1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Perf support for the Statistical Profiling Extension, introduced as 4 * part of ARMv8.2. 5 * 6 * Copyright (C) 2016 ARM Limited 7 * 8 * Author: Will Deacon <will.deacon@arm.com> 9 */ 10 11 #define PMUNAME "arm_spe" 12 #define DRVNAME PMUNAME "_pmu" 13 #define pr_fmt(fmt) DRVNAME ": " fmt 14 15 #include <linux/bitfield.h> 16 #include <linux/bitops.h> 17 #include <linux/bug.h> 18 #include <linux/capability.h> 19 #include <linux/cpuhotplug.h> 20 #include <linux/cpumask.h> 21 #include <linux/device.h> 22 #include <linux/errno.h> 23 #include <linux/interrupt.h> 24 #include <linux/irq.h> 25 #include <linux/kernel.h> 26 #include <linux/list.h> 27 #include <linux/module.h> 28 #include <linux/of.h> 29 #include <linux/perf_event.h> 30 #include <linux/perf/arm_pmu.h> 31 #include <linux/platform_device.h> 32 #include <linux/printk.h> 33 #include <linux/slab.h> 34 #include <linux/smp.h> 35 #include <linux/vmalloc.h> 36 37 #include <asm/barrier.h> 38 #include <asm/cpufeature.h> 39 #include <asm/mmu.h> 40 #include <asm/sysreg.h> 41 42 /* 43 * Cache if the event is allowed to trace Context information. 44 * This allows us to perform the check, i.e, perf_allow_kernel(), 45 * in the context of the event owner, once, during the event_init(). 46 */ 47 #define SPE_PMU_HW_FLAGS_CX 0x00001 48 49 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX); 50 51 static void set_spe_event_has_cx(struct perf_event *event) 52 { 53 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && !perf_allow_kernel()) 54 event->hw.flags |= SPE_PMU_HW_FLAGS_CX; 55 } 56 57 static bool get_spe_event_has_cx(struct perf_event *event) 58 { 59 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX); 60 } 61 62 #define ARM_SPE_BUF_PAD_BYTE 0 63 64 struct arm_spe_pmu_buf { 65 int nr_pages; 66 bool snapshot; 67 void *base; 68 }; 69 70 struct arm_spe_pmu { 71 struct pmu pmu; 72 struct platform_device *pdev; 73 cpumask_t supported_cpus; 74 struct hlist_node hotplug_node; 75 76 int irq; /* PPI */ 77 u16 pmsver; 78 u16 min_period; 79 u16 counter_sz; 80 81 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0) 82 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1) 83 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2) 84 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3) 85 #define SPE_PMU_FEAT_LDS (1UL << 4) 86 #define SPE_PMU_FEAT_ERND (1UL << 5) 87 #define SPE_PMU_FEAT_INV_FILT_EVT (1UL << 6) 88 #define SPE_PMU_FEAT_DISCARD (1UL << 7) 89 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63) 90 u64 features; 91 92 u16 max_record_sz; 93 u16 align; 94 struct perf_output_handle __percpu *handle; 95 }; 96 97 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) 98 99 /* Convert a free-running index from perf into an SPE buffer offset */ 100 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 101 102 /* Keep track of our dynamic hotplug state */ 103 static enum cpuhp_state arm_spe_pmu_online; 104 105 enum arm_spe_pmu_buf_fault_action { 106 SPE_PMU_BUF_FAULT_ACT_SPURIOUS, 107 SPE_PMU_BUF_FAULT_ACT_FATAL, 108 SPE_PMU_BUF_FAULT_ACT_OK, 109 }; 110 111 /* This sysfs gunk was really good fun to write. */ 112 enum arm_spe_pmu_capabilities { 113 SPE_PMU_CAP_ARCH_INST = 0, 114 SPE_PMU_CAP_ERND, 115 SPE_PMU_CAP_FEAT_MAX, 116 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, 117 SPE_PMU_CAP_MIN_IVAL, 118 }; 119 120 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { 121 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST, 122 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND, 123 }; 124 125 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) 126 { 127 if (cap < SPE_PMU_CAP_FEAT_MAX) 128 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); 129 130 switch (cap) { 131 case SPE_PMU_CAP_CNT_SZ: 132 return spe_pmu->counter_sz; 133 case SPE_PMU_CAP_MIN_IVAL: 134 return spe_pmu->min_period; 135 default: 136 WARN(1, "unknown cap %d\n", cap); 137 } 138 139 return 0; 140 } 141 142 static ssize_t arm_spe_pmu_cap_show(struct device *dev, 143 struct device_attribute *attr, 144 char *buf) 145 { 146 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 147 struct dev_ext_attribute *ea = 148 container_of(attr, struct dev_ext_attribute, attr); 149 int cap = (long)ea->var; 150 151 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap)); 152 } 153 154 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \ 155 &((struct dev_ext_attribute[]) { \ 156 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \ 157 })[0].attr.attr 158 159 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \ 160 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) 161 162 static struct attribute *arm_spe_pmu_cap_attr[] = { 163 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), 164 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), 165 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), 166 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), 167 NULL, 168 }; 169 170 static const struct attribute_group arm_spe_pmu_cap_group = { 171 .name = "caps", 172 .attrs = arm_spe_pmu_cap_attr, 173 }; 174 175 /* User ABI */ 176 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */ 177 #define ATTR_CFG_FLD_ts_enable_LO 0 178 #define ATTR_CFG_FLD_ts_enable_HI 0 179 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */ 180 #define ATTR_CFG_FLD_pa_enable_LO 1 181 #define ATTR_CFG_FLD_pa_enable_HI 1 182 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */ 183 #define ATTR_CFG_FLD_pct_enable_LO 2 184 #define ATTR_CFG_FLD_pct_enable_HI 2 185 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */ 186 #define ATTR_CFG_FLD_jitter_LO 16 187 #define ATTR_CFG_FLD_jitter_HI 16 188 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */ 189 #define ATTR_CFG_FLD_branch_filter_LO 32 190 #define ATTR_CFG_FLD_branch_filter_HI 32 191 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */ 192 #define ATTR_CFG_FLD_load_filter_LO 33 193 #define ATTR_CFG_FLD_load_filter_HI 33 194 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */ 195 #define ATTR_CFG_FLD_store_filter_LO 34 196 #define ATTR_CFG_FLD_store_filter_HI 34 197 #define ATTR_CFG_FLD_discard_CFG config /* PMBLIMITR_EL1.FM = DISCARD */ 198 #define ATTR_CFG_FLD_discard_LO 35 199 #define ATTR_CFG_FLD_discard_HI 35 200 201 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */ 202 #define ATTR_CFG_FLD_event_filter_LO 0 203 #define ATTR_CFG_FLD_event_filter_HI 63 204 205 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */ 206 #define ATTR_CFG_FLD_min_latency_LO 0 207 #define ATTR_CFG_FLD_min_latency_HI 11 208 209 #define ATTR_CFG_FLD_inv_event_filter_CFG config3 /* PMSNEVFR_EL1 */ 210 #define ATTR_CFG_FLD_inv_event_filter_LO 0 211 #define ATTR_CFG_FLD_inv_event_filter_HI 63 212 213 GEN_PMU_FORMAT_ATTR(ts_enable); 214 GEN_PMU_FORMAT_ATTR(pa_enable); 215 GEN_PMU_FORMAT_ATTR(pct_enable); 216 GEN_PMU_FORMAT_ATTR(jitter); 217 GEN_PMU_FORMAT_ATTR(branch_filter); 218 GEN_PMU_FORMAT_ATTR(load_filter); 219 GEN_PMU_FORMAT_ATTR(store_filter); 220 GEN_PMU_FORMAT_ATTR(event_filter); 221 GEN_PMU_FORMAT_ATTR(inv_event_filter); 222 GEN_PMU_FORMAT_ATTR(min_latency); 223 GEN_PMU_FORMAT_ATTR(discard); 224 225 static struct attribute *arm_spe_pmu_formats_attr[] = { 226 &format_attr_ts_enable.attr, 227 &format_attr_pa_enable.attr, 228 &format_attr_pct_enable.attr, 229 &format_attr_jitter.attr, 230 &format_attr_branch_filter.attr, 231 &format_attr_load_filter.attr, 232 &format_attr_store_filter.attr, 233 &format_attr_event_filter.attr, 234 &format_attr_inv_event_filter.attr, 235 &format_attr_min_latency.attr, 236 &format_attr_discard.attr, 237 NULL, 238 }; 239 240 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj, 241 struct attribute *attr, 242 int unused) 243 { 244 struct device *dev = kobj_to_dev(kobj); 245 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 246 247 if (attr == &format_attr_discard.attr && !(spe_pmu->features & SPE_PMU_FEAT_DISCARD)) 248 return 0; 249 250 if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT)) 251 return 0; 252 253 return attr->mode; 254 } 255 256 static const struct attribute_group arm_spe_pmu_format_group = { 257 .name = "format", 258 .is_visible = arm_spe_pmu_format_attr_is_visible, 259 .attrs = arm_spe_pmu_formats_attr, 260 }; 261 262 static ssize_t cpumask_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 266 267 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); 268 } 269 static DEVICE_ATTR_RO(cpumask); 270 271 static struct attribute *arm_spe_pmu_attrs[] = { 272 &dev_attr_cpumask.attr, 273 NULL, 274 }; 275 276 static const struct attribute_group arm_spe_pmu_group = { 277 .attrs = arm_spe_pmu_attrs, 278 }; 279 280 static const struct attribute_group *arm_spe_pmu_attr_groups[] = { 281 &arm_spe_pmu_group, 282 &arm_spe_pmu_cap_group, 283 &arm_spe_pmu_format_group, 284 NULL, 285 }; 286 287 /* Convert between user ABI and register values */ 288 static u64 arm_spe_event_to_pmscr(struct perf_event *event) 289 { 290 struct perf_event_attr *attr = &event->attr; 291 u64 reg = 0; 292 293 reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable)); 294 reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable)); 295 reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable)); 296 297 if (!attr->exclude_user) 298 reg |= PMSCR_EL1_E0SPE; 299 300 if (!attr->exclude_kernel) 301 reg |= PMSCR_EL1_E1SPE; 302 303 if (get_spe_event_has_cx(event)) 304 reg |= PMSCR_EL1_CX; 305 306 return reg; 307 } 308 309 static void arm_spe_event_sanitise_period(struct perf_event *event) 310 { 311 u64 period = event->hw.sample_period; 312 u64 max_period = PMSIRR_EL1_INTERVAL_MASK; 313 314 /* 315 * The PMSIDR_EL1.Interval field (stored in spe_pmu->min_period) is a 316 * recommendation for the minimum interval, not a hardware limitation. 317 * 318 * According to the Arm ARM (DDI 0487 L.a), section D24.7.12 PMSIRR_EL1, 319 * Sampling Interval Reload Register, the INTERVAL field (bits [31:8]) 320 * states: "Software must set this to a nonzero value". Use 1 as the 321 * minimum value. 322 */ 323 u64 min_period = FIELD_PREP(PMSIRR_EL1_INTERVAL_MASK, 1); 324 325 period = clamp_t(u64, period, min_period, max_period) & max_period; 326 event->hw.sample_period = period; 327 } 328 329 static u64 arm_spe_event_to_pmsirr(struct perf_event *event) 330 { 331 struct perf_event_attr *attr = &event->attr; 332 u64 reg = 0; 333 334 arm_spe_event_sanitise_period(event); 335 336 reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter)); 337 reg |= event->hw.sample_period; 338 339 return reg; 340 } 341 342 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) 343 { 344 struct perf_event_attr *attr = &event->attr; 345 u64 reg = 0; 346 347 reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter)); 348 reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter)); 349 reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter)); 350 351 if (reg) 352 reg |= PMSFCR_EL1_FT; 353 354 if (ATTR_CFG_GET_FLD(attr, event_filter)) 355 reg |= PMSFCR_EL1_FE; 356 357 if (ATTR_CFG_GET_FLD(attr, inv_event_filter)) 358 reg |= PMSFCR_EL1_FnE; 359 360 if (ATTR_CFG_GET_FLD(attr, min_latency)) 361 reg |= PMSFCR_EL1_FL; 362 363 return reg; 364 } 365 366 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) 367 { 368 struct perf_event_attr *attr = &event->attr; 369 return ATTR_CFG_GET_FLD(attr, event_filter); 370 } 371 372 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event) 373 { 374 struct perf_event_attr *attr = &event->attr; 375 return ATTR_CFG_GET_FLD(attr, inv_event_filter); 376 } 377 378 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) 379 { 380 struct perf_event_attr *attr = &event->attr; 381 return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency)); 382 } 383 384 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) 385 { 386 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 387 u64 head = PERF_IDX2OFF(handle->head, buf); 388 389 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); 390 if (!buf->snapshot) 391 perf_aux_output_skip(handle, len); 392 } 393 394 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) 395 { 396 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 397 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 398 u64 head = PERF_IDX2OFF(handle->head, buf); 399 u64 limit = buf->nr_pages * PAGE_SIZE; 400 401 /* 402 * The trace format isn't parseable in reverse, so clamp 403 * the limit to half of the buffer size in snapshot mode 404 * so that the worst case is half a buffer of records, as 405 * opposed to a single record. 406 */ 407 if (head < limit >> 1) 408 limit >>= 1; 409 410 /* 411 * If we're within max_record_sz of the limit, we must 412 * pad, move the head index and recompute the limit. 413 */ 414 if (limit - head < spe_pmu->max_record_sz) { 415 arm_spe_pmu_pad_buf(handle, limit - head); 416 handle->head = PERF_IDX2OFF(limit, buf); 417 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; 418 } 419 420 return limit; 421 } 422 423 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) 424 { 425 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 426 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 427 const u64 bufsize = buf->nr_pages * PAGE_SIZE; 428 u64 limit = bufsize; 429 u64 head, tail, wakeup; 430 431 /* 432 * The head can be misaligned for two reasons: 433 * 434 * 1. The hardware left PMBPTR pointing to the first byte after 435 * a record when generating a buffer management event. 436 * 437 * 2. We used perf_aux_output_skip to consume handle->size bytes 438 * and CIRC_SPACE was used to compute the size, which always 439 * leaves one entry free. 440 * 441 * Deal with this by padding to the next alignment boundary and 442 * moving the head index. If we run out of buffer space, we'll 443 * reduce handle->size to zero and end up reporting truncation. 444 */ 445 head = PERF_IDX2OFF(handle->head, buf); 446 if (!IS_ALIGNED(head, spe_pmu->align)) { 447 unsigned long delta = roundup(head, spe_pmu->align) - head; 448 449 delta = min(delta, handle->size); 450 arm_spe_pmu_pad_buf(handle, delta); 451 head = PERF_IDX2OFF(handle->head, buf); 452 } 453 454 /* If we've run out of free space, then nothing more to do */ 455 if (!handle->size) 456 goto no_space; 457 458 /* Compute the tail and wakeup indices now that we've aligned head */ 459 tail = PERF_IDX2OFF(handle->head + handle->size, buf); 460 wakeup = PERF_IDX2OFF(handle->wakeup, buf); 461 462 /* 463 * Avoid clobbering unconsumed data. We know we have space, so 464 * if we see head == tail we know that the buffer is empty. If 465 * head > tail, then there's nothing to clobber prior to 466 * wrapping. 467 */ 468 if (head < tail) 469 limit = round_down(tail, PAGE_SIZE); 470 471 /* 472 * Wakeup may be arbitrarily far into the future. If it's not in 473 * the current generation, either we'll wrap before hitting it, 474 * or it's in the past and has been handled already. 475 * 476 * If there's a wakeup before we wrap, arrange to be woken up by 477 * the page boundary following it. Keep the tail boundary if 478 * that's lower. 479 */ 480 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) 481 limit = min(limit, round_up(wakeup, PAGE_SIZE)); 482 483 if (limit > head) 484 return limit; 485 486 arm_spe_pmu_pad_buf(handle, handle->size); 487 no_space: 488 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 489 perf_aux_output_end(handle, 0); 490 return 0; 491 } 492 493 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) 494 { 495 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 496 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 497 u64 limit = __arm_spe_pmu_next_off(handle); 498 u64 head = PERF_IDX2OFF(handle->head, buf); 499 500 /* 501 * If the head has come too close to the end of the buffer, 502 * then pad to the end and recompute the limit. 503 */ 504 if (limit && (limit - head < spe_pmu->max_record_sz)) { 505 arm_spe_pmu_pad_buf(handle, limit - head); 506 limit = __arm_spe_pmu_next_off(handle); 507 } 508 509 return limit; 510 } 511 512 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, 513 struct perf_event *event) 514 { 515 u64 base, limit; 516 struct arm_spe_pmu_buf *buf; 517 518 if (ATTR_CFG_GET_FLD(&event->attr, discard)) { 519 limit = FIELD_PREP(PMBLIMITR_EL1_FM, PMBLIMITR_EL1_FM_DISCARD); 520 limit |= PMBLIMITR_EL1_E; 521 goto out_write_limit; 522 } 523 524 /* Start a new aux session */ 525 buf = perf_aux_output_begin(handle, event); 526 if (!buf) { 527 event->hw.state |= PERF_HES_STOPPED; 528 /* 529 * We still need to clear the limit pointer, since the 530 * profiler might only be disabled by virtue of a fault. 531 */ 532 limit = 0; 533 goto out_write_limit; 534 } 535 536 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) 537 : arm_spe_pmu_next_off(handle); 538 if (limit) 539 limit |= PMBLIMITR_EL1_E; 540 541 limit += (u64)buf->base; 542 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); 543 write_sysreg_s(base, SYS_PMBPTR_EL1); 544 545 out_write_limit: 546 write_sysreg_s(limit, SYS_PMBLIMITR_EL1); 547 } 548 549 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) 550 { 551 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 552 u64 offset, size; 553 554 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; 555 size = offset - PERF_IDX2OFF(handle->head, buf); 556 557 if (buf->snapshot) 558 handle->head = offset; 559 560 perf_aux_output_end(handle, size); 561 } 562 563 static void arm_spe_pmu_disable_and_drain_local(void) 564 { 565 /* Disable profiling at EL0 and EL1 */ 566 write_sysreg_s(0, SYS_PMSCR_EL1); 567 isb(); 568 569 /* Drain any buffered data */ 570 psb_csync(); 571 dsb(nsh); 572 573 /* Disable the profiling buffer */ 574 write_sysreg_s(0, SYS_PMBLIMITR_EL1); 575 isb(); 576 } 577 578 /* IRQ handling */ 579 static enum arm_spe_pmu_buf_fault_action 580 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) 581 { 582 const char *err_str; 583 u64 pmbsr; 584 enum arm_spe_pmu_buf_fault_action ret; 585 586 /* 587 * Ensure new profiling data is visible to the CPU and any external 588 * aborts have been resolved. 589 */ 590 psb_csync(); 591 dsb(nsh); 592 593 /* Ensure hardware updates to PMBPTR_EL1 are visible */ 594 isb(); 595 596 /* Service required? */ 597 pmbsr = read_sysreg_s(SYS_PMBSR_EL1); 598 if (!FIELD_GET(PMBSR_EL1_S, pmbsr)) 599 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; 600 601 /* 602 * If we've lost data, disable profiling and also set the PARTIAL 603 * flag to indicate that the last record is corrupted. 604 */ 605 if (FIELD_GET(PMBSR_EL1_DL, pmbsr)) 606 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | 607 PERF_AUX_FLAG_PARTIAL); 608 609 /* Report collisions to userspace so that it can up the period */ 610 if (FIELD_GET(PMBSR_EL1_COLL, pmbsr)) 611 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); 612 613 /* We only expect buffer management events */ 614 switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) { 615 case PMBSR_EL1_EC_BUF: 616 /* Handled below */ 617 break; 618 case PMBSR_EL1_EC_FAULT_S1: 619 case PMBSR_EL1_EC_FAULT_S2: 620 err_str = "Unexpected buffer fault"; 621 goto out_err; 622 default: 623 err_str = "Unknown error code"; 624 goto out_err; 625 } 626 627 /* Buffer management event */ 628 switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) { 629 case PMBSR_EL1_BUF_BSC_FULL: 630 ret = SPE_PMU_BUF_FAULT_ACT_OK; 631 goto out_stop; 632 default: 633 err_str = "Unknown buffer status code"; 634 } 635 636 out_err: 637 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", 638 err_str, smp_processor_id(), pmbsr, 639 read_sysreg_s(SYS_PMBPTR_EL1), 640 read_sysreg_s(SYS_PMBLIMITR_EL1)); 641 ret = SPE_PMU_BUF_FAULT_ACT_FATAL; 642 643 out_stop: 644 arm_spe_perf_aux_output_end(handle); 645 return ret; 646 } 647 648 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) 649 { 650 struct perf_output_handle *handle = dev; 651 struct perf_event *event = handle->event; 652 enum arm_spe_pmu_buf_fault_action act; 653 654 if (!perf_get_aux(handle)) 655 return IRQ_NONE; 656 657 act = arm_spe_pmu_buf_get_fault_act(handle); 658 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 659 return IRQ_NONE; 660 661 /* 662 * Ensure perf callbacks have completed, which may disable the 663 * profiling buffer in response to a TRUNCATION flag. 664 */ 665 irq_work_run(); 666 667 switch (act) { 668 case SPE_PMU_BUF_FAULT_ACT_FATAL: 669 /* 670 * If a fatal exception occurred then leaving the profiling 671 * buffer enabled is a recipe waiting to happen. Since 672 * fatal faults don't always imply truncation, make sure 673 * that the profiling buffer is disabled explicitly before 674 * clearing the syndrome register. 675 */ 676 arm_spe_pmu_disable_and_drain_local(); 677 break; 678 case SPE_PMU_BUF_FAULT_ACT_OK: 679 /* 680 * We handled the fault (the buffer was full), so resume 681 * profiling as long as we didn't detect truncation. 682 * PMBPTR might be misaligned, but we'll burn that bridge 683 * when we get to it. 684 */ 685 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { 686 arm_spe_perf_aux_output_begin(handle, event); 687 isb(); 688 } 689 break; 690 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: 691 /* We've seen you before, but GCC has the memory of a sieve. */ 692 break; 693 } 694 695 /* The buffer pointers are now sane, so resume profiling. */ 696 write_sysreg_s(0, SYS_PMBSR_EL1); 697 return IRQ_HANDLED; 698 } 699 700 static u64 arm_spe_pmsevfr_res0(u16 pmsver) 701 { 702 switch (pmsver) { 703 case ID_AA64DFR0_EL1_PMSVer_IMP: 704 return PMSEVFR_EL1_RES0_IMP; 705 case ID_AA64DFR0_EL1_PMSVer_V1P1: 706 return PMSEVFR_EL1_RES0_V1P1; 707 case ID_AA64DFR0_EL1_PMSVer_V1P2: 708 /* Return the highest version we support in default */ 709 default: 710 return PMSEVFR_EL1_RES0_V1P2; 711 } 712 } 713 714 /* Perf callbacks */ 715 static int arm_spe_pmu_event_init(struct perf_event *event) 716 { 717 u64 reg; 718 struct perf_event_attr *attr = &event->attr; 719 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 720 721 /* This is, of course, deeply driver-specific */ 722 if (attr->type != event->pmu->type) 723 return -ENOENT; 724 725 if (event->cpu >= 0 && 726 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) 727 return -ENOENT; 728 729 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver)) 730 return -EOPNOTSUPP; 731 732 if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver)) 733 return -EOPNOTSUPP; 734 735 if (attr->exclude_idle) 736 return -EOPNOTSUPP; 737 738 /* 739 * Feedback-directed frequency throttling doesn't work when we 740 * have a buffer of samples. We'd need to manually count the 741 * samples in the buffer when it fills up and adjust the event 742 * count to reflect that. Instead, just force the user to specify 743 * a sample period. 744 */ 745 if (attr->freq) 746 return -EINVAL; 747 748 reg = arm_spe_event_to_pmsfcr(event); 749 if ((FIELD_GET(PMSFCR_EL1_FE, reg)) && 750 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) 751 return -EOPNOTSUPP; 752 753 if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) && 754 !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT)) 755 return -EOPNOTSUPP; 756 757 if ((FIELD_GET(PMSFCR_EL1_FT, reg)) && 758 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) 759 return -EOPNOTSUPP; 760 761 if ((FIELD_GET(PMSFCR_EL1_FL, reg)) && 762 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) 763 return -EOPNOTSUPP; 764 765 if (ATTR_CFG_GET_FLD(&event->attr, discard) && 766 !(spe_pmu->features & SPE_PMU_FEAT_DISCARD)) 767 return -EOPNOTSUPP; 768 769 set_spe_event_has_cx(event); 770 reg = arm_spe_event_to_pmscr(event); 771 if (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT)) 772 return perf_allow_kernel(); 773 774 return 0; 775 } 776 777 static void arm_spe_pmu_start(struct perf_event *event, int flags) 778 { 779 u64 reg; 780 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 781 struct hw_perf_event *hwc = &event->hw; 782 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 783 784 hwc->state = 0; 785 arm_spe_perf_aux_output_begin(handle, event); 786 if (hwc->state) 787 return; 788 789 reg = arm_spe_event_to_pmsfcr(event); 790 write_sysreg_s(reg, SYS_PMSFCR_EL1); 791 792 reg = arm_spe_event_to_pmsevfr(event); 793 write_sysreg_s(reg, SYS_PMSEVFR_EL1); 794 795 if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) { 796 reg = arm_spe_event_to_pmsnevfr(event); 797 write_sysreg_s(reg, SYS_PMSNEVFR_EL1); 798 } 799 800 reg = arm_spe_event_to_pmslatfr(event); 801 write_sysreg_s(reg, SYS_PMSLATFR_EL1); 802 803 if (flags & PERF_EF_RELOAD) { 804 reg = arm_spe_event_to_pmsirr(event); 805 write_sysreg_s(reg, SYS_PMSIRR_EL1); 806 isb(); 807 reg = local64_read(&hwc->period_left); 808 write_sysreg_s(reg, SYS_PMSICR_EL1); 809 } 810 811 reg = arm_spe_event_to_pmscr(event); 812 isb(); 813 write_sysreg_s(reg, SYS_PMSCR_EL1); 814 } 815 816 static void arm_spe_pmu_stop(struct perf_event *event, int flags) 817 { 818 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 819 struct hw_perf_event *hwc = &event->hw; 820 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 821 822 /* If we're already stopped, then nothing to do */ 823 if (hwc->state & PERF_HES_STOPPED) 824 return; 825 826 /* Stop all trace generation */ 827 arm_spe_pmu_disable_and_drain_local(); 828 829 if (flags & PERF_EF_UPDATE) { 830 /* 831 * If there's a fault pending then ensure we contain it 832 * to this buffer, since we might be on the context-switch 833 * path. 834 */ 835 if (perf_get_aux(handle)) { 836 enum arm_spe_pmu_buf_fault_action act; 837 838 act = arm_spe_pmu_buf_get_fault_act(handle); 839 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 840 arm_spe_perf_aux_output_end(handle); 841 else 842 write_sysreg_s(0, SYS_PMBSR_EL1); 843 } 844 845 /* 846 * This may also contain ECOUNT, but nobody else should 847 * be looking at period_left, since we forbid frequency 848 * based sampling. 849 */ 850 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); 851 hwc->state |= PERF_HES_UPTODATE; 852 } 853 854 hwc->state |= PERF_HES_STOPPED; 855 } 856 857 static int arm_spe_pmu_add(struct perf_event *event, int flags) 858 { 859 int ret = 0; 860 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 861 struct hw_perf_event *hwc = &event->hw; 862 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; 863 864 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 865 return -ENOENT; 866 867 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 868 869 if (flags & PERF_EF_START) { 870 arm_spe_pmu_start(event, PERF_EF_RELOAD); 871 if (hwc->state & PERF_HES_STOPPED) 872 ret = -EINVAL; 873 } 874 875 return ret; 876 } 877 878 static void arm_spe_pmu_del(struct perf_event *event, int flags) 879 { 880 arm_spe_pmu_stop(event, PERF_EF_UPDATE); 881 } 882 883 static void arm_spe_pmu_read(struct perf_event *event) 884 { 885 } 886 887 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages, 888 int nr_pages, bool snapshot) 889 { 890 int i, cpu = event->cpu; 891 struct page **pglist; 892 struct arm_spe_pmu_buf *buf; 893 894 /* We need at least two pages for this to work. */ 895 if (nr_pages < 2) 896 return NULL; 897 898 /* 899 * We require an even number of pages for snapshot mode, so that 900 * we can effectively treat the buffer as consisting of two equal 901 * parts and give userspace a fighting chance of getting some 902 * useful data out of it. 903 */ 904 if (snapshot && (nr_pages & 1)) 905 return NULL; 906 907 if (cpu == -1) 908 cpu = raw_smp_processor_id(); 909 910 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); 911 if (!buf) 912 return NULL; 913 914 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); 915 if (!pglist) 916 goto out_free_buf; 917 918 for (i = 0; i < nr_pages; ++i) 919 pglist[i] = virt_to_page(pages[i]); 920 921 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); 922 if (!buf->base) 923 goto out_free_pglist; 924 925 buf->nr_pages = nr_pages; 926 buf->snapshot = snapshot; 927 928 kfree(pglist); 929 return buf; 930 931 out_free_pglist: 932 kfree(pglist); 933 out_free_buf: 934 kfree(buf); 935 return NULL; 936 } 937 938 static void arm_spe_pmu_free_aux(void *aux) 939 { 940 struct arm_spe_pmu_buf *buf = aux; 941 942 vunmap(buf->base); 943 kfree(buf); 944 } 945 946 /* Initialisation and teardown functions */ 947 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) 948 { 949 static atomic_t pmu_idx = ATOMIC_INIT(-1); 950 951 int idx; 952 char *name; 953 struct device *dev = &spe_pmu->pdev->dev; 954 955 spe_pmu->pmu = (struct pmu) { 956 .module = THIS_MODULE, 957 .parent = &spe_pmu->pdev->dev, 958 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, 959 .attr_groups = arm_spe_pmu_attr_groups, 960 /* 961 * We hitch a ride on the software context here, so that 962 * we can support per-task profiling (which is not possible 963 * with the invalid context as it doesn't get sched callbacks). 964 * This requires that userspace either uses a dummy event for 965 * perf_event_open, since the aux buffer is not setup until 966 * a subsequent mmap, or creates the profiling event in a 967 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it 968 * once the buffer has been created. 969 */ 970 .task_ctx_nr = perf_sw_context, 971 .event_init = arm_spe_pmu_event_init, 972 .add = arm_spe_pmu_add, 973 .del = arm_spe_pmu_del, 974 .start = arm_spe_pmu_start, 975 .stop = arm_spe_pmu_stop, 976 .read = arm_spe_pmu_read, 977 .setup_aux = arm_spe_pmu_setup_aux, 978 .free_aux = arm_spe_pmu_free_aux, 979 }; 980 981 idx = atomic_inc_return(&pmu_idx); 982 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); 983 if (!name) { 984 dev_err(dev, "failed to allocate name for pmu %d\n", idx); 985 return -ENOMEM; 986 } 987 988 return perf_pmu_register(&spe_pmu->pmu, name, -1); 989 } 990 991 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) 992 { 993 perf_pmu_unregister(&spe_pmu->pmu); 994 } 995 996 static void __arm_spe_pmu_dev_probe(void *info) 997 { 998 int fld; 999 u64 reg; 1000 struct arm_spe_pmu *spe_pmu = info; 1001 struct device *dev = &spe_pmu->pdev->dev; 1002 1003 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), 1004 ID_AA64DFR0_EL1_PMSVer_SHIFT); 1005 if (!fld) { 1006 dev_err(dev, 1007 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", 1008 fld, smp_processor_id()); 1009 return; 1010 } 1011 spe_pmu->pmsver = (u16)fld; 1012 1013 /* Read PMBIDR first to determine whether or not we have access */ 1014 reg = read_sysreg_s(SYS_PMBIDR_EL1); 1015 if (FIELD_GET(PMBIDR_EL1_P, reg)) { 1016 dev_err(dev, 1017 "profiling buffer owned by higher exception level\n"); 1018 return; 1019 } 1020 1021 /* Minimum alignment. If it's out-of-range, then fail the probe */ 1022 fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg); 1023 spe_pmu->align = 1 << fld; 1024 if (spe_pmu->align > SZ_2K) { 1025 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", 1026 fld, smp_processor_id()); 1027 return; 1028 } 1029 1030 /* It's now safe to read PMSIDR and figure out what we've got */ 1031 reg = read_sysreg_s(SYS_PMSIDR_EL1); 1032 if (FIELD_GET(PMSIDR_EL1_FE, reg)) 1033 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; 1034 1035 if (FIELD_GET(PMSIDR_EL1_FnE, reg)) 1036 spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT; 1037 1038 if (FIELD_GET(PMSIDR_EL1_FT, reg)) 1039 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; 1040 1041 if (FIELD_GET(PMSIDR_EL1_FL, reg)) 1042 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; 1043 1044 if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg)) 1045 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; 1046 1047 if (FIELD_GET(PMSIDR_EL1_LDS, reg)) 1048 spe_pmu->features |= SPE_PMU_FEAT_LDS; 1049 1050 if (FIELD_GET(PMSIDR_EL1_ERND, reg)) 1051 spe_pmu->features |= SPE_PMU_FEAT_ERND; 1052 1053 if (spe_pmu->pmsver >= ID_AA64DFR0_EL1_PMSVer_V1P2) 1054 spe_pmu->features |= SPE_PMU_FEAT_DISCARD; 1055 1056 /* This field has a spaced out encoding, so just use a look-up */ 1057 fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg); 1058 switch (fld) { 1059 case PMSIDR_EL1_INTERVAL_256: 1060 spe_pmu->min_period = 256; 1061 break; 1062 case PMSIDR_EL1_INTERVAL_512: 1063 spe_pmu->min_period = 512; 1064 break; 1065 case PMSIDR_EL1_INTERVAL_768: 1066 spe_pmu->min_period = 768; 1067 break; 1068 case PMSIDR_EL1_INTERVAL_1024: 1069 spe_pmu->min_period = 1024; 1070 break; 1071 case PMSIDR_EL1_INTERVAL_1536: 1072 spe_pmu->min_period = 1536; 1073 break; 1074 case PMSIDR_EL1_INTERVAL_2048: 1075 spe_pmu->min_period = 2048; 1076 break; 1077 case PMSIDR_EL1_INTERVAL_3072: 1078 spe_pmu->min_period = 3072; 1079 break; 1080 default: 1081 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", 1082 fld); 1083 fallthrough; 1084 case PMSIDR_EL1_INTERVAL_4096: 1085 spe_pmu->min_period = 4096; 1086 } 1087 1088 /* Maximum record size. If it's out-of-range, then fail the probe */ 1089 fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg); 1090 spe_pmu->max_record_sz = 1 << fld; 1091 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { 1092 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", 1093 fld, smp_processor_id()); 1094 return; 1095 } 1096 1097 fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg); 1098 switch (fld) { 1099 default: 1100 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", 1101 fld); 1102 fallthrough; 1103 case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT: 1104 spe_pmu->counter_sz = 12; 1105 break; 1106 case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT: 1107 spe_pmu->counter_sz = 16; 1108 } 1109 1110 dev_info(dev, 1111 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", 1112 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus), 1113 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); 1114 1115 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; 1116 } 1117 1118 static void __arm_spe_pmu_reset_local(void) 1119 { 1120 /* 1121 * This is probably overkill, as we have no idea where we're 1122 * draining any buffered data to... 1123 */ 1124 arm_spe_pmu_disable_and_drain_local(); 1125 1126 /* Reset the buffer base pointer */ 1127 write_sysreg_s(0, SYS_PMBPTR_EL1); 1128 isb(); 1129 1130 /* Clear any pending management interrupts */ 1131 write_sysreg_s(0, SYS_PMBSR_EL1); 1132 isb(); 1133 } 1134 1135 static void __arm_spe_pmu_setup_one(void *info) 1136 { 1137 struct arm_spe_pmu *spe_pmu = info; 1138 1139 __arm_spe_pmu_reset_local(); 1140 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); 1141 } 1142 1143 static void __arm_spe_pmu_stop_one(void *info) 1144 { 1145 struct arm_spe_pmu *spe_pmu = info; 1146 1147 disable_percpu_irq(spe_pmu->irq); 1148 __arm_spe_pmu_reset_local(); 1149 } 1150 1151 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) 1152 { 1153 struct arm_spe_pmu *spe_pmu; 1154 1155 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1156 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1157 return 0; 1158 1159 __arm_spe_pmu_setup_one(spe_pmu); 1160 return 0; 1161 } 1162 1163 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1164 { 1165 struct arm_spe_pmu *spe_pmu; 1166 1167 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1168 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1169 return 0; 1170 1171 __arm_spe_pmu_stop_one(spe_pmu); 1172 return 0; 1173 } 1174 1175 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) 1176 { 1177 int ret; 1178 cpumask_t *mask = &spe_pmu->supported_cpus; 1179 1180 /* Make sure we probe the hardware on a relevant CPU */ 1181 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1); 1182 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) 1183 return -ENXIO; 1184 1185 /* Request our PPIs (note that the IRQ is still disabled) */ 1186 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, 1187 spe_pmu->handle); 1188 if (ret) 1189 return ret; 1190 1191 /* 1192 * Register our hotplug notifier now so we don't miss any events. 1193 * This will enable the IRQ for any supported CPUs that are already 1194 * up. 1195 */ 1196 ret = cpuhp_state_add_instance(arm_spe_pmu_online, 1197 &spe_pmu->hotplug_node); 1198 if (ret) 1199 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1200 1201 return ret; 1202 } 1203 1204 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) 1205 { 1206 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); 1207 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1208 } 1209 1210 /* Driver and device probing */ 1211 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) 1212 { 1213 struct platform_device *pdev = spe_pmu->pdev; 1214 int irq = platform_get_irq(pdev, 0); 1215 1216 if (irq < 0) 1217 return -ENXIO; 1218 1219 if (!irq_is_percpu(irq)) { 1220 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); 1221 return -EINVAL; 1222 } 1223 1224 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { 1225 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); 1226 return -EINVAL; 1227 } 1228 1229 spe_pmu->irq = irq; 1230 return 0; 1231 } 1232 1233 static const struct of_device_id arm_spe_pmu_of_match[] = { 1234 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, 1235 { /* Sentinel */ }, 1236 }; 1237 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match); 1238 1239 static const struct platform_device_id arm_spe_match[] = { 1240 { ARMV8_SPE_PDEV_NAME, 0}, 1241 { } 1242 }; 1243 MODULE_DEVICE_TABLE(platform, arm_spe_match); 1244 1245 static int arm_spe_pmu_device_probe(struct platform_device *pdev) 1246 { 1247 int ret; 1248 struct arm_spe_pmu *spe_pmu; 1249 struct device *dev = &pdev->dev; 1250 1251 /* 1252 * If kernelspace is unmapped when running at EL0, then the SPE 1253 * buffer will fault and prematurely terminate the AUX session. 1254 */ 1255 if (arm64_kernel_unmapped_at_el0()) { 1256 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); 1257 return -EPERM; 1258 } 1259 1260 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); 1261 if (!spe_pmu) 1262 return -ENOMEM; 1263 1264 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); 1265 if (!spe_pmu->handle) 1266 return -ENOMEM; 1267 1268 spe_pmu->pdev = pdev; 1269 platform_set_drvdata(pdev, spe_pmu); 1270 1271 ret = arm_spe_pmu_irq_probe(spe_pmu); 1272 if (ret) 1273 goto out_free_handle; 1274 1275 ret = arm_spe_pmu_dev_init(spe_pmu); 1276 if (ret) 1277 goto out_free_handle; 1278 1279 ret = arm_spe_pmu_perf_init(spe_pmu); 1280 if (ret) 1281 goto out_teardown_dev; 1282 1283 return 0; 1284 1285 out_teardown_dev: 1286 arm_spe_pmu_dev_teardown(spe_pmu); 1287 out_free_handle: 1288 free_percpu(spe_pmu->handle); 1289 return ret; 1290 } 1291 1292 static void arm_spe_pmu_device_remove(struct platform_device *pdev) 1293 { 1294 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 1295 1296 arm_spe_pmu_perf_destroy(spe_pmu); 1297 arm_spe_pmu_dev_teardown(spe_pmu); 1298 free_percpu(spe_pmu->handle); 1299 } 1300 1301 static struct platform_driver arm_spe_pmu_driver = { 1302 .id_table = arm_spe_match, 1303 .driver = { 1304 .name = DRVNAME, 1305 .of_match_table = of_match_ptr(arm_spe_pmu_of_match), 1306 .suppress_bind_attrs = true, 1307 }, 1308 .probe = arm_spe_pmu_device_probe, 1309 .remove = arm_spe_pmu_device_remove, 1310 }; 1311 1312 static int __init arm_spe_pmu_init(void) 1313 { 1314 int ret; 1315 1316 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, 1317 arm_spe_pmu_cpu_startup, 1318 arm_spe_pmu_cpu_teardown); 1319 if (ret < 0) 1320 return ret; 1321 arm_spe_pmu_online = ret; 1322 1323 ret = platform_driver_register(&arm_spe_pmu_driver); 1324 if (ret) 1325 cpuhp_remove_multi_state(arm_spe_pmu_online); 1326 1327 return ret; 1328 } 1329 1330 static void __exit arm_spe_pmu_exit(void) 1331 { 1332 platform_driver_unregister(&arm_spe_pmu_driver); 1333 cpuhp_remove_multi_state(arm_spe_pmu_online); 1334 } 1335 1336 module_init(arm_spe_pmu_init); 1337 module_exit(arm_spe_pmu_exit); 1338 1339 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); 1340 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); 1341 MODULE_LICENSE("GPL v2"); 1342