xref: /linux/drivers/perf/arm_pmuv3.c (revision e77a8005748547fb1f10645097f13ccdd804d7e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ARMv8 PMUv3 Performance Events handling code.
4  *
5  * Copyright (C) 2012 ARM Limited
6  * Author: Will Deacon <will.deacon@arm.com>
7  *
8  * This code is based heavily on the ARMv7 perf event code.
9  */
10 
11 #include <asm/irq_regs.h>
12 #include <asm/perf_event.h>
13 #include <asm/virt.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 
17 #include <linux/acpi.h>
18 #include <linux/bitfield.h>
19 #include <linux/clocksource.h>
20 #include <linux/of.h>
21 #include <linux/perf/arm_pmu.h>
22 #include <linux/perf/arm_pmuv3.h>
23 #include <linux/platform_device.h>
24 #include <linux/sched_clock.h>
25 #include <linux/smp.h>
26 #include <linux/nmi.h>
27 
28 /* ARMv8 Cortex-A53 specific event types. */
29 #define ARMV8_A53_PERFCTR_PREF_LINEFILL				0xC2
30 
31 /* ARMv8 Cavium ThunderX specific event types. */
32 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST			0xE9
33 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS		0xEA
34 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS		0xEB
35 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS		0xEC
36 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS		0xED
37 
38 /*
39  * ARMv8 Architectural defined events, not all of these may
40  * be supported on any given implementation. Unsupported events will
41  * be disabled at run-time based on the PMCEID registers.
42  */
43 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
44 	PERF_MAP_ALL_UNSUPPORTED,
45 	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
46 	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV8_PMUV3_PERFCTR_INST_RETIRED,
47 	[PERF_COUNT_HW_CACHE_REFERENCES]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
48 	[PERF_COUNT_HW_CACHE_MISSES]		= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
49 	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
50 	[PERF_COUNT_HW_BUS_CYCLES]		= ARMV8_PMUV3_PERFCTR_BUS_CYCLES,
51 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV8_PMUV3_PERFCTR_STALL_FRONTEND,
52 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV8_PMUV3_PERFCTR_STALL_BACKEND,
53 };
54 
55 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
56 						[PERF_COUNT_HW_CACHE_OP_MAX]
57 						[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
58 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
59 
60 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
61 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
62 
63 	[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE,
64 	[C(L1I)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL,
65 
66 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL,
67 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB,
68 
69 	[C(ITLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL,
70 	[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB,
71 
72 	[C(LL)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD,
73 	[C(LL)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_RD,
74 
75 	[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_BR_PRED,
76 	[C(BPU)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
77 };
78 
79 static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
80 					      [PERF_COUNT_HW_CACHE_OP_MAX]
81 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
82 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
83 
84 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL,
85 
86 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
87 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
88 };
89 
90 static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
91 					      [PERF_COUNT_HW_CACHE_OP_MAX]
92 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
93 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
94 
95 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
96 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
97 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
98 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
99 
100 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
101 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
102 
103 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
104 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
105 };
106 
107 static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
108 					      [PERF_COUNT_HW_CACHE_OP_MAX]
109 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
110 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
111 
112 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
113 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
114 };
115 
116 static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
117 						   [PERF_COUNT_HW_CACHE_OP_MAX]
118 						   [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
119 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
120 
121 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
122 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
123 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
124 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST,
125 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS,
126 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS,
127 
128 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS,
129 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS,
130 
131 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
132 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
133 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
134 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
135 };
136 
137 static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
138 					      [PERF_COUNT_HW_CACHE_OP_MAX]
139 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
140 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
141 
142 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
143 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
144 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
145 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
146 
147 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
148 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
149 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
150 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
151 
152 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
153 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
154 };
155 
156 static ssize_t
157 armv8pmu_events_sysfs_show(struct device *dev,
158 			   struct device_attribute *attr, char *page)
159 {
160 	struct perf_pmu_events_attr *pmu_attr;
161 
162 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
163 
164 	return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
165 }
166 
167 #define ARMV8_EVENT_ATTR(name, config)						\
168 	PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config)
169 
170 static struct attribute *armv8_pmuv3_event_attrs[] = {
171 	/*
172 	 * Don't expose the sw_incr event in /sys. It's not usable as writes to
173 	 * PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation
174 	 * means we don't have a fixed event<->counter relationship regardless.
175 	 */
176 	ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
177 	ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
178 	ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
179 	ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
180 	ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
181 	ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
182 	ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
183 	ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
184 	ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
185 	ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
186 	ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
187 	ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
188 	ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
189 	ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
190 	ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
191 	ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
192 	ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
193 	ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
194 	ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
195 	ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
196 	ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
197 	ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
198 	ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
199 	ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
200 	ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
201 	ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
202 	ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
203 	ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
204 	ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
205 	/* Don't expose the chain event in /sys, since it's useless in isolation */
206 	ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
207 	ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
208 	ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
209 	ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
210 	ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
211 	ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
212 	ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
213 	ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
214 	ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
215 	ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
216 	ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
217 	ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
218 	ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
219 	ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
220 	ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
221 	ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
222 	ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
223 	ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
224 	ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
225 	ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
226 	ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
227 	ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
228 	ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
229 	ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
230 	ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
231 	ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
232 	ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD),
233 	ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED),
234 	ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC),
235 	ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL),
236 	ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND),
237 	ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND),
238 	ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT),
239 	ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
240 	ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
241 	ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
242 	ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
243 	ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES),
244 	ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM),
245 	ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS),
246 	ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD),
247 	ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS),
248 	ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD),
249 	ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP),
250 	ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG),
251 	ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0),
252 	ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1),
253 	ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2),
254 	ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3),
255 	ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4),
256 	ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5),
257 	ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6),
258 	ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7),
259 	ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT),
260 	ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT),
261 	ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT),
262 	ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED),
263 	ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD),
264 	ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR),
265 	NULL,
266 };
267 
268 static umode_t
269 armv8pmu_event_attr_is_visible(struct kobject *kobj,
270 			       struct attribute *attr, int unused)
271 {
272 	struct device *dev = kobj_to_dev(kobj);
273 	struct pmu *pmu = dev_get_drvdata(dev);
274 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
275 	struct perf_pmu_events_attr *pmu_attr;
276 
277 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
278 
279 	if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
280 	    test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap))
281 		return attr->mode;
282 
283 	if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) {
284 		u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE;
285 
286 		if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
287 		    test_bit(id, cpu_pmu->pmceid_ext_bitmap))
288 			return attr->mode;
289 	}
290 
291 	return 0;
292 }
293 
294 static const struct attribute_group armv8_pmuv3_events_attr_group = {
295 	.name = "events",
296 	.attrs = armv8_pmuv3_event_attrs,
297 	.is_visible = armv8pmu_event_attr_is_visible,
298 };
299 
300 /* User ABI */
301 #define ATTR_CFG_FLD_event_CFG		config
302 #define ATTR_CFG_FLD_event_LO		0
303 #define ATTR_CFG_FLD_event_HI		15
304 #define ATTR_CFG_FLD_long_CFG		config1
305 #define ATTR_CFG_FLD_long_LO		0
306 #define ATTR_CFG_FLD_long_HI		0
307 #define ATTR_CFG_FLD_rdpmc_CFG		config1
308 #define ATTR_CFG_FLD_rdpmc_LO		1
309 #define ATTR_CFG_FLD_rdpmc_HI		1
310 #define ATTR_CFG_FLD_threshold_count_CFG	config1 /* PMEVTYPER.TC[0] */
311 #define ATTR_CFG_FLD_threshold_count_LO		2
312 #define ATTR_CFG_FLD_threshold_count_HI		2
313 #define ATTR_CFG_FLD_threshold_compare_CFG	config1 /* PMEVTYPER.TC[2:1] */
314 #define ATTR_CFG_FLD_threshold_compare_LO	3
315 #define ATTR_CFG_FLD_threshold_compare_HI	4
316 #define ATTR_CFG_FLD_threshold_CFG		config1 /* PMEVTYPER.TH */
317 #define ATTR_CFG_FLD_threshold_LO		5
318 #define ATTR_CFG_FLD_threshold_HI		16
319 
320 GEN_PMU_FORMAT_ATTR(event);
321 GEN_PMU_FORMAT_ATTR(long);
322 GEN_PMU_FORMAT_ATTR(rdpmc);
323 GEN_PMU_FORMAT_ATTR(threshold_count);
324 GEN_PMU_FORMAT_ATTR(threshold_compare);
325 GEN_PMU_FORMAT_ATTR(threshold);
326 
327 static int sysctl_perf_user_access __read_mostly;
328 
329 static bool armv8pmu_event_is_64bit(struct perf_event *event)
330 {
331 	return ATTR_CFG_GET_FLD(&event->attr, long);
332 }
333 
334 static bool armv8pmu_event_want_user_access(struct perf_event *event)
335 {
336 	return ATTR_CFG_GET_FLD(&event->attr, rdpmc);
337 }
338 
339 static u32 armv8pmu_event_get_threshold(struct perf_event_attr *attr)
340 {
341 	return ATTR_CFG_GET_FLD(attr, threshold);
342 }
343 
344 static u8 armv8pmu_event_threshold_control(struct perf_event_attr *attr)
345 {
346 	u8 th_compare = ATTR_CFG_GET_FLD(attr, threshold_compare);
347 	u8 th_count = ATTR_CFG_GET_FLD(attr, threshold_count);
348 
349 	/*
350 	 * The count bit is always the bottom bit of the full control field, and
351 	 * the comparison is the upper two bits, but it's not explicitly
352 	 * labelled in the Arm ARM. For the Perf interface we split it into two
353 	 * fields, so reconstruct it here.
354 	 */
355 	return (th_compare << 1) | th_count;
356 }
357 
358 static struct attribute *armv8_pmuv3_format_attrs[] = {
359 	&format_attr_event.attr,
360 	&format_attr_long.attr,
361 	&format_attr_rdpmc.attr,
362 	&format_attr_threshold.attr,
363 	&format_attr_threshold_compare.attr,
364 	&format_attr_threshold_count.attr,
365 	NULL,
366 };
367 
368 static const struct attribute_group armv8_pmuv3_format_attr_group = {
369 	.name = "format",
370 	.attrs = armv8_pmuv3_format_attrs,
371 };
372 
373 static ssize_t slots_show(struct device *dev, struct device_attribute *attr,
374 			  char *page)
375 {
376 	struct pmu *pmu = dev_get_drvdata(dev);
377 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
378 	u32 slots = FIELD_GET(ARMV8_PMU_SLOTS, cpu_pmu->reg_pmmir);
379 
380 	return sysfs_emit(page, "0x%08x\n", slots);
381 }
382 
383 static DEVICE_ATTR_RO(slots);
384 
385 static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr,
386 			      char *page)
387 {
388 	struct pmu *pmu = dev_get_drvdata(dev);
389 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
390 	u32 bus_slots = FIELD_GET(ARMV8_PMU_BUS_SLOTS, cpu_pmu->reg_pmmir);
391 
392 	return sysfs_emit(page, "0x%08x\n", bus_slots);
393 }
394 
395 static DEVICE_ATTR_RO(bus_slots);
396 
397 static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr,
398 			      char *page)
399 {
400 	struct pmu *pmu = dev_get_drvdata(dev);
401 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
402 	u32 bus_width = FIELD_GET(ARMV8_PMU_BUS_WIDTH, cpu_pmu->reg_pmmir);
403 	u32 val = 0;
404 
405 	/* Encoded as Log2(number of bytes), plus one */
406 	if (bus_width > 2 && bus_width < 13)
407 		val = 1 << (bus_width - 1);
408 
409 	return sysfs_emit(page, "0x%08x\n", val);
410 }
411 
412 static DEVICE_ATTR_RO(bus_width);
413 
414 static u32 threshold_max(struct arm_pmu *cpu_pmu)
415 {
416 	/*
417 	 * PMMIR.THWIDTH is readable and non-zero on aarch32, but it would be
418 	 * impossible to write the threshold in the upper 32 bits of PMEVTYPER.
419 	 */
420 	if (IS_ENABLED(CONFIG_ARM))
421 		return 0;
422 
423 	/*
424 	 * The largest value that can be written to PMEVTYPER<n>_EL0.TH is
425 	 * (2 ^ PMMIR.THWIDTH) - 1.
426 	 */
427 	return (1 << FIELD_GET(ARMV8_PMU_THWIDTH, cpu_pmu->reg_pmmir)) - 1;
428 }
429 
430 static ssize_t threshold_max_show(struct device *dev,
431 				  struct device_attribute *attr, char *page)
432 {
433 	struct pmu *pmu = dev_get_drvdata(dev);
434 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
435 
436 	return sysfs_emit(page, "0x%08x\n", threshold_max(cpu_pmu));
437 }
438 
439 static DEVICE_ATTR_RO(threshold_max);
440 
441 static struct attribute *armv8_pmuv3_caps_attrs[] = {
442 	&dev_attr_slots.attr,
443 	&dev_attr_bus_slots.attr,
444 	&dev_attr_bus_width.attr,
445 	&dev_attr_threshold_max.attr,
446 	NULL,
447 };
448 
449 static const struct attribute_group armv8_pmuv3_caps_attr_group = {
450 	.name = "caps",
451 	.attrs = armv8_pmuv3_caps_attrs,
452 };
453 
454 /*
455  * We unconditionally enable ARMv8.5-PMU long event counter support
456  * (64-bit events) where supported. Indicate if this arm_pmu has long
457  * event counter support.
458  *
459  * On AArch32, long counters make no sense (you can't access the top
460  * bits), so we only enable this on AArch64.
461  */
462 static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu)
463 {
464 	return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver));
465 }
466 
467 static bool armv8pmu_event_has_user_read(struct perf_event *event)
468 {
469 	return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT;
470 }
471 
472 /*
473  * We must chain two programmable counters for 64 bit events,
474  * except when we have allocated the 64bit cycle counter (for CPU
475  * cycles event) or when user space counter access is enabled.
476  */
477 static bool armv8pmu_event_is_chained(struct perf_event *event)
478 {
479 	int idx = event->hw.idx;
480 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
481 
482 	return !armv8pmu_event_has_user_read(event) &&
483 	       armv8pmu_event_is_64bit(event) &&
484 	       !armv8pmu_has_long_event(cpu_pmu) &&
485 	       (idx < ARMV8_PMU_MAX_GENERAL_COUNTERS);
486 }
487 
488 /*
489  * ARMv8 low level PMU access
490  */
491 static u64 armv8pmu_pmcr_read(void)
492 {
493 	return read_pmcr();
494 }
495 
496 static void armv8pmu_pmcr_write(u64 val)
497 {
498 	val &= ARMV8_PMU_PMCR_MASK;
499 	isb();
500 	write_pmcr(val);
501 }
502 
503 static int armv8pmu_has_overflowed(u64 pmovsr)
504 {
505 	return !!(pmovsr & ARMV8_PMU_OVERFLOWED_MASK);
506 }
507 
508 static int armv8pmu_counter_has_overflowed(u64 pmnc, int idx)
509 {
510 	return !!(pmnc & BIT(idx));
511 }
512 
513 static u64 armv8pmu_read_evcntr(int idx)
514 {
515 	return read_pmevcntrn(idx);
516 }
517 
518 static u64 armv8pmu_read_hw_counter(struct perf_event *event)
519 {
520 	int idx = event->hw.idx;
521 	u64 val = armv8pmu_read_evcntr(idx);
522 
523 	if (armv8pmu_event_is_chained(event))
524 		val = (val << 32) | armv8pmu_read_evcntr(idx - 1);
525 	return val;
526 }
527 
528 /*
529  * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP
530  * is set the event counters also become 64-bit counters. Unless the
531  * user has requested a long counter (attr.config1) then we want to
532  * interrupt upon 32-bit overflow - we achieve this by applying a bias.
533  */
534 static bool armv8pmu_event_needs_bias(struct perf_event *event)
535 {
536 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
537 	struct hw_perf_event *hwc = &event->hw;
538 	int idx = hwc->idx;
539 
540 	if (armv8pmu_event_is_64bit(event))
541 		return false;
542 
543 	if (armv8pmu_has_long_event(cpu_pmu) ||
544 	    idx >= ARMV8_PMU_MAX_GENERAL_COUNTERS)
545 		return true;
546 
547 	return false;
548 }
549 
550 static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value)
551 {
552 	if (armv8pmu_event_needs_bias(event))
553 		value |= GENMASK_ULL(63, 32);
554 
555 	return value;
556 }
557 
558 static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value)
559 {
560 	if (armv8pmu_event_needs_bias(event))
561 		value &= ~GENMASK_ULL(63, 32);
562 
563 	return value;
564 }
565 
566 static u64 armv8pmu_read_counter(struct perf_event *event)
567 {
568 	struct hw_perf_event *hwc = &event->hw;
569 	int idx = hwc->idx;
570 	u64 value;
571 
572 	if (idx == ARMV8_PMU_CYCLE_IDX)
573 		value = read_pmccntr();
574 	else if (idx == ARMV8_PMU_INSTR_IDX)
575 		value = read_pmicntr();
576 	else
577 		value = armv8pmu_read_hw_counter(event);
578 
579 	return  armv8pmu_unbias_long_counter(event, value);
580 }
581 
582 static void armv8pmu_write_evcntr(int idx, u64 value)
583 {
584 	write_pmevcntrn(idx, value);
585 }
586 
587 static void armv8pmu_write_hw_counter(struct perf_event *event,
588 					     u64 value)
589 {
590 	int idx = event->hw.idx;
591 
592 	if (armv8pmu_event_is_chained(event)) {
593 		armv8pmu_write_evcntr(idx, upper_32_bits(value));
594 		armv8pmu_write_evcntr(idx - 1, lower_32_bits(value));
595 	} else {
596 		armv8pmu_write_evcntr(idx, value);
597 	}
598 }
599 
600 static void armv8pmu_write_counter(struct perf_event *event, u64 value)
601 {
602 	struct hw_perf_event *hwc = &event->hw;
603 	int idx = hwc->idx;
604 
605 	value = armv8pmu_bias_long_counter(event, value);
606 
607 	if (idx == ARMV8_PMU_CYCLE_IDX)
608 		write_pmccntr(value);
609 	else if (idx == ARMV8_PMU_INSTR_IDX)
610 		write_pmicntr(value);
611 	else
612 		armv8pmu_write_hw_counter(event, value);
613 }
614 
615 static void armv8pmu_write_evtype(int idx, unsigned long val)
616 {
617 	unsigned long mask = ARMV8_PMU_EVTYPE_EVENT |
618 			     ARMV8_PMU_INCLUDE_EL2 |
619 			     ARMV8_PMU_EXCLUDE_EL0 |
620 			     ARMV8_PMU_EXCLUDE_EL1;
621 
622 	if (IS_ENABLED(CONFIG_ARM64))
623 		mask |= ARMV8_PMU_EVTYPE_TC | ARMV8_PMU_EVTYPE_TH;
624 
625 	val &= mask;
626 	write_pmevtypern(idx, val);
627 }
628 
629 static void armv8pmu_write_event_type(struct perf_event *event)
630 {
631 	struct hw_perf_event *hwc = &event->hw;
632 	int idx = hwc->idx;
633 
634 	/*
635 	 * For chained events, the low counter is programmed to count
636 	 * the event of interest and the high counter is programmed
637 	 * with CHAIN event code with filters set to count at all ELs.
638 	 */
639 	if (armv8pmu_event_is_chained(event)) {
640 		u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN |
641 				ARMV8_PMU_INCLUDE_EL2;
642 
643 		armv8pmu_write_evtype(idx - 1, hwc->config_base);
644 		armv8pmu_write_evtype(idx, chain_evt);
645 	} else {
646 		if (idx == ARMV8_PMU_CYCLE_IDX)
647 			write_pmccfiltr(hwc->config_base);
648 		else if (idx == ARMV8_PMU_INSTR_IDX)
649 			write_pmicfiltr(hwc->config_base);
650 		else
651 			armv8pmu_write_evtype(idx, hwc->config_base);
652 	}
653 }
654 
655 static u64 armv8pmu_event_cnten_mask(struct perf_event *event)
656 {
657 	int counter = event->hw.idx;
658 	u64 mask = BIT(counter);
659 
660 	if (armv8pmu_event_is_chained(event))
661 		mask |= BIT(counter - 1);
662 	return mask;
663 }
664 
665 static void armv8pmu_enable_counter(u64 mask)
666 {
667 	/*
668 	 * Make sure event configuration register writes are visible before we
669 	 * enable the counter.
670 	 * */
671 	isb();
672 	write_pmcntenset(mask);
673 }
674 
675 static void armv8pmu_enable_event_counter(struct perf_event *event)
676 {
677 	struct perf_event_attr *attr = &event->attr;
678 	u64 mask = armv8pmu_event_cnten_mask(event);
679 
680 	kvm_set_pmu_events(mask, attr);
681 
682 	/* We rely on the hypervisor switch code to enable guest counters */
683 	if (!kvm_pmu_counter_deferred(attr))
684 		armv8pmu_enable_counter(mask);
685 }
686 
687 static void armv8pmu_disable_counter(u64 mask)
688 {
689 	write_pmcntenclr(mask);
690 	/*
691 	 * Make sure the effects of disabling the counter are visible before we
692 	 * start configuring the event.
693 	 */
694 	isb();
695 }
696 
697 static void armv8pmu_disable_event_counter(struct perf_event *event)
698 {
699 	struct perf_event_attr *attr = &event->attr;
700 	u64 mask = armv8pmu_event_cnten_mask(event);
701 
702 	kvm_clr_pmu_events(mask);
703 
704 	/* We rely on the hypervisor switch code to disable guest counters */
705 	if (!kvm_pmu_counter_deferred(attr))
706 		armv8pmu_disable_counter(mask);
707 }
708 
709 static void armv8pmu_enable_intens(u64 mask)
710 {
711 	write_pmintenset(mask);
712 }
713 
714 static void armv8pmu_enable_event_irq(struct perf_event *event)
715 {
716 	armv8pmu_enable_intens(BIT(event->hw.idx));
717 }
718 
719 static void armv8pmu_disable_intens(u64 mask)
720 {
721 	write_pmintenclr(mask);
722 	isb();
723 	/* Clear the overflow flag in case an interrupt is pending. */
724 	write_pmovsclr(mask);
725 	isb();
726 }
727 
728 static void armv8pmu_disable_event_irq(struct perf_event *event)
729 {
730 	armv8pmu_disable_intens(BIT(event->hw.idx));
731 }
732 
733 static u64 armv8pmu_getreset_flags(void)
734 {
735 	u64 value;
736 
737 	/* Read */
738 	value = read_pmovsclr();
739 
740 	/* Write to clear flags */
741 	value &= ARMV8_PMU_OVERFLOWED_MASK;
742 	write_pmovsclr(value);
743 
744 	return value;
745 }
746 
747 static void update_pmuserenr(u64 val)
748 {
749 	lockdep_assert_irqs_disabled();
750 
751 	/*
752 	 * The current PMUSERENR_EL0 value might be the value for the guest.
753 	 * If that's the case, have KVM keep tracking of the register value
754 	 * for the host EL0 so that KVM can restore it before returning to
755 	 * the host EL0. Otherwise, update the register now.
756 	 */
757 	if (kvm_set_pmuserenr(val))
758 		return;
759 
760 	write_pmuserenr(val);
761 }
762 
763 static void armv8pmu_disable_user_access(void)
764 {
765 	update_pmuserenr(0);
766 }
767 
768 static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu)
769 {
770 	int i;
771 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
772 
773 	/* Clear any unused counters to avoid leaking their contents */
774 	for_each_andnot_bit(i, cpu_pmu->cntr_mask, cpuc->used_mask,
775 			    ARMPMU_MAX_HWEVENTS) {
776 		if (i == ARMV8_PMU_CYCLE_IDX)
777 			write_pmccntr(0);
778 		else if (i == ARMV8_PMU_INSTR_IDX)
779 			write_pmicntr(0);
780 		else
781 			armv8pmu_write_evcntr(i, 0);
782 	}
783 
784 	update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR);
785 }
786 
787 static void armv8pmu_enable_event(struct perf_event *event)
788 {
789 	/*
790 	 * Enable counter and interrupt, and set the counter to count
791 	 * the event that we're interested in.
792 	 */
793 	armv8pmu_disable_event_counter(event);
794 	armv8pmu_write_event_type(event);
795 	armv8pmu_enable_event_irq(event);
796 	armv8pmu_enable_event_counter(event);
797 }
798 
799 static void armv8pmu_disable_event(struct perf_event *event)
800 {
801 	armv8pmu_disable_event_counter(event);
802 	armv8pmu_disable_event_irq(event);
803 }
804 
805 static void armv8pmu_start(struct arm_pmu *cpu_pmu)
806 {
807 	struct perf_event_context *ctx;
808 	int nr_user = 0;
809 
810 	ctx = perf_cpu_task_ctx();
811 	if (ctx)
812 		nr_user = ctx->nr_user;
813 
814 	if (sysctl_perf_user_access && nr_user)
815 		armv8pmu_enable_user_access(cpu_pmu);
816 	else
817 		armv8pmu_disable_user_access();
818 
819 	/* Enable all counters */
820 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E);
821 
822 	kvm_vcpu_pmu_resync_el0();
823 }
824 
825 static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
826 {
827 	/* Disable all counters */
828 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E);
829 }
830 
831 static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu)
832 {
833 	u64 pmovsr;
834 	struct perf_sample_data data;
835 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
836 	struct pt_regs *regs;
837 	int idx;
838 
839 	/*
840 	 * Get and reset the IRQ flags
841 	 */
842 	pmovsr = armv8pmu_getreset_flags();
843 
844 	/*
845 	 * Did an overflow occur?
846 	 */
847 	if (!armv8pmu_has_overflowed(pmovsr))
848 		return IRQ_NONE;
849 
850 	/*
851 	 * Handle the counter(s) overflow(s)
852 	 */
853 	regs = get_irq_regs();
854 
855 	/*
856 	 * Stop the PMU while processing the counter overflows
857 	 * to prevent skews in group events.
858 	 */
859 	armv8pmu_stop(cpu_pmu);
860 	for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMPMU_MAX_HWEVENTS) {
861 		struct perf_event *event = cpuc->events[idx];
862 		struct hw_perf_event *hwc;
863 
864 		/* Ignore if we don't have an event. */
865 		if (!event)
866 			continue;
867 
868 		/*
869 		 * We have a single interrupt for all counters. Check that
870 		 * each counter has overflowed before we process it.
871 		 */
872 		if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
873 			continue;
874 
875 		hwc = &event->hw;
876 		armpmu_event_update(event);
877 		perf_sample_data_init(&data, 0, hwc->last_period);
878 		if (!armpmu_event_set_period(event))
879 			continue;
880 
881 		/*
882 		 * Perf event overflow will queue the processing of the event as
883 		 * an irq_work which will be taken care of in the handling of
884 		 * IPI_IRQ_WORK.
885 		 */
886 		if (perf_event_overflow(event, &data, regs))
887 			cpu_pmu->disable(event);
888 	}
889 	armv8pmu_start(cpu_pmu);
890 
891 	return IRQ_HANDLED;
892 }
893 
894 static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc,
895 				    struct arm_pmu *cpu_pmu)
896 {
897 	int idx;
898 
899 	for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS) {
900 		if (!test_and_set_bit(idx, cpuc->used_mask))
901 			return idx;
902 	}
903 	return -EAGAIN;
904 }
905 
906 static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc,
907 				   struct arm_pmu *cpu_pmu)
908 {
909 	int idx;
910 
911 	/*
912 	 * Chaining requires two consecutive event counters, where
913 	 * the lower idx must be even.
914 	 */
915 	for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS) {
916 		if (!(idx & 0x1))
917 			continue;
918 		if (!test_and_set_bit(idx, cpuc->used_mask)) {
919 			/* Check if the preceding even counter is available */
920 			if (!test_and_set_bit(idx - 1, cpuc->used_mask))
921 				return idx;
922 			/* Release the Odd counter */
923 			clear_bit(idx, cpuc->used_mask);
924 		}
925 	}
926 	return -EAGAIN;
927 }
928 
929 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
930 				  struct perf_event *event)
931 {
932 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
933 	struct hw_perf_event *hwc = &event->hw;
934 	unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT;
935 
936 	/* Always prefer to place a cycle counter into the cycle counter. */
937 	if ((evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
938 	    !armv8pmu_event_get_threshold(&event->attr)) {
939 		if (!test_and_set_bit(ARMV8_PMU_CYCLE_IDX, cpuc->used_mask))
940 			return ARMV8_PMU_CYCLE_IDX;
941 		else if (armv8pmu_event_is_64bit(event) &&
942 			   armv8pmu_event_want_user_access(event) &&
943 			   !armv8pmu_has_long_event(cpu_pmu))
944 				return -EAGAIN;
945 	}
946 
947 	/*
948 	 * Always prefer to place a instruction counter into the instruction counter,
949 	 * but don't expose the instruction counter to userspace access as userspace
950 	 * may not know how to handle it.
951 	 */
952 	if ((evtype == ARMV8_PMUV3_PERFCTR_INST_RETIRED) &&
953 	    !armv8pmu_event_get_threshold(&event->attr) &&
954 	    test_bit(ARMV8_PMU_INSTR_IDX, cpu_pmu->cntr_mask) &&
955 	    !armv8pmu_event_want_user_access(event)) {
956 		if (!test_and_set_bit(ARMV8_PMU_INSTR_IDX, cpuc->used_mask))
957 			return ARMV8_PMU_INSTR_IDX;
958 	}
959 
960 	/*
961 	 * Otherwise use events counters
962 	 */
963 	if (armv8pmu_event_is_chained(event))
964 		return	armv8pmu_get_chain_idx(cpuc, cpu_pmu);
965 	else
966 		return armv8pmu_get_single_idx(cpuc, cpu_pmu);
967 }
968 
969 static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc,
970 				     struct perf_event *event)
971 {
972 	int idx = event->hw.idx;
973 
974 	clear_bit(idx, cpuc->used_mask);
975 	if (armv8pmu_event_is_chained(event))
976 		clear_bit(idx - 1, cpuc->used_mask);
977 }
978 
979 static int armv8pmu_user_event_idx(struct perf_event *event)
980 {
981 	if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event))
982 		return 0;
983 
984 	return event->hw.idx + 1;
985 }
986 
987 /*
988  * Add an event filter to a given event.
989  */
990 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
991 				     struct perf_event_attr *attr)
992 {
993 	unsigned long config_base = 0;
994 	struct perf_event *perf_event = container_of(attr, struct perf_event,
995 						     attr);
996 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
997 	u32 th;
998 
999 	if (attr->exclude_idle) {
1000 		pr_debug("ARM performance counters do not support mode exclusion\n");
1001 		return -EOPNOTSUPP;
1002 	}
1003 
1004 	/*
1005 	 * If we're running in hyp mode, then we *are* the hypervisor.
1006 	 * Therefore we ignore exclude_hv in this configuration, since
1007 	 * there's no hypervisor to sample anyway. This is consistent
1008 	 * with other architectures (x86 and Power).
1009 	 */
1010 	if (is_kernel_in_hyp_mode()) {
1011 		if (!attr->exclude_kernel && !attr->exclude_host)
1012 			config_base |= ARMV8_PMU_INCLUDE_EL2;
1013 		if (attr->exclude_guest)
1014 			config_base |= ARMV8_PMU_EXCLUDE_EL1;
1015 		if (attr->exclude_host)
1016 			config_base |= ARMV8_PMU_EXCLUDE_EL0;
1017 	} else {
1018 		if (!attr->exclude_hv && !attr->exclude_host)
1019 			config_base |= ARMV8_PMU_INCLUDE_EL2;
1020 	}
1021 
1022 	/*
1023 	 * Filter out !VHE kernels and guest kernels
1024 	 */
1025 	if (attr->exclude_kernel)
1026 		config_base |= ARMV8_PMU_EXCLUDE_EL1;
1027 
1028 	if (attr->exclude_user)
1029 		config_base |= ARMV8_PMU_EXCLUDE_EL0;
1030 
1031 	/*
1032 	 * If FEAT_PMUv3_TH isn't implemented, then THWIDTH (threshold_max) will
1033 	 * be 0 and will also trigger this check, preventing it from being used.
1034 	 */
1035 	th = armv8pmu_event_get_threshold(attr);
1036 	if (th > threshold_max(cpu_pmu)) {
1037 		pr_debug("PMU event threshold exceeds max value\n");
1038 		return -EINVAL;
1039 	}
1040 
1041 	if (th) {
1042 		config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TH, th);
1043 		config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TC,
1044 					  armv8pmu_event_threshold_control(attr));
1045 	}
1046 
1047 	/*
1048 	 * Install the filter into config_base as this is used to
1049 	 * construct the event type.
1050 	 */
1051 	event->config_base = config_base;
1052 
1053 	return 0;
1054 }
1055 
1056 static void armv8pmu_reset(void *info)
1057 {
1058 	struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
1059 	u64 pmcr, mask;
1060 
1061 	bitmap_to_arr64(&mask, cpu_pmu->cntr_mask, ARMPMU_MAX_HWEVENTS);
1062 
1063 	/* The counter and interrupt enable registers are unknown at reset. */
1064 	armv8pmu_disable_counter(mask);
1065 	armv8pmu_disable_intens(mask);
1066 
1067 	/* Clear the counters we flip at guest entry/exit */
1068 	kvm_clr_pmu_events(mask);
1069 
1070 	/*
1071 	 * Initialize & Reset PMNC. Request overflow interrupt for
1072 	 * 64 bit cycle counter but cheat in armv8pmu_write_counter().
1073 	 */
1074 	pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC;
1075 
1076 	/* Enable long event counter support where available */
1077 	if (armv8pmu_has_long_event(cpu_pmu))
1078 		pmcr |= ARMV8_PMU_PMCR_LP;
1079 
1080 	armv8pmu_pmcr_write(pmcr);
1081 }
1082 
1083 static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu,
1084 				      struct perf_event *event)
1085 {
1086 	if (event->attr.type == PERF_TYPE_HARDWARE &&
1087 	    event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) {
1088 
1089 		if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED,
1090 			     armpmu->pmceid_bitmap))
1091 			return ARMV8_PMUV3_PERFCTR_BR_RETIRED;
1092 
1093 		if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED,
1094 			     armpmu->pmceid_bitmap))
1095 			return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED;
1096 
1097 		return HW_OP_UNSUPPORTED;
1098 	}
1099 
1100 	return armpmu_map_event(event, &armv8_pmuv3_perf_map,
1101 				&armv8_pmuv3_perf_cache_map,
1102 				ARMV8_PMU_EVTYPE_EVENT);
1103 }
1104 
1105 static int __armv8_pmuv3_map_event(struct perf_event *event,
1106 				   const unsigned (*extra_event_map)
1107 						  [PERF_COUNT_HW_MAX],
1108 				   const unsigned (*extra_cache_map)
1109 						  [PERF_COUNT_HW_CACHE_MAX]
1110 						  [PERF_COUNT_HW_CACHE_OP_MAX]
1111 						  [PERF_COUNT_HW_CACHE_RESULT_MAX])
1112 {
1113 	int hw_event_id;
1114 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1115 
1116 	hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event);
1117 
1118 	/*
1119 	 * CHAIN events only work when paired with an adjacent counter, and it
1120 	 * never makes sense for a user to open one in isolation, as they'll be
1121 	 * rotated arbitrarily.
1122 	 */
1123 	if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN)
1124 		return -EINVAL;
1125 
1126 	if (armv8pmu_event_is_64bit(event))
1127 		event->hw.flags |= ARMPMU_EVT_64BIT;
1128 
1129 	/*
1130 	 * User events must be allocated into a single counter, and so
1131 	 * must not be chained.
1132 	 *
1133 	 * Most 64-bit events require long counter support, but 64-bit
1134 	 * CPU_CYCLES events can be placed into the dedicated cycle
1135 	 * counter when this is free.
1136 	 */
1137 	if (armv8pmu_event_want_user_access(event)) {
1138 		if (!(event->attach_state & PERF_ATTACH_TASK))
1139 			return -EINVAL;
1140 		if (armv8pmu_event_is_64bit(event) &&
1141 		    (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
1142 		    !armv8pmu_has_long_event(armpmu))
1143 			return -EOPNOTSUPP;
1144 
1145 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1146 	}
1147 
1148 	/* Only expose micro/arch events supported by this PMU */
1149 	if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS)
1150 	    && test_bit(hw_event_id, armpmu->pmceid_bitmap)) {
1151 		return hw_event_id;
1152 	}
1153 
1154 	return armpmu_map_event(event, extra_event_map, extra_cache_map,
1155 				ARMV8_PMU_EVTYPE_EVENT);
1156 }
1157 
1158 static int armv8_pmuv3_map_event(struct perf_event *event)
1159 {
1160 	return __armv8_pmuv3_map_event(event, NULL, NULL);
1161 }
1162 
1163 static int armv8_a53_map_event(struct perf_event *event)
1164 {
1165 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map);
1166 }
1167 
1168 static int armv8_a57_map_event(struct perf_event *event)
1169 {
1170 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map);
1171 }
1172 
1173 static int armv8_a73_map_event(struct perf_event *event)
1174 {
1175 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map);
1176 }
1177 
1178 static int armv8_thunder_map_event(struct perf_event *event)
1179 {
1180 	return __armv8_pmuv3_map_event(event, NULL,
1181 				       &armv8_thunder_perf_cache_map);
1182 }
1183 
1184 static int armv8_vulcan_map_event(struct perf_event *event)
1185 {
1186 	return __armv8_pmuv3_map_event(event, NULL,
1187 				       &armv8_vulcan_perf_cache_map);
1188 }
1189 
1190 struct armv8pmu_probe_info {
1191 	struct arm_pmu *pmu;
1192 	bool present;
1193 };
1194 
1195 static void __armv8pmu_probe_pmu(void *info)
1196 {
1197 	struct armv8pmu_probe_info *probe = info;
1198 	struct arm_pmu *cpu_pmu = probe->pmu;
1199 	u64 pmceid_raw[2];
1200 	u32 pmceid[2];
1201 	int pmuver;
1202 
1203 	pmuver = read_pmuver();
1204 	if (!pmuv3_implemented(pmuver))
1205 		return;
1206 
1207 	cpu_pmu->pmuver = pmuver;
1208 	probe->present = true;
1209 
1210 	/* Read the nb of CNTx counters supported from PMNC */
1211 	bitmap_set(cpu_pmu->cntr_mask,
1212 		   0, FIELD_GET(ARMV8_PMU_PMCR_N, armv8pmu_pmcr_read()));
1213 
1214 	/* Add the CPU cycles counter */
1215 	set_bit(ARMV8_PMU_CYCLE_IDX, cpu_pmu->cntr_mask);
1216 
1217 	/* Add the CPU instructions counter */
1218 	if (pmuv3_has_icntr())
1219 		set_bit(ARMV8_PMU_INSTR_IDX, cpu_pmu->cntr_mask);
1220 
1221 	pmceid[0] = pmceid_raw[0] = read_pmceid0();
1222 	pmceid[1] = pmceid_raw[1] = read_pmceid1();
1223 
1224 	bitmap_from_arr32(cpu_pmu->pmceid_bitmap,
1225 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1226 
1227 	pmceid[0] = pmceid_raw[0] >> 32;
1228 	pmceid[1] = pmceid_raw[1] >> 32;
1229 
1230 	bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap,
1231 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1232 
1233 	/* store PMMIR register for sysfs */
1234 	if (is_pmuv3p4(pmuver))
1235 		cpu_pmu->reg_pmmir = read_pmmir();
1236 	else
1237 		cpu_pmu->reg_pmmir = 0;
1238 }
1239 
1240 static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu)
1241 {
1242 	struct armv8pmu_probe_info probe = {
1243 		.pmu = cpu_pmu,
1244 		.present = false,
1245 	};
1246 	int ret;
1247 
1248 	ret = smp_call_function_any(&cpu_pmu->supported_cpus,
1249 				    __armv8pmu_probe_pmu,
1250 				    &probe, 1);
1251 	if (ret)
1252 		return ret;
1253 
1254 	return probe.present ? 0 : -ENODEV;
1255 }
1256 
1257 static void armv8pmu_disable_user_access_ipi(void *unused)
1258 {
1259 	armv8pmu_disable_user_access();
1260 }
1261 
1262 static int armv8pmu_proc_user_access_handler(const struct ctl_table *table, int write,
1263 		void *buffer, size_t *lenp, loff_t *ppos)
1264 {
1265 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1266 	if (ret || !write || sysctl_perf_user_access)
1267 		return ret;
1268 
1269 	on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1);
1270 	return 0;
1271 }
1272 
1273 static struct ctl_table armv8_pmu_sysctl_table[] = {
1274 	{
1275 		.procname       = "perf_user_access",
1276 		.data		= &sysctl_perf_user_access,
1277 		.maxlen		= sizeof(unsigned int),
1278 		.mode           = 0644,
1279 		.proc_handler	= armv8pmu_proc_user_access_handler,
1280 		.extra1		= SYSCTL_ZERO,
1281 		.extra2		= SYSCTL_ONE,
1282 	},
1283 };
1284 
1285 static void armv8_pmu_register_sysctl_table(void)
1286 {
1287 	static u32 tbl_registered = 0;
1288 
1289 	if (!cmpxchg_relaxed(&tbl_registered, 0, 1))
1290 		register_sysctl("kernel", armv8_pmu_sysctl_table);
1291 }
1292 
1293 static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name,
1294 			  int (*map_event)(struct perf_event *event))
1295 {
1296 	int ret = armv8pmu_probe_pmu(cpu_pmu);
1297 	if (ret)
1298 		return ret;
1299 
1300 	cpu_pmu->handle_irq		= armv8pmu_handle_irq;
1301 	cpu_pmu->enable			= armv8pmu_enable_event;
1302 	cpu_pmu->disable		= armv8pmu_disable_event;
1303 	cpu_pmu->read_counter		= armv8pmu_read_counter;
1304 	cpu_pmu->write_counter		= armv8pmu_write_counter;
1305 	cpu_pmu->get_event_idx		= armv8pmu_get_event_idx;
1306 	cpu_pmu->clear_event_idx	= armv8pmu_clear_event_idx;
1307 	cpu_pmu->start			= armv8pmu_start;
1308 	cpu_pmu->stop			= armv8pmu_stop;
1309 	cpu_pmu->reset			= armv8pmu_reset;
1310 	cpu_pmu->set_event_filter	= armv8pmu_set_event_filter;
1311 
1312 	cpu_pmu->pmu.event_idx		= armv8pmu_user_event_idx;
1313 
1314 	cpu_pmu->name			= name;
1315 	cpu_pmu->map_event		= map_event;
1316 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = &armv8_pmuv3_events_attr_group;
1317 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = &armv8_pmuv3_format_attr_group;
1318 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = &armv8_pmuv3_caps_attr_group;
1319 	armv8_pmu_register_sysctl_table();
1320 	return 0;
1321 }
1322 
1323 #define PMUV3_INIT_SIMPLE(name)						\
1324 static int name##_pmu_init(struct arm_pmu *cpu_pmu)			\
1325 {									\
1326 	return armv8_pmu_init(cpu_pmu, #name, armv8_pmuv3_map_event);	\
1327 }
1328 
1329 #define PMUV3_INIT_MAP_EVENT(name, map_event)				\
1330 static int name##_pmu_init(struct arm_pmu *cpu_pmu)			\
1331 {									\
1332 	return armv8_pmu_init(cpu_pmu, #name, map_event);		\
1333 }
1334 
1335 PMUV3_INIT_SIMPLE(armv8_pmuv3)
1336 
1337 PMUV3_INIT_SIMPLE(armv8_cortex_a34)
1338 PMUV3_INIT_SIMPLE(armv8_cortex_a55)
1339 PMUV3_INIT_SIMPLE(armv8_cortex_a65)
1340 PMUV3_INIT_SIMPLE(armv8_cortex_a75)
1341 PMUV3_INIT_SIMPLE(armv8_cortex_a76)
1342 PMUV3_INIT_SIMPLE(armv8_cortex_a77)
1343 PMUV3_INIT_SIMPLE(armv8_cortex_a78)
1344 PMUV3_INIT_SIMPLE(armv9_cortex_a510)
1345 PMUV3_INIT_SIMPLE(armv9_cortex_a520)
1346 PMUV3_INIT_SIMPLE(armv9_cortex_a710)
1347 PMUV3_INIT_SIMPLE(armv9_cortex_a715)
1348 PMUV3_INIT_SIMPLE(armv9_cortex_a720)
1349 PMUV3_INIT_SIMPLE(armv9_cortex_a725)
1350 PMUV3_INIT_SIMPLE(armv8_cortex_x1)
1351 PMUV3_INIT_SIMPLE(armv9_cortex_x2)
1352 PMUV3_INIT_SIMPLE(armv9_cortex_x3)
1353 PMUV3_INIT_SIMPLE(armv9_cortex_x4)
1354 PMUV3_INIT_SIMPLE(armv9_cortex_x925)
1355 PMUV3_INIT_SIMPLE(armv8_neoverse_e1)
1356 PMUV3_INIT_SIMPLE(armv8_neoverse_n1)
1357 PMUV3_INIT_SIMPLE(armv9_neoverse_n2)
1358 PMUV3_INIT_SIMPLE(armv9_neoverse_n3)
1359 PMUV3_INIT_SIMPLE(armv8_neoverse_v1)
1360 PMUV3_INIT_SIMPLE(armv8_neoverse_v2)
1361 PMUV3_INIT_SIMPLE(armv8_neoverse_v3)
1362 PMUV3_INIT_SIMPLE(armv8_neoverse_v3ae)
1363 
1364 PMUV3_INIT_SIMPLE(armv8_nvidia_carmel)
1365 PMUV3_INIT_SIMPLE(armv8_nvidia_denver)
1366 
1367 PMUV3_INIT_MAP_EVENT(armv8_cortex_a35, armv8_a53_map_event)
1368 PMUV3_INIT_MAP_EVENT(armv8_cortex_a53, armv8_a53_map_event)
1369 PMUV3_INIT_MAP_EVENT(armv8_cortex_a57, armv8_a57_map_event)
1370 PMUV3_INIT_MAP_EVENT(armv8_cortex_a72, armv8_a57_map_event)
1371 PMUV3_INIT_MAP_EVENT(armv8_cortex_a73, armv8_a73_map_event)
1372 PMUV3_INIT_MAP_EVENT(armv8_cavium_thunder, armv8_thunder_map_event)
1373 PMUV3_INIT_MAP_EVENT(armv8_brcm_vulcan, armv8_vulcan_map_event)
1374 
1375 static const struct of_device_id armv8_pmu_of_device_ids[] = {
1376 	{.compatible = "arm,armv8-pmuv3",	.data = armv8_pmuv3_pmu_init},
1377 	{.compatible = "arm,cortex-a34-pmu",	.data = armv8_cortex_a34_pmu_init},
1378 	{.compatible = "arm,cortex-a35-pmu",	.data = armv8_cortex_a35_pmu_init},
1379 	{.compatible = "arm,cortex-a53-pmu",	.data = armv8_cortex_a53_pmu_init},
1380 	{.compatible = "arm,cortex-a55-pmu",	.data = armv8_cortex_a55_pmu_init},
1381 	{.compatible = "arm,cortex-a57-pmu",	.data = armv8_cortex_a57_pmu_init},
1382 	{.compatible = "arm,cortex-a65-pmu",	.data = armv8_cortex_a65_pmu_init},
1383 	{.compatible = "arm,cortex-a72-pmu",	.data = armv8_cortex_a72_pmu_init},
1384 	{.compatible = "arm,cortex-a73-pmu",	.data = armv8_cortex_a73_pmu_init},
1385 	{.compatible = "arm,cortex-a75-pmu",	.data = armv8_cortex_a75_pmu_init},
1386 	{.compatible = "arm,cortex-a76-pmu",	.data = armv8_cortex_a76_pmu_init},
1387 	{.compatible = "arm,cortex-a77-pmu",	.data = armv8_cortex_a77_pmu_init},
1388 	{.compatible = "arm,cortex-a78-pmu",	.data = armv8_cortex_a78_pmu_init},
1389 	{.compatible = "arm,cortex-a510-pmu",	.data = armv9_cortex_a510_pmu_init},
1390 	{.compatible = "arm,cortex-a520-pmu",	.data = armv9_cortex_a520_pmu_init},
1391 	{.compatible = "arm,cortex-a710-pmu",	.data = armv9_cortex_a710_pmu_init},
1392 	{.compatible = "arm,cortex-a715-pmu",	.data = armv9_cortex_a715_pmu_init},
1393 	{.compatible = "arm,cortex-a720-pmu",	.data = armv9_cortex_a720_pmu_init},
1394 	{.compatible = "arm,cortex-a725-pmu",	.data = armv9_cortex_a725_pmu_init},
1395 	{.compatible = "arm,cortex-x1-pmu",	.data = armv8_cortex_x1_pmu_init},
1396 	{.compatible = "arm,cortex-x2-pmu",	.data = armv9_cortex_x2_pmu_init},
1397 	{.compatible = "arm,cortex-x3-pmu",	.data = armv9_cortex_x3_pmu_init},
1398 	{.compatible = "arm,cortex-x4-pmu",	.data = armv9_cortex_x4_pmu_init},
1399 	{.compatible = "arm,cortex-x925-pmu",	.data = armv9_cortex_x925_pmu_init},
1400 	{.compatible = "arm,neoverse-e1-pmu",	.data = armv8_neoverse_e1_pmu_init},
1401 	{.compatible = "arm,neoverse-n1-pmu",	.data = armv8_neoverse_n1_pmu_init},
1402 	{.compatible = "arm,neoverse-n2-pmu",	.data = armv9_neoverse_n2_pmu_init},
1403 	{.compatible = "arm,neoverse-n3-pmu",	.data = armv9_neoverse_n3_pmu_init},
1404 	{.compatible = "arm,neoverse-v1-pmu",	.data = armv8_neoverse_v1_pmu_init},
1405 	{.compatible = "arm,neoverse-v2-pmu",	.data = armv8_neoverse_v2_pmu_init},
1406 	{.compatible = "arm,neoverse-v3-pmu",	.data = armv8_neoverse_v3_pmu_init},
1407 	{.compatible = "arm,neoverse-v3ae-pmu",	.data = armv8_neoverse_v3ae_pmu_init},
1408 	{.compatible = "cavium,thunder-pmu",	.data = armv8_cavium_thunder_pmu_init},
1409 	{.compatible = "brcm,vulcan-pmu",	.data = armv8_brcm_vulcan_pmu_init},
1410 	{.compatible = "nvidia,carmel-pmu",	.data = armv8_nvidia_carmel_pmu_init},
1411 	{.compatible = "nvidia,denver-pmu",	.data = armv8_nvidia_denver_pmu_init},
1412 	{},
1413 };
1414 
1415 static int armv8_pmu_device_probe(struct platform_device *pdev)
1416 {
1417 	return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
1418 }
1419 
1420 static struct platform_driver armv8_pmu_driver = {
1421 	.driver		= {
1422 		.name	= ARMV8_PMU_PDEV_NAME,
1423 		.of_match_table = armv8_pmu_of_device_ids,
1424 		.suppress_bind_attrs = true,
1425 	},
1426 	.probe		= armv8_pmu_device_probe,
1427 };
1428 
1429 static int __init armv8_pmu_driver_init(void)
1430 {
1431 	int ret;
1432 
1433 	if (acpi_disabled)
1434 		ret = platform_driver_register(&armv8_pmu_driver);
1435 	else
1436 		ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init);
1437 
1438 	if (!ret)
1439 		lockup_detector_retry_init();
1440 
1441 	return ret;
1442 }
1443 device_initcall(armv8_pmu_driver_init)
1444 
1445 void arch_perf_update_userpage(struct perf_event *event,
1446 			       struct perf_event_mmap_page *userpg, u64 now)
1447 {
1448 	struct clock_read_data *rd;
1449 	unsigned int seq;
1450 	u64 ns;
1451 
1452 	userpg->cap_user_time = 0;
1453 	userpg->cap_user_time_zero = 0;
1454 	userpg->cap_user_time_short = 0;
1455 	userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event);
1456 
1457 	if (userpg->cap_user_rdpmc) {
1458 		if (event->hw.flags & ARMPMU_EVT_64BIT)
1459 			userpg->pmc_width = 64;
1460 		else
1461 			userpg->pmc_width = 32;
1462 	}
1463 
1464 	do {
1465 		rd = sched_clock_read_begin(&seq);
1466 
1467 		if (rd->read_sched_clock != arch_timer_read_counter)
1468 			return;
1469 
1470 		userpg->time_mult = rd->mult;
1471 		userpg->time_shift = rd->shift;
1472 		userpg->time_zero = rd->epoch_ns;
1473 		userpg->time_cycles = rd->epoch_cyc;
1474 		userpg->time_mask = rd->sched_clock_mask;
1475 
1476 		/*
1477 		 * Subtract the cycle base, such that software that
1478 		 * doesn't know about cap_user_time_short still 'works'
1479 		 * assuming no wraps.
1480 		 */
1481 		ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
1482 		userpg->time_zero -= ns;
1483 
1484 	} while (sched_clock_read_retry(seq));
1485 
1486 	userpg->time_offset = userpg->time_zero - now;
1487 
1488 	/*
1489 	 * time_shift is not expected to be greater than 31 due to
1490 	 * the original published conversion algorithm shifting a
1491 	 * 32-bit value (now specifies a 64-bit value) - refer
1492 	 * perf_event_mmap_page documentation in perf_event.h.
1493 	 */
1494 	if (userpg->time_shift == 32) {
1495 		userpg->time_shift = 31;
1496 		userpg->time_mult >>= 1;
1497 	}
1498 
1499 	/*
1500 	 * Internal timekeeping for enabled/running/stopped times
1501 	 * is always computed with the sched_clock.
1502 	 */
1503 	userpg->cap_user_time = 1;
1504 	userpg->cap_user_time_zero = 1;
1505 	userpg->cap_user_time_short = 1;
1506 }
1507