1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ARMv8 PMUv3 Performance Events handling code. 4 * 5 * Copyright (C) 2012 ARM Limited 6 * Author: Will Deacon <will.deacon@arm.com> 7 * 8 * This code is based heavily on the ARMv7 perf event code. 9 */ 10 11 #include <asm/irq_regs.h> 12 #include <asm/perf_event.h> 13 #include <asm/virt.h> 14 15 #include <clocksource/arm_arch_timer.h> 16 17 #include <linux/acpi.h> 18 #include <linux/bitfield.h> 19 #include <linux/clocksource.h> 20 #include <linux/of.h> 21 #include <linux/perf/arm_pmu.h> 22 #include <linux/perf/arm_pmuv3.h> 23 #include <linux/platform_device.h> 24 #include <linux/sched_clock.h> 25 #include <linux/smp.h> 26 #include <linux/nmi.h> 27 28 /* ARMv8 Cortex-A53 specific event types. */ 29 #define ARMV8_A53_PERFCTR_PREF_LINEFILL 0xC2 30 31 /* ARMv8 Cavium ThunderX specific event types. */ 32 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST 0xE9 33 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS 0xEA 34 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS 0xEB 35 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS 0xEC 36 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS 0xED 37 38 /* 39 * ARMv8 Architectural defined events, not all of these may 40 * be supported on any given implementation. Unsupported events will 41 * be disabled at run-time based on the PMCEID registers. 42 */ 43 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = { 44 PERF_MAP_ALL_UNSUPPORTED, 45 [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CPU_CYCLES, 46 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INST_RETIRED, 47 [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE, 48 [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL, 49 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED, 50 [PERF_COUNT_HW_BUS_CYCLES] = ARMV8_PMUV3_PERFCTR_BUS_CYCLES, 51 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV8_PMUV3_PERFCTR_STALL_FRONTEND, 52 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV8_PMUV3_PERFCTR_STALL_BACKEND, 53 }; 54 55 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 56 [PERF_COUNT_HW_CACHE_OP_MAX] 57 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 58 PERF_CACHE_MAP_ALL_UNSUPPORTED, 59 60 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE, 61 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL, 62 63 [C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE, 64 [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL, 65 66 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL, 67 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB, 68 69 [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL, 70 [C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB, 71 72 [C(LL)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD, 73 [C(LL)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_RD, 74 75 [C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_BR_PRED, 76 [C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED, 77 }; 78 79 static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 80 [PERF_COUNT_HW_CACHE_OP_MAX] 81 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 82 PERF_CACHE_MAP_ALL_UNSUPPORTED, 83 84 [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL, 85 86 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, 87 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, 88 }; 89 90 static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 91 [PERF_COUNT_HW_CACHE_OP_MAX] 92 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 93 PERF_CACHE_MAP_ALL_UNSUPPORTED, 94 95 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, 96 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, 97 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, 98 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR, 99 100 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, 101 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, 102 103 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, 104 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, 105 }; 106 107 static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 108 [PERF_COUNT_HW_CACHE_OP_MAX] 109 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 110 PERF_CACHE_MAP_ALL_UNSUPPORTED, 111 112 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, 113 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, 114 }; 115 116 static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 117 [PERF_COUNT_HW_CACHE_OP_MAX] 118 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 119 PERF_CACHE_MAP_ALL_UNSUPPORTED, 120 121 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, 122 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, 123 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, 124 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST, 125 [C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS, 126 [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS, 127 128 [C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS, 129 [C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS, 130 131 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD, 132 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, 133 [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR, 134 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, 135 }; 136 137 static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 138 [PERF_COUNT_HW_CACHE_OP_MAX] 139 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 140 PERF_CACHE_MAP_ALL_UNSUPPORTED, 141 142 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, 143 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, 144 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, 145 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR, 146 147 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD, 148 [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR, 149 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, 150 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, 151 152 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, 153 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, 154 }; 155 156 static ssize_t 157 armv8pmu_events_sysfs_show(struct device *dev, 158 struct device_attribute *attr, char *page) 159 { 160 struct perf_pmu_events_attr *pmu_attr; 161 162 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 163 164 return sprintf(page, "event=0x%04llx\n", pmu_attr->id); 165 } 166 167 #define ARMV8_EVENT_ATTR(name, config) \ 168 PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config) 169 170 static struct attribute *armv8_pmuv3_event_attrs[] = { 171 /* 172 * Don't expose the sw_incr event in /sys. It's not usable as writes to 173 * PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation 174 * means we don't have a fixed event<->counter relationship regardless. 175 */ 176 ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL), 177 ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL), 178 ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL), 179 ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE), 180 ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL), 181 ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED), 182 ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED), 183 ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED), 184 ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN), 185 ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN), 186 ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED), 187 ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED), 188 ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED), 189 ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED), 190 ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED), 191 ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED), 192 ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES), 193 ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED), 194 ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS), 195 ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE), 196 ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB), 197 ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE), 198 ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL), 199 ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB), 200 ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS), 201 ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR), 202 ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC), 203 ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED), 204 ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES), 205 /* Don't expose the chain event in /sys, since it's useless in isolation */ 206 ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE), 207 ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE), 208 ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED), 209 ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED), 210 ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND), 211 ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND), 212 ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB), 213 ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB), 214 ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE), 215 ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL), 216 ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE), 217 ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL), 218 ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE), 219 ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB), 220 ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL), 221 ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL), 222 ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB), 223 ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB), 224 ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS), 225 ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE), 226 ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS), 227 ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK), 228 ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK), 229 ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD), 230 ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD), 231 ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD), 232 ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD), 233 ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED), 234 ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC), 235 ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL), 236 ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND), 237 ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND), 238 ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT), 239 ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP), 240 ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED), 241 ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE), 242 ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION), 243 ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES), 244 ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM), 245 ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS), 246 ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD), 247 ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS), 248 ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD), 249 ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP), 250 ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG), 251 ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0), 252 ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1), 253 ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2), 254 ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3), 255 ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4), 256 ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5), 257 ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6), 258 ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7), 259 ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT), 260 ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT), 261 ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT), 262 ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED), 263 ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD), 264 ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR), 265 NULL, 266 }; 267 268 static umode_t 269 armv8pmu_event_attr_is_visible(struct kobject *kobj, 270 struct attribute *attr, int unused) 271 { 272 struct device *dev = kobj_to_dev(kobj); 273 struct pmu *pmu = dev_get_drvdata(dev); 274 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 275 struct perf_pmu_events_attr *pmu_attr; 276 277 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); 278 279 if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS && 280 test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap)) 281 return attr->mode; 282 283 if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) { 284 u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE; 285 286 if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS && 287 test_bit(id, cpu_pmu->pmceid_ext_bitmap)) 288 return attr->mode; 289 } 290 291 return 0; 292 } 293 294 static const struct attribute_group armv8_pmuv3_events_attr_group = { 295 .name = "events", 296 .attrs = armv8_pmuv3_event_attrs, 297 .is_visible = armv8pmu_event_attr_is_visible, 298 }; 299 300 /* User ABI */ 301 #define ATTR_CFG_FLD_event_CFG config 302 #define ATTR_CFG_FLD_event_LO 0 303 #define ATTR_CFG_FLD_event_HI 15 304 #define ATTR_CFG_FLD_long_CFG config1 305 #define ATTR_CFG_FLD_long_LO 0 306 #define ATTR_CFG_FLD_long_HI 0 307 #define ATTR_CFG_FLD_rdpmc_CFG config1 308 #define ATTR_CFG_FLD_rdpmc_LO 1 309 #define ATTR_CFG_FLD_rdpmc_HI 1 310 #define ATTR_CFG_FLD_threshold_count_CFG config1 /* PMEVTYPER.TC[0] */ 311 #define ATTR_CFG_FLD_threshold_count_LO 2 312 #define ATTR_CFG_FLD_threshold_count_HI 2 313 #define ATTR_CFG_FLD_threshold_compare_CFG config1 /* PMEVTYPER.TC[2:1] */ 314 #define ATTR_CFG_FLD_threshold_compare_LO 3 315 #define ATTR_CFG_FLD_threshold_compare_HI 4 316 #define ATTR_CFG_FLD_threshold_CFG config1 /* PMEVTYPER.TH */ 317 #define ATTR_CFG_FLD_threshold_LO 5 318 #define ATTR_CFG_FLD_threshold_HI 16 319 320 GEN_PMU_FORMAT_ATTR(event); 321 GEN_PMU_FORMAT_ATTR(long); 322 GEN_PMU_FORMAT_ATTR(rdpmc); 323 GEN_PMU_FORMAT_ATTR(threshold_count); 324 GEN_PMU_FORMAT_ATTR(threshold_compare); 325 GEN_PMU_FORMAT_ATTR(threshold); 326 327 static int sysctl_perf_user_access __read_mostly; 328 329 static bool armv8pmu_event_is_64bit(struct perf_event *event) 330 { 331 return ATTR_CFG_GET_FLD(&event->attr, long); 332 } 333 334 static bool armv8pmu_event_want_user_access(struct perf_event *event) 335 { 336 return ATTR_CFG_GET_FLD(&event->attr, rdpmc); 337 } 338 339 static u32 armv8pmu_event_get_threshold(struct perf_event_attr *attr) 340 { 341 return ATTR_CFG_GET_FLD(attr, threshold); 342 } 343 344 static u8 armv8pmu_event_threshold_control(struct perf_event_attr *attr) 345 { 346 u8 th_compare = ATTR_CFG_GET_FLD(attr, threshold_compare); 347 u8 th_count = ATTR_CFG_GET_FLD(attr, threshold_count); 348 349 /* 350 * The count bit is always the bottom bit of the full control field, and 351 * the comparison is the upper two bits, but it's not explicitly 352 * labelled in the Arm ARM. For the Perf interface we split it into two 353 * fields, so reconstruct it here. 354 */ 355 return (th_compare << 1) | th_count; 356 } 357 358 static struct attribute *armv8_pmuv3_format_attrs[] = { 359 &format_attr_event.attr, 360 &format_attr_long.attr, 361 &format_attr_rdpmc.attr, 362 &format_attr_threshold.attr, 363 &format_attr_threshold_compare.attr, 364 &format_attr_threshold_count.attr, 365 NULL, 366 }; 367 368 static const struct attribute_group armv8_pmuv3_format_attr_group = { 369 .name = "format", 370 .attrs = armv8_pmuv3_format_attrs, 371 }; 372 373 static ssize_t slots_show(struct device *dev, struct device_attribute *attr, 374 char *page) 375 { 376 struct pmu *pmu = dev_get_drvdata(dev); 377 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 378 u32 slots = FIELD_GET(ARMV8_PMU_SLOTS, cpu_pmu->reg_pmmir); 379 380 return sysfs_emit(page, "0x%08x\n", slots); 381 } 382 383 static DEVICE_ATTR_RO(slots); 384 385 static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr, 386 char *page) 387 { 388 struct pmu *pmu = dev_get_drvdata(dev); 389 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 390 u32 bus_slots = FIELD_GET(ARMV8_PMU_BUS_SLOTS, cpu_pmu->reg_pmmir); 391 392 return sysfs_emit(page, "0x%08x\n", bus_slots); 393 } 394 395 static DEVICE_ATTR_RO(bus_slots); 396 397 static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr, 398 char *page) 399 { 400 struct pmu *pmu = dev_get_drvdata(dev); 401 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 402 u32 bus_width = FIELD_GET(ARMV8_PMU_BUS_WIDTH, cpu_pmu->reg_pmmir); 403 u32 val = 0; 404 405 /* Encoded as Log2(number of bytes), plus one */ 406 if (bus_width > 2 && bus_width < 13) 407 val = 1 << (bus_width - 1); 408 409 return sysfs_emit(page, "0x%08x\n", val); 410 } 411 412 static DEVICE_ATTR_RO(bus_width); 413 414 static u32 threshold_max(struct arm_pmu *cpu_pmu) 415 { 416 /* 417 * PMMIR.THWIDTH is readable and non-zero on aarch32, but it would be 418 * impossible to write the threshold in the upper 32 bits of PMEVTYPER. 419 */ 420 if (IS_ENABLED(CONFIG_ARM)) 421 return 0; 422 423 /* 424 * The largest value that can be written to PMEVTYPER<n>_EL0.TH is 425 * (2 ^ PMMIR.THWIDTH) - 1. 426 */ 427 return (1 << FIELD_GET(ARMV8_PMU_THWIDTH, cpu_pmu->reg_pmmir)) - 1; 428 } 429 430 static ssize_t threshold_max_show(struct device *dev, 431 struct device_attribute *attr, char *page) 432 { 433 struct pmu *pmu = dev_get_drvdata(dev); 434 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 435 436 return sysfs_emit(page, "0x%08x\n", threshold_max(cpu_pmu)); 437 } 438 439 static DEVICE_ATTR_RO(threshold_max); 440 441 static struct attribute *armv8_pmuv3_caps_attrs[] = { 442 &dev_attr_slots.attr, 443 &dev_attr_bus_slots.attr, 444 &dev_attr_bus_width.attr, 445 &dev_attr_threshold_max.attr, 446 NULL, 447 }; 448 449 static const struct attribute_group armv8_pmuv3_caps_attr_group = { 450 .name = "caps", 451 .attrs = armv8_pmuv3_caps_attrs, 452 }; 453 454 /* 455 * We unconditionally enable ARMv8.5-PMU long event counter support 456 * (64-bit events) where supported. Indicate if this arm_pmu has long 457 * event counter support. 458 * 459 * On AArch32, long counters make no sense (you can't access the top 460 * bits), so we only enable this on AArch64. 461 */ 462 static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu) 463 { 464 return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver)); 465 } 466 467 static bool armv8pmu_event_has_user_read(struct perf_event *event) 468 { 469 return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT; 470 } 471 472 /* 473 * We must chain two programmable counters for 64 bit events, 474 * except when we have allocated the 64bit cycle counter (for CPU 475 * cycles event) or when user space counter access is enabled. 476 */ 477 static bool armv8pmu_event_is_chained(struct perf_event *event) 478 { 479 int idx = event->hw.idx; 480 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); 481 482 return !armv8pmu_event_has_user_read(event) && 483 armv8pmu_event_is_64bit(event) && 484 !armv8pmu_has_long_event(cpu_pmu) && 485 (idx < ARMV8_PMU_MAX_GENERAL_COUNTERS); 486 } 487 488 /* 489 * ARMv8 low level PMU access 490 */ 491 static u64 armv8pmu_pmcr_read(void) 492 { 493 return read_pmcr(); 494 } 495 496 static void armv8pmu_pmcr_write(u64 val) 497 { 498 val &= ARMV8_PMU_PMCR_MASK; 499 isb(); 500 write_pmcr(val); 501 } 502 503 static int armv8pmu_has_overflowed(u64 pmovsr) 504 { 505 return !!(pmovsr & ARMV8_PMU_OVERFLOWED_MASK); 506 } 507 508 static int armv8pmu_counter_has_overflowed(u64 pmnc, int idx) 509 { 510 return !!(pmnc & BIT(idx)); 511 } 512 513 static u64 armv8pmu_read_evcntr(int idx) 514 { 515 return read_pmevcntrn(idx); 516 } 517 518 static u64 armv8pmu_read_hw_counter(struct perf_event *event) 519 { 520 int idx = event->hw.idx; 521 u64 val = armv8pmu_read_evcntr(idx); 522 523 if (armv8pmu_event_is_chained(event)) 524 val = (val << 32) | armv8pmu_read_evcntr(idx - 1); 525 return val; 526 } 527 528 /* 529 * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP 530 * is set the event counters also become 64-bit counters. Unless the 531 * user has requested a long counter (attr.config1) then we want to 532 * interrupt upon 32-bit overflow - we achieve this by applying a bias. 533 */ 534 static bool armv8pmu_event_needs_bias(struct perf_event *event) 535 { 536 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); 537 struct hw_perf_event *hwc = &event->hw; 538 int idx = hwc->idx; 539 540 if (armv8pmu_event_is_64bit(event)) 541 return false; 542 543 if (armv8pmu_has_long_event(cpu_pmu) || 544 idx >= ARMV8_PMU_MAX_GENERAL_COUNTERS) 545 return true; 546 547 return false; 548 } 549 550 static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value) 551 { 552 if (armv8pmu_event_needs_bias(event)) 553 value |= GENMASK_ULL(63, 32); 554 555 return value; 556 } 557 558 static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value) 559 { 560 if (armv8pmu_event_needs_bias(event)) 561 value &= ~GENMASK_ULL(63, 32); 562 563 return value; 564 } 565 566 static u64 armv8pmu_read_counter(struct perf_event *event) 567 { 568 struct hw_perf_event *hwc = &event->hw; 569 int idx = hwc->idx; 570 u64 value; 571 572 if (idx == ARMV8_PMU_CYCLE_IDX) 573 value = read_pmccntr(); 574 else if (idx == ARMV8_PMU_INSTR_IDX) 575 value = read_pmicntr(); 576 else 577 value = armv8pmu_read_hw_counter(event); 578 579 return armv8pmu_unbias_long_counter(event, value); 580 } 581 582 static void armv8pmu_write_evcntr(int idx, u64 value) 583 { 584 write_pmevcntrn(idx, value); 585 } 586 587 static void armv8pmu_write_hw_counter(struct perf_event *event, 588 u64 value) 589 { 590 int idx = event->hw.idx; 591 592 if (armv8pmu_event_is_chained(event)) { 593 armv8pmu_write_evcntr(idx, upper_32_bits(value)); 594 armv8pmu_write_evcntr(idx - 1, lower_32_bits(value)); 595 } else { 596 armv8pmu_write_evcntr(idx, value); 597 } 598 } 599 600 static void armv8pmu_write_counter(struct perf_event *event, u64 value) 601 { 602 struct hw_perf_event *hwc = &event->hw; 603 int idx = hwc->idx; 604 605 value = armv8pmu_bias_long_counter(event, value); 606 607 if (idx == ARMV8_PMU_CYCLE_IDX) 608 write_pmccntr(value); 609 else if (idx == ARMV8_PMU_INSTR_IDX) 610 write_pmicntr(value); 611 else 612 armv8pmu_write_hw_counter(event, value); 613 } 614 615 static void armv8pmu_write_evtype(int idx, unsigned long val) 616 { 617 unsigned long mask = ARMV8_PMU_EVTYPE_EVENT | 618 ARMV8_PMU_INCLUDE_EL2 | 619 ARMV8_PMU_EXCLUDE_EL0 | 620 ARMV8_PMU_EXCLUDE_EL1; 621 622 if (IS_ENABLED(CONFIG_ARM64)) 623 mask |= ARMV8_PMU_EVTYPE_TC | ARMV8_PMU_EVTYPE_TH; 624 625 val &= mask; 626 write_pmevtypern(idx, val); 627 } 628 629 static void armv8pmu_write_event_type(struct perf_event *event) 630 { 631 struct hw_perf_event *hwc = &event->hw; 632 int idx = hwc->idx; 633 634 /* 635 * For chained events, the low counter is programmed to count 636 * the event of interest and the high counter is programmed 637 * with CHAIN event code with filters set to count at all ELs. 638 */ 639 if (armv8pmu_event_is_chained(event)) { 640 u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN | 641 ARMV8_PMU_INCLUDE_EL2; 642 643 armv8pmu_write_evtype(idx - 1, hwc->config_base); 644 armv8pmu_write_evtype(idx, chain_evt); 645 } else { 646 if (idx == ARMV8_PMU_CYCLE_IDX) 647 write_pmccfiltr(hwc->config_base); 648 else if (idx == ARMV8_PMU_INSTR_IDX) 649 write_pmicfiltr(hwc->config_base); 650 else 651 armv8pmu_write_evtype(idx, hwc->config_base); 652 } 653 } 654 655 static u64 armv8pmu_event_cnten_mask(struct perf_event *event) 656 { 657 int counter = event->hw.idx; 658 u64 mask = BIT(counter); 659 660 if (armv8pmu_event_is_chained(event)) 661 mask |= BIT(counter - 1); 662 return mask; 663 } 664 665 static void armv8pmu_enable_counter(u64 mask) 666 { 667 /* 668 * Make sure event configuration register writes are visible before we 669 * enable the counter. 670 * */ 671 isb(); 672 write_pmcntenset(mask); 673 } 674 675 static void armv8pmu_enable_event_counter(struct perf_event *event) 676 { 677 struct perf_event_attr *attr = &event->attr; 678 u64 mask = armv8pmu_event_cnten_mask(event); 679 680 kvm_set_pmu_events(mask, attr); 681 682 /* We rely on the hypervisor switch code to enable guest counters */ 683 if (!kvm_pmu_counter_deferred(attr)) 684 armv8pmu_enable_counter(mask); 685 } 686 687 static void armv8pmu_disable_counter(u64 mask) 688 { 689 write_pmcntenclr(mask); 690 /* 691 * Make sure the effects of disabling the counter are visible before we 692 * start configuring the event. 693 */ 694 isb(); 695 } 696 697 static void armv8pmu_disable_event_counter(struct perf_event *event) 698 { 699 struct perf_event_attr *attr = &event->attr; 700 u64 mask = armv8pmu_event_cnten_mask(event); 701 702 kvm_clr_pmu_events(mask); 703 704 /* We rely on the hypervisor switch code to disable guest counters */ 705 if (!kvm_pmu_counter_deferred(attr)) 706 armv8pmu_disable_counter(mask); 707 } 708 709 static void armv8pmu_enable_intens(u64 mask) 710 { 711 write_pmintenset(mask); 712 } 713 714 static void armv8pmu_enable_event_irq(struct perf_event *event) 715 { 716 armv8pmu_enable_intens(BIT(event->hw.idx)); 717 } 718 719 static void armv8pmu_disable_intens(u64 mask) 720 { 721 write_pmintenclr(mask); 722 isb(); 723 /* Clear the overflow flag in case an interrupt is pending. */ 724 write_pmovsclr(mask); 725 isb(); 726 } 727 728 static void armv8pmu_disable_event_irq(struct perf_event *event) 729 { 730 armv8pmu_disable_intens(BIT(event->hw.idx)); 731 } 732 733 static u64 armv8pmu_getreset_flags(void) 734 { 735 u64 value; 736 737 /* Read */ 738 value = read_pmovsclr(); 739 740 /* Write to clear flags */ 741 value &= ARMV8_PMU_OVERFLOWED_MASK; 742 write_pmovsclr(value); 743 744 return value; 745 } 746 747 static void update_pmuserenr(u64 val) 748 { 749 lockdep_assert_irqs_disabled(); 750 751 /* 752 * The current PMUSERENR_EL0 value might be the value for the guest. 753 * If that's the case, have KVM keep tracking of the register value 754 * for the host EL0 so that KVM can restore it before returning to 755 * the host EL0. Otherwise, update the register now. 756 */ 757 if (kvm_set_pmuserenr(val)) 758 return; 759 760 write_pmuserenr(val); 761 } 762 763 static void armv8pmu_disable_user_access(void) 764 { 765 update_pmuserenr(0); 766 } 767 768 static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu) 769 { 770 int i; 771 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events); 772 773 if (is_pmuv3p9(cpu_pmu->pmuver)) { 774 u64 mask = 0; 775 for_each_set_bit(i, cpuc->used_mask, ARMPMU_MAX_HWEVENTS) { 776 if (armv8pmu_event_has_user_read(cpuc->events[i])) 777 mask |= BIT(i); 778 } 779 write_pmuacr(mask); 780 } else { 781 /* Clear any unused counters to avoid leaking their contents */ 782 for_each_andnot_bit(i, cpu_pmu->cntr_mask, cpuc->used_mask, 783 ARMPMU_MAX_HWEVENTS) { 784 if (i == ARMV8_PMU_CYCLE_IDX) 785 write_pmccntr(0); 786 else if (i == ARMV8_PMU_INSTR_IDX) 787 write_pmicntr(0); 788 else 789 armv8pmu_write_evcntr(i, 0); 790 } 791 } 792 793 update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_UEN); 794 } 795 796 static void armv8pmu_enable_event(struct perf_event *event) 797 { 798 /* 799 * Enable counter and interrupt, and set the counter to count 800 * the event that we're interested in. 801 */ 802 armv8pmu_disable_event_counter(event); 803 armv8pmu_write_event_type(event); 804 armv8pmu_enable_event_irq(event); 805 armv8pmu_enable_event_counter(event); 806 } 807 808 static void armv8pmu_disable_event(struct perf_event *event) 809 { 810 armv8pmu_disable_event_counter(event); 811 armv8pmu_disable_event_irq(event); 812 } 813 814 static void armv8pmu_start(struct arm_pmu *cpu_pmu) 815 { 816 struct perf_event_context *ctx; 817 int nr_user = 0; 818 819 ctx = perf_cpu_task_ctx(); 820 if (ctx) 821 nr_user = ctx->nr_user; 822 823 if (sysctl_perf_user_access && nr_user) 824 armv8pmu_enable_user_access(cpu_pmu); 825 else 826 armv8pmu_disable_user_access(); 827 828 /* Enable all counters */ 829 armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E); 830 831 kvm_vcpu_pmu_resync_el0(); 832 } 833 834 static void armv8pmu_stop(struct arm_pmu *cpu_pmu) 835 { 836 /* Disable all counters */ 837 armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E); 838 } 839 840 static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu) 841 { 842 u64 pmovsr; 843 struct perf_sample_data data; 844 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events); 845 struct pt_regs *regs; 846 int idx; 847 848 /* 849 * Get and reset the IRQ flags 850 */ 851 pmovsr = armv8pmu_getreset_flags(); 852 853 /* 854 * Did an overflow occur? 855 */ 856 if (!armv8pmu_has_overflowed(pmovsr)) 857 return IRQ_NONE; 858 859 /* 860 * Handle the counter(s) overflow(s) 861 */ 862 regs = get_irq_regs(); 863 864 /* 865 * Stop the PMU while processing the counter overflows 866 * to prevent skews in group events. 867 */ 868 armv8pmu_stop(cpu_pmu); 869 for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMPMU_MAX_HWEVENTS) { 870 struct perf_event *event = cpuc->events[idx]; 871 struct hw_perf_event *hwc; 872 873 /* Ignore if we don't have an event. */ 874 if (!event) 875 continue; 876 877 /* 878 * We have a single interrupt for all counters. Check that 879 * each counter has overflowed before we process it. 880 */ 881 if (!armv8pmu_counter_has_overflowed(pmovsr, idx)) 882 continue; 883 884 hwc = &event->hw; 885 armpmu_event_update(event); 886 perf_sample_data_init(&data, 0, hwc->last_period); 887 if (!armpmu_event_set_period(event)) 888 continue; 889 890 /* 891 * Perf event overflow will queue the processing of the event as 892 * an irq_work which will be taken care of in the handling of 893 * IPI_IRQ_WORK. 894 */ 895 if (perf_event_overflow(event, &data, regs)) 896 cpu_pmu->disable(event); 897 } 898 armv8pmu_start(cpu_pmu); 899 900 return IRQ_HANDLED; 901 } 902 903 static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc, 904 struct arm_pmu *cpu_pmu) 905 { 906 int idx; 907 908 for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS) { 909 if (!test_and_set_bit(idx, cpuc->used_mask)) 910 return idx; 911 } 912 return -EAGAIN; 913 } 914 915 static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc, 916 struct arm_pmu *cpu_pmu) 917 { 918 int idx; 919 920 /* 921 * Chaining requires two consecutive event counters, where 922 * the lower idx must be even. 923 */ 924 for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS) { 925 if (!(idx & 0x1)) 926 continue; 927 if (!test_and_set_bit(idx, cpuc->used_mask)) { 928 /* Check if the preceding even counter is available */ 929 if (!test_and_set_bit(idx - 1, cpuc->used_mask)) 930 return idx; 931 /* Release the Odd counter */ 932 clear_bit(idx, cpuc->used_mask); 933 } 934 } 935 return -EAGAIN; 936 } 937 938 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc, 939 struct perf_event *event) 940 { 941 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); 942 struct hw_perf_event *hwc = &event->hw; 943 unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT; 944 945 /* Always prefer to place a cycle counter into the cycle counter. */ 946 if ((evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) && 947 !armv8pmu_event_get_threshold(&event->attr)) { 948 if (!test_and_set_bit(ARMV8_PMU_CYCLE_IDX, cpuc->used_mask)) 949 return ARMV8_PMU_CYCLE_IDX; 950 else if (armv8pmu_event_is_64bit(event) && 951 armv8pmu_event_want_user_access(event) && 952 !armv8pmu_has_long_event(cpu_pmu)) 953 return -EAGAIN; 954 } 955 956 /* 957 * Always prefer to place a instruction counter into the instruction counter, 958 * but don't expose the instruction counter to userspace access as userspace 959 * may not know how to handle it. 960 */ 961 if ((evtype == ARMV8_PMUV3_PERFCTR_INST_RETIRED) && 962 !armv8pmu_event_get_threshold(&event->attr) && 963 test_bit(ARMV8_PMU_INSTR_IDX, cpu_pmu->cntr_mask) && 964 !armv8pmu_event_want_user_access(event)) { 965 if (!test_and_set_bit(ARMV8_PMU_INSTR_IDX, cpuc->used_mask)) 966 return ARMV8_PMU_INSTR_IDX; 967 } 968 969 /* 970 * Otherwise use events counters 971 */ 972 if (armv8pmu_event_is_chained(event)) 973 return armv8pmu_get_chain_idx(cpuc, cpu_pmu); 974 else 975 return armv8pmu_get_single_idx(cpuc, cpu_pmu); 976 } 977 978 static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc, 979 struct perf_event *event) 980 { 981 int idx = event->hw.idx; 982 983 clear_bit(idx, cpuc->used_mask); 984 if (armv8pmu_event_is_chained(event)) 985 clear_bit(idx - 1, cpuc->used_mask); 986 } 987 988 static int armv8pmu_user_event_idx(struct perf_event *event) 989 { 990 if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event)) 991 return 0; 992 993 return event->hw.idx + 1; 994 } 995 996 /* 997 * Add an event filter to a given event. 998 */ 999 static int armv8pmu_set_event_filter(struct hw_perf_event *event, 1000 struct perf_event_attr *attr) 1001 { 1002 unsigned long config_base = 0; 1003 struct perf_event *perf_event = container_of(attr, struct perf_event, 1004 attr); 1005 struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu); 1006 u32 th; 1007 1008 if (attr->exclude_idle) { 1009 pr_debug("ARM performance counters do not support mode exclusion\n"); 1010 return -EOPNOTSUPP; 1011 } 1012 1013 /* 1014 * If we're running in hyp mode, then we *are* the hypervisor. 1015 * Therefore we ignore exclude_hv in this configuration, since 1016 * there's no hypervisor to sample anyway. This is consistent 1017 * with other architectures (x86 and Power). 1018 */ 1019 if (is_kernel_in_hyp_mode()) { 1020 if (!attr->exclude_kernel && !attr->exclude_host) 1021 config_base |= ARMV8_PMU_INCLUDE_EL2; 1022 if (attr->exclude_guest) 1023 config_base |= ARMV8_PMU_EXCLUDE_EL1; 1024 if (attr->exclude_host) 1025 config_base |= ARMV8_PMU_EXCLUDE_EL0; 1026 } else { 1027 if (!attr->exclude_hv && !attr->exclude_host) 1028 config_base |= ARMV8_PMU_INCLUDE_EL2; 1029 } 1030 1031 /* 1032 * Filter out !VHE kernels and guest kernels 1033 */ 1034 if (attr->exclude_kernel) 1035 config_base |= ARMV8_PMU_EXCLUDE_EL1; 1036 1037 if (attr->exclude_user) 1038 config_base |= ARMV8_PMU_EXCLUDE_EL0; 1039 1040 /* 1041 * If FEAT_PMUv3_TH isn't implemented, then THWIDTH (threshold_max) will 1042 * be 0 and will also trigger this check, preventing it from being used. 1043 */ 1044 th = armv8pmu_event_get_threshold(attr); 1045 if (th > threshold_max(cpu_pmu)) { 1046 pr_debug("PMU event threshold exceeds max value\n"); 1047 return -EINVAL; 1048 } 1049 1050 if (th) { 1051 config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TH, th); 1052 config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TC, 1053 armv8pmu_event_threshold_control(attr)); 1054 } 1055 1056 /* 1057 * Install the filter into config_base as this is used to 1058 * construct the event type. 1059 */ 1060 event->config_base = config_base; 1061 1062 return 0; 1063 } 1064 1065 static void armv8pmu_reset(void *info) 1066 { 1067 struct arm_pmu *cpu_pmu = (struct arm_pmu *)info; 1068 u64 pmcr, mask; 1069 1070 bitmap_to_arr64(&mask, cpu_pmu->cntr_mask, ARMPMU_MAX_HWEVENTS); 1071 1072 /* The counter and interrupt enable registers are unknown at reset. */ 1073 armv8pmu_disable_counter(mask); 1074 armv8pmu_disable_intens(mask); 1075 1076 /* Clear the counters we flip at guest entry/exit */ 1077 kvm_clr_pmu_events(mask); 1078 1079 /* 1080 * Initialize & Reset PMNC. Request overflow interrupt for 1081 * 64 bit cycle counter but cheat in armv8pmu_write_counter(). 1082 */ 1083 pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC; 1084 1085 /* Enable long event counter support where available */ 1086 if (armv8pmu_has_long_event(cpu_pmu)) 1087 pmcr |= ARMV8_PMU_PMCR_LP; 1088 1089 armv8pmu_pmcr_write(pmcr); 1090 } 1091 1092 static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu, 1093 struct perf_event *event) 1094 { 1095 if (event->attr.type == PERF_TYPE_HARDWARE && 1096 event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) { 1097 1098 if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED, 1099 armpmu->pmceid_bitmap)) 1100 return ARMV8_PMUV3_PERFCTR_BR_RETIRED; 1101 1102 if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED, 1103 armpmu->pmceid_bitmap)) 1104 return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED; 1105 1106 return HW_OP_UNSUPPORTED; 1107 } 1108 1109 return armpmu_map_event(event, &armv8_pmuv3_perf_map, 1110 &armv8_pmuv3_perf_cache_map, 1111 ARMV8_PMU_EVTYPE_EVENT); 1112 } 1113 1114 static int __armv8_pmuv3_map_event(struct perf_event *event, 1115 const unsigned (*extra_event_map) 1116 [PERF_COUNT_HW_MAX], 1117 const unsigned (*extra_cache_map) 1118 [PERF_COUNT_HW_CACHE_MAX] 1119 [PERF_COUNT_HW_CACHE_OP_MAX] 1120 [PERF_COUNT_HW_CACHE_RESULT_MAX]) 1121 { 1122 int hw_event_id; 1123 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 1124 1125 hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event); 1126 1127 /* 1128 * CHAIN events only work when paired with an adjacent counter, and it 1129 * never makes sense for a user to open one in isolation, as they'll be 1130 * rotated arbitrarily. 1131 */ 1132 if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN) 1133 return -EINVAL; 1134 1135 if (armv8pmu_event_is_64bit(event)) 1136 event->hw.flags |= ARMPMU_EVT_64BIT; 1137 1138 /* 1139 * User events must be allocated into a single counter, and so 1140 * must not be chained. 1141 * 1142 * Most 64-bit events require long counter support, but 64-bit 1143 * CPU_CYCLES events can be placed into the dedicated cycle 1144 * counter when this is free. 1145 */ 1146 if (armv8pmu_event_want_user_access(event)) { 1147 if (!(event->attach_state & PERF_ATTACH_TASK)) 1148 return -EINVAL; 1149 if (armv8pmu_event_is_64bit(event) && 1150 (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) && 1151 !armv8pmu_has_long_event(armpmu)) 1152 return -EOPNOTSUPP; 1153 1154 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; 1155 } 1156 1157 /* Only expose micro/arch events supported by this PMU */ 1158 if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS) 1159 && test_bit(hw_event_id, armpmu->pmceid_bitmap)) { 1160 return hw_event_id; 1161 } 1162 1163 return armpmu_map_event(event, extra_event_map, extra_cache_map, 1164 ARMV8_PMU_EVTYPE_EVENT); 1165 } 1166 1167 static int armv8_pmuv3_map_event(struct perf_event *event) 1168 { 1169 return __armv8_pmuv3_map_event(event, NULL, NULL); 1170 } 1171 1172 static int armv8_a53_map_event(struct perf_event *event) 1173 { 1174 return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map); 1175 } 1176 1177 static int armv8_a57_map_event(struct perf_event *event) 1178 { 1179 return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map); 1180 } 1181 1182 static int armv8_a73_map_event(struct perf_event *event) 1183 { 1184 return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map); 1185 } 1186 1187 static int armv8_thunder_map_event(struct perf_event *event) 1188 { 1189 return __armv8_pmuv3_map_event(event, NULL, 1190 &armv8_thunder_perf_cache_map); 1191 } 1192 1193 static int armv8_vulcan_map_event(struct perf_event *event) 1194 { 1195 return __armv8_pmuv3_map_event(event, NULL, 1196 &armv8_vulcan_perf_cache_map); 1197 } 1198 1199 struct armv8pmu_probe_info { 1200 struct arm_pmu *pmu; 1201 bool present; 1202 }; 1203 1204 static void __armv8pmu_probe_pmu(void *info) 1205 { 1206 struct armv8pmu_probe_info *probe = info; 1207 struct arm_pmu *cpu_pmu = probe->pmu; 1208 u64 pmceid_raw[2]; 1209 u32 pmceid[2]; 1210 int pmuver; 1211 1212 pmuver = read_pmuver(); 1213 if (!pmuv3_implemented(pmuver)) 1214 return; 1215 1216 cpu_pmu->pmuver = pmuver; 1217 probe->present = true; 1218 1219 /* Read the nb of CNTx counters supported from PMNC */ 1220 bitmap_set(cpu_pmu->cntr_mask, 1221 0, FIELD_GET(ARMV8_PMU_PMCR_N, armv8pmu_pmcr_read())); 1222 1223 /* Add the CPU cycles counter */ 1224 set_bit(ARMV8_PMU_CYCLE_IDX, cpu_pmu->cntr_mask); 1225 1226 /* Add the CPU instructions counter */ 1227 if (pmuv3_has_icntr()) 1228 set_bit(ARMV8_PMU_INSTR_IDX, cpu_pmu->cntr_mask); 1229 1230 pmceid[0] = pmceid_raw[0] = read_pmceid0(); 1231 pmceid[1] = pmceid_raw[1] = read_pmceid1(); 1232 1233 bitmap_from_arr32(cpu_pmu->pmceid_bitmap, 1234 pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS); 1235 1236 pmceid[0] = pmceid_raw[0] >> 32; 1237 pmceid[1] = pmceid_raw[1] >> 32; 1238 1239 bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap, 1240 pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS); 1241 1242 /* store PMMIR register for sysfs */ 1243 if (is_pmuv3p4(pmuver)) 1244 cpu_pmu->reg_pmmir = read_pmmir(); 1245 else 1246 cpu_pmu->reg_pmmir = 0; 1247 } 1248 1249 static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu) 1250 { 1251 struct armv8pmu_probe_info probe = { 1252 .pmu = cpu_pmu, 1253 .present = false, 1254 }; 1255 int ret; 1256 1257 ret = smp_call_function_any(&cpu_pmu->supported_cpus, 1258 __armv8pmu_probe_pmu, 1259 &probe, 1); 1260 if (ret) 1261 return ret; 1262 1263 return probe.present ? 0 : -ENODEV; 1264 } 1265 1266 static void armv8pmu_disable_user_access_ipi(void *unused) 1267 { 1268 armv8pmu_disable_user_access(); 1269 } 1270 1271 static int armv8pmu_proc_user_access_handler(const struct ctl_table *table, int write, 1272 void *buffer, size_t *lenp, loff_t *ppos) 1273 { 1274 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 1275 if (ret || !write || sysctl_perf_user_access) 1276 return ret; 1277 1278 on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1); 1279 return 0; 1280 } 1281 1282 static struct ctl_table armv8_pmu_sysctl_table[] = { 1283 { 1284 .procname = "perf_user_access", 1285 .data = &sysctl_perf_user_access, 1286 .maxlen = sizeof(unsigned int), 1287 .mode = 0644, 1288 .proc_handler = armv8pmu_proc_user_access_handler, 1289 .extra1 = SYSCTL_ZERO, 1290 .extra2 = SYSCTL_ONE, 1291 }, 1292 }; 1293 1294 static void armv8_pmu_register_sysctl_table(void) 1295 { 1296 static u32 tbl_registered = 0; 1297 1298 if (!cmpxchg_relaxed(&tbl_registered, 0, 1)) 1299 register_sysctl("kernel", armv8_pmu_sysctl_table); 1300 } 1301 1302 static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name, 1303 int (*map_event)(struct perf_event *event)) 1304 { 1305 int ret = armv8pmu_probe_pmu(cpu_pmu); 1306 if (ret) 1307 return ret; 1308 1309 cpu_pmu->handle_irq = armv8pmu_handle_irq; 1310 cpu_pmu->enable = armv8pmu_enable_event; 1311 cpu_pmu->disable = armv8pmu_disable_event; 1312 cpu_pmu->read_counter = armv8pmu_read_counter; 1313 cpu_pmu->write_counter = armv8pmu_write_counter; 1314 cpu_pmu->get_event_idx = armv8pmu_get_event_idx; 1315 cpu_pmu->clear_event_idx = armv8pmu_clear_event_idx; 1316 cpu_pmu->start = armv8pmu_start; 1317 cpu_pmu->stop = armv8pmu_stop; 1318 cpu_pmu->reset = armv8pmu_reset; 1319 cpu_pmu->set_event_filter = armv8pmu_set_event_filter; 1320 1321 cpu_pmu->pmu.event_idx = armv8pmu_user_event_idx; 1322 1323 cpu_pmu->name = name; 1324 cpu_pmu->map_event = map_event; 1325 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = &armv8_pmuv3_events_attr_group; 1326 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = &armv8_pmuv3_format_attr_group; 1327 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = &armv8_pmuv3_caps_attr_group; 1328 armv8_pmu_register_sysctl_table(); 1329 return 0; 1330 } 1331 1332 #define PMUV3_INIT_SIMPLE(name) \ 1333 static int name##_pmu_init(struct arm_pmu *cpu_pmu) \ 1334 { \ 1335 return armv8_pmu_init(cpu_pmu, #name, armv8_pmuv3_map_event); \ 1336 } 1337 1338 #define PMUV3_INIT_MAP_EVENT(name, map_event) \ 1339 static int name##_pmu_init(struct arm_pmu *cpu_pmu) \ 1340 { \ 1341 return armv8_pmu_init(cpu_pmu, #name, map_event); \ 1342 } 1343 1344 PMUV3_INIT_SIMPLE(armv8_pmuv3) 1345 1346 PMUV3_INIT_SIMPLE(armv8_cortex_a34) 1347 PMUV3_INIT_SIMPLE(armv8_cortex_a55) 1348 PMUV3_INIT_SIMPLE(armv8_cortex_a65) 1349 PMUV3_INIT_SIMPLE(armv8_cortex_a75) 1350 PMUV3_INIT_SIMPLE(armv8_cortex_a76) 1351 PMUV3_INIT_SIMPLE(armv8_cortex_a77) 1352 PMUV3_INIT_SIMPLE(armv8_cortex_a78) 1353 PMUV3_INIT_SIMPLE(armv9_cortex_a510) 1354 PMUV3_INIT_SIMPLE(armv9_cortex_a520) 1355 PMUV3_INIT_SIMPLE(armv9_cortex_a710) 1356 PMUV3_INIT_SIMPLE(armv9_cortex_a715) 1357 PMUV3_INIT_SIMPLE(armv9_cortex_a720) 1358 PMUV3_INIT_SIMPLE(armv9_cortex_a725) 1359 PMUV3_INIT_SIMPLE(armv8_cortex_x1) 1360 PMUV3_INIT_SIMPLE(armv9_cortex_x2) 1361 PMUV3_INIT_SIMPLE(armv9_cortex_x3) 1362 PMUV3_INIT_SIMPLE(armv9_cortex_x4) 1363 PMUV3_INIT_SIMPLE(armv9_cortex_x925) 1364 PMUV3_INIT_SIMPLE(armv8_neoverse_e1) 1365 PMUV3_INIT_SIMPLE(armv8_neoverse_n1) 1366 PMUV3_INIT_SIMPLE(armv9_neoverse_n2) 1367 PMUV3_INIT_SIMPLE(armv9_neoverse_n3) 1368 PMUV3_INIT_SIMPLE(armv8_neoverse_v1) 1369 PMUV3_INIT_SIMPLE(armv8_neoverse_v2) 1370 PMUV3_INIT_SIMPLE(armv8_neoverse_v3) 1371 PMUV3_INIT_SIMPLE(armv8_neoverse_v3ae) 1372 1373 PMUV3_INIT_SIMPLE(armv8_nvidia_carmel) 1374 PMUV3_INIT_SIMPLE(armv8_nvidia_denver) 1375 1376 PMUV3_INIT_SIMPLE(armv8_samsung_mongoose) 1377 1378 PMUV3_INIT_MAP_EVENT(armv8_cortex_a35, armv8_a53_map_event) 1379 PMUV3_INIT_MAP_EVENT(armv8_cortex_a53, armv8_a53_map_event) 1380 PMUV3_INIT_MAP_EVENT(armv8_cortex_a57, armv8_a57_map_event) 1381 PMUV3_INIT_MAP_EVENT(armv8_cortex_a72, armv8_a57_map_event) 1382 PMUV3_INIT_MAP_EVENT(armv8_cortex_a73, armv8_a73_map_event) 1383 PMUV3_INIT_MAP_EVENT(armv8_cavium_thunder, armv8_thunder_map_event) 1384 PMUV3_INIT_MAP_EVENT(armv8_brcm_vulcan, armv8_vulcan_map_event) 1385 1386 static const struct of_device_id armv8_pmu_of_device_ids[] = { 1387 {.compatible = "arm,armv8-pmuv3", .data = armv8_pmuv3_pmu_init}, 1388 {.compatible = "arm,cortex-a34-pmu", .data = armv8_cortex_a34_pmu_init}, 1389 {.compatible = "arm,cortex-a35-pmu", .data = armv8_cortex_a35_pmu_init}, 1390 {.compatible = "arm,cortex-a53-pmu", .data = armv8_cortex_a53_pmu_init}, 1391 {.compatible = "arm,cortex-a55-pmu", .data = armv8_cortex_a55_pmu_init}, 1392 {.compatible = "arm,cortex-a57-pmu", .data = armv8_cortex_a57_pmu_init}, 1393 {.compatible = "arm,cortex-a65-pmu", .data = armv8_cortex_a65_pmu_init}, 1394 {.compatible = "arm,cortex-a72-pmu", .data = armv8_cortex_a72_pmu_init}, 1395 {.compatible = "arm,cortex-a73-pmu", .data = armv8_cortex_a73_pmu_init}, 1396 {.compatible = "arm,cortex-a75-pmu", .data = armv8_cortex_a75_pmu_init}, 1397 {.compatible = "arm,cortex-a76-pmu", .data = armv8_cortex_a76_pmu_init}, 1398 {.compatible = "arm,cortex-a77-pmu", .data = armv8_cortex_a77_pmu_init}, 1399 {.compatible = "arm,cortex-a78-pmu", .data = armv8_cortex_a78_pmu_init}, 1400 {.compatible = "arm,cortex-a510-pmu", .data = armv9_cortex_a510_pmu_init}, 1401 {.compatible = "arm,cortex-a520-pmu", .data = armv9_cortex_a520_pmu_init}, 1402 {.compatible = "arm,cortex-a710-pmu", .data = armv9_cortex_a710_pmu_init}, 1403 {.compatible = "arm,cortex-a715-pmu", .data = armv9_cortex_a715_pmu_init}, 1404 {.compatible = "arm,cortex-a720-pmu", .data = armv9_cortex_a720_pmu_init}, 1405 {.compatible = "arm,cortex-a725-pmu", .data = armv9_cortex_a725_pmu_init}, 1406 {.compatible = "arm,cortex-x1-pmu", .data = armv8_cortex_x1_pmu_init}, 1407 {.compatible = "arm,cortex-x2-pmu", .data = armv9_cortex_x2_pmu_init}, 1408 {.compatible = "arm,cortex-x3-pmu", .data = armv9_cortex_x3_pmu_init}, 1409 {.compatible = "arm,cortex-x4-pmu", .data = armv9_cortex_x4_pmu_init}, 1410 {.compatible = "arm,cortex-x925-pmu", .data = armv9_cortex_x925_pmu_init}, 1411 {.compatible = "arm,neoverse-e1-pmu", .data = armv8_neoverse_e1_pmu_init}, 1412 {.compatible = "arm,neoverse-n1-pmu", .data = armv8_neoverse_n1_pmu_init}, 1413 {.compatible = "arm,neoverse-n2-pmu", .data = armv9_neoverse_n2_pmu_init}, 1414 {.compatible = "arm,neoverse-n3-pmu", .data = armv9_neoverse_n3_pmu_init}, 1415 {.compatible = "arm,neoverse-v1-pmu", .data = armv8_neoverse_v1_pmu_init}, 1416 {.compatible = "arm,neoverse-v2-pmu", .data = armv8_neoverse_v2_pmu_init}, 1417 {.compatible = "arm,neoverse-v3-pmu", .data = armv8_neoverse_v3_pmu_init}, 1418 {.compatible = "arm,neoverse-v3ae-pmu", .data = armv8_neoverse_v3ae_pmu_init}, 1419 {.compatible = "cavium,thunder-pmu", .data = armv8_cavium_thunder_pmu_init}, 1420 {.compatible = "brcm,vulcan-pmu", .data = armv8_brcm_vulcan_pmu_init}, 1421 {.compatible = "nvidia,carmel-pmu", .data = armv8_nvidia_carmel_pmu_init}, 1422 {.compatible = "nvidia,denver-pmu", .data = armv8_nvidia_denver_pmu_init}, 1423 {.compatible = "samsung,mongoose-pmu", .data = armv8_samsung_mongoose_pmu_init}, 1424 {}, 1425 }; 1426 1427 static int armv8_pmu_device_probe(struct platform_device *pdev) 1428 { 1429 return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL); 1430 } 1431 1432 static struct platform_driver armv8_pmu_driver = { 1433 .driver = { 1434 .name = ARMV8_PMU_PDEV_NAME, 1435 .of_match_table = armv8_pmu_of_device_ids, 1436 .suppress_bind_attrs = true, 1437 }, 1438 .probe = armv8_pmu_device_probe, 1439 }; 1440 1441 static int __init armv8_pmu_driver_init(void) 1442 { 1443 int ret; 1444 1445 if (acpi_disabled) 1446 ret = platform_driver_register(&armv8_pmu_driver); 1447 else 1448 ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init); 1449 1450 if (!ret) 1451 lockup_detector_retry_init(); 1452 1453 return ret; 1454 } 1455 device_initcall(armv8_pmu_driver_init) 1456 1457 void arch_perf_update_userpage(struct perf_event *event, 1458 struct perf_event_mmap_page *userpg, u64 now) 1459 { 1460 struct clock_read_data *rd; 1461 unsigned int seq; 1462 u64 ns; 1463 1464 userpg->cap_user_time = 0; 1465 userpg->cap_user_time_zero = 0; 1466 userpg->cap_user_time_short = 0; 1467 userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event); 1468 1469 if (userpg->cap_user_rdpmc) { 1470 if (event->hw.flags & ARMPMU_EVT_64BIT) 1471 userpg->pmc_width = 64; 1472 else 1473 userpg->pmc_width = 32; 1474 } 1475 1476 do { 1477 rd = sched_clock_read_begin(&seq); 1478 1479 if (rd->read_sched_clock != arch_timer_read_counter) 1480 return; 1481 1482 userpg->time_mult = rd->mult; 1483 userpg->time_shift = rd->shift; 1484 userpg->time_zero = rd->epoch_ns; 1485 userpg->time_cycles = rd->epoch_cyc; 1486 userpg->time_mask = rd->sched_clock_mask; 1487 1488 /* 1489 * Subtract the cycle base, such that software that 1490 * doesn't know about cap_user_time_short still 'works' 1491 * assuming no wraps. 1492 */ 1493 ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift); 1494 userpg->time_zero -= ns; 1495 1496 } while (sched_clock_read_retry(seq)); 1497 1498 userpg->time_offset = userpg->time_zero - now; 1499 1500 /* 1501 * time_shift is not expected to be greater than 31 due to 1502 * the original published conversion algorithm shifting a 1503 * 32-bit value (now specifies a 64-bit value) - refer 1504 * perf_event_mmap_page documentation in perf_event.h. 1505 */ 1506 if (userpg->time_shift == 32) { 1507 userpg->time_shift = 31; 1508 userpg->time_mult >>= 1; 1509 } 1510 1511 /* 1512 * Internal timekeeping for enabled/running/stopped times 1513 * is always computed with the sched_clock. 1514 */ 1515 userpg->cap_user_time = 1; 1516 userpg->cap_user_time_zero = 1; 1517 userpg->cap_user_time_short = 1; 1518 } 1519