1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Perf support for the Statistical Profiling Extension, introduced as 4 * part of ARMv8.2. 5 * 6 * Copyright (C) 2016 ARM Limited 7 * 8 * Author: Will Deacon <will.deacon@arm.com> 9 */ 10 11 #define PMUNAME "arm_spe" 12 #define DRVNAME PMUNAME "_pmu" 13 #define pr_fmt(fmt) DRVNAME ": " fmt 14 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/capability.h> 18 #include <linux/cpuhotplug.h> 19 #include <linux/cpumask.h> 20 #include <linux/device.h> 21 #include <linux/errno.h> 22 #include <linux/interrupt.h> 23 #include <linux/irq.h> 24 #include <linux/kernel.h> 25 #include <linux/list.h> 26 #include <linux/module.h> 27 #include <linux/of_address.h> 28 #include <linux/of_device.h> 29 #include <linux/perf_event.h> 30 #include <linux/perf/arm_pmu.h> 31 #include <linux/platform_device.h> 32 #include <linux/printk.h> 33 #include <linux/slab.h> 34 #include <linux/smp.h> 35 #include <linux/vmalloc.h> 36 37 #include <asm/barrier.h> 38 #include <asm/cpufeature.h> 39 #include <asm/mmu.h> 40 #include <asm/sysreg.h> 41 42 #define ARM_SPE_BUF_PAD_BYTE 0 43 44 struct arm_spe_pmu_buf { 45 int nr_pages; 46 bool snapshot; 47 void *base; 48 }; 49 50 struct arm_spe_pmu { 51 struct pmu pmu; 52 struct platform_device *pdev; 53 cpumask_t supported_cpus; 54 struct hlist_node hotplug_node; 55 56 int irq; /* PPI */ 57 u16 pmsver; 58 u16 min_period; 59 u16 counter_sz; 60 61 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0) 62 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1) 63 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2) 64 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3) 65 #define SPE_PMU_FEAT_LDS (1UL << 4) 66 #define SPE_PMU_FEAT_ERND (1UL << 5) 67 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63) 68 u64 features; 69 70 u16 max_record_sz; 71 u16 align; 72 struct perf_output_handle __percpu *handle; 73 }; 74 75 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) 76 77 /* Convert a free-running index from perf into an SPE buffer offset */ 78 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 79 80 /* Keep track of our dynamic hotplug state */ 81 static enum cpuhp_state arm_spe_pmu_online; 82 83 enum arm_spe_pmu_buf_fault_action { 84 SPE_PMU_BUF_FAULT_ACT_SPURIOUS, 85 SPE_PMU_BUF_FAULT_ACT_FATAL, 86 SPE_PMU_BUF_FAULT_ACT_OK, 87 }; 88 89 /* This sysfs gunk was really good fun to write. */ 90 enum arm_spe_pmu_capabilities { 91 SPE_PMU_CAP_ARCH_INST = 0, 92 SPE_PMU_CAP_ERND, 93 SPE_PMU_CAP_FEAT_MAX, 94 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, 95 SPE_PMU_CAP_MIN_IVAL, 96 }; 97 98 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { 99 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST, 100 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND, 101 }; 102 103 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) 104 { 105 if (cap < SPE_PMU_CAP_FEAT_MAX) 106 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); 107 108 switch (cap) { 109 case SPE_PMU_CAP_CNT_SZ: 110 return spe_pmu->counter_sz; 111 case SPE_PMU_CAP_MIN_IVAL: 112 return spe_pmu->min_period; 113 default: 114 WARN(1, "unknown cap %d\n", cap); 115 } 116 117 return 0; 118 } 119 120 static ssize_t arm_spe_pmu_cap_show(struct device *dev, 121 struct device_attribute *attr, 122 char *buf) 123 { 124 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 125 struct dev_ext_attribute *ea = 126 container_of(attr, struct dev_ext_attribute, attr); 127 int cap = (long)ea->var; 128 129 return snprintf(buf, PAGE_SIZE, "%u\n", 130 arm_spe_pmu_cap_get(spe_pmu, cap)); 131 } 132 133 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \ 134 &((struct dev_ext_attribute[]) { \ 135 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \ 136 })[0].attr.attr 137 138 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \ 139 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) 140 141 static struct attribute *arm_spe_pmu_cap_attr[] = { 142 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), 143 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), 144 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), 145 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), 146 NULL, 147 }; 148 149 static const struct attribute_group arm_spe_pmu_cap_group = { 150 .name = "caps", 151 .attrs = arm_spe_pmu_cap_attr, 152 }; 153 154 /* User ABI */ 155 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */ 156 #define ATTR_CFG_FLD_ts_enable_LO 0 157 #define ATTR_CFG_FLD_ts_enable_HI 0 158 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */ 159 #define ATTR_CFG_FLD_pa_enable_LO 1 160 #define ATTR_CFG_FLD_pa_enable_HI 1 161 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */ 162 #define ATTR_CFG_FLD_pct_enable_LO 2 163 #define ATTR_CFG_FLD_pct_enable_HI 2 164 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */ 165 #define ATTR_CFG_FLD_jitter_LO 16 166 #define ATTR_CFG_FLD_jitter_HI 16 167 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */ 168 #define ATTR_CFG_FLD_branch_filter_LO 32 169 #define ATTR_CFG_FLD_branch_filter_HI 32 170 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */ 171 #define ATTR_CFG_FLD_load_filter_LO 33 172 #define ATTR_CFG_FLD_load_filter_HI 33 173 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */ 174 #define ATTR_CFG_FLD_store_filter_LO 34 175 #define ATTR_CFG_FLD_store_filter_HI 34 176 177 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */ 178 #define ATTR_CFG_FLD_event_filter_LO 0 179 #define ATTR_CFG_FLD_event_filter_HI 63 180 181 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */ 182 #define ATTR_CFG_FLD_min_latency_LO 0 183 #define ATTR_CFG_FLD_min_latency_HI 11 184 185 /* Why does everything I do descend into this? */ 186 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 187 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi 188 189 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 190 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) 191 192 #define GEN_PMU_FORMAT_ATTR(name) \ 193 PMU_FORMAT_ATTR(name, \ 194 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \ 195 ATTR_CFG_FLD_##name##_LO, \ 196 ATTR_CFG_FLD_##name##_HI)) 197 198 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \ 199 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0)) 200 201 #define ATTR_CFG_GET_FLD(attr, name) \ 202 _ATTR_CFG_GET_FLD(attr, \ 203 ATTR_CFG_FLD_##name##_CFG, \ 204 ATTR_CFG_FLD_##name##_LO, \ 205 ATTR_CFG_FLD_##name##_HI) 206 207 GEN_PMU_FORMAT_ATTR(ts_enable); 208 GEN_PMU_FORMAT_ATTR(pa_enable); 209 GEN_PMU_FORMAT_ATTR(pct_enable); 210 GEN_PMU_FORMAT_ATTR(jitter); 211 GEN_PMU_FORMAT_ATTR(branch_filter); 212 GEN_PMU_FORMAT_ATTR(load_filter); 213 GEN_PMU_FORMAT_ATTR(store_filter); 214 GEN_PMU_FORMAT_ATTR(event_filter); 215 GEN_PMU_FORMAT_ATTR(min_latency); 216 217 static struct attribute *arm_spe_pmu_formats_attr[] = { 218 &format_attr_ts_enable.attr, 219 &format_attr_pa_enable.attr, 220 &format_attr_pct_enable.attr, 221 &format_attr_jitter.attr, 222 &format_attr_branch_filter.attr, 223 &format_attr_load_filter.attr, 224 &format_attr_store_filter.attr, 225 &format_attr_event_filter.attr, 226 &format_attr_min_latency.attr, 227 NULL, 228 }; 229 230 static const struct attribute_group arm_spe_pmu_format_group = { 231 .name = "format", 232 .attrs = arm_spe_pmu_formats_attr, 233 }; 234 235 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev, 236 struct device_attribute *attr, 237 char *buf) 238 { 239 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 240 241 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); 242 } 243 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL); 244 245 static struct attribute *arm_spe_pmu_attrs[] = { 246 &dev_attr_cpumask.attr, 247 NULL, 248 }; 249 250 static const struct attribute_group arm_spe_pmu_group = { 251 .attrs = arm_spe_pmu_attrs, 252 }; 253 254 static const struct attribute_group *arm_spe_pmu_attr_groups[] = { 255 &arm_spe_pmu_group, 256 &arm_spe_pmu_cap_group, 257 &arm_spe_pmu_format_group, 258 NULL, 259 }; 260 261 /* Convert between user ABI and register values */ 262 static u64 arm_spe_event_to_pmscr(struct perf_event *event) 263 { 264 struct perf_event_attr *attr = &event->attr; 265 u64 reg = 0; 266 267 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT; 268 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT; 269 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT; 270 271 if (!attr->exclude_user) 272 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT); 273 274 if (!attr->exclude_kernel) 275 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT); 276 277 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable()) 278 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT); 279 280 return reg; 281 } 282 283 static void arm_spe_event_sanitise_period(struct perf_event *event) 284 { 285 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 286 u64 period = event->hw.sample_period; 287 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK 288 << SYS_PMSIRR_EL1_INTERVAL_SHIFT; 289 290 if (period < spe_pmu->min_period) 291 period = spe_pmu->min_period; 292 else if (period > max_period) 293 period = max_period; 294 else 295 period &= max_period; 296 297 event->hw.sample_period = period; 298 } 299 300 static u64 arm_spe_event_to_pmsirr(struct perf_event *event) 301 { 302 struct perf_event_attr *attr = &event->attr; 303 u64 reg = 0; 304 305 arm_spe_event_sanitise_period(event); 306 307 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT; 308 reg |= event->hw.sample_period; 309 310 return reg; 311 } 312 313 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) 314 { 315 struct perf_event_attr *attr = &event->attr; 316 u64 reg = 0; 317 318 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT; 319 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT; 320 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT; 321 322 if (reg) 323 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT); 324 325 if (ATTR_CFG_GET_FLD(attr, event_filter)) 326 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT); 327 328 if (ATTR_CFG_GET_FLD(attr, min_latency)) 329 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT); 330 331 return reg; 332 } 333 334 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) 335 { 336 struct perf_event_attr *attr = &event->attr; 337 return ATTR_CFG_GET_FLD(attr, event_filter); 338 } 339 340 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) 341 { 342 struct perf_event_attr *attr = &event->attr; 343 return ATTR_CFG_GET_FLD(attr, min_latency) 344 << SYS_PMSLATFR_EL1_MINLAT_SHIFT; 345 } 346 347 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) 348 { 349 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 350 u64 head = PERF_IDX2OFF(handle->head, buf); 351 352 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); 353 if (!buf->snapshot) 354 perf_aux_output_skip(handle, len); 355 } 356 357 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) 358 { 359 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 360 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 361 u64 head = PERF_IDX2OFF(handle->head, buf); 362 u64 limit = buf->nr_pages * PAGE_SIZE; 363 364 /* 365 * The trace format isn't parseable in reverse, so clamp 366 * the limit to half of the buffer size in snapshot mode 367 * so that the worst case is half a buffer of records, as 368 * opposed to a single record. 369 */ 370 if (head < limit >> 1) 371 limit >>= 1; 372 373 /* 374 * If we're within max_record_sz of the limit, we must 375 * pad, move the head index and recompute the limit. 376 */ 377 if (limit - head < spe_pmu->max_record_sz) { 378 arm_spe_pmu_pad_buf(handle, limit - head); 379 handle->head = PERF_IDX2OFF(limit, buf); 380 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; 381 } 382 383 return limit; 384 } 385 386 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) 387 { 388 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 389 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 390 const u64 bufsize = buf->nr_pages * PAGE_SIZE; 391 u64 limit = bufsize; 392 u64 head, tail, wakeup; 393 394 /* 395 * The head can be misaligned for two reasons: 396 * 397 * 1. The hardware left PMBPTR pointing to the first byte after 398 * a record when generating a buffer management event. 399 * 400 * 2. We used perf_aux_output_skip to consume handle->size bytes 401 * and CIRC_SPACE was used to compute the size, which always 402 * leaves one entry free. 403 * 404 * Deal with this by padding to the next alignment boundary and 405 * moving the head index. If we run out of buffer space, we'll 406 * reduce handle->size to zero and end up reporting truncation. 407 */ 408 head = PERF_IDX2OFF(handle->head, buf); 409 if (!IS_ALIGNED(head, spe_pmu->align)) { 410 unsigned long delta = roundup(head, spe_pmu->align) - head; 411 412 delta = min(delta, handle->size); 413 arm_spe_pmu_pad_buf(handle, delta); 414 head = PERF_IDX2OFF(handle->head, buf); 415 } 416 417 /* If we've run out of free space, then nothing more to do */ 418 if (!handle->size) 419 goto no_space; 420 421 /* Compute the tail and wakeup indices now that we've aligned head */ 422 tail = PERF_IDX2OFF(handle->head + handle->size, buf); 423 wakeup = PERF_IDX2OFF(handle->wakeup, buf); 424 425 /* 426 * Avoid clobbering unconsumed data. We know we have space, so 427 * if we see head == tail we know that the buffer is empty. If 428 * head > tail, then there's nothing to clobber prior to 429 * wrapping. 430 */ 431 if (head < tail) 432 limit = round_down(tail, PAGE_SIZE); 433 434 /* 435 * Wakeup may be arbitrarily far into the future. If it's not in 436 * the current generation, either we'll wrap before hitting it, 437 * or it's in the past and has been handled already. 438 * 439 * If there's a wakeup before we wrap, arrange to be woken up by 440 * the page boundary following it. Keep the tail boundary if 441 * that's lower. 442 */ 443 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) 444 limit = min(limit, round_up(wakeup, PAGE_SIZE)); 445 446 if (limit > head) 447 return limit; 448 449 arm_spe_pmu_pad_buf(handle, handle->size); 450 no_space: 451 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 452 perf_aux_output_end(handle, 0); 453 return 0; 454 } 455 456 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) 457 { 458 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 459 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 460 u64 limit = __arm_spe_pmu_next_off(handle); 461 u64 head = PERF_IDX2OFF(handle->head, buf); 462 463 /* 464 * If the head has come too close to the end of the buffer, 465 * then pad to the end and recompute the limit. 466 */ 467 if (limit && (limit - head < spe_pmu->max_record_sz)) { 468 arm_spe_pmu_pad_buf(handle, limit - head); 469 limit = __arm_spe_pmu_next_off(handle); 470 } 471 472 return limit; 473 } 474 475 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, 476 struct perf_event *event) 477 { 478 u64 base, limit; 479 struct arm_spe_pmu_buf *buf; 480 481 /* Start a new aux session */ 482 buf = perf_aux_output_begin(handle, event); 483 if (!buf) { 484 event->hw.state |= PERF_HES_STOPPED; 485 /* 486 * We still need to clear the limit pointer, since the 487 * profiler might only be disabled by virtue of a fault. 488 */ 489 limit = 0; 490 goto out_write_limit; 491 } 492 493 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) 494 : arm_spe_pmu_next_off(handle); 495 if (limit) 496 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT); 497 498 limit += (u64)buf->base; 499 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); 500 write_sysreg_s(base, SYS_PMBPTR_EL1); 501 502 out_write_limit: 503 write_sysreg_s(limit, SYS_PMBLIMITR_EL1); 504 } 505 506 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) 507 { 508 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 509 u64 offset, size; 510 511 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; 512 size = offset - PERF_IDX2OFF(handle->head, buf); 513 514 if (buf->snapshot) 515 handle->head = offset; 516 517 perf_aux_output_end(handle, size); 518 } 519 520 static void arm_spe_pmu_disable_and_drain_local(void) 521 { 522 /* Disable profiling at EL0 and EL1 */ 523 write_sysreg_s(0, SYS_PMSCR_EL1); 524 isb(); 525 526 /* Drain any buffered data */ 527 psb_csync(); 528 dsb(nsh); 529 530 /* Disable the profiling buffer */ 531 write_sysreg_s(0, SYS_PMBLIMITR_EL1); 532 isb(); 533 } 534 535 /* IRQ handling */ 536 static enum arm_spe_pmu_buf_fault_action 537 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) 538 { 539 const char *err_str; 540 u64 pmbsr; 541 enum arm_spe_pmu_buf_fault_action ret; 542 543 /* 544 * Ensure new profiling data is visible to the CPU and any external 545 * aborts have been resolved. 546 */ 547 psb_csync(); 548 dsb(nsh); 549 550 /* Ensure hardware updates to PMBPTR_EL1 are visible */ 551 isb(); 552 553 /* Service required? */ 554 pmbsr = read_sysreg_s(SYS_PMBSR_EL1); 555 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT))) 556 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; 557 558 /* 559 * If we've lost data, disable profiling and also set the PARTIAL 560 * flag to indicate that the last record is corrupted. 561 */ 562 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT)) 563 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | 564 PERF_AUX_FLAG_PARTIAL); 565 566 /* Report collisions to userspace so that it can up the period */ 567 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT)) 568 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); 569 570 /* We only expect buffer management events */ 571 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) { 572 case SYS_PMBSR_EL1_EC_BUF: 573 /* Handled below */ 574 break; 575 case SYS_PMBSR_EL1_EC_FAULT_S1: 576 case SYS_PMBSR_EL1_EC_FAULT_S2: 577 err_str = "Unexpected buffer fault"; 578 goto out_err; 579 default: 580 err_str = "Unknown error code"; 581 goto out_err; 582 } 583 584 /* Buffer management event */ 585 switch (pmbsr & 586 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) { 587 case SYS_PMBSR_EL1_BUF_BSC_FULL: 588 ret = SPE_PMU_BUF_FAULT_ACT_OK; 589 goto out_stop; 590 default: 591 err_str = "Unknown buffer status code"; 592 } 593 594 out_err: 595 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", 596 err_str, smp_processor_id(), pmbsr, 597 read_sysreg_s(SYS_PMBPTR_EL1), 598 read_sysreg_s(SYS_PMBLIMITR_EL1)); 599 ret = SPE_PMU_BUF_FAULT_ACT_FATAL; 600 601 out_stop: 602 arm_spe_perf_aux_output_end(handle); 603 return ret; 604 } 605 606 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) 607 { 608 struct perf_output_handle *handle = dev; 609 struct perf_event *event = handle->event; 610 enum arm_spe_pmu_buf_fault_action act; 611 612 if (!perf_get_aux(handle)) 613 return IRQ_NONE; 614 615 act = arm_spe_pmu_buf_get_fault_act(handle); 616 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 617 return IRQ_NONE; 618 619 /* 620 * Ensure perf callbacks have completed, which may disable the 621 * profiling buffer in response to a TRUNCATION flag. 622 */ 623 irq_work_run(); 624 625 switch (act) { 626 case SPE_PMU_BUF_FAULT_ACT_FATAL: 627 /* 628 * If a fatal exception occurred then leaving the profiling 629 * buffer enabled is a recipe waiting to happen. Since 630 * fatal faults don't always imply truncation, make sure 631 * that the profiling buffer is disabled explicitly before 632 * clearing the syndrome register. 633 */ 634 arm_spe_pmu_disable_and_drain_local(); 635 break; 636 case SPE_PMU_BUF_FAULT_ACT_OK: 637 /* 638 * We handled the fault (the buffer was full), so resume 639 * profiling as long as we didn't detect truncation. 640 * PMBPTR might be misaligned, but we'll burn that bridge 641 * when we get to it. 642 */ 643 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { 644 arm_spe_perf_aux_output_begin(handle, event); 645 isb(); 646 } 647 break; 648 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: 649 /* We've seen you before, but GCC has the memory of a sieve. */ 650 break; 651 } 652 653 /* The buffer pointers are now sane, so resume profiling. */ 654 write_sysreg_s(0, SYS_PMBSR_EL1); 655 return IRQ_HANDLED; 656 } 657 658 static u64 arm_spe_pmsevfr_res0(u16 pmsver) 659 { 660 switch (pmsver) { 661 case ID_AA64DFR0_PMSVER_8_2: 662 return SYS_PMSEVFR_EL1_RES0_8_2; 663 case ID_AA64DFR0_PMSVER_8_3: 664 /* Return the highest version we support in default */ 665 default: 666 return SYS_PMSEVFR_EL1_RES0_8_3; 667 } 668 } 669 670 /* Perf callbacks */ 671 static int arm_spe_pmu_event_init(struct perf_event *event) 672 { 673 u64 reg; 674 struct perf_event_attr *attr = &event->attr; 675 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 676 677 /* This is, of course, deeply driver-specific */ 678 if (attr->type != event->pmu->type) 679 return -ENOENT; 680 681 if (event->cpu >= 0 && 682 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) 683 return -ENOENT; 684 685 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver)) 686 return -EOPNOTSUPP; 687 688 if (attr->exclude_idle) 689 return -EOPNOTSUPP; 690 691 /* 692 * Feedback-directed frequency throttling doesn't work when we 693 * have a buffer of samples. We'd need to manually count the 694 * samples in the buffer when it fills up and adjust the event 695 * count to reflect that. Instead, just force the user to specify 696 * a sample period. 697 */ 698 if (attr->freq) 699 return -EINVAL; 700 701 reg = arm_spe_event_to_pmsfcr(event); 702 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) && 703 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) 704 return -EOPNOTSUPP; 705 706 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) && 707 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) 708 return -EOPNOTSUPP; 709 710 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) && 711 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) 712 return -EOPNOTSUPP; 713 714 reg = arm_spe_event_to_pmscr(event); 715 if (!perfmon_capable() && 716 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) | 717 BIT(SYS_PMSCR_EL1_CX_SHIFT) | 718 BIT(SYS_PMSCR_EL1_PCT_SHIFT)))) 719 return -EACCES; 720 721 return 0; 722 } 723 724 static void arm_spe_pmu_start(struct perf_event *event, int flags) 725 { 726 u64 reg; 727 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 728 struct hw_perf_event *hwc = &event->hw; 729 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 730 731 hwc->state = 0; 732 arm_spe_perf_aux_output_begin(handle, event); 733 if (hwc->state) 734 return; 735 736 reg = arm_spe_event_to_pmsfcr(event); 737 write_sysreg_s(reg, SYS_PMSFCR_EL1); 738 739 reg = arm_spe_event_to_pmsevfr(event); 740 write_sysreg_s(reg, SYS_PMSEVFR_EL1); 741 742 reg = arm_spe_event_to_pmslatfr(event); 743 write_sysreg_s(reg, SYS_PMSLATFR_EL1); 744 745 if (flags & PERF_EF_RELOAD) { 746 reg = arm_spe_event_to_pmsirr(event); 747 write_sysreg_s(reg, SYS_PMSIRR_EL1); 748 isb(); 749 reg = local64_read(&hwc->period_left); 750 write_sysreg_s(reg, SYS_PMSICR_EL1); 751 } 752 753 reg = arm_spe_event_to_pmscr(event); 754 isb(); 755 write_sysreg_s(reg, SYS_PMSCR_EL1); 756 } 757 758 static void arm_spe_pmu_stop(struct perf_event *event, int flags) 759 { 760 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 761 struct hw_perf_event *hwc = &event->hw; 762 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 763 764 /* If we're already stopped, then nothing to do */ 765 if (hwc->state & PERF_HES_STOPPED) 766 return; 767 768 /* Stop all trace generation */ 769 arm_spe_pmu_disable_and_drain_local(); 770 771 if (flags & PERF_EF_UPDATE) { 772 /* 773 * If there's a fault pending then ensure we contain it 774 * to this buffer, since we might be on the context-switch 775 * path. 776 */ 777 if (perf_get_aux(handle)) { 778 enum arm_spe_pmu_buf_fault_action act; 779 780 act = arm_spe_pmu_buf_get_fault_act(handle); 781 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 782 arm_spe_perf_aux_output_end(handle); 783 else 784 write_sysreg_s(0, SYS_PMBSR_EL1); 785 } 786 787 /* 788 * This may also contain ECOUNT, but nobody else should 789 * be looking at period_left, since we forbid frequency 790 * based sampling. 791 */ 792 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); 793 hwc->state |= PERF_HES_UPTODATE; 794 } 795 796 hwc->state |= PERF_HES_STOPPED; 797 } 798 799 static int arm_spe_pmu_add(struct perf_event *event, int flags) 800 { 801 int ret = 0; 802 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 803 struct hw_perf_event *hwc = &event->hw; 804 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; 805 806 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 807 return -ENOENT; 808 809 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 810 811 if (flags & PERF_EF_START) { 812 arm_spe_pmu_start(event, PERF_EF_RELOAD); 813 if (hwc->state & PERF_HES_STOPPED) 814 ret = -EINVAL; 815 } 816 817 return ret; 818 } 819 820 static void arm_spe_pmu_del(struct perf_event *event, int flags) 821 { 822 arm_spe_pmu_stop(event, PERF_EF_UPDATE); 823 } 824 825 static void arm_spe_pmu_read(struct perf_event *event) 826 { 827 } 828 829 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages, 830 int nr_pages, bool snapshot) 831 { 832 int i, cpu = event->cpu; 833 struct page **pglist; 834 struct arm_spe_pmu_buf *buf; 835 836 /* We need at least two pages for this to work. */ 837 if (nr_pages < 2) 838 return NULL; 839 840 /* 841 * We require an even number of pages for snapshot mode, so that 842 * we can effectively treat the buffer as consisting of two equal 843 * parts and give userspace a fighting chance of getting some 844 * useful data out of it. 845 */ 846 if (snapshot && (nr_pages & 1)) 847 return NULL; 848 849 if (cpu == -1) 850 cpu = raw_smp_processor_id(); 851 852 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); 853 if (!buf) 854 return NULL; 855 856 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); 857 if (!pglist) 858 goto out_free_buf; 859 860 for (i = 0; i < nr_pages; ++i) 861 pglist[i] = virt_to_page(pages[i]); 862 863 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); 864 if (!buf->base) 865 goto out_free_pglist; 866 867 buf->nr_pages = nr_pages; 868 buf->snapshot = snapshot; 869 870 kfree(pglist); 871 return buf; 872 873 out_free_pglist: 874 kfree(pglist); 875 out_free_buf: 876 kfree(buf); 877 return NULL; 878 } 879 880 static void arm_spe_pmu_free_aux(void *aux) 881 { 882 struct arm_spe_pmu_buf *buf = aux; 883 884 vunmap(buf->base); 885 kfree(buf); 886 } 887 888 /* Initialisation and teardown functions */ 889 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) 890 { 891 static atomic_t pmu_idx = ATOMIC_INIT(-1); 892 893 int idx; 894 char *name; 895 struct device *dev = &spe_pmu->pdev->dev; 896 897 spe_pmu->pmu = (struct pmu) { 898 .module = THIS_MODULE, 899 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, 900 .attr_groups = arm_spe_pmu_attr_groups, 901 /* 902 * We hitch a ride on the software context here, so that 903 * we can support per-task profiling (which is not possible 904 * with the invalid context as it doesn't get sched callbacks). 905 * This requires that userspace either uses a dummy event for 906 * perf_event_open, since the aux buffer is not setup until 907 * a subsequent mmap, or creates the profiling event in a 908 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it 909 * once the buffer has been created. 910 */ 911 .task_ctx_nr = perf_sw_context, 912 .event_init = arm_spe_pmu_event_init, 913 .add = arm_spe_pmu_add, 914 .del = arm_spe_pmu_del, 915 .start = arm_spe_pmu_start, 916 .stop = arm_spe_pmu_stop, 917 .read = arm_spe_pmu_read, 918 .setup_aux = arm_spe_pmu_setup_aux, 919 .free_aux = arm_spe_pmu_free_aux, 920 }; 921 922 idx = atomic_inc_return(&pmu_idx); 923 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); 924 if (!name) { 925 dev_err(dev, "failed to allocate name for pmu %d\n", idx); 926 return -ENOMEM; 927 } 928 929 return perf_pmu_register(&spe_pmu->pmu, name, -1); 930 } 931 932 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) 933 { 934 perf_pmu_unregister(&spe_pmu->pmu); 935 } 936 937 static void __arm_spe_pmu_dev_probe(void *info) 938 { 939 int fld; 940 u64 reg; 941 struct arm_spe_pmu *spe_pmu = info; 942 struct device *dev = &spe_pmu->pdev->dev; 943 944 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), 945 ID_AA64DFR0_PMSVER_SHIFT); 946 if (!fld) { 947 dev_err(dev, 948 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", 949 fld, smp_processor_id()); 950 return; 951 } 952 spe_pmu->pmsver = (u16)fld; 953 954 /* Read PMBIDR first to determine whether or not we have access */ 955 reg = read_sysreg_s(SYS_PMBIDR_EL1); 956 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) { 957 dev_err(dev, 958 "profiling buffer owned by higher exception level\n"); 959 return; 960 } 961 962 /* Minimum alignment. If it's out-of-range, then fail the probe */ 963 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK; 964 spe_pmu->align = 1 << fld; 965 if (spe_pmu->align > SZ_2K) { 966 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", 967 fld, smp_processor_id()); 968 return; 969 } 970 971 /* It's now safe to read PMSIDR and figure out what we've got */ 972 reg = read_sysreg_s(SYS_PMSIDR_EL1); 973 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT)) 974 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; 975 976 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT)) 977 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; 978 979 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT)) 980 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; 981 982 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT)) 983 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; 984 985 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT)) 986 spe_pmu->features |= SPE_PMU_FEAT_LDS; 987 988 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT)) 989 spe_pmu->features |= SPE_PMU_FEAT_ERND; 990 991 /* This field has a spaced out encoding, so just use a look-up */ 992 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK; 993 switch (fld) { 994 case 0: 995 spe_pmu->min_period = 256; 996 break; 997 case 2: 998 spe_pmu->min_period = 512; 999 break; 1000 case 3: 1001 spe_pmu->min_period = 768; 1002 break; 1003 case 4: 1004 spe_pmu->min_period = 1024; 1005 break; 1006 case 5: 1007 spe_pmu->min_period = 1536; 1008 break; 1009 case 6: 1010 spe_pmu->min_period = 2048; 1011 break; 1012 case 7: 1013 spe_pmu->min_period = 3072; 1014 break; 1015 default: 1016 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", 1017 fld); 1018 fallthrough; 1019 case 8: 1020 spe_pmu->min_period = 4096; 1021 } 1022 1023 /* Maximum record size. If it's out-of-range, then fail the probe */ 1024 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK; 1025 spe_pmu->max_record_sz = 1 << fld; 1026 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { 1027 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", 1028 fld, smp_processor_id()); 1029 return; 1030 } 1031 1032 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK; 1033 switch (fld) { 1034 default: 1035 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", 1036 fld); 1037 fallthrough; 1038 case 2: 1039 spe_pmu->counter_sz = 12; 1040 } 1041 1042 dev_info(dev, 1043 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", 1044 cpumask_pr_args(&spe_pmu->supported_cpus), 1045 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); 1046 1047 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; 1048 return; 1049 } 1050 1051 static void __arm_spe_pmu_reset_local(void) 1052 { 1053 /* 1054 * This is probably overkill, as we have no idea where we're 1055 * draining any buffered data to... 1056 */ 1057 arm_spe_pmu_disable_and_drain_local(); 1058 1059 /* Reset the buffer base pointer */ 1060 write_sysreg_s(0, SYS_PMBPTR_EL1); 1061 isb(); 1062 1063 /* Clear any pending management interrupts */ 1064 write_sysreg_s(0, SYS_PMBSR_EL1); 1065 isb(); 1066 } 1067 1068 static void __arm_spe_pmu_setup_one(void *info) 1069 { 1070 struct arm_spe_pmu *spe_pmu = info; 1071 1072 __arm_spe_pmu_reset_local(); 1073 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); 1074 } 1075 1076 static void __arm_spe_pmu_stop_one(void *info) 1077 { 1078 struct arm_spe_pmu *spe_pmu = info; 1079 1080 disable_percpu_irq(spe_pmu->irq); 1081 __arm_spe_pmu_reset_local(); 1082 } 1083 1084 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) 1085 { 1086 struct arm_spe_pmu *spe_pmu; 1087 1088 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1089 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1090 return 0; 1091 1092 __arm_spe_pmu_setup_one(spe_pmu); 1093 return 0; 1094 } 1095 1096 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1097 { 1098 struct arm_spe_pmu *spe_pmu; 1099 1100 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1101 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1102 return 0; 1103 1104 __arm_spe_pmu_stop_one(spe_pmu); 1105 return 0; 1106 } 1107 1108 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) 1109 { 1110 int ret; 1111 cpumask_t *mask = &spe_pmu->supported_cpus; 1112 1113 /* Make sure we probe the hardware on a relevant CPU */ 1114 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1); 1115 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) 1116 return -ENXIO; 1117 1118 /* Request our PPIs (note that the IRQ is still disabled) */ 1119 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, 1120 spe_pmu->handle); 1121 if (ret) 1122 return ret; 1123 1124 /* 1125 * Register our hotplug notifier now so we don't miss any events. 1126 * This will enable the IRQ for any supported CPUs that are already 1127 * up. 1128 */ 1129 ret = cpuhp_state_add_instance(arm_spe_pmu_online, 1130 &spe_pmu->hotplug_node); 1131 if (ret) 1132 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1133 1134 return ret; 1135 } 1136 1137 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) 1138 { 1139 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); 1140 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1141 } 1142 1143 /* Driver and device probing */ 1144 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) 1145 { 1146 struct platform_device *pdev = spe_pmu->pdev; 1147 int irq = platform_get_irq(pdev, 0); 1148 1149 if (irq < 0) 1150 return -ENXIO; 1151 1152 if (!irq_is_percpu(irq)) { 1153 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); 1154 return -EINVAL; 1155 } 1156 1157 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { 1158 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); 1159 return -EINVAL; 1160 } 1161 1162 spe_pmu->irq = irq; 1163 return 0; 1164 } 1165 1166 static const struct of_device_id arm_spe_pmu_of_match[] = { 1167 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, 1168 { /* Sentinel */ }, 1169 }; 1170 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match); 1171 1172 static const struct platform_device_id arm_spe_match[] = { 1173 { ARMV8_SPE_PDEV_NAME, 0}, 1174 { } 1175 }; 1176 MODULE_DEVICE_TABLE(platform, arm_spe_match); 1177 1178 static int arm_spe_pmu_device_probe(struct platform_device *pdev) 1179 { 1180 int ret; 1181 struct arm_spe_pmu *spe_pmu; 1182 struct device *dev = &pdev->dev; 1183 1184 /* 1185 * If kernelspace is unmapped when running at EL0, then the SPE 1186 * buffer will fault and prematurely terminate the AUX session. 1187 */ 1188 if (arm64_kernel_unmapped_at_el0()) { 1189 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); 1190 return -EPERM; 1191 } 1192 1193 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); 1194 if (!spe_pmu) { 1195 dev_err(dev, "failed to allocate spe_pmu\n"); 1196 return -ENOMEM; 1197 } 1198 1199 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); 1200 if (!spe_pmu->handle) 1201 return -ENOMEM; 1202 1203 spe_pmu->pdev = pdev; 1204 platform_set_drvdata(pdev, spe_pmu); 1205 1206 ret = arm_spe_pmu_irq_probe(spe_pmu); 1207 if (ret) 1208 goto out_free_handle; 1209 1210 ret = arm_spe_pmu_dev_init(spe_pmu); 1211 if (ret) 1212 goto out_free_handle; 1213 1214 ret = arm_spe_pmu_perf_init(spe_pmu); 1215 if (ret) 1216 goto out_teardown_dev; 1217 1218 return 0; 1219 1220 out_teardown_dev: 1221 arm_spe_pmu_dev_teardown(spe_pmu); 1222 out_free_handle: 1223 free_percpu(spe_pmu->handle); 1224 return ret; 1225 } 1226 1227 static int arm_spe_pmu_device_remove(struct platform_device *pdev) 1228 { 1229 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 1230 1231 arm_spe_pmu_perf_destroy(spe_pmu); 1232 arm_spe_pmu_dev_teardown(spe_pmu); 1233 free_percpu(spe_pmu->handle); 1234 return 0; 1235 } 1236 1237 static struct platform_driver arm_spe_pmu_driver = { 1238 .id_table = arm_spe_match, 1239 .driver = { 1240 .name = DRVNAME, 1241 .of_match_table = of_match_ptr(arm_spe_pmu_of_match), 1242 .suppress_bind_attrs = true, 1243 }, 1244 .probe = arm_spe_pmu_device_probe, 1245 .remove = arm_spe_pmu_device_remove, 1246 }; 1247 1248 static int __init arm_spe_pmu_init(void) 1249 { 1250 int ret; 1251 1252 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, 1253 arm_spe_pmu_cpu_startup, 1254 arm_spe_pmu_cpu_teardown); 1255 if (ret < 0) 1256 return ret; 1257 arm_spe_pmu_online = ret; 1258 1259 ret = platform_driver_register(&arm_spe_pmu_driver); 1260 if (ret) 1261 cpuhp_remove_multi_state(arm_spe_pmu_online); 1262 1263 return ret; 1264 } 1265 1266 static void __exit arm_spe_pmu_exit(void) 1267 { 1268 platform_driver_unregister(&arm_spe_pmu_driver); 1269 cpuhp_remove_multi_state(arm_spe_pmu_online); 1270 } 1271 1272 module_init(arm_spe_pmu_init); 1273 module_exit(arm_spe_pmu_exit); 1274 1275 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); 1276 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); 1277 MODULE_LICENSE("GPL v2"); 1278