1 /* 2 * Perf support for the Statistical Profiling Extension, introduced as 3 * part of ARMv8.2. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 * 17 * Copyright (C) 2016 ARM Limited 18 * 19 * Author: Will Deacon <will.deacon@arm.com> 20 */ 21 22 #define PMUNAME "arm_spe" 23 #define DRVNAME PMUNAME "_pmu" 24 #define pr_fmt(fmt) DRVNAME ": " fmt 25 26 #include <linux/bitops.h> 27 #include <linux/bug.h> 28 #include <linux/capability.h> 29 #include <linux/cpuhotplug.h> 30 #include <linux/cpumask.h> 31 #include <linux/device.h> 32 #include <linux/errno.h> 33 #include <linux/interrupt.h> 34 #include <linux/irq.h> 35 #include <linux/kernel.h> 36 #include <linux/list.h> 37 #include <linux/module.h> 38 #include <linux/of_address.h> 39 #include <linux/of_device.h> 40 #include <linux/perf_event.h> 41 #include <linux/platform_device.h> 42 #include <linux/printk.h> 43 #include <linux/slab.h> 44 #include <linux/smp.h> 45 #include <linux/vmalloc.h> 46 47 #include <asm/barrier.h> 48 #include <asm/cpufeature.h> 49 #include <asm/mmu.h> 50 #include <asm/sysreg.h> 51 52 #define ARM_SPE_BUF_PAD_BYTE 0 53 54 struct arm_spe_pmu_buf { 55 int nr_pages; 56 bool snapshot; 57 void *base; 58 }; 59 60 struct arm_spe_pmu { 61 struct pmu pmu; 62 struct platform_device *pdev; 63 cpumask_t supported_cpus; 64 struct hlist_node hotplug_node; 65 66 int irq; /* PPI */ 67 68 u16 min_period; 69 u16 counter_sz; 70 71 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0) 72 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1) 73 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2) 74 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3) 75 #define SPE_PMU_FEAT_LDS (1UL << 4) 76 #define SPE_PMU_FEAT_ERND (1UL << 5) 77 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63) 78 u64 features; 79 80 u16 max_record_sz; 81 u16 align; 82 struct perf_output_handle __percpu *handle; 83 }; 84 85 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) 86 87 /* Convert a free-running index from perf into an SPE buffer offset */ 88 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 89 90 /* Keep track of our dynamic hotplug state */ 91 static enum cpuhp_state arm_spe_pmu_online; 92 93 enum arm_spe_pmu_buf_fault_action { 94 SPE_PMU_BUF_FAULT_ACT_SPURIOUS, 95 SPE_PMU_BUF_FAULT_ACT_FATAL, 96 SPE_PMU_BUF_FAULT_ACT_OK, 97 }; 98 99 /* This sysfs gunk was really good fun to write. */ 100 enum arm_spe_pmu_capabilities { 101 SPE_PMU_CAP_ARCH_INST = 0, 102 SPE_PMU_CAP_ERND, 103 SPE_PMU_CAP_FEAT_MAX, 104 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, 105 SPE_PMU_CAP_MIN_IVAL, 106 }; 107 108 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { 109 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST, 110 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND, 111 }; 112 113 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) 114 { 115 if (cap < SPE_PMU_CAP_FEAT_MAX) 116 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); 117 118 switch (cap) { 119 case SPE_PMU_CAP_CNT_SZ: 120 return spe_pmu->counter_sz; 121 case SPE_PMU_CAP_MIN_IVAL: 122 return spe_pmu->min_period; 123 default: 124 WARN(1, "unknown cap %d\n", cap); 125 } 126 127 return 0; 128 } 129 130 static ssize_t arm_spe_pmu_cap_show(struct device *dev, 131 struct device_attribute *attr, 132 char *buf) 133 { 134 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 135 struct dev_ext_attribute *ea = 136 container_of(attr, struct dev_ext_attribute, attr); 137 int cap = (long)ea->var; 138 139 return snprintf(buf, PAGE_SIZE, "%u\n", 140 arm_spe_pmu_cap_get(spe_pmu, cap)); 141 } 142 143 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \ 144 &((struct dev_ext_attribute[]) { \ 145 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \ 146 })[0].attr.attr 147 148 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \ 149 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) 150 151 static struct attribute *arm_spe_pmu_cap_attr[] = { 152 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), 153 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), 154 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), 155 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), 156 NULL, 157 }; 158 159 static struct attribute_group arm_spe_pmu_cap_group = { 160 .name = "caps", 161 .attrs = arm_spe_pmu_cap_attr, 162 }; 163 164 /* User ABI */ 165 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */ 166 #define ATTR_CFG_FLD_ts_enable_LO 0 167 #define ATTR_CFG_FLD_ts_enable_HI 0 168 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */ 169 #define ATTR_CFG_FLD_pa_enable_LO 1 170 #define ATTR_CFG_FLD_pa_enable_HI 1 171 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */ 172 #define ATTR_CFG_FLD_pct_enable_LO 2 173 #define ATTR_CFG_FLD_pct_enable_HI 2 174 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */ 175 #define ATTR_CFG_FLD_jitter_LO 16 176 #define ATTR_CFG_FLD_jitter_HI 16 177 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */ 178 #define ATTR_CFG_FLD_branch_filter_LO 32 179 #define ATTR_CFG_FLD_branch_filter_HI 32 180 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */ 181 #define ATTR_CFG_FLD_load_filter_LO 33 182 #define ATTR_CFG_FLD_load_filter_HI 33 183 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */ 184 #define ATTR_CFG_FLD_store_filter_LO 34 185 #define ATTR_CFG_FLD_store_filter_HI 34 186 187 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */ 188 #define ATTR_CFG_FLD_event_filter_LO 0 189 #define ATTR_CFG_FLD_event_filter_HI 63 190 191 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */ 192 #define ATTR_CFG_FLD_min_latency_LO 0 193 #define ATTR_CFG_FLD_min_latency_HI 11 194 195 /* Why does everything I do descend into this? */ 196 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 197 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi 198 199 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 200 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) 201 202 #define GEN_PMU_FORMAT_ATTR(name) \ 203 PMU_FORMAT_ATTR(name, \ 204 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \ 205 ATTR_CFG_FLD_##name##_LO, \ 206 ATTR_CFG_FLD_##name##_HI)) 207 208 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \ 209 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0)) 210 211 #define ATTR_CFG_GET_FLD(attr, name) \ 212 _ATTR_CFG_GET_FLD(attr, \ 213 ATTR_CFG_FLD_##name##_CFG, \ 214 ATTR_CFG_FLD_##name##_LO, \ 215 ATTR_CFG_FLD_##name##_HI) 216 217 GEN_PMU_FORMAT_ATTR(ts_enable); 218 GEN_PMU_FORMAT_ATTR(pa_enable); 219 GEN_PMU_FORMAT_ATTR(pct_enable); 220 GEN_PMU_FORMAT_ATTR(jitter); 221 GEN_PMU_FORMAT_ATTR(branch_filter); 222 GEN_PMU_FORMAT_ATTR(load_filter); 223 GEN_PMU_FORMAT_ATTR(store_filter); 224 GEN_PMU_FORMAT_ATTR(event_filter); 225 GEN_PMU_FORMAT_ATTR(min_latency); 226 227 static struct attribute *arm_spe_pmu_formats_attr[] = { 228 &format_attr_ts_enable.attr, 229 &format_attr_pa_enable.attr, 230 &format_attr_pct_enable.attr, 231 &format_attr_jitter.attr, 232 &format_attr_branch_filter.attr, 233 &format_attr_load_filter.attr, 234 &format_attr_store_filter.attr, 235 &format_attr_event_filter.attr, 236 &format_attr_min_latency.attr, 237 NULL, 238 }; 239 240 static struct attribute_group arm_spe_pmu_format_group = { 241 .name = "format", 242 .attrs = arm_spe_pmu_formats_attr, 243 }; 244 245 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev, 246 struct device_attribute *attr, 247 char *buf) 248 { 249 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 250 251 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); 252 } 253 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL); 254 255 static struct attribute *arm_spe_pmu_attrs[] = { 256 &dev_attr_cpumask.attr, 257 NULL, 258 }; 259 260 static struct attribute_group arm_spe_pmu_group = { 261 .attrs = arm_spe_pmu_attrs, 262 }; 263 264 static const struct attribute_group *arm_spe_pmu_attr_groups[] = { 265 &arm_spe_pmu_group, 266 &arm_spe_pmu_cap_group, 267 &arm_spe_pmu_format_group, 268 NULL, 269 }; 270 271 /* Convert between user ABI and register values */ 272 static u64 arm_spe_event_to_pmscr(struct perf_event *event) 273 { 274 struct perf_event_attr *attr = &event->attr; 275 u64 reg = 0; 276 277 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT; 278 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT; 279 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT; 280 281 if (!attr->exclude_user) 282 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT); 283 284 if (!attr->exclude_kernel) 285 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT); 286 287 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN)) 288 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT); 289 290 return reg; 291 } 292 293 static void arm_spe_event_sanitise_period(struct perf_event *event) 294 { 295 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 296 u64 period = event->hw.sample_period; 297 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK 298 << SYS_PMSIRR_EL1_INTERVAL_SHIFT; 299 300 if (period < spe_pmu->min_period) 301 period = spe_pmu->min_period; 302 else if (period > max_period) 303 period = max_period; 304 else 305 period &= max_period; 306 307 event->hw.sample_period = period; 308 } 309 310 static u64 arm_spe_event_to_pmsirr(struct perf_event *event) 311 { 312 struct perf_event_attr *attr = &event->attr; 313 u64 reg = 0; 314 315 arm_spe_event_sanitise_period(event); 316 317 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT; 318 reg |= event->hw.sample_period; 319 320 return reg; 321 } 322 323 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) 324 { 325 struct perf_event_attr *attr = &event->attr; 326 u64 reg = 0; 327 328 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT; 329 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT; 330 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT; 331 332 if (reg) 333 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT); 334 335 if (ATTR_CFG_GET_FLD(attr, event_filter)) 336 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT); 337 338 if (ATTR_CFG_GET_FLD(attr, min_latency)) 339 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT); 340 341 return reg; 342 } 343 344 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) 345 { 346 struct perf_event_attr *attr = &event->attr; 347 return ATTR_CFG_GET_FLD(attr, event_filter); 348 } 349 350 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) 351 { 352 struct perf_event_attr *attr = &event->attr; 353 return ATTR_CFG_GET_FLD(attr, min_latency) 354 << SYS_PMSLATFR_EL1_MINLAT_SHIFT; 355 } 356 357 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) 358 { 359 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 360 u64 head = PERF_IDX2OFF(handle->head, buf); 361 362 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); 363 if (!buf->snapshot) 364 perf_aux_output_skip(handle, len); 365 } 366 367 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) 368 { 369 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 370 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 371 u64 head = PERF_IDX2OFF(handle->head, buf); 372 u64 limit = buf->nr_pages * PAGE_SIZE; 373 374 /* 375 * The trace format isn't parseable in reverse, so clamp 376 * the limit to half of the buffer size in snapshot mode 377 * so that the worst case is half a buffer of records, as 378 * opposed to a single record. 379 */ 380 if (head < limit >> 1) 381 limit >>= 1; 382 383 /* 384 * If we're within max_record_sz of the limit, we must 385 * pad, move the head index and recompute the limit. 386 */ 387 if (limit - head < spe_pmu->max_record_sz) { 388 arm_spe_pmu_pad_buf(handle, limit - head); 389 handle->head = PERF_IDX2OFF(limit, buf); 390 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; 391 } 392 393 return limit; 394 } 395 396 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) 397 { 398 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 399 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 400 const u64 bufsize = buf->nr_pages * PAGE_SIZE; 401 u64 limit = bufsize; 402 u64 head, tail, wakeup; 403 404 /* 405 * The head can be misaligned for two reasons: 406 * 407 * 1. The hardware left PMBPTR pointing to the first byte after 408 * a record when generating a buffer management event. 409 * 410 * 2. We used perf_aux_output_skip to consume handle->size bytes 411 * and CIRC_SPACE was used to compute the size, which always 412 * leaves one entry free. 413 * 414 * Deal with this by padding to the next alignment boundary and 415 * moving the head index. If we run out of buffer space, we'll 416 * reduce handle->size to zero and end up reporting truncation. 417 */ 418 head = PERF_IDX2OFF(handle->head, buf); 419 if (!IS_ALIGNED(head, spe_pmu->align)) { 420 unsigned long delta = roundup(head, spe_pmu->align) - head; 421 422 delta = min(delta, handle->size); 423 arm_spe_pmu_pad_buf(handle, delta); 424 head = PERF_IDX2OFF(handle->head, buf); 425 } 426 427 /* If we've run out of free space, then nothing more to do */ 428 if (!handle->size) 429 goto no_space; 430 431 /* Compute the tail and wakeup indices now that we've aligned head */ 432 tail = PERF_IDX2OFF(handle->head + handle->size, buf); 433 wakeup = PERF_IDX2OFF(handle->wakeup, buf); 434 435 /* 436 * Avoid clobbering unconsumed data. We know we have space, so 437 * if we see head == tail we know that the buffer is empty. If 438 * head > tail, then there's nothing to clobber prior to 439 * wrapping. 440 */ 441 if (head < tail) 442 limit = round_down(tail, PAGE_SIZE); 443 444 /* 445 * Wakeup may be arbitrarily far into the future. If it's not in 446 * the current generation, either we'll wrap before hitting it, 447 * or it's in the past and has been handled already. 448 * 449 * If there's a wakeup before we wrap, arrange to be woken up by 450 * the page boundary following it. Keep the tail boundary if 451 * that's lower. 452 */ 453 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) 454 limit = min(limit, round_up(wakeup, PAGE_SIZE)); 455 456 if (limit > head) 457 return limit; 458 459 arm_spe_pmu_pad_buf(handle, handle->size); 460 no_space: 461 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 462 perf_aux_output_end(handle, 0); 463 return 0; 464 } 465 466 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) 467 { 468 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 469 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 470 u64 limit = __arm_spe_pmu_next_off(handle); 471 u64 head = PERF_IDX2OFF(handle->head, buf); 472 473 /* 474 * If the head has come too close to the end of the buffer, 475 * then pad to the end and recompute the limit. 476 */ 477 if (limit && (limit - head < spe_pmu->max_record_sz)) { 478 arm_spe_pmu_pad_buf(handle, limit - head); 479 limit = __arm_spe_pmu_next_off(handle); 480 } 481 482 return limit; 483 } 484 485 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, 486 struct perf_event *event) 487 { 488 u64 base, limit; 489 struct arm_spe_pmu_buf *buf; 490 491 /* Start a new aux session */ 492 buf = perf_aux_output_begin(handle, event); 493 if (!buf) { 494 event->hw.state |= PERF_HES_STOPPED; 495 /* 496 * We still need to clear the limit pointer, since the 497 * profiler might only be disabled by virtue of a fault. 498 */ 499 limit = 0; 500 goto out_write_limit; 501 } 502 503 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) 504 : arm_spe_pmu_next_off(handle); 505 if (limit) 506 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT); 507 508 limit += (u64)buf->base; 509 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); 510 write_sysreg_s(base, SYS_PMBPTR_EL1); 511 512 out_write_limit: 513 write_sysreg_s(limit, SYS_PMBLIMITR_EL1); 514 } 515 516 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) 517 { 518 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 519 u64 offset, size; 520 521 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; 522 size = offset - PERF_IDX2OFF(handle->head, buf); 523 524 if (buf->snapshot) 525 handle->head = offset; 526 527 perf_aux_output_end(handle, size); 528 } 529 530 static void arm_spe_pmu_disable_and_drain_local(void) 531 { 532 /* Disable profiling at EL0 and EL1 */ 533 write_sysreg_s(0, SYS_PMSCR_EL1); 534 isb(); 535 536 /* Drain any buffered data */ 537 psb_csync(); 538 dsb(nsh); 539 540 /* Disable the profiling buffer */ 541 write_sysreg_s(0, SYS_PMBLIMITR_EL1); 542 isb(); 543 } 544 545 /* IRQ handling */ 546 static enum arm_spe_pmu_buf_fault_action 547 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) 548 { 549 const char *err_str; 550 u64 pmbsr; 551 enum arm_spe_pmu_buf_fault_action ret; 552 553 /* 554 * Ensure new profiling data is visible to the CPU and any external 555 * aborts have been resolved. 556 */ 557 psb_csync(); 558 dsb(nsh); 559 560 /* Ensure hardware updates to PMBPTR_EL1 are visible */ 561 isb(); 562 563 /* Service required? */ 564 pmbsr = read_sysreg_s(SYS_PMBSR_EL1); 565 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT))) 566 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; 567 568 /* 569 * If we've lost data, disable profiling and also set the PARTIAL 570 * flag to indicate that the last record is corrupted. 571 */ 572 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT)) 573 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | 574 PERF_AUX_FLAG_PARTIAL); 575 576 /* Report collisions to userspace so that it can up the period */ 577 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT)) 578 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); 579 580 /* We only expect buffer management events */ 581 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) { 582 case SYS_PMBSR_EL1_EC_BUF: 583 /* Handled below */ 584 break; 585 case SYS_PMBSR_EL1_EC_FAULT_S1: 586 case SYS_PMBSR_EL1_EC_FAULT_S2: 587 err_str = "Unexpected buffer fault"; 588 goto out_err; 589 default: 590 err_str = "Unknown error code"; 591 goto out_err; 592 } 593 594 /* Buffer management event */ 595 switch (pmbsr & 596 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) { 597 case SYS_PMBSR_EL1_BUF_BSC_FULL: 598 ret = SPE_PMU_BUF_FAULT_ACT_OK; 599 goto out_stop; 600 default: 601 err_str = "Unknown buffer status code"; 602 } 603 604 out_err: 605 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", 606 err_str, smp_processor_id(), pmbsr, 607 read_sysreg_s(SYS_PMBPTR_EL1), 608 read_sysreg_s(SYS_PMBLIMITR_EL1)); 609 ret = SPE_PMU_BUF_FAULT_ACT_FATAL; 610 611 out_stop: 612 arm_spe_perf_aux_output_end(handle); 613 return ret; 614 } 615 616 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) 617 { 618 struct perf_output_handle *handle = dev; 619 struct perf_event *event = handle->event; 620 enum arm_spe_pmu_buf_fault_action act; 621 622 if (!perf_get_aux(handle)) 623 return IRQ_NONE; 624 625 act = arm_spe_pmu_buf_get_fault_act(handle); 626 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 627 return IRQ_NONE; 628 629 /* 630 * Ensure perf callbacks have completed, which may disable the 631 * profiling buffer in response to a TRUNCATION flag. 632 */ 633 irq_work_run(); 634 635 switch (act) { 636 case SPE_PMU_BUF_FAULT_ACT_FATAL: 637 /* 638 * If a fatal exception occurred then leaving the profiling 639 * buffer enabled is a recipe waiting to happen. Since 640 * fatal faults don't always imply truncation, make sure 641 * that the profiling buffer is disabled explicitly before 642 * clearing the syndrome register. 643 */ 644 arm_spe_pmu_disable_and_drain_local(); 645 break; 646 case SPE_PMU_BUF_FAULT_ACT_OK: 647 /* 648 * We handled the fault (the buffer was full), so resume 649 * profiling as long as we didn't detect truncation. 650 * PMBPTR might be misaligned, but we'll burn that bridge 651 * when we get to it. 652 */ 653 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { 654 arm_spe_perf_aux_output_begin(handle, event); 655 isb(); 656 } 657 break; 658 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: 659 /* We've seen you before, but GCC has the memory of a sieve. */ 660 break; 661 } 662 663 /* The buffer pointers are now sane, so resume profiling. */ 664 write_sysreg_s(0, SYS_PMBSR_EL1); 665 return IRQ_HANDLED; 666 } 667 668 /* Perf callbacks */ 669 static int arm_spe_pmu_event_init(struct perf_event *event) 670 { 671 u64 reg; 672 struct perf_event_attr *attr = &event->attr; 673 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 674 675 /* This is, of course, deeply driver-specific */ 676 if (attr->type != event->pmu->type) 677 return -ENOENT; 678 679 if (event->cpu >= 0 && 680 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) 681 return -ENOENT; 682 683 if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0) 684 return -EOPNOTSUPP; 685 686 if (attr->exclude_idle) 687 return -EOPNOTSUPP; 688 689 /* 690 * Feedback-directed frequency throttling doesn't work when we 691 * have a buffer of samples. We'd need to manually count the 692 * samples in the buffer when it fills up and adjust the event 693 * count to reflect that. Instead, just force the user to specify 694 * a sample period. 695 */ 696 if (attr->freq) 697 return -EINVAL; 698 699 reg = arm_spe_event_to_pmsfcr(event); 700 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) && 701 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) 702 return -EOPNOTSUPP; 703 704 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) && 705 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) 706 return -EOPNOTSUPP; 707 708 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) && 709 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) 710 return -EOPNOTSUPP; 711 712 reg = arm_spe_event_to_pmscr(event); 713 if (!capable(CAP_SYS_ADMIN) && 714 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) | 715 BIT(SYS_PMSCR_EL1_CX_SHIFT) | 716 BIT(SYS_PMSCR_EL1_PCT_SHIFT)))) 717 return -EACCES; 718 719 return 0; 720 } 721 722 static void arm_spe_pmu_start(struct perf_event *event, int flags) 723 { 724 u64 reg; 725 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 726 struct hw_perf_event *hwc = &event->hw; 727 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 728 729 hwc->state = 0; 730 arm_spe_perf_aux_output_begin(handle, event); 731 if (hwc->state) 732 return; 733 734 reg = arm_spe_event_to_pmsfcr(event); 735 write_sysreg_s(reg, SYS_PMSFCR_EL1); 736 737 reg = arm_spe_event_to_pmsevfr(event); 738 write_sysreg_s(reg, SYS_PMSEVFR_EL1); 739 740 reg = arm_spe_event_to_pmslatfr(event); 741 write_sysreg_s(reg, SYS_PMSLATFR_EL1); 742 743 if (flags & PERF_EF_RELOAD) { 744 reg = arm_spe_event_to_pmsirr(event); 745 write_sysreg_s(reg, SYS_PMSIRR_EL1); 746 isb(); 747 reg = local64_read(&hwc->period_left); 748 write_sysreg_s(reg, SYS_PMSICR_EL1); 749 } 750 751 reg = arm_spe_event_to_pmscr(event); 752 isb(); 753 write_sysreg_s(reg, SYS_PMSCR_EL1); 754 } 755 756 static void arm_spe_pmu_stop(struct perf_event *event, int flags) 757 { 758 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 759 struct hw_perf_event *hwc = &event->hw; 760 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 761 762 /* If we're already stopped, then nothing to do */ 763 if (hwc->state & PERF_HES_STOPPED) 764 return; 765 766 /* Stop all trace generation */ 767 arm_spe_pmu_disable_and_drain_local(); 768 769 if (flags & PERF_EF_UPDATE) { 770 /* 771 * If there's a fault pending then ensure we contain it 772 * to this buffer, since we might be on the context-switch 773 * path. 774 */ 775 if (perf_get_aux(handle)) { 776 enum arm_spe_pmu_buf_fault_action act; 777 778 act = arm_spe_pmu_buf_get_fault_act(handle); 779 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 780 arm_spe_perf_aux_output_end(handle); 781 else 782 write_sysreg_s(0, SYS_PMBSR_EL1); 783 } 784 785 /* 786 * This may also contain ECOUNT, but nobody else should 787 * be looking at period_left, since we forbid frequency 788 * based sampling. 789 */ 790 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); 791 hwc->state |= PERF_HES_UPTODATE; 792 } 793 794 hwc->state |= PERF_HES_STOPPED; 795 } 796 797 static int arm_spe_pmu_add(struct perf_event *event, int flags) 798 { 799 int ret = 0; 800 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 801 struct hw_perf_event *hwc = &event->hw; 802 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; 803 804 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 805 return -ENOENT; 806 807 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 808 809 if (flags & PERF_EF_START) { 810 arm_spe_pmu_start(event, PERF_EF_RELOAD); 811 if (hwc->state & PERF_HES_STOPPED) 812 ret = -EINVAL; 813 } 814 815 return ret; 816 } 817 818 static void arm_spe_pmu_del(struct perf_event *event, int flags) 819 { 820 arm_spe_pmu_stop(event, PERF_EF_UPDATE); 821 } 822 823 static void arm_spe_pmu_read(struct perf_event *event) 824 { 825 } 826 827 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages, 828 int nr_pages, bool snapshot) 829 { 830 int i, cpu = event->cpu; 831 struct page **pglist; 832 struct arm_spe_pmu_buf *buf; 833 834 /* We need at least two pages for this to work. */ 835 if (nr_pages < 2) 836 return NULL; 837 838 /* 839 * We require an even number of pages for snapshot mode, so that 840 * we can effectively treat the buffer as consisting of two equal 841 * parts and give userspace a fighting chance of getting some 842 * useful data out of it. 843 */ 844 if (!nr_pages || (snapshot && (nr_pages & 1))) 845 return NULL; 846 847 if (cpu == -1) 848 cpu = raw_smp_processor_id(); 849 850 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); 851 if (!buf) 852 return NULL; 853 854 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); 855 if (!pglist) 856 goto out_free_buf; 857 858 for (i = 0; i < nr_pages; ++i) { 859 struct page *page = virt_to_page(pages[i]); 860 861 if (PagePrivate(page)) { 862 pr_warn("unexpected high-order page for auxbuf!"); 863 goto out_free_pglist; 864 } 865 866 pglist[i] = virt_to_page(pages[i]); 867 } 868 869 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); 870 if (!buf->base) 871 goto out_free_pglist; 872 873 buf->nr_pages = nr_pages; 874 buf->snapshot = snapshot; 875 876 kfree(pglist); 877 return buf; 878 879 out_free_pglist: 880 kfree(pglist); 881 out_free_buf: 882 kfree(buf); 883 return NULL; 884 } 885 886 static void arm_spe_pmu_free_aux(void *aux) 887 { 888 struct arm_spe_pmu_buf *buf = aux; 889 890 vunmap(buf->base); 891 kfree(buf); 892 } 893 894 /* Initialisation and teardown functions */ 895 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) 896 { 897 static atomic_t pmu_idx = ATOMIC_INIT(-1); 898 899 int idx; 900 char *name; 901 struct device *dev = &spe_pmu->pdev->dev; 902 903 spe_pmu->pmu = (struct pmu) { 904 .module = THIS_MODULE, 905 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, 906 .attr_groups = arm_spe_pmu_attr_groups, 907 /* 908 * We hitch a ride on the software context here, so that 909 * we can support per-task profiling (which is not possible 910 * with the invalid context as it doesn't get sched callbacks). 911 * This requires that userspace either uses a dummy event for 912 * perf_event_open, since the aux buffer is not setup until 913 * a subsequent mmap, or creates the profiling event in a 914 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it 915 * once the buffer has been created. 916 */ 917 .task_ctx_nr = perf_sw_context, 918 .event_init = arm_spe_pmu_event_init, 919 .add = arm_spe_pmu_add, 920 .del = arm_spe_pmu_del, 921 .start = arm_spe_pmu_start, 922 .stop = arm_spe_pmu_stop, 923 .read = arm_spe_pmu_read, 924 .setup_aux = arm_spe_pmu_setup_aux, 925 .free_aux = arm_spe_pmu_free_aux, 926 }; 927 928 idx = atomic_inc_return(&pmu_idx); 929 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); 930 if (!name) { 931 dev_err(dev, "failed to allocate name for pmu %d\n", idx); 932 return -ENOMEM; 933 } 934 935 return perf_pmu_register(&spe_pmu->pmu, name, -1); 936 } 937 938 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) 939 { 940 perf_pmu_unregister(&spe_pmu->pmu); 941 } 942 943 static void __arm_spe_pmu_dev_probe(void *info) 944 { 945 int fld; 946 u64 reg; 947 struct arm_spe_pmu *spe_pmu = info; 948 struct device *dev = &spe_pmu->pdev->dev; 949 950 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), 951 ID_AA64DFR0_PMSVER_SHIFT); 952 if (!fld) { 953 dev_err(dev, 954 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", 955 fld, smp_processor_id()); 956 return; 957 } 958 959 /* Read PMBIDR first to determine whether or not we have access */ 960 reg = read_sysreg_s(SYS_PMBIDR_EL1); 961 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) { 962 dev_err(dev, 963 "profiling buffer owned by higher exception level\n"); 964 return; 965 } 966 967 /* Minimum alignment. If it's out-of-range, then fail the probe */ 968 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK; 969 spe_pmu->align = 1 << fld; 970 if (spe_pmu->align > SZ_2K) { 971 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", 972 fld, smp_processor_id()); 973 return; 974 } 975 976 /* It's now safe to read PMSIDR and figure out what we've got */ 977 reg = read_sysreg_s(SYS_PMSIDR_EL1); 978 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT)) 979 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; 980 981 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT)) 982 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; 983 984 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT)) 985 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; 986 987 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT)) 988 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; 989 990 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT)) 991 spe_pmu->features |= SPE_PMU_FEAT_LDS; 992 993 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT)) 994 spe_pmu->features |= SPE_PMU_FEAT_ERND; 995 996 /* This field has a spaced out encoding, so just use a look-up */ 997 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK; 998 switch (fld) { 999 case 0: 1000 spe_pmu->min_period = 256; 1001 break; 1002 case 2: 1003 spe_pmu->min_period = 512; 1004 break; 1005 case 3: 1006 spe_pmu->min_period = 768; 1007 break; 1008 case 4: 1009 spe_pmu->min_period = 1024; 1010 break; 1011 case 5: 1012 spe_pmu->min_period = 1536; 1013 break; 1014 case 6: 1015 spe_pmu->min_period = 2048; 1016 break; 1017 case 7: 1018 spe_pmu->min_period = 3072; 1019 break; 1020 default: 1021 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", 1022 fld); 1023 /* Fallthrough */ 1024 case 8: 1025 spe_pmu->min_period = 4096; 1026 } 1027 1028 /* Maximum record size. If it's out-of-range, then fail the probe */ 1029 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK; 1030 spe_pmu->max_record_sz = 1 << fld; 1031 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { 1032 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", 1033 fld, smp_processor_id()); 1034 return; 1035 } 1036 1037 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK; 1038 switch (fld) { 1039 default: 1040 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", 1041 fld); 1042 /* Fallthrough */ 1043 case 2: 1044 spe_pmu->counter_sz = 12; 1045 } 1046 1047 dev_info(dev, 1048 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", 1049 cpumask_pr_args(&spe_pmu->supported_cpus), 1050 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); 1051 1052 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; 1053 return; 1054 } 1055 1056 static void __arm_spe_pmu_reset_local(void) 1057 { 1058 /* 1059 * This is probably overkill, as we have no idea where we're 1060 * draining any buffered data to... 1061 */ 1062 arm_spe_pmu_disable_and_drain_local(); 1063 1064 /* Reset the buffer base pointer */ 1065 write_sysreg_s(0, SYS_PMBPTR_EL1); 1066 isb(); 1067 1068 /* Clear any pending management interrupts */ 1069 write_sysreg_s(0, SYS_PMBSR_EL1); 1070 isb(); 1071 } 1072 1073 static void __arm_spe_pmu_setup_one(void *info) 1074 { 1075 struct arm_spe_pmu *spe_pmu = info; 1076 1077 __arm_spe_pmu_reset_local(); 1078 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); 1079 } 1080 1081 static void __arm_spe_pmu_stop_one(void *info) 1082 { 1083 struct arm_spe_pmu *spe_pmu = info; 1084 1085 disable_percpu_irq(spe_pmu->irq); 1086 __arm_spe_pmu_reset_local(); 1087 } 1088 1089 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) 1090 { 1091 struct arm_spe_pmu *spe_pmu; 1092 1093 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1094 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1095 return 0; 1096 1097 __arm_spe_pmu_setup_one(spe_pmu); 1098 return 0; 1099 } 1100 1101 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1102 { 1103 struct arm_spe_pmu *spe_pmu; 1104 1105 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1106 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1107 return 0; 1108 1109 __arm_spe_pmu_stop_one(spe_pmu); 1110 return 0; 1111 } 1112 1113 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) 1114 { 1115 int ret; 1116 cpumask_t *mask = &spe_pmu->supported_cpus; 1117 1118 /* Make sure we probe the hardware on a relevant CPU */ 1119 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1); 1120 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) 1121 return -ENXIO; 1122 1123 /* Request our PPIs (note that the IRQ is still disabled) */ 1124 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, 1125 spe_pmu->handle); 1126 if (ret) 1127 return ret; 1128 1129 /* 1130 * Register our hotplug notifier now so we don't miss any events. 1131 * This will enable the IRQ for any supported CPUs that are already 1132 * up. 1133 */ 1134 ret = cpuhp_state_add_instance(arm_spe_pmu_online, 1135 &spe_pmu->hotplug_node); 1136 if (ret) 1137 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1138 1139 return ret; 1140 } 1141 1142 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) 1143 { 1144 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); 1145 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1146 } 1147 1148 /* Driver and device probing */ 1149 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) 1150 { 1151 struct platform_device *pdev = spe_pmu->pdev; 1152 int irq = platform_get_irq(pdev, 0); 1153 1154 if (irq < 0) { 1155 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq); 1156 return -ENXIO; 1157 } 1158 1159 if (!irq_is_percpu(irq)) { 1160 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); 1161 return -EINVAL; 1162 } 1163 1164 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { 1165 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); 1166 return -EINVAL; 1167 } 1168 1169 spe_pmu->irq = irq; 1170 return 0; 1171 } 1172 1173 static const struct of_device_id arm_spe_pmu_of_match[] = { 1174 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, 1175 { /* Sentinel */ }, 1176 }; 1177 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match); 1178 1179 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev) 1180 { 1181 int ret; 1182 struct arm_spe_pmu *spe_pmu; 1183 struct device *dev = &pdev->dev; 1184 1185 /* 1186 * If kernelspace is unmapped when running at EL0, then the SPE 1187 * buffer will fault and prematurely terminate the AUX session. 1188 */ 1189 if (arm64_kernel_unmapped_at_el0()) { 1190 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); 1191 return -EPERM; 1192 } 1193 1194 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); 1195 if (!spe_pmu) { 1196 dev_err(dev, "failed to allocate spe_pmu\n"); 1197 return -ENOMEM; 1198 } 1199 1200 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); 1201 if (!spe_pmu->handle) 1202 return -ENOMEM; 1203 1204 spe_pmu->pdev = pdev; 1205 platform_set_drvdata(pdev, spe_pmu); 1206 1207 ret = arm_spe_pmu_irq_probe(spe_pmu); 1208 if (ret) 1209 goto out_free_handle; 1210 1211 ret = arm_spe_pmu_dev_init(spe_pmu); 1212 if (ret) 1213 goto out_free_handle; 1214 1215 ret = arm_spe_pmu_perf_init(spe_pmu); 1216 if (ret) 1217 goto out_teardown_dev; 1218 1219 return 0; 1220 1221 out_teardown_dev: 1222 arm_spe_pmu_dev_teardown(spe_pmu); 1223 out_free_handle: 1224 free_percpu(spe_pmu->handle); 1225 return ret; 1226 } 1227 1228 static int arm_spe_pmu_device_remove(struct platform_device *pdev) 1229 { 1230 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 1231 1232 arm_spe_pmu_perf_destroy(spe_pmu); 1233 arm_spe_pmu_dev_teardown(spe_pmu); 1234 free_percpu(spe_pmu->handle); 1235 return 0; 1236 } 1237 1238 static struct platform_driver arm_spe_pmu_driver = { 1239 .driver = { 1240 .name = DRVNAME, 1241 .of_match_table = of_match_ptr(arm_spe_pmu_of_match), 1242 }, 1243 .probe = arm_spe_pmu_device_dt_probe, 1244 .remove = arm_spe_pmu_device_remove, 1245 }; 1246 1247 static int __init arm_spe_pmu_init(void) 1248 { 1249 int ret; 1250 1251 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, 1252 arm_spe_pmu_cpu_startup, 1253 arm_spe_pmu_cpu_teardown); 1254 if (ret < 0) 1255 return ret; 1256 arm_spe_pmu_online = ret; 1257 1258 ret = platform_driver_register(&arm_spe_pmu_driver); 1259 if (ret) 1260 cpuhp_remove_multi_state(arm_spe_pmu_online); 1261 1262 return ret; 1263 } 1264 1265 static void __exit arm_spe_pmu_exit(void) 1266 { 1267 platform_driver_unregister(&arm_spe_pmu_driver); 1268 cpuhp_remove_multi_state(arm_spe_pmu_online); 1269 } 1270 1271 module_init(arm_spe_pmu_init); 1272 module_exit(arm_spe_pmu_exit); 1273 1274 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); 1275 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); 1276 MODULE_LICENSE("GPL v2"); 1277