get_irq(pdev, 0);
1211 
1212 	if (irq < 0)
1213 		return -ENXIO;
1214 
1215 	if (!irq_is_percpu(irq)) {
1216 		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1217 		return -EINVAL;
1218 	}
1219 
1220 	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1221 		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1222 		return -EINVAL;
1223 	}
1224 
1225 	spe_pmu->irq = irq;
1226 	return 0;
1227 }
1228 
1229 static const struct of_device_id arm_spe_pmu_of_match[] = {
1230 	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1231 	{ /* Sentinel */ },
1232 };
1233 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1234 
1235 static const struct platform_device_id arm_spe_match[] = {
1236 	{ ARMV8_SPE_PDEV_NAME, 0},
1237 	{ }
1238 };
1239 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1240 
1241 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1242 {
1243 	int ret;
1244 	struct arm_spe_pmu *spe_pmu;
1245 	struct device *dev = &pdev->dev;
1246 
1247 	/*
1248 	 * If kernelspace is unmapped when running at EL0, then the SPE
1249 	 * buffer will fault and prematurely terminate the AUX session.
1250 	 */
1251 	if (arm64_kernel_unmapped_at_el0()) {
1252 		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1253 		return -EPERM;
1254 	}
1255 
1256 	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1257 	if (!spe_pmu)
1258 		return -ENOMEM;
1259 
1260 	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1261 	if (!spe_pmu->handle)
1262 		return -ENOMEM;
1263 
1264 	spe_pmu->pdev = pdev;
1265 	platform_set_drvdata(pdev, spe_pmu);
1266 
1267 	ret = arm_spe_pmu_irq_probe(spe_pmu);
1268 	if (ret)
1269 		goto out_free_handle;
1270 
1271 	ret = arm_spe_pmu_dev_init(spe_pmu);
1272 	if (ret)
1273 		goto out_free_handle;
1274 
1275 	ret = arm_spe_pmu_perf_init(spe_pmu);
1276 	if (ret)
1277 		goto out_teardown_dev;
1278 
1279 	return 0;
1280 
1281 out_teardown_dev:
1282 	arm_spe_pmu_dev_teardown(spe_pmu);
1283 out_free_handle:
1284 	free_percpu(spe_pmu->handle);
1285 	return ret;
1286 }
1287 
1288 static void arm_spe_pmu_device_remove(struct platform_device *pdev)
1289 {
1290 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1291 
1292 	arm_spe_pmu_perf_destroy(spe_pmu);
1293 	arm_spe_pmu_dev_teardown(spe_pmu);
1294 	free_percpu(spe_pmu->handle);
1295 }
1296 
1297 static struct platform_driver arm_spe_pmu_driver = {
1298 	.id_table = arm_spe_match,
1299 	.driver	= {
1300 		.name		= DRVNAME,
1301 		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
1302 		.suppress_bind_attrs = true,
1303 	},
1304 	.probe	= arm_spe_pmu_device_probe,
1305 	.remove = arm_spe_pmu_device_remove,
1306 };
1307 
1308 static int __init arm_spe_pmu_init(void)
1309 {
1310 	int ret;
1311 
1312 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1313 				      arm_spe_pmu_cpu_startup,
1314 				      arm_spe_pmu_cpu_teardown);
1315 	if (ret < 0)
1316 		return ret;
1317 	arm_spe_pmu_online = ret;
1318 
1319 	ret = platform_driver_register(&arm_spe_pmu_driver);
1320 	if (ret)
1321 		cpuhp_remove_multi_state(arm_spe_pmu_online);
1322 
1323 	return ret;
1324 }
1325 
1326 static void __exit arm_spe_pmu_exit(void)
1327 {
1328 	platform_driver_unregister(&arm_spe_pmu_driver);
1329 	cpuhp_remove_multi_state(arm_spe_pmu_online);
1330 }
1331 
1332 module_init(arm_spe_pmu_init);
1333 module_exit(arm_spe_pmu_exit);
1334 
1335 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1336 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1337 MODULE_LICENSE("GPL v2");
1338