xref: /linux/drivers/perf/arm_pmuv3.c (revision fa8a4d3659d0c1ad73d5f59b2e0a6d408de5b317)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ARMv8 PMUv3 Performance Events handling code.
4  *
5  * Copyright (C) 2012 ARM Limited
6  * Author: Will Deacon <will.deacon@arm.com>
7  *
8  * This code is based heavily on the ARMv7 perf event code.
9  */
10 
11 #include <asm/irq_regs.h>
12 #include <asm/perf_event.h>
13 #include <asm/virt.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 
17 #include <linux/acpi.h>
18 #include <linux/bitfield.h>
19 #include <linux/clocksource.h>
20 #include <linux/of.h>
21 #include <linux/perf/arm_pmu.h>
22 #include <linux/perf/arm_pmuv3.h>
23 #include <linux/platform_device.h>
24 #include <linux/sched_clock.h>
25 #include <linux/smp.h>
26 #include <linux/nmi.h>
27 
28 /* ARMv8 Cortex-A53 specific event types. */
29 #define ARMV8_A53_PERFCTR_PREF_LINEFILL				0xC2
30 
31 /* ARMv8 Cavium ThunderX specific event types. */
32 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST			0xE9
33 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS		0xEA
34 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS		0xEB
35 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS		0xEC
36 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS		0xED
37 
38 /*
39  * ARMv8 Architectural defined events, not all of these may
40  * be supported on any given implementation. Unsupported events will
41  * be disabled at run-time based on the PMCEID registers.
42  */
43 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
44 	PERF_MAP_ALL_UNSUPPORTED,
45 	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
46 	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV8_PMUV3_PERFCTR_INST_RETIRED,
47 	[PERF_COUNT_HW_CACHE_REFERENCES]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
48 	[PERF_COUNT_HW_CACHE_MISSES]		= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
49 	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
50 	[PERF_COUNT_HW_BUS_CYCLES]		= ARMV8_PMUV3_PERFCTR_BUS_CYCLES,
51 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV8_PMUV3_PERFCTR_STALL_FRONTEND,
52 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV8_PMUV3_PERFCTR_STALL_BACKEND,
53 };
54 
55 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
56 						[PERF_COUNT_HW_CACHE_OP_MAX]
57 						[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
58 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
59 
60 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
61 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
62 
63 	[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE,
64 	[C(L1I)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL,
65 
66 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL,
67 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB,
68 
69 	[C(ITLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL,
70 	[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB,
71 
72 	[C(LL)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD,
73 	[C(LL)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_RD,
74 
75 	[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_BR_PRED,
76 	[C(BPU)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
77 };
78 
79 static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
80 					      [PERF_COUNT_HW_CACHE_OP_MAX]
81 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
82 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
83 
84 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL,
85 
86 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
87 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
88 };
89 
90 static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
91 					      [PERF_COUNT_HW_CACHE_OP_MAX]
92 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
93 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
94 
95 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
96 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
97 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
98 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
99 
100 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
101 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
102 
103 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
104 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
105 };
106 
107 static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
108 					      [PERF_COUNT_HW_CACHE_OP_MAX]
109 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
110 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
111 
112 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
113 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
114 };
115 
116 static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
117 						   [PERF_COUNT_HW_CACHE_OP_MAX]
118 						   [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
119 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
120 
121 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
122 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
123 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
124 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST,
125 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS,
126 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS,
127 
128 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS,
129 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS,
130 
131 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
132 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
133 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
134 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
135 };
136 
137 static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
138 					      [PERF_COUNT_HW_CACHE_OP_MAX]
139 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
140 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
141 
142 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
143 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
144 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
145 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
146 
147 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
148 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
149 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
150 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
151 
152 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
153 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
154 };
155 
156 static ssize_t
157 armv8pmu_events_sysfs_show(struct device *dev,
158 			   struct device_attribute *attr, char *page)
159 {
160 	struct perf_pmu_events_attr *pmu_attr;
161 
162 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
163 
164 	return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
165 }
166 
167 #define ARMV8_EVENT_ATTR(name, config)						\
168 	PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config)
169 
170 static struct attribute *armv8_pmuv3_event_attrs[] = {
171 	/*
172 	 * Don't expose the sw_incr event in /sys. It's not usable as writes to
173 	 * PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation
174 	 * means we don't have a fixed event<->counter relationship regardless.
175 	 */
176 	ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
177 	ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
178 	ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
179 	ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
180 	ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
181 	ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
182 	ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
183 	ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
184 	ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
185 	ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
186 	ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
187 	ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
188 	ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
189 	ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
190 	ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
191 	ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
192 	ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
193 	ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
194 	ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
195 	ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
196 	ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
197 	ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
198 	ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
199 	ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
200 	ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
201 	ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
202 	ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
203 	ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
204 	ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
205 	/* Don't expose the chain event in /sys, since it's useless in isolation */
206 	ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
207 	ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
208 	ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
209 	ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
210 	ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
211 	ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
212 	ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
213 	ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
214 	ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
215 	ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
216 	ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
217 	ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
218 	ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
219 	ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
220 	ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
221 	ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
222 	ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
223 	ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
224 	ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
225 	ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
226 	ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
227 	ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
228 	ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
229 	ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
230 	ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
231 	ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
232 	ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD),
233 	ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED),
234 	ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC),
235 	ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL),
236 	ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND),
237 	ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND),
238 	ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT),
239 	ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
240 	ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
241 	ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
242 	ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
243 	ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES),
244 	ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM),
245 	ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS),
246 	ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD),
247 	ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS),
248 	ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD),
249 	ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP),
250 	ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG),
251 	ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0),
252 	ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1),
253 	ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2),
254 	ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3),
255 	ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4),
256 	ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5),
257 	ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6),
258 	ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7),
259 	ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT),
260 	ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT),
261 	ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT),
262 	ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED),
263 	ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD),
264 	ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR),
265 	NULL,
266 };
267 
268 static umode_t
269 armv8pmu_event_attr_is_visible(struct kobject *kobj,
270 			       struct attribute *attr, int unused)
271 {
272 	struct device *dev = kobj_to_dev(kobj);
273 	struct pmu *pmu = dev_get_drvdata(dev);
274 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
275 	struct perf_pmu_events_attr *pmu_attr;
276 
277 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
278 
279 	if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
280 	    test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap))
281 		return attr->mode;
282 
283 	if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) {
284 		u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE;
285 
286 		if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
287 		    test_bit(id, cpu_pmu->pmceid_ext_bitmap))
288 			return attr->mode;
289 	}
290 
291 	return 0;
292 }
293 
294 static const struct attribute_group armv8_pmuv3_events_attr_group = {
295 	.name = "events",
296 	.attrs = armv8_pmuv3_event_attrs,
297 	.is_visible = armv8pmu_event_attr_is_visible,
298 };
299 
300 /* User ABI */
301 #define ATTR_CFG_FLD_event_CFG		config
302 #define ATTR_CFG_FLD_event_LO		0
303 #define ATTR_CFG_FLD_event_HI		15
304 #define ATTR_CFG_FLD_long_CFG		config1
305 #define ATTR_CFG_FLD_long_LO		0
306 #define ATTR_CFG_FLD_long_HI		0
307 #define ATTR_CFG_FLD_rdpmc_CFG		config1
308 #define ATTR_CFG_FLD_rdpmc_LO		1
309 #define ATTR_CFG_FLD_rdpmc_HI		1
310 #define ATTR_CFG_FLD_threshold_count_CFG	config1 /* PMEVTYPER.TC[0] */
311 #define ATTR_CFG_FLD_threshold_count_LO		2
312 #define ATTR_CFG_FLD_threshold_count_HI		2
313 #define ATTR_CFG_FLD_threshold_compare_CFG	config1 /* PMEVTYPER.TC[2:1] */
314 #define ATTR_CFG_FLD_threshold_compare_LO	3
315 #define ATTR_CFG_FLD_threshold_compare_HI	4
316 #define ATTR_CFG_FLD_threshold_CFG		config1 /* PMEVTYPER.TH */
317 #define ATTR_CFG_FLD_threshold_LO		5
318 #define ATTR_CFG_FLD_threshold_HI		16
319 
320 GEN_PMU_FORMAT_ATTR(event);
321 GEN_PMU_FORMAT_ATTR(long);
322 GEN_PMU_FORMAT_ATTR(rdpmc);
323 GEN_PMU_FORMAT_ATTR(threshold_count);
324 GEN_PMU_FORMAT_ATTR(threshold_compare);
325 GEN_PMU_FORMAT_ATTR(threshold);
326 
327 static int sysctl_perf_user_access __read_mostly;
328 
329 static bool armv8pmu_event_is_64bit(struct perf_event *event)
330 {
331 	return ATTR_CFG_GET_FLD(&event->attr, long);
332 }
333 
334 static bool armv8pmu_event_want_user_access(struct perf_event *event)
335 {
336 	return ATTR_CFG_GET_FLD(&event->attr, rdpmc);
337 }
338 
339 static u32 armv8pmu_event_get_threshold(struct perf_event_attr *attr)
340 {
341 	return ATTR_CFG_GET_FLD(attr, threshold);
342 }
343 
344 static u8 armv8pmu_event_threshold_control(struct perf_event_attr *attr)
345 {
346 	u8 th_compare = ATTR_CFG_GET_FLD(attr, threshold_compare);
347 	u8 th_count = ATTR_CFG_GET_FLD(attr, threshold_count);
348 
349 	/*
350 	 * The count bit is always the bottom bit of the full control field, and
351 	 * the comparison is the upper two bits, but it's not explicitly
352 	 * labelled in the Arm ARM. For the Perf interface we split it into two
353 	 * fields, so reconstruct it here.
354 	 */
355 	return (th_compare << 1) | th_count;
356 }
357 
358 static struct attribute *armv8_pmuv3_format_attrs[] = {
359 	&format_attr_event.attr,
360 	&format_attr_long.attr,
361 	&format_attr_rdpmc.attr,
362 	&format_attr_threshold.attr,
363 	&format_attr_threshold_compare.attr,
364 	&format_attr_threshold_count.attr,
365 	NULL,
366 };
367 
368 static const struct attribute_group armv8_pmuv3_format_attr_group = {
369 	.name = "format",
370 	.attrs = armv8_pmuv3_format_attrs,
371 };
372 
373 static ssize_t slots_show(struct device *dev, struct device_attribute *attr,
374 			  char *page)
375 {
376 	struct pmu *pmu = dev_get_drvdata(dev);
377 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
378 	u32 slots = FIELD_GET(ARMV8_PMU_SLOTS, cpu_pmu->reg_pmmir);
379 
380 	return sysfs_emit(page, "0x%08x\n", slots);
381 }
382 
383 static DEVICE_ATTR_RO(slots);
384 
385 static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr,
386 			      char *page)
387 {
388 	struct pmu *pmu = dev_get_drvdata(dev);
389 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
390 	u32 bus_slots = FIELD_GET(ARMV8_PMU_BUS_SLOTS, cpu_pmu->reg_pmmir);
391 
392 	return sysfs_emit(page, "0x%08x\n", bus_slots);
393 }
394 
395 static DEVICE_ATTR_RO(bus_slots);
396 
397 static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr,
398 			      char *page)
399 {
400 	struct pmu *pmu = dev_get_drvdata(dev);
401 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
402 	u32 bus_width = FIELD_GET(ARMV8_PMU_BUS_WIDTH, cpu_pmu->reg_pmmir);
403 	u32 val = 0;
404 
405 	/* Encoded as Log2(number of bytes), plus one */
406 	if (bus_width > 2 && bus_width < 13)
407 		val = 1 << (bus_width - 1);
408 
409 	return sysfs_emit(page, "0x%08x\n", val);
410 }
411 
412 static DEVICE_ATTR_RO(bus_width);
413 
414 static u32 threshold_max(struct arm_pmu *cpu_pmu)
415 {
416 	/*
417 	 * PMMIR.THWIDTH is readable and non-zero on aarch32, but it would be
418 	 * impossible to write the threshold in the upper 32 bits of PMEVTYPER.
419 	 */
420 	if (IS_ENABLED(CONFIG_ARM))
421 		return 0;
422 
423 	/*
424 	 * The largest value that can be written to PMEVTYPER<n>_EL0.TH is
425 	 * (2 ^ PMMIR.THWIDTH) - 1.
426 	 */
427 	return (1 << FIELD_GET(ARMV8_PMU_THWIDTH, cpu_pmu->reg_pmmir)) - 1;
428 }
429 
430 static ssize_t threshold_max_show(struct device *dev,
431 				  struct device_attribute *attr, char *page)
432 {
433 	struct pmu *pmu = dev_get_drvdata(dev);
434 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
435 
436 	return sysfs_emit(page, "0x%08x\n", threshold_max(cpu_pmu));
437 }
438 
439 static DEVICE_ATTR_RO(threshold_max);
440 
441 static struct attribute *armv8_pmuv3_caps_attrs[] = {
442 	&dev_attr_slots.attr,
443 	&dev_attr_bus_slots.attr,
444 	&dev_attr_bus_width.attr,
445 	&dev_attr_threshold_max.attr,
446 	NULL,
447 };
448 
449 static const struct attribute_group armv8_pmuv3_caps_attr_group = {
450 	.name = "caps",
451 	.attrs = armv8_pmuv3_caps_attrs,
452 };
453 
454 /*
455  * Perf Events' indices
456  */
457 #define	ARMV8_IDX_CYCLE_COUNTER	0
458 #define	ARMV8_IDX_COUNTER0	1
459 #define	ARMV8_IDX_CYCLE_COUNTER_USER	32
460 
461 /*
462  * We unconditionally enable ARMv8.5-PMU long event counter support
463  * (64-bit events) where supported. Indicate if this arm_pmu has long
464  * event counter support.
465  *
466  * On AArch32, long counters make no sense (you can't access the top
467  * bits), so we only enable this on AArch64.
468  */
469 static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu)
470 {
471 	return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver));
472 }
473 
474 static bool armv8pmu_event_has_user_read(struct perf_event *event)
475 {
476 	return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT;
477 }
478 
479 /*
480  * We must chain two programmable counters for 64 bit events,
481  * except when we have allocated the 64bit cycle counter (for CPU
482  * cycles event) or when user space counter access is enabled.
483  */
484 static bool armv8pmu_event_is_chained(struct perf_event *event)
485 {
486 	int idx = event->hw.idx;
487 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
488 
489 	return !armv8pmu_event_has_user_read(event) &&
490 	       armv8pmu_event_is_64bit(event) &&
491 	       !armv8pmu_has_long_event(cpu_pmu) &&
492 	       (idx != ARMV8_IDX_CYCLE_COUNTER);
493 }
494 
495 /*
496  * ARMv8 low level PMU access
497  */
498 
499 /*
500  * Perf Event to low level counters mapping
501  */
502 #define	ARMV8_IDX_TO_COUNTER(x)	\
503 	(((x) - ARMV8_IDX_COUNTER0) & ARMV8_PMU_COUNTER_MASK)
504 
505 static u64 armv8pmu_pmcr_read(void)
506 {
507 	return read_pmcr();
508 }
509 
510 static void armv8pmu_pmcr_write(u64 val)
511 {
512 	val &= ARMV8_PMU_PMCR_MASK;
513 	isb();
514 	write_pmcr(val);
515 }
516 
517 static int armv8pmu_has_overflowed(u32 pmovsr)
518 {
519 	return pmovsr & ARMV8_PMU_OVERFLOWED_MASK;
520 }
521 
522 static int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
523 {
524 	return pmnc & BIT(ARMV8_IDX_TO_COUNTER(idx));
525 }
526 
527 static u64 armv8pmu_read_evcntr(int idx)
528 {
529 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
530 
531 	return read_pmevcntrn(counter);
532 }
533 
534 static u64 armv8pmu_read_hw_counter(struct perf_event *event)
535 {
536 	int idx = event->hw.idx;
537 	u64 val = armv8pmu_read_evcntr(idx);
538 
539 	if (armv8pmu_event_is_chained(event))
540 		val = (val << 32) | armv8pmu_read_evcntr(idx - 1);
541 	return val;
542 }
543 
544 /*
545  * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP
546  * is set the event counters also become 64-bit counters. Unless the
547  * user has requested a long counter (attr.config1) then we want to
548  * interrupt upon 32-bit overflow - we achieve this by applying a bias.
549  */
550 static bool armv8pmu_event_needs_bias(struct perf_event *event)
551 {
552 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
553 	struct hw_perf_event *hwc = &event->hw;
554 	int idx = hwc->idx;
555 
556 	if (armv8pmu_event_is_64bit(event))
557 		return false;
558 
559 	if (armv8pmu_has_long_event(cpu_pmu) ||
560 	    idx == ARMV8_IDX_CYCLE_COUNTER)
561 		return true;
562 
563 	return false;
564 }
565 
566 static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value)
567 {
568 	if (armv8pmu_event_needs_bias(event))
569 		value |= GENMASK_ULL(63, 32);
570 
571 	return value;
572 }
573 
574 static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value)
575 {
576 	if (armv8pmu_event_needs_bias(event))
577 		value &= ~GENMASK_ULL(63, 32);
578 
579 	return value;
580 }
581 
582 static u64 armv8pmu_read_counter(struct perf_event *event)
583 {
584 	struct hw_perf_event *hwc = &event->hw;
585 	int idx = hwc->idx;
586 	u64 value;
587 
588 	if (idx == ARMV8_IDX_CYCLE_COUNTER)
589 		value = read_pmccntr();
590 	else
591 		value = armv8pmu_read_hw_counter(event);
592 
593 	return  armv8pmu_unbias_long_counter(event, value);
594 }
595 
596 static void armv8pmu_write_evcntr(int idx, u64 value)
597 {
598 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
599 
600 	write_pmevcntrn(counter, value);
601 }
602 
603 static void armv8pmu_write_hw_counter(struct perf_event *event,
604 					     u64 value)
605 {
606 	int idx = event->hw.idx;
607 
608 	if (armv8pmu_event_is_chained(event)) {
609 		armv8pmu_write_evcntr(idx, upper_32_bits(value));
610 		armv8pmu_write_evcntr(idx - 1, lower_32_bits(value));
611 	} else {
612 		armv8pmu_write_evcntr(idx, value);
613 	}
614 }
615 
616 static void armv8pmu_write_counter(struct perf_event *event, u64 value)
617 {
618 	struct hw_perf_event *hwc = &event->hw;
619 	int idx = hwc->idx;
620 
621 	value = armv8pmu_bias_long_counter(event, value);
622 
623 	if (idx == ARMV8_IDX_CYCLE_COUNTER)
624 		write_pmccntr(value);
625 	else
626 		armv8pmu_write_hw_counter(event, value);
627 }
628 
629 static void armv8pmu_write_evtype(int idx, unsigned long val)
630 {
631 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
632 	unsigned long mask = ARMV8_PMU_EVTYPE_EVENT |
633 			     ARMV8_PMU_INCLUDE_EL2 |
634 			     ARMV8_PMU_EXCLUDE_EL0 |
635 			     ARMV8_PMU_EXCLUDE_EL1;
636 
637 	if (IS_ENABLED(CONFIG_ARM64))
638 		mask |= ARMV8_PMU_EVTYPE_TC | ARMV8_PMU_EVTYPE_TH;
639 
640 	val &= mask;
641 	write_pmevtypern(counter, val);
642 }
643 
644 static void armv8pmu_write_event_type(struct perf_event *event)
645 {
646 	struct hw_perf_event *hwc = &event->hw;
647 	int idx = hwc->idx;
648 
649 	/*
650 	 * For chained events, the low counter is programmed to count
651 	 * the event of interest and the high counter is programmed
652 	 * with CHAIN event code with filters set to count at all ELs.
653 	 */
654 	if (armv8pmu_event_is_chained(event)) {
655 		u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN |
656 				ARMV8_PMU_INCLUDE_EL2;
657 
658 		armv8pmu_write_evtype(idx - 1, hwc->config_base);
659 		armv8pmu_write_evtype(idx, chain_evt);
660 	} else {
661 		if (idx == ARMV8_IDX_CYCLE_COUNTER)
662 			write_pmccfiltr(hwc->config_base);
663 		else
664 			armv8pmu_write_evtype(idx, hwc->config_base);
665 	}
666 }
667 
668 static u32 armv8pmu_event_cnten_mask(struct perf_event *event)
669 {
670 	int counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
671 	u32 mask = BIT(counter);
672 
673 	if (armv8pmu_event_is_chained(event))
674 		mask |= BIT(counter - 1);
675 	return mask;
676 }
677 
678 static void armv8pmu_enable_counter(u32 mask)
679 {
680 	/*
681 	 * Make sure event configuration register writes are visible before we
682 	 * enable the counter.
683 	 * */
684 	isb();
685 	write_pmcntenset(mask);
686 }
687 
688 static void armv8pmu_enable_event_counter(struct perf_event *event)
689 {
690 	struct perf_event_attr *attr = &event->attr;
691 	u32 mask = armv8pmu_event_cnten_mask(event);
692 
693 	kvm_set_pmu_events(mask, attr);
694 
695 	/* We rely on the hypervisor switch code to enable guest counters */
696 	if (!kvm_pmu_counter_deferred(attr))
697 		armv8pmu_enable_counter(mask);
698 }
699 
700 static void armv8pmu_disable_counter(u32 mask)
701 {
702 	write_pmcntenclr(mask);
703 	/*
704 	 * Make sure the effects of disabling the counter are visible before we
705 	 * start configuring the event.
706 	 */
707 	isb();
708 }
709 
710 static void armv8pmu_disable_event_counter(struct perf_event *event)
711 {
712 	struct perf_event_attr *attr = &event->attr;
713 	u32 mask = armv8pmu_event_cnten_mask(event);
714 
715 	kvm_clr_pmu_events(mask);
716 
717 	/* We rely on the hypervisor switch code to disable guest counters */
718 	if (!kvm_pmu_counter_deferred(attr))
719 		armv8pmu_disable_counter(mask);
720 }
721 
722 static void armv8pmu_enable_intens(u32 mask)
723 {
724 	write_pmintenset(mask);
725 }
726 
727 static void armv8pmu_enable_event_irq(struct perf_event *event)
728 {
729 	u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
730 	armv8pmu_enable_intens(BIT(counter));
731 }
732 
733 static void armv8pmu_disable_intens(u32 mask)
734 {
735 	write_pmintenclr(mask);
736 	isb();
737 	/* Clear the overflow flag in case an interrupt is pending. */
738 	write_pmovsclr(mask);
739 	isb();
740 }
741 
742 static void armv8pmu_disable_event_irq(struct perf_event *event)
743 {
744 	u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
745 	armv8pmu_disable_intens(BIT(counter));
746 }
747 
748 static u32 armv8pmu_getreset_flags(void)
749 {
750 	u32 value;
751 
752 	/* Read */
753 	value = read_pmovsclr();
754 
755 	/* Write to clear flags */
756 	value &= ARMV8_PMU_OVERFLOWED_MASK;
757 	write_pmovsclr(value);
758 
759 	return value;
760 }
761 
762 static void update_pmuserenr(u64 val)
763 {
764 	lockdep_assert_irqs_disabled();
765 
766 	/*
767 	 * The current PMUSERENR_EL0 value might be the value for the guest.
768 	 * If that's the case, have KVM keep tracking of the register value
769 	 * for the host EL0 so that KVM can restore it before returning to
770 	 * the host EL0. Otherwise, update the register now.
771 	 */
772 	if (kvm_set_pmuserenr(val))
773 		return;
774 
775 	write_pmuserenr(val);
776 }
777 
778 static void armv8pmu_disable_user_access(void)
779 {
780 	update_pmuserenr(0);
781 }
782 
783 static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu)
784 {
785 	int i;
786 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
787 
788 	/* Clear any unused counters to avoid leaking their contents */
789 	for_each_clear_bit(i, cpuc->used_mask, cpu_pmu->num_events) {
790 		if (i == ARMV8_IDX_CYCLE_COUNTER)
791 			write_pmccntr(0);
792 		else
793 			armv8pmu_write_evcntr(i, 0);
794 	}
795 
796 	update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR);
797 }
798 
799 static void armv8pmu_enable_event(struct perf_event *event)
800 {
801 	/*
802 	 * Enable counter and interrupt, and set the counter to count
803 	 * the event that we're interested in.
804 	 */
805 	armv8pmu_disable_event_counter(event);
806 	armv8pmu_write_event_type(event);
807 	armv8pmu_enable_event_irq(event);
808 	armv8pmu_enable_event_counter(event);
809 }
810 
811 static void armv8pmu_disable_event(struct perf_event *event)
812 {
813 	armv8pmu_disable_event_counter(event);
814 	armv8pmu_disable_event_irq(event);
815 }
816 
817 static void armv8pmu_start(struct arm_pmu *cpu_pmu)
818 {
819 	struct perf_event_context *ctx;
820 	int nr_user = 0;
821 
822 	ctx = perf_cpu_task_ctx();
823 	if (ctx)
824 		nr_user = ctx->nr_user;
825 
826 	if (sysctl_perf_user_access && nr_user)
827 		armv8pmu_enable_user_access(cpu_pmu);
828 	else
829 		armv8pmu_disable_user_access();
830 
831 	/* Enable all counters */
832 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E);
833 
834 	kvm_vcpu_pmu_resync_el0();
835 }
836 
837 static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
838 {
839 	/* Disable all counters */
840 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E);
841 }
842 
843 static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu)
844 {
845 	u32 pmovsr;
846 	struct perf_sample_data data;
847 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
848 	struct pt_regs *regs;
849 	int idx;
850 
851 	/*
852 	 * Get and reset the IRQ flags
853 	 */
854 	pmovsr = armv8pmu_getreset_flags();
855 
856 	/*
857 	 * Did an overflow occur?
858 	 */
859 	if (!armv8pmu_has_overflowed(pmovsr))
860 		return IRQ_NONE;
861 
862 	/*
863 	 * Handle the counter(s) overflow(s)
864 	 */
865 	regs = get_irq_regs();
866 
867 	/*
868 	 * Stop the PMU while processing the counter overflows
869 	 * to prevent skews in group events.
870 	 */
871 	armv8pmu_stop(cpu_pmu);
872 	for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
873 		struct perf_event *event = cpuc->events[idx];
874 		struct hw_perf_event *hwc;
875 
876 		/* Ignore if we don't have an event. */
877 		if (!event)
878 			continue;
879 
880 		/*
881 		 * We have a single interrupt for all counters. Check that
882 		 * each counter has overflowed before we process it.
883 		 */
884 		if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
885 			continue;
886 
887 		hwc = &event->hw;
888 		armpmu_event_update(event);
889 		perf_sample_data_init(&data, 0, hwc->last_period);
890 		if (!armpmu_event_set_period(event))
891 			continue;
892 
893 		/*
894 		 * Perf event overflow will queue the processing of the event as
895 		 * an irq_work which will be taken care of in the handling of
896 		 * IPI_IRQ_WORK.
897 		 */
898 		if (perf_event_overflow(event, &data, regs))
899 			cpu_pmu->disable(event);
900 	}
901 	armv8pmu_start(cpu_pmu);
902 
903 	return IRQ_HANDLED;
904 }
905 
906 static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc,
907 				    struct arm_pmu *cpu_pmu)
908 {
909 	int idx;
910 
911 	for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; idx++) {
912 		if (!test_and_set_bit(idx, cpuc->used_mask))
913 			return idx;
914 	}
915 	return -EAGAIN;
916 }
917 
918 static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc,
919 				   struct arm_pmu *cpu_pmu)
920 {
921 	int idx;
922 
923 	/*
924 	 * Chaining requires two consecutive event counters, where
925 	 * the lower idx must be even.
926 	 */
927 	for (idx = ARMV8_IDX_COUNTER0 + 1; idx < cpu_pmu->num_events; idx += 2) {
928 		if (!test_and_set_bit(idx, cpuc->used_mask)) {
929 			/* Check if the preceding even counter is available */
930 			if (!test_and_set_bit(idx - 1, cpuc->used_mask))
931 				return idx;
932 			/* Release the Odd counter */
933 			clear_bit(idx, cpuc->used_mask);
934 		}
935 	}
936 	return -EAGAIN;
937 }
938 
939 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
940 				  struct perf_event *event)
941 {
942 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
943 	struct hw_perf_event *hwc = &event->hw;
944 	unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT;
945 
946 	/* Always prefer to place a cycle counter into the cycle counter. */
947 	if ((evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
948 	    !armv8pmu_event_get_threshold(&event->attr)) {
949 		if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
950 			return ARMV8_IDX_CYCLE_COUNTER;
951 		else if (armv8pmu_event_is_64bit(event) &&
952 			   armv8pmu_event_want_user_access(event) &&
953 			   !armv8pmu_has_long_event(cpu_pmu))
954 				return -EAGAIN;
955 	}
956 
957 	/*
958 	 * Otherwise use events counters
959 	 */
960 	if (armv8pmu_event_is_chained(event))
961 		return	armv8pmu_get_chain_idx(cpuc, cpu_pmu);
962 	else
963 		return armv8pmu_get_single_idx(cpuc, cpu_pmu);
964 }
965 
966 static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc,
967 				     struct perf_event *event)
968 {
969 	int idx = event->hw.idx;
970 
971 	clear_bit(idx, cpuc->used_mask);
972 	if (armv8pmu_event_is_chained(event))
973 		clear_bit(idx - 1, cpuc->used_mask);
974 }
975 
976 static int armv8pmu_user_event_idx(struct perf_event *event)
977 {
978 	if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event))
979 		return 0;
980 
981 	/*
982 	 * We remap the cycle counter index to 32 to
983 	 * match the offset applied to the rest of
984 	 * the counter indices.
985 	 */
986 	if (event->hw.idx == ARMV8_IDX_CYCLE_COUNTER)
987 		return ARMV8_IDX_CYCLE_COUNTER_USER;
988 
989 	return event->hw.idx;
990 }
991 
992 /*
993  * Add an event filter to a given event.
994  */
995 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
996 				     struct perf_event_attr *attr)
997 {
998 	unsigned long config_base = 0;
999 	struct perf_event *perf_event = container_of(attr, struct perf_event,
1000 						     attr);
1001 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
1002 	u32 th;
1003 
1004 	if (attr->exclude_idle) {
1005 		pr_debug("ARM performance counters do not support mode exclusion\n");
1006 		return -EOPNOTSUPP;
1007 	}
1008 
1009 	/*
1010 	 * If we're running in hyp mode, then we *are* the hypervisor.
1011 	 * Therefore we ignore exclude_hv in this configuration, since
1012 	 * there's no hypervisor to sample anyway. This is consistent
1013 	 * with other architectures (x86 and Power).
1014 	 */
1015 	if (is_kernel_in_hyp_mode()) {
1016 		if (!attr->exclude_kernel && !attr->exclude_host)
1017 			config_base |= ARMV8_PMU_INCLUDE_EL2;
1018 		if (attr->exclude_guest)
1019 			config_base |= ARMV8_PMU_EXCLUDE_EL1;
1020 		if (attr->exclude_host)
1021 			config_base |= ARMV8_PMU_EXCLUDE_EL0;
1022 	} else {
1023 		if (!attr->exclude_hv && !attr->exclude_host)
1024 			config_base |= ARMV8_PMU_INCLUDE_EL2;
1025 	}
1026 
1027 	/*
1028 	 * Filter out !VHE kernels and guest kernels
1029 	 */
1030 	if (attr->exclude_kernel)
1031 		config_base |= ARMV8_PMU_EXCLUDE_EL1;
1032 
1033 	if (attr->exclude_user)
1034 		config_base |= ARMV8_PMU_EXCLUDE_EL0;
1035 
1036 	/*
1037 	 * If FEAT_PMUv3_TH isn't implemented, then THWIDTH (threshold_max) will
1038 	 * be 0 and will also trigger this check, preventing it from being used.
1039 	 */
1040 	th = armv8pmu_event_get_threshold(attr);
1041 	if (th > threshold_max(cpu_pmu)) {
1042 		pr_debug("PMU event threshold exceeds max value\n");
1043 		return -EINVAL;
1044 	}
1045 
1046 	if (th) {
1047 		config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TH, th);
1048 		config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TC,
1049 					  armv8pmu_event_threshold_control(attr));
1050 	}
1051 
1052 	/*
1053 	 * Install the filter into config_base as this is used to
1054 	 * construct the event type.
1055 	 */
1056 	event->config_base = config_base;
1057 
1058 	return 0;
1059 }
1060 
1061 static void armv8pmu_reset(void *info)
1062 {
1063 	struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
1064 	u64 pmcr;
1065 
1066 	/* The counter and interrupt enable registers are unknown at reset. */
1067 	armv8pmu_disable_counter(U32_MAX);
1068 	armv8pmu_disable_intens(U32_MAX);
1069 
1070 	/* Clear the counters we flip at guest entry/exit */
1071 	kvm_clr_pmu_events(U32_MAX);
1072 
1073 	/*
1074 	 * Initialize & Reset PMNC. Request overflow interrupt for
1075 	 * 64 bit cycle counter but cheat in armv8pmu_write_counter().
1076 	 */
1077 	pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC;
1078 
1079 	/* Enable long event counter support where available */
1080 	if (armv8pmu_has_long_event(cpu_pmu))
1081 		pmcr |= ARMV8_PMU_PMCR_LP;
1082 
1083 	armv8pmu_pmcr_write(pmcr);
1084 }
1085 
1086 static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu,
1087 				      struct perf_event *event)
1088 {
1089 	if (event->attr.type == PERF_TYPE_HARDWARE &&
1090 	    event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) {
1091 
1092 		if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED,
1093 			     armpmu->pmceid_bitmap))
1094 			return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED;
1095 
1096 		if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED,
1097 			     armpmu->pmceid_bitmap))
1098 			return ARMV8_PMUV3_PERFCTR_BR_RETIRED;
1099 
1100 		return HW_OP_UNSUPPORTED;
1101 	}
1102 
1103 	return armpmu_map_event(event, &armv8_pmuv3_perf_map,
1104 				&armv8_pmuv3_perf_cache_map,
1105 				ARMV8_PMU_EVTYPE_EVENT);
1106 }
1107 
1108 static int __armv8_pmuv3_map_event(struct perf_event *event,
1109 				   const unsigned (*extra_event_map)
1110 						  [PERF_COUNT_HW_MAX],
1111 				   const unsigned (*extra_cache_map)
1112 						  [PERF_COUNT_HW_CACHE_MAX]
1113 						  [PERF_COUNT_HW_CACHE_OP_MAX]
1114 						  [PERF_COUNT_HW_CACHE_RESULT_MAX])
1115 {
1116 	int hw_event_id;
1117 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1118 
1119 	hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event);
1120 
1121 	/*
1122 	 * CHAIN events only work when paired with an adjacent counter, and it
1123 	 * never makes sense for a user to open one in isolation, as they'll be
1124 	 * rotated arbitrarily.
1125 	 */
1126 	if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN)
1127 		return -EINVAL;
1128 
1129 	if (armv8pmu_event_is_64bit(event))
1130 		event->hw.flags |= ARMPMU_EVT_64BIT;
1131 
1132 	/*
1133 	 * User events must be allocated into a single counter, and so
1134 	 * must not be chained.
1135 	 *
1136 	 * Most 64-bit events require long counter support, but 64-bit
1137 	 * CPU_CYCLES events can be placed into the dedicated cycle
1138 	 * counter when this is free.
1139 	 */
1140 	if (armv8pmu_event_want_user_access(event)) {
1141 		if (!(event->attach_state & PERF_ATTACH_TASK))
1142 			return -EINVAL;
1143 		if (armv8pmu_event_is_64bit(event) &&
1144 		    (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
1145 		    !armv8pmu_has_long_event(armpmu))
1146 			return -EOPNOTSUPP;
1147 
1148 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1149 	}
1150 
1151 	/* Only expose micro/arch events supported by this PMU */
1152 	if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS)
1153 	    && test_bit(hw_event_id, armpmu->pmceid_bitmap)) {
1154 		return hw_event_id;
1155 	}
1156 
1157 	return armpmu_map_event(event, extra_event_map, extra_cache_map,
1158 				ARMV8_PMU_EVTYPE_EVENT);
1159 }
1160 
1161 static int armv8_pmuv3_map_event(struct perf_event *event)
1162 {
1163 	return __armv8_pmuv3_map_event(event, NULL, NULL);
1164 }
1165 
1166 static int armv8_a53_map_event(struct perf_event *event)
1167 {
1168 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map);
1169 }
1170 
1171 static int armv8_a57_map_event(struct perf_event *event)
1172 {
1173 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map);
1174 }
1175 
1176 static int armv8_a73_map_event(struct perf_event *event)
1177 {
1178 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map);
1179 }
1180 
1181 static int armv8_thunder_map_event(struct perf_event *event)
1182 {
1183 	return __armv8_pmuv3_map_event(event, NULL,
1184 				       &armv8_thunder_perf_cache_map);
1185 }
1186 
1187 static int armv8_vulcan_map_event(struct perf_event *event)
1188 {
1189 	return __armv8_pmuv3_map_event(event, NULL,
1190 				       &armv8_vulcan_perf_cache_map);
1191 }
1192 
1193 struct armv8pmu_probe_info {
1194 	struct arm_pmu *pmu;
1195 	bool present;
1196 };
1197 
1198 static void __armv8pmu_probe_pmu(void *info)
1199 {
1200 	struct armv8pmu_probe_info *probe = info;
1201 	struct arm_pmu *cpu_pmu = probe->pmu;
1202 	u64 pmceid_raw[2];
1203 	u32 pmceid[2];
1204 	int pmuver;
1205 
1206 	pmuver = read_pmuver();
1207 	if (!pmuv3_implemented(pmuver))
1208 		return;
1209 
1210 	cpu_pmu->pmuver = pmuver;
1211 	probe->present = true;
1212 
1213 	/* Read the nb of CNTx counters supported from PMNC */
1214 	cpu_pmu->num_events = FIELD_GET(ARMV8_PMU_PMCR_N, armv8pmu_pmcr_read());
1215 
1216 	/* Add the CPU cycles counter */
1217 	cpu_pmu->num_events += 1;
1218 
1219 	pmceid[0] = pmceid_raw[0] = read_pmceid0();
1220 	pmceid[1] = pmceid_raw[1] = read_pmceid1();
1221 
1222 	bitmap_from_arr32(cpu_pmu->pmceid_bitmap,
1223 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1224 
1225 	pmceid[0] = pmceid_raw[0] >> 32;
1226 	pmceid[1] = pmceid_raw[1] >> 32;
1227 
1228 	bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap,
1229 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1230 
1231 	/* store PMMIR register for sysfs */
1232 	if (is_pmuv3p4(pmuver))
1233 		cpu_pmu->reg_pmmir = read_pmmir();
1234 	else
1235 		cpu_pmu->reg_pmmir = 0;
1236 }
1237 
1238 static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu)
1239 {
1240 	struct armv8pmu_probe_info probe = {
1241 		.pmu = cpu_pmu,
1242 		.present = false,
1243 	};
1244 	int ret;
1245 
1246 	ret = smp_call_function_any(&cpu_pmu->supported_cpus,
1247 				    __armv8pmu_probe_pmu,
1248 				    &probe, 1);
1249 	if (ret)
1250 		return ret;
1251 
1252 	return probe.present ? 0 : -ENODEV;
1253 }
1254 
1255 static void armv8pmu_disable_user_access_ipi(void *unused)
1256 {
1257 	armv8pmu_disable_user_access();
1258 }
1259 
1260 static int armv8pmu_proc_user_access_handler(const struct ctl_table *table, int write,
1261 		void *buffer, size_t *lenp, loff_t *ppos)
1262 {
1263 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1264 	if (ret || !write || sysctl_perf_user_access)
1265 		return ret;
1266 
1267 	on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1);
1268 	return 0;
1269 }
1270 
1271 static struct ctl_table armv8_pmu_sysctl_table[] = {
1272 	{
1273 		.procname       = "perf_user_access",
1274 		.data		= &sysctl_perf_user_access,
1275 		.maxlen		= sizeof(unsigned int),
1276 		.mode           = 0644,
1277 		.proc_handler	= armv8pmu_proc_user_access_handler,
1278 		.extra1		= SYSCTL_ZERO,
1279 		.extra2		= SYSCTL_ONE,
1280 	},
1281 };
1282 
1283 static void armv8_pmu_register_sysctl_table(void)
1284 {
1285 	static u32 tbl_registered = 0;
1286 
1287 	if (!cmpxchg_relaxed(&tbl_registered, 0, 1))
1288 		register_sysctl("kernel", armv8_pmu_sysctl_table);
1289 }
1290 
1291 static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name,
1292 			  int (*map_event)(struct perf_event *event))
1293 {
1294 	int ret = armv8pmu_probe_pmu(cpu_pmu);
1295 	if (ret)
1296 		return ret;
1297 
1298 	cpu_pmu->handle_irq		= armv8pmu_handle_irq;
1299 	cpu_pmu->enable			= armv8pmu_enable_event;
1300 	cpu_pmu->disable		= armv8pmu_disable_event;
1301 	cpu_pmu->read_counter		= armv8pmu_read_counter;
1302 	cpu_pmu->write_counter		= armv8pmu_write_counter;
1303 	cpu_pmu->get_event_idx		= armv8pmu_get_event_idx;
1304 	cpu_pmu->clear_event_idx	= armv8pmu_clear_event_idx;
1305 	cpu_pmu->start			= armv8pmu_start;
1306 	cpu_pmu->stop			= armv8pmu_stop;
1307 	cpu_pmu->reset			= armv8pmu_reset;
1308 	cpu_pmu->set_event_filter	= armv8pmu_set_event_filter;
1309 
1310 	cpu_pmu->pmu.event_idx		= armv8pmu_user_event_idx;
1311 
1312 	cpu_pmu->name			= name;
1313 	cpu_pmu->map_event		= map_event;
1314 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = &armv8_pmuv3_events_attr_group;
1315 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = &armv8_pmuv3_format_attr_group;
1316 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = &armv8_pmuv3_caps_attr_group;
1317 	armv8_pmu_register_sysctl_table();
1318 	return 0;
1319 }
1320 
1321 #define PMUV3_INIT_SIMPLE(name)						\
1322 static int name##_pmu_init(struct arm_pmu *cpu_pmu)			\
1323 {									\
1324 	return armv8_pmu_init(cpu_pmu, #name, armv8_pmuv3_map_event);	\
1325 }
1326 
1327 #define PMUV3_INIT_MAP_EVENT(name, map_event)				\
1328 static int name##_pmu_init(struct arm_pmu *cpu_pmu)			\
1329 {									\
1330 	return armv8_pmu_init(cpu_pmu, #name, map_event);		\
1331 }
1332 
1333 PMUV3_INIT_SIMPLE(armv8_pmuv3)
1334 
1335 PMUV3_INIT_SIMPLE(armv8_cortex_a34)
1336 PMUV3_INIT_SIMPLE(armv8_cortex_a55)
1337 PMUV3_INIT_SIMPLE(armv8_cortex_a65)
1338 PMUV3_INIT_SIMPLE(armv8_cortex_a75)
1339 PMUV3_INIT_SIMPLE(armv8_cortex_a76)
1340 PMUV3_INIT_SIMPLE(armv8_cortex_a77)
1341 PMUV3_INIT_SIMPLE(armv8_cortex_a78)
1342 PMUV3_INIT_SIMPLE(armv9_cortex_a510)
1343 PMUV3_INIT_SIMPLE(armv9_cortex_a520)
1344 PMUV3_INIT_SIMPLE(armv9_cortex_a710)
1345 PMUV3_INIT_SIMPLE(armv9_cortex_a715)
1346 PMUV3_INIT_SIMPLE(armv9_cortex_a720)
1347 PMUV3_INIT_SIMPLE(armv9_cortex_a725)
1348 PMUV3_INIT_SIMPLE(armv8_cortex_x1)
1349 PMUV3_INIT_SIMPLE(armv9_cortex_x2)
1350 PMUV3_INIT_SIMPLE(armv9_cortex_x3)
1351 PMUV3_INIT_SIMPLE(armv9_cortex_x4)
1352 PMUV3_INIT_SIMPLE(armv9_cortex_x925)
1353 PMUV3_INIT_SIMPLE(armv8_neoverse_e1)
1354 PMUV3_INIT_SIMPLE(armv8_neoverse_n1)
1355 PMUV3_INIT_SIMPLE(armv9_neoverse_n2)
1356 PMUV3_INIT_SIMPLE(armv9_neoverse_n3)
1357 PMUV3_INIT_SIMPLE(armv8_neoverse_v1)
1358 PMUV3_INIT_SIMPLE(armv8_neoverse_v2)
1359 PMUV3_INIT_SIMPLE(armv8_neoverse_v3)
1360 PMUV3_INIT_SIMPLE(armv8_neoverse_v3ae)
1361 
1362 PMUV3_INIT_SIMPLE(armv8_nvidia_carmel)
1363 PMUV3_INIT_SIMPLE(armv8_nvidia_denver)
1364 
1365 PMUV3_INIT_MAP_EVENT(armv8_cortex_a35, armv8_a53_map_event)
1366 PMUV3_INIT_MAP_EVENT(armv8_cortex_a53, armv8_a53_map_event)
1367 PMUV3_INIT_MAP_EVENT(armv8_cortex_a57, armv8_a57_map_event)
1368 PMUV3_INIT_MAP_EVENT(armv8_cortex_a72, armv8_a57_map_event)
1369 PMUV3_INIT_MAP_EVENT(armv8_cortex_a73, armv8_a73_map_event)
1370 PMUV3_INIT_MAP_EVENT(armv8_cavium_thunder, armv8_thunder_map_event)
1371 PMUV3_INIT_MAP_EVENT(armv8_brcm_vulcan, armv8_vulcan_map_event)
1372 
1373 static const struct of_device_id armv8_pmu_of_device_ids[] = {
1374 	{.compatible = "arm,armv8-pmuv3",	.data = armv8_pmuv3_pmu_init},
1375 	{.compatible = "arm,cortex-a34-pmu",	.data = armv8_cortex_a34_pmu_init},
1376 	{.compatible = "arm,cortex-a35-pmu",	.data = armv8_cortex_a35_pmu_init},
1377 	{.compatible = "arm,cortex-a53-pmu",	.data = armv8_cortex_a53_pmu_init},
1378 	{.compatible = "arm,cortex-a55-pmu",	.data = armv8_cortex_a55_pmu_init},
1379 	{.compatible = "arm,cortex-a57-pmu",	.data = armv8_cortex_a57_pmu_init},
1380 	{.compatible = "arm,cortex-a65-pmu",	.data = armv8_cortex_a65_pmu_init},
1381 	{.compatible = "arm,cortex-a72-pmu",	.data = armv8_cortex_a72_pmu_init},
1382 	{.compatible = "arm,cortex-a73-pmu",	.data = armv8_cortex_a73_pmu_init},
1383 	{.compatible = "arm,cortex-a75-pmu",	.data = armv8_cortex_a75_pmu_init},
1384 	{.compatible = "arm,cortex-a76-pmu",	.data = armv8_cortex_a76_pmu_init},
1385 	{.compatible = "arm,cortex-a77-pmu",	.data = armv8_cortex_a77_pmu_init},
1386 	{.compatible = "arm,cortex-a78-pmu",	.data = armv8_cortex_a78_pmu_init},
1387 	{.compatible = "arm,cortex-a510-pmu",	.data = armv9_cortex_a510_pmu_init},
1388 	{.compatible = "arm,cortex-a520-pmu",	.data = armv9_cortex_a520_pmu_init},
1389 	{.compatible = "arm,cortex-a710-pmu",	.data = armv9_cortex_a710_pmu_init},
1390 	{.compatible = "arm,cortex-a715-pmu",	.data = armv9_cortex_a715_pmu_init},
1391 	{.compatible = "arm,cortex-a720-pmu",	.data = armv9_cortex_a720_pmu_init},
1392 	{.compatible = "arm,cortex-a725-pmu",	.data = armv9_cortex_a725_pmu_init},
1393 	{.compatible = "arm,cortex-x1-pmu",	.data = armv8_cortex_x1_pmu_init},
1394 	{.compatible = "arm,cortex-x2-pmu",	.data = armv9_cortex_x2_pmu_init},
1395 	{.compatible = "arm,cortex-x3-pmu",	.data = armv9_cortex_x3_pmu_init},
1396 	{.compatible = "arm,cortex-x4-pmu",	.data = armv9_cortex_x4_pmu_init},
1397 	{.compatible = "arm,cortex-x925-pmu",	.data = armv9_cortex_x925_pmu_init},
1398 	{.compatible = "arm,neoverse-e1-pmu",	.data = armv8_neoverse_e1_pmu_init},
1399 	{.compatible = "arm,neoverse-n1-pmu",	.data = armv8_neoverse_n1_pmu_init},
1400 	{.compatible = "arm,neoverse-n2-pmu",	.data = armv9_neoverse_n2_pmu_init},
1401 	{.compatible = "arm,neoverse-n3-pmu",	.data = armv9_neoverse_n3_pmu_init},
1402 	{.compatible = "arm,neoverse-v1-pmu",	.data = armv8_neoverse_v1_pmu_init},
1403 	{.compatible = "arm,neoverse-v2-pmu",	.data = armv8_neoverse_v2_pmu_init},
1404 	{.compatible = "arm,neoverse-v3-pmu",	.data = armv8_neoverse_v3_pmu_init},
1405 	{.compatible = "arm,neoverse-v3ae-pmu",	.data = armv8_neoverse_v3ae_pmu_init},
1406 	{.compatible = "cavium,thunder-pmu",	.data = armv8_cavium_thunder_pmu_init},
1407 	{.compatible = "brcm,vulcan-pmu",	.data = armv8_brcm_vulcan_pmu_init},
1408 	{.compatible = "nvidia,carmel-pmu",	.data = armv8_nvidia_carmel_pmu_init},
1409 	{.compatible = "nvidia,denver-pmu",	.data = armv8_nvidia_denver_pmu_init},
1410 	{},
1411 };
1412 
1413 static int armv8_pmu_device_probe(struct platform_device *pdev)
1414 {
1415 	return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
1416 }
1417 
1418 static struct platform_driver armv8_pmu_driver = {
1419 	.driver		= {
1420 		.name	= ARMV8_PMU_PDEV_NAME,
1421 		.of_match_table = armv8_pmu_of_device_ids,
1422 		.suppress_bind_attrs = true,
1423 	},
1424 	.probe		= armv8_pmu_device_probe,
1425 };
1426 
1427 static int __init armv8_pmu_driver_init(void)
1428 {
1429 	int ret;
1430 
1431 	if (acpi_disabled)
1432 		ret = platform_driver_register(&armv8_pmu_driver);
1433 	else
1434 		ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init);
1435 
1436 	if (!ret)
1437 		lockup_detector_retry_init();
1438 
1439 	return ret;
1440 }
1441 device_initcall(armv8_pmu_driver_init)
1442 
1443 void arch_perf_update_userpage(struct perf_event *event,
1444 			       struct perf_event_mmap_page *userpg, u64 now)
1445 {
1446 	struct clock_read_data *rd;
1447 	unsigned int seq;
1448 	u64 ns;
1449 
1450 	userpg->cap_user_time = 0;
1451 	userpg->cap_user_time_zero = 0;
1452 	userpg->cap_user_time_short = 0;
1453 	userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event);
1454 
1455 	if (userpg->cap_user_rdpmc) {
1456 		if (event->hw.flags & ARMPMU_EVT_64BIT)
1457 			userpg->pmc_width = 64;
1458 		else
1459 			userpg->pmc_width = 32;
1460 	}
1461 
1462 	do {
1463 		rd = sched_clock_read_begin(&seq);
1464 
1465 		if (rd->read_sched_clock != arch_timer_read_counter)
1466 			return;
1467 
1468 		userpg->time_mult = rd->mult;
1469 		userpg->time_shift = rd->shift;
1470 		userpg->time_zero = rd->epoch_ns;
1471 		userpg->time_cycles = rd->epoch_cyc;
1472 		userpg->time_mask = rd->sched_clock_mask;
1473 
1474 		/*
1475 		 * Subtract the cycle base, such that software that
1476 		 * doesn't know about cap_user_time_short still 'works'
1477 		 * assuming no wraps.
1478 		 */
1479 		ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
1480 		userpg->time_zero -= ns;
1481 
1482 	} while (sched_clock_read_retry(seq));
1483 
1484 	userpg->time_offset = userpg->time_zero - now;
1485 
1486 	/*
1487 	 * time_shift is not expected to be greater than 31 due to
1488 	 * the original published conversion algorithm shifting a
1489 	 * 32-bit value (now specifies a 64-bit value) - refer
1490 	 * perf_event_mmap_page documentation in perf_event.h.
1491 	 */
1492 	if (userpg->time_shift == 32) {
1493 		userpg->time_shift = 31;
1494 		userpg->time_mult >>= 1;
1495 	}
1496 
1497 	/*
1498 	 * Internal timekeeping for enabled/running/stopped times
1499 	 * is always computed with the sched_clock.
1500 	 */
1501 	userpg->cap_user_time = 1;
1502 	userpg->cap_user_time_zero = 1;
1503 	userpg->cap_user_time_short = 1;
1504 }
1505