xref: /linux/drivers/perf/arm_pmuv3.c (revision 68f715a820b02f965e2afc584a6cb542843cbc98)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ARMv8 PMUv3 Performance Events handling code.
4  *
5  * Copyright (C) 2012 ARM Limited
6  * Author: Will Deacon <will.deacon@arm.com>
7  *
8  * This code is based heavily on the ARMv7 perf event code.
9  */
10 
11 #include <asm/irq_regs.h>
12 #include <asm/perf_event.h>
13 #include <asm/virt.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 
17 #include <linux/acpi.h>
18 #include <linux/bitfield.h>
19 #include <linux/clocksource.h>
20 #include <linux/of.h>
21 #include <linux/perf/arm_pmu.h>
22 #include <linux/perf/arm_pmuv3.h>
23 #include <linux/platform_device.h>
24 #include <linux/sched_clock.h>
25 #include <linux/smp.h>
26 #include <linux/nmi.h>
27 
28 #include <asm/arm_pmuv3.h>
29 
30 /* ARMv8 Cortex-A53 specific event types. */
31 #define ARMV8_A53_PERFCTR_PREF_LINEFILL				0xC2
32 
33 /* ARMv8 Cavium ThunderX specific event types. */
34 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST			0xE9
35 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS		0xEA
36 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS		0xEB
37 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS		0xEC
38 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS		0xED
39 
40 /*
41  * ARMv8 Architectural defined events, not all of these may
42  * be supported on any given implementation. Unsupported events will
43  * be disabled at run-time based on the PMCEID registers.
44  */
45 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
46 	PERF_MAP_ALL_UNSUPPORTED,
47 	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
48 	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV8_PMUV3_PERFCTR_INST_RETIRED,
49 	[PERF_COUNT_HW_CACHE_REFERENCES]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
50 	[PERF_COUNT_HW_CACHE_MISSES]		= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
51 	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
52 	[PERF_COUNT_HW_BUS_CYCLES]		= ARMV8_PMUV3_PERFCTR_BUS_CYCLES,
53 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV8_PMUV3_PERFCTR_STALL_FRONTEND,
54 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV8_PMUV3_PERFCTR_STALL_BACKEND,
55 };
56 
57 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
58 						[PERF_COUNT_HW_CACHE_OP_MAX]
59 						[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
60 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
61 
62 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
63 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
64 
65 	[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE,
66 	[C(L1I)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL,
67 
68 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL,
69 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB,
70 
71 	[C(ITLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL,
72 	[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB,
73 
74 	[C(LL)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD,
75 	[C(LL)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_RD,
76 
77 	[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_BR_PRED,
78 	[C(BPU)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
79 };
80 
81 static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
82 					      [PERF_COUNT_HW_CACHE_OP_MAX]
83 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
84 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
85 
86 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL,
87 
88 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
89 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
90 };
91 
92 static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
93 					      [PERF_COUNT_HW_CACHE_OP_MAX]
94 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
95 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
96 
97 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
98 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
99 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
100 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
101 
102 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
103 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
104 
105 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
106 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
107 };
108 
109 static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
110 					      [PERF_COUNT_HW_CACHE_OP_MAX]
111 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
112 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
113 
114 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
115 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
116 };
117 
118 static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
119 						   [PERF_COUNT_HW_CACHE_OP_MAX]
120 						   [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
121 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
122 
123 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
124 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
125 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
126 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST,
127 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS,
128 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS,
129 
130 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS,
131 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS,
132 
133 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
134 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
135 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
136 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
137 };
138 
139 static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
140 					      [PERF_COUNT_HW_CACHE_OP_MAX]
141 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
142 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
143 
144 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
145 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
146 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
147 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
148 
149 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
150 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
151 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
152 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
153 
154 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
155 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
156 };
157 
158 static ssize_t
159 armv8pmu_events_sysfs_show(struct device *dev,
160 			   struct device_attribute *attr, char *page)
161 {
162 	struct perf_pmu_events_attr *pmu_attr;
163 
164 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
165 
166 	return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
167 }
168 
169 #define ARMV8_EVENT_ATTR(name, config)						\
170 	PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config)
171 
172 static struct attribute *armv8_pmuv3_event_attrs[] = {
173 	/*
174 	 * Don't expose the sw_incr event in /sys. It's not usable as writes to
175 	 * PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation
176 	 * means we don't have a fixed event<->counter relationship regardless.
177 	 */
178 	ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
179 	ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
180 	ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
181 	ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
182 	ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
183 	ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
184 	ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
185 	ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
186 	ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
187 	ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
188 	ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
189 	ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
190 	ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
191 	ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
192 	ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
193 	ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
194 	ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
195 	ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
196 	ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
197 	ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
198 	ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
199 	ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
200 	ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
201 	ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
202 	ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
203 	ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
204 	ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
205 	ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
206 	ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
207 	/* Don't expose the chain event in /sys, since it's useless in isolation */
208 	ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
209 	ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
210 	ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
211 	ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
212 	ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
213 	ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
214 	ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
215 	ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
216 	ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
217 	ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
218 	ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
219 	ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
220 	ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
221 	ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
222 	ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
223 	ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
224 	ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
225 	ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
226 	ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
227 	ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
228 	ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
229 	ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
230 	ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
231 	ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
232 	ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
233 	ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
234 	ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD),
235 	ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED),
236 	ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC),
237 	ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL),
238 	ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND),
239 	ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND),
240 	ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT),
241 	ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
242 	ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
243 	ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
244 	ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
245 	ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES),
246 	ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM),
247 	ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS),
248 	ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD),
249 	ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS),
250 	ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD),
251 	ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP),
252 	ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG),
253 	ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0),
254 	ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1),
255 	ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2),
256 	ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3),
257 	ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4),
258 	ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5),
259 	ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6),
260 	ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7),
261 	ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT),
262 	ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT),
263 	ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT),
264 	ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED),
265 	ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD),
266 	ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR),
267 	NULL,
268 };
269 
270 static umode_t
271 armv8pmu_event_attr_is_visible(struct kobject *kobj,
272 			       struct attribute *attr, int unused)
273 {
274 	struct device *dev = kobj_to_dev(kobj);
275 	struct pmu *pmu = dev_get_drvdata(dev);
276 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
277 	struct perf_pmu_events_attr *pmu_attr;
278 
279 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
280 
281 	if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
282 	    test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap))
283 		return attr->mode;
284 
285 	if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) {
286 		u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE;
287 
288 		if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
289 		    test_bit(id, cpu_pmu->pmceid_ext_bitmap))
290 			return attr->mode;
291 	}
292 
293 	return 0;
294 }
295 
296 static const struct attribute_group armv8_pmuv3_events_attr_group = {
297 	.name = "events",
298 	.attrs = armv8_pmuv3_event_attrs,
299 	.is_visible = armv8pmu_event_attr_is_visible,
300 };
301 
302 /* User ABI */
303 #define ATTR_CFG_FLD_event_CFG		config
304 #define ATTR_CFG_FLD_event_LO		0
305 #define ATTR_CFG_FLD_event_HI		15
306 #define ATTR_CFG_FLD_long_CFG		config1
307 #define ATTR_CFG_FLD_long_LO		0
308 #define ATTR_CFG_FLD_long_HI		0
309 #define ATTR_CFG_FLD_rdpmc_CFG		config1
310 #define ATTR_CFG_FLD_rdpmc_LO		1
311 #define ATTR_CFG_FLD_rdpmc_HI		1
312 #define ATTR_CFG_FLD_threshold_count_CFG	config1 /* PMEVTYPER.TC[0] */
313 #define ATTR_CFG_FLD_threshold_count_LO		2
314 #define ATTR_CFG_FLD_threshold_count_HI		2
315 #define ATTR_CFG_FLD_threshold_compare_CFG	config1 /* PMEVTYPER.TC[2:1] */
316 #define ATTR_CFG_FLD_threshold_compare_LO	3
317 #define ATTR_CFG_FLD_threshold_compare_HI	4
318 #define ATTR_CFG_FLD_threshold_CFG		config1 /* PMEVTYPER.TH */
319 #define ATTR_CFG_FLD_threshold_LO		5
320 #define ATTR_CFG_FLD_threshold_HI		16
321 
322 GEN_PMU_FORMAT_ATTR(event);
323 GEN_PMU_FORMAT_ATTR(long);
324 GEN_PMU_FORMAT_ATTR(rdpmc);
325 GEN_PMU_FORMAT_ATTR(threshold_count);
326 GEN_PMU_FORMAT_ATTR(threshold_compare);
327 GEN_PMU_FORMAT_ATTR(threshold);
328 
329 static int sysctl_perf_user_access __read_mostly;
330 
331 static bool armv8pmu_event_is_64bit(struct perf_event *event)
332 {
333 	return ATTR_CFG_GET_FLD(&event->attr, long);
334 }
335 
336 static bool armv8pmu_event_want_user_access(struct perf_event *event)
337 {
338 	return ATTR_CFG_GET_FLD(&event->attr, rdpmc);
339 }
340 
341 static u8 armv8pmu_event_threshold_control(struct perf_event_attr *attr)
342 {
343 	u8 th_compare = ATTR_CFG_GET_FLD(attr, threshold_compare);
344 	u8 th_count = ATTR_CFG_GET_FLD(attr, threshold_count);
345 
346 	/*
347 	 * The count bit is always the bottom bit of the full control field, and
348 	 * the comparison is the upper two bits, but it's not explicitly
349 	 * labelled in the Arm ARM. For the Perf interface we split it into two
350 	 * fields, so reconstruct it here.
351 	 */
352 	return (th_compare << 1) | th_count;
353 }
354 
355 static struct attribute *armv8_pmuv3_format_attrs[] = {
356 	&format_attr_event.attr,
357 	&format_attr_long.attr,
358 	&format_attr_rdpmc.attr,
359 	&format_attr_threshold.attr,
360 	&format_attr_threshold_compare.attr,
361 	&format_attr_threshold_count.attr,
362 	NULL,
363 };
364 
365 static const struct attribute_group armv8_pmuv3_format_attr_group = {
366 	.name = "format",
367 	.attrs = armv8_pmuv3_format_attrs,
368 };
369 
370 static ssize_t slots_show(struct device *dev, struct device_attribute *attr,
371 			  char *page)
372 {
373 	struct pmu *pmu = dev_get_drvdata(dev);
374 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
375 	u32 slots = FIELD_GET(ARMV8_PMU_SLOTS, cpu_pmu->reg_pmmir);
376 
377 	return sysfs_emit(page, "0x%08x\n", slots);
378 }
379 
380 static DEVICE_ATTR_RO(slots);
381 
382 static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr,
383 			      char *page)
384 {
385 	struct pmu *pmu = dev_get_drvdata(dev);
386 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
387 	u32 bus_slots = FIELD_GET(ARMV8_PMU_BUS_SLOTS, cpu_pmu->reg_pmmir);
388 
389 	return sysfs_emit(page, "0x%08x\n", bus_slots);
390 }
391 
392 static DEVICE_ATTR_RO(bus_slots);
393 
394 static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr,
395 			      char *page)
396 {
397 	struct pmu *pmu = dev_get_drvdata(dev);
398 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
399 	u32 bus_width = FIELD_GET(ARMV8_PMU_BUS_WIDTH, cpu_pmu->reg_pmmir);
400 	u32 val = 0;
401 
402 	/* Encoded as Log2(number of bytes), plus one */
403 	if (bus_width > 2 && bus_width < 13)
404 		val = 1 << (bus_width - 1);
405 
406 	return sysfs_emit(page, "0x%08x\n", val);
407 }
408 
409 static DEVICE_ATTR_RO(bus_width);
410 
411 static u32 threshold_max(struct arm_pmu *cpu_pmu)
412 {
413 	/*
414 	 * PMMIR.THWIDTH is readable and non-zero on aarch32, but it would be
415 	 * impossible to write the threshold in the upper 32 bits of PMEVTYPER.
416 	 */
417 	if (IS_ENABLED(CONFIG_ARM))
418 		return 0;
419 
420 	/*
421 	 * The largest value that can be written to PMEVTYPER<n>_EL0.TH is
422 	 * (2 ^ PMMIR.THWIDTH) - 1.
423 	 */
424 	return (1 << FIELD_GET(ARMV8_PMU_THWIDTH, cpu_pmu->reg_pmmir)) - 1;
425 }
426 
427 static ssize_t threshold_max_show(struct device *dev,
428 				  struct device_attribute *attr, char *page)
429 {
430 	struct pmu *pmu = dev_get_drvdata(dev);
431 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
432 
433 	return sysfs_emit(page, "0x%08x\n", threshold_max(cpu_pmu));
434 }
435 
436 static DEVICE_ATTR_RO(threshold_max);
437 
438 static struct attribute *armv8_pmuv3_caps_attrs[] = {
439 	&dev_attr_slots.attr,
440 	&dev_attr_bus_slots.attr,
441 	&dev_attr_bus_width.attr,
442 	&dev_attr_threshold_max.attr,
443 	NULL,
444 };
445 
446 static const struct attribute_group armv8_pmuv3_caps_attr_group = {
447 	.name = "caps",
448 	.attrs = armv8_pmuv3_caps_attrs,
449 };
450 
451 /*
452  * Perf Events' indices
453  */
454 #define	ARMV8_IDX_CYCLE_COUNTER	0
455 #define	ARMV8_IDX_COUNTER0	1
456 #define	ARMV8_IDX_CYCLE_COUNTER_USER	32
457 
458 /*
459  * We unconditionally enable ARMv8.5-PMU long event counter support
460  * (64-bit events) where supported. Indicate if this arm_pmu has long
461  * event counter support.
462  *
463  * On AArch32, long counters make no sense (you can't access the top
464  * bits), so we only enable this on AArch64.
465  */
466 static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu)
467 {
468 	return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver));
469 }
470 
471 static bool armv8pmu_event_has_user_read(struct perf_event *event)
472 {
473 	return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT;
474 }
475 
476 /*
477  * We must chain two programmable counters for 64 bit events,
478  * except when we have allocated the 64bit cycle counter (for CPU
479  * cycles event) or when user space counter access is enabled.
480  */
481 static bool armv8pmu_event_is_chained(struct perf_event *event)
482 {
483 	int idx = event->hw.idx;
484 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
485 
486 	return !armv8pmu_event_has_user_read(event) &&
487 	       armv8pmu_event_is_64bit(event) &&
488 	       !armv8pmu_has_long_event(cpu_pmu) &&
489 	       (idx != ARMV8_IDX_CYCLE_COUNTER);
490 }
491 
492 /*
493  * ARMv8 low level PMU access
494  */
495 
496 /*
497  * Perf Event to low level counters mapping
498  */
499 #define	ARMV8_IDX_TO_COUNTER(x)	\
500 	(((x) - ARMV8_IDX_COUNTER0) & ARMV8_PMU_COUNTER_MASK)
501 
502 static u64 armv8pmu_pmcr_read(void)
503 {
504 	return read_pmcr();
505 }
506 
507 static void armv8pmu_pmcr_write(u64 val)
508 {
509 	val &= ARMV8_PMU_PMCR_MASK;
510 	isb();
511 	write_pmcr(val);
512 }
513 
514 static int armv8pmu_has_overflowed(u32 pmovsr)
515 {
516 	return pmovsr & ARMV8_PMU_OVERFLOWED_MASK;
517 }
518 
519 static int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
520 {
521 	return pmnc & BIT(ARMV8_IDX_TO_COUNTER(idx));
522 }
523 
524 static u64 armv8pmu_read_evcntr(int idx)
525 {
526 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
527 
528 	return read_pmevcntrn(counter);
529 }
530 
531 static u64 armv8pmu_read_hw_counter(struct perf_event *event)
532 {
533 	int idx = event->hw.idx;
534 	u64 val = armv8pmu_read_evcntr(idx);
535 
536 	if (armv8pmu_event_is_chained(event))
537 		val = (val << 32) | armv8pmu_read_evcntr(idx - 1);
538 	return val;
539 }
540 
541 /*
542  * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP
543  * is set the event counters also become 64-bit counters. Unless the
544  * user has requested a long counter (attr.config1) then we want to
545  * interrupt upon 32-bit overflow - we achieve this by applying a bias.
546  */
547 static bool armv8pmu_event_needs_bias(struct perf_event *event)
548 {
549 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
550 	struct hw_perf_event *hwc = &event->hw;
551 	int idx = hwc->idx;
552 
553 	if (armv8pmu_event_is_64bit(event))
554 		return false;
555 
556 	if (armv8pmu_has_long_event(cpu_pmu) ||
557 	    idx == ARMV8_IDX_CYCLE_COUNTER)
558 		return true;
559 
560 	return false;
561 }
562 
563 static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value)
564 {
565 	if (armv8pmu_event_needs_bias(event))
566 		value |= GENMASK_ULL(63, 32);
567 
568 	return value;
569 }
570 
571 static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value)
572 {
573 	if (armv8pmu_event_needs_bias(event))
574 		value &= ~GENMASK_ULL(63, 32);
575 
576 	return value;
577 }
578 
579 static u64 armv8pmu_read_counter(struct perf_event *event)
580 {
581 	struct hw_perf_event *hwc = &event->hw;
582 	int idx = hwc->idx;
583 	u64 value;
584 
585 	if (idx == ARMV8_IDX_CYCLE_COUNTER)
586 		value = read_pmccntr();
587 	else
588 		value = armv8pmu_read_hw_counter(event);
589 
590 	return  armv8pmu_unbias_long_counter(event, value);
591 }
592 
593 static void armv8pmu_write_evcntr(int idx, u64 value)
594 {
595 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
596 
597 	write_pmevcntrn(counter, value);
598 }
599 
600 static void armv8pmu_write_hw_counter(struct perf_event *event,
601 					     u64 value)
602 {
603 	int idx = event->hw.idx;
604 
605 	if (armv8pmu_event_is_chained(event)) {
606 		armv8pmu_write_evcntr(idx, upper_32_bits(value));
607 		armv8pmu_write_evcntr(idx - 1, lower_32_bits(value));
608 	} else {
609 		armv8pmu_write_evcntr(idx, value);
610 	}
611 }
612 
613 static void armv8pmu_write_counter(struct perf_event *event, u64 value)
614 {
615 	struct hw_perf_event *hwc = &event->hw;
616 	int idx = hwc->idx;
617 
618 	value = armv8pmu_bias_long_counter(event, value);
619 
620 	if (idx == ARMV8_IDX_CYCLE_COUNTER)
621 		write_pmccntr(value);
622 	else
623 		armv8pmu_write_hw_counter(event, value);
624 }
625 
626 static void armv8pmu_write_evtype(int idx, unsigned long val)
627 {
628 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
629 	unsigned long mask = ARMV8_PMU_EVTYPE_EVENT |
630 			     ARMV8_PMU_INCLUDE_EL2 |
631 			     ARMV8_PMU_EXCLUDE_EL0 |
632 			     ARMV8_PMU_EXCLUDE_EL1;
633 
634 	if (IS_ENABLED(CONFIG_ARM64))
635 		mask |= ARMV8_PMU_EVTYPE_TC | ARMV8_PMU_EVTYPE_TH;
636 
637 	val &= mask;
638 	write_pmevtypern(counter, val);
639 }
640 
641 static void armv8pmu_write_event_type(struct perf_event *event)
642 {
643 	struct hw_perf_event *hwc = &event->hw;
644 	int idx = hwc->idx;
645 
646 	/*
647 	 * For chained events, the low counter is programmed to count
648 	 * the event of interest and the high counter is programmed
649 	 * with CHAIN event code with filters set to count at all ELs.
650 	 */
651 	if (armv8pmu_event_is_chained(event)) {
652 		u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN |
653 				ARMV8_PMU_INCLUDE_EL2;
654 
655 		armv8pmu_write_evtype(idx - 1, hwc->config_base);
656 		armv8pmu_write_evtype(idx, chain_evt);
657 	} else {
658 		if (idx == ARMV8_IDX_CYCLE_COUNTER)
659 			write_pmccfiltr(hwc->config_base);
660 		else
661 			armv8pmu_write_evtype(idx, hwc->config_base);
662 	}
663 }
664 
665 static u32 armv8pmu_event_cnten_mask(struct perf_event *event)
666 {
667 	int counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
668 	u32 mask = BIT(counter);
669 
670 	if (armv8pmu_event_is_chained(event))
671 		mask |= BIT(counter - 1);
672 	return mask;
673 }
674 
675 static void armv8pmu_enable_counter(u32 mask)
676 {
677 	/*
678 	 * Make sure event configuration register writes are visible before we
679 	 * enable the counter.
680 	 * */
681 	isb();
682 	write_pmcntenset(mask);
683 }
684 
685 static void armv8pmu_enable_event_counter(struct perf_event *event)
686 {
687 	struct perf_event_attr *attr = &event->attr;
688 	u32 mask = armv8pmu_event_cnten_mask(event);
689 
690 	kvm_set_pmu_events(mask, attr);
691 
692 	/* We rely on the hypervisor switch code to enable guest counters */
693 	if (!kvm_pmu_counter_deferred(attr))
694 		armv8pmu_enable_counter(mask);
695 }
696 
697 static void armv8pmu_disable_counter(u32 mask)
698 {
699 	write_pmcntenclr(mask);
700 	/*
701 	 * Make sure the effects of disabling the counter are visible before we
702 	 * start configuring the event.
703 	 */
704 	isb();
705 }
706 
707 static void armv8pmu_disable_event_counter(struct perf_event *event)
708 {
709 	struct perf_event_attr *attr = &event->attr;
710 	u32 mask = armv8pmu_event_cnten_mask(event);
711 
712 	kvm_clr_pmu_events(mask);
713 
714 	/* We rely on the hypervisor switch code to disable guest counters */
715 	if (!kvm_pmu_counter_deferred(attr))
716 		armv8pmu_disable_counter(mask);
717 }
718 
719 static void armv8pmu_enable_intens(u32 mask)
720 {
721 	write_pmintenset(mask);
722 }
723 
724 static void armv8pmu_enable_event_irq(struct perf_event *event)
725 {
726 	u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
727 	armv8pmu_enable_intens(BIT(counter));
728 }
729 
730 static void armv8pmu_disable_intens(u32 mask)
731 {
732 	write_pmintenclr(mask);
733 	isb();
734 	/* Clear the overflow flag in case an interrupt is pending. */
735 	write_pmovsclr(mask);
736 	isb();
737 }
738 
739 static void armv8pmu_disable_event_irq(struct perf_event *event)
740 {
741 	u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
742 	armv8pmu_disable_intens(BIT(counter));
743 }
744 
745 static u32 armv8pmu_getreset_flags(void)
746 {
747 	u32 value;
748 
749 	/* Read */
750 	value = read_pmovsclr();
751 
752 	/* Write to clear flags */
753 	value &= ARMV8_PMU_OVERFLOWED_MASK;
754 	write_pmovsclr(value);
755 
756 	return value;
757 }
758 
759 static void update_pmuserenr(u64 val)
760 {
761 	lockdep_assert_irqs_disabled();
762 
763 	/*
764 	 * The current PMUSERENR_EL0 value might be the value for the guest.
765 	 * If that's the case, have KVM keep tracking of the register value
766 	 * for the host EL0 so that KVM can restore it before returning to
767 	 * the host EL0. Otherwise, update the register now.
768 	 */
769 	if (kvm_set_pmuserenr(val))
770 		return;
771 
772 	write_pmuserenr(val);
773 }
774 
775 static void armv8pmu_disable_user_access(void)
776 {
777 	update_pmuserenr(0);
778 }
779 
780 static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu)
781 {
782 	int i;
783 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
784 
785 	/* Clear any unused counters to avoid leaking their contents */
786 	for_each_clear_bit(i, cpuc->used_mask, cpu_pmu->num_events) {
787 		if (i == ARMV8_IDX_CYCLE_COUNTER)
788 			write_pmccntr(0);
789 		else
790 			armv8pmu_write_evcntr(i, 0);
791 	}
792 
793 	update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR);
794 }
795 
796 static void armv8pmu_enable_event(struct perf_event *event)
797 {
798 	/*
799 	 * Enable counter and interrupt, and set the counter to count
800 	 * the event that we're interested in.
801 	 */
802 	armv8pmu_disable_event_counter(event);
803 	armv8pmu_write_event_type(event);
804 	armv8pmu_enable_event_irq(event);
805 	armv8pmu_enable_event_counter(event);
806 }
807 
808 static void armv8pmu_disable_event(struct perf_event *event)
809 {
810 	armv8pmu_disable_event_counter(event);
811 	armv8pmu_disable_event_irq(event);
812 }
813 
814 static void armv8pmu_start(struct arm_pmu *cpu_pmu)
815 {
816 	struct perf_event_context *ctx;
817 	int nr_user = 0;
818 
819 	ctx = perf_cpu_task_ctx();
820 	if (ctx)
821 		nr_user = ctx->nr_user;
822 
823 	if (sysctl_perf_user_access && nr_user)
824 		armv8pmu_enable_user_access(cpu_pmu);
825 	else
826 		armv8pmu_disable_user_access();
827 
828 	/* Enable all counters */
829 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E);
830 
831 	kvm_vcpu_pmu_resync_el0();
832 }
833 
834 static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
835 {
836 	/* Disable all counters */
837 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E);
838 }
839 
840 static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu)
841 {
842 	u32 pmovsr;
843 	struct perf_sample_data data;
844 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
845 	struct pt_regs *regs;
846 	int idx;
847 
848 	/*
849 	 * Get and reset the IRQ flags
850 	 */
851 	pmovsr = armv8pmu_getreset_flags();
852 
853 	/*
854 	 * Did an overflow occur?
855 	 */
856 	if (!armv8pmu_has_overflowed(pmovsr))
857 		return IRQ_NONE;
858 
859 	/*
860 	 * Handle the counter(s) overflow(s)
861 	 */
862 	regs = get_irq_regs();
863 
864 	/*
865 	 * Stop the PMU while processing the counter overflows
866 	 * to prevent skews in group events.
867 	 */
868 	armv8pmu_stop(cpu_pmu);
869 	for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
870 		struct perf_event *event = cpuc->events[idx];
871 		struct hw_perf_event *hwc;
872 
873 		/* Ignore if we don't have an event. */
874 		if (!event)
875 			continue;
876 
877 		/*
878 		 * We have a single interrupt for all counters. Check that
879 		 * each counter has overflowed before we process it.
880 		 */
881 		if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
882 			continue;
883 
884 		hwc = &event->hw;
885 		armpmu_event_update(event);
886 		perf_sample_data_init(&data, 0, hwc->last_period);
887 		if (!armpmu_event_set_period(event))
888 			continue;
889 
890 		/*
891 		 * Perf event overflow will queue the processing of the event as
892 		 * an irq_work which will be taken care of in the handling of
893 		 * IPI_IRQ_WORK.
894 		 */
895 		if (perf_event_overflow(event, &data, regs))
896 			cpu_pmu->disable(event);
897 	}
898 	armv8pmu_start(cpu_pmu);
899 
900 	return IRQ_HANDLED;
901 }
902 
903 static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc,
904 				    struct arm_pmu *cpu_pmu)
905 {
906 	int idx;
907 
908 	for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; idx++) {
909 		if (!test_and_set_bit(idx, cpuc->used_mask))
910 			return idx;
911 	}
912 	return -EAGAIN;
913 }
914 
915 static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc,
916 				   struct arm_pmu *cpu_pmu)
917 {
918 	int idx;
919 
920 	/*
921 	 * Chaining requires two consecutive event counters, where
922 	 * the lower idx must be even.
923 	 */
924 	for (idx = ARMV8_IDX_COUNTER0 + 1; idx < cpu_pmu->num_events; idx += 2) {
925 		if (!test_and_set_bit(idx, cpuc->used_mask)) {
926 			/* Check if the preceding even counter is available */
927 			if (!test_and_set_bit(idx - 1, cpuc->used_mask))
928 				return idx;
929 			/* Release the Odd counter */
930 			clear_bit(idx, cpuc->used_mask);
931 		}
932 	}
933 	return -EAGAIN;
934 }
935 
936 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
937 				  struct perf_event *event)
938 {
939 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
940 	struct hw_perf_event *hwc = &event->hw;
941 	unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT;
942 
943 	/* Always prefer to place a cycle counter into the cycle counter. */
944 	if (evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) {
945 		if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
946 			return ARMV8_IDX_CYCLE_COUNTER;
947 		else if (armv8pmu_event_is_64bit(event) &&
948 			   armv8pmu_event_want_user_access(event) &&
949 			   !armv8pmu_has_long_event(cpu_pmu))
950 				return -EAGAIN;
951 	}
952 
953 	/*
954 	 * Otherwise use events counters
955 	 */
956 	if (armv8pmu_event_is_chained(event))
957 		return	armv8pmu_get_chain_idx(cpuc, cpu_pmu);
958 	else
959 		return armv8pmu_get_single_idx(cpuc, cpu_pmu);
960 }
961 
962 static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc,
963 				     struct perf_event *event)
964 {
965 	int idx = event->hw.idx;
966 
967 	clear_bit(idx, cpuc->used_mask);
968 	if (armv8pmu_event_is_chained(event))
969 		clear_bit(idx - 1, cpuc->used_mask);
970 }
971 
972 static int armv8pmu_user_event_idx(struct perf_event *event)
973 {
974 	if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event))
975 		return 0;
976 
977 	/*
978 	 * We remap the cycle counter index to 32 to
979 	 * match the offset applied to the rest of
980 	 * the counter indices.
981 	 */
982 	if (event->hw.idx == ARMV8_IDX_CYCLE_COUNTER)
983 		return ARMV8_IDX_CYCLE_COUNTER_USER;
984 
985 	return event->hw.idx;
986 }
987 
988 /*
989  * Add an event filter to a given event.
990  */
991 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
992 				     struct perf_event_attr *attr)
993 {
994 	unsigned long config_base = 0;
995 	struct perf_event *perf_event = container_of(attr, struct perf_event,
996 						     attr);
997 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
998 	u32 th;
999 
1000 	if (attr->exclude_idle) {
1001 		pr_debug("ARM performance counters do not support mode exclusion\n");
1002 		return -EOPNOTSUPP;
1003 	}
1004 
1005 	/*
1006 	 * If we're running in hyp mode, then we *are* the hypervisor.
1007 	 * Therefore we ignore exclude_hv in this configuration, since
1008 	 * there's no hypervisor to sample anyway. This is consistent
1009 	 * with other architectures (x86 and Power).
1010 	 */
1011 	if (is_kernel_in_hyp_mode()) {
1012 		if (!attr->exclude_kernel && !attr->exclude_host)
1013 			config_base |= ARMV8_PMU_INCLUDE_EL2;
1014 		if (attr->exclude_guest)
1015 			config_base |= ARMV8_PMU_EXCLUDE_EL1;
1016 		if (attr->exclude_host)
1017 			config_base |= ARMV8_PMU_EXCLUDE_EL0;
1018 	} else {
1019 		if (!attr->exclude_hv && !attr->exclude_host)
1020 			config_base |= ARMV8_PMU_INCLUDE_EL2;
1021 	}
1022 
1023 	/*
1024 	 * Filter out !VHE kernels and guest kernels
1025 	 */
1026 	if (attr->exclude_kernel)
1027 		config_base |= ARMV8_PMU_EXCLUDE_EL1;
1028 
1029 	if (attr->exclude_user)
1030 		config_base |= ARMV8_PMU_EXCLUDE_EL0;
1031 
1032 	/*
1033 	 * If FEAT_PMUv3_TH isn't implemented, then THWIDTH (threshold_max) will
1034 	 * be 0 and will also trigger this check, preventing it from being used.
1035 	 */
1036 	th = ATTR_CFG_GET_FLD(attr, threshold);
1037 	if (th > threshold_max(cpu_pmu)) {
1038 		pr_debug("PMU event threshold exceeds max value\n");
1039 		return -EINVAL;
1040 	}
1041 
1042 	if (IS_ENABLED(CONFIG_ARM64) && th) {
1043 		config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TH, th);
1044 		config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TC,
1045 					  armv8pmu_event_threshold_control(attr));
1046 	}
1047 
1048 	/*
1049 	 * Install the filter into config_base as this is used to
1050 	 * construct the event type.
1051 	 */
1052 	event->config_base = config_base;
1053 
1054 	return 0;
1055 }
1056 
1057 static void armv8pmu_reset(void *info)
1058 {
1059 	struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
1060 	u64 pmcr;
1061 
1062 	/* The counter and interrupt enable registers are unknown at reset. */
1063 	armv8pmu_disable_counter(U32_MAX);
1064 	armv8pmu_disable_intens(U32_MAX);
1065 
1066 	/* Clear the counters we flip at guest entry/exit */
1067 	kvm_clr_pmu_events(U32_MAX);
1068 
1069 	/*
1070 	 * Initialize & Reset PMNC. Request overflow interrupt for
1071 	 * 64 bit cycle counter but cheat in armv8pmu_write_counter().
1072 	 */
1073 	pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC;
1074 
1075 	/* Enable long event counter support where available */
1076 	if (armv8pmu_has_long_event(cpu_pmu))
1077 		pmcr |= ARMV8_PMU_PMCR_LP;
1078 
1079 	armv8pmu_pmcr_write(pmcr);
1080 }
1081 
1082 static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu,
1083 				      struct perf_event *event)
1084 {
1085 	if (event->attr.type == PERF_TYPE_HARDWARE &&
1086 	    event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) {
1087 
1088 		if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED,
1089 			     armpmu->pmceid_bitmap))
1090 			return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED;
1091 
1092 		if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED,
1093 			     armpmu->pmceid_bitmap))
1094 			return ARMV8_PMUV3_PERFCTR_BR_RETIRED;
1095 
1096 		return HW_OP_UNSUPPORTED;
1097 	}
1098 
1099 	return armpmu_map_event(event, &armv8_pmuv3_perf_map,
1100 				&armv8_pmuv3_perf_cache_map,
1101 				ARMV8_PMU_EVTYPE_EVENT);
1102 }
1103 
1104 static int __armv8_pmuv3_map_event(struct perf_event *event,
1105 				   const unsigned (*extra_event_map)
1106 						  [PERF_COUNT_HW_MAX],
1107 				   const unsigned (*extra_cache_map)
1108 						  [PERF_COUNT_HW_CACHE_MAX]
1109 						  [PERF_COUNT_HW_CACHE_OP_MAX]
1110 						  [PERF_COUNT_HW_CACHE_RESULT_MAX])
1111 {
1112 	int hw_event_id;
1113 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1114 
1115 	hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event);
1116 
1117 	/*
1118 	 * CHAIN events only work when paired with an adjacent counter, and it
1119 	 * never makes sense for a user to open one in isolation, as they'll be
1120 	 * rotated arbitrarily.
1121 	 */
1122 	if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN)
1123 		return -EINVAL;
1124 
1125 	if (armv8pmu_event_is_64bit(event))
1126 		event->hw.flags |= ARMPMU_EVT_64BIT;
1127 
1128 	/*
1129 	 * User events must be allocated into a single counter, and so
1130 	 * must not be chained.
1131 	 *
1132 	 * Most 64-bit events require long counter support, but 64-bit
1133 	 * CPU_CYCLES events can be placed into the dedicated cycle
1134 	 * counter when this is free.
1135 	 */
1136 	if (armv8pmu_event_want_user_access(event)) {
1137 		if (!(event->attach_state & PERF_ATTACH_TASK))
1138 			return -EINVAL;
1139 		if (armv8pmu_event_is_64bit(event) &&
1140 		    (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
1141 		    !armv8pmu_has_long_event(armpmu))
1142 			return -EOPNOTSUPP;
1143 
1144 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1145 	}
1146 
1147 	/* Only expose micro/arch events supported by this PMU */
1148 	if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS)
1149 	    && test_bit(hw_event_id, armpmu->pmceid_bitmap)) {
1150 		return hw_event_id;
1151 	}
1152 
1153 	return armpmu_map_event(event, extra_event_map, extra_cache_map,
1154 				ARMV8_PMU_EVTYPE_EVENT);
1155 }
1156 
1157 static int armv8_pmuv3_map_event(struct perf_event *event)
1158 {
1159 	return __armv8_pmuv3_map_event(event, NULL, NULL);
1160 }
1161 
1162 static int armv8_a53_map_event(struct perf_event *event)
1163 {
1164 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map);
1165 }
1166 
1167 static int armv8_a57_map_event(struct perf_event *event)
1168 {
1169 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map);
1170 }
1171 
1172 static int armv8_a73_map_event(struct perf_event *event)
1173 {
1174 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map);
1175 }
1176 
1177 static int armv8_thunder_map_event(struct perf_event *event)
1178 {
1179 	return __armv8_pmuv3_map_event(event, NULL,
1180 				       &armv8_thunder_perf_cache_map);
1181 }
1182 
1183 static int armv8_vulcan_map_event(struct perf_event *event)
1184 {
1185 	return __armv8_pmuv3_map_event(event, NULL,
1186 				       &armv8_vulcan_perf_cache_map);
1187 }
1188 
1189 struct armv8pmu_probe_info {
1190 	struct arm_pmu *pmu;
1191 	bool present;
1192 };
1193 
1194 static void __armv8pmu_probe_pmu(void *info)
1195 {
1196 	struct armv8pmu_probe_info *probe = info;
1197 	struct arm_pmu *cpu_pmu = probe->pmu;
1198 	u64 pmceid_raw[2];
1199 	u32 pmceid[2];
1200 	int pmuver;
1201 
1202 	pmuver = read_pmuver();
1203 	if (!pmuv3_implemented(pmuver))
1204 		return;
1205 
1206 	cpu_pmu->pmuver = pmuver;
1207 	probe->present = true;
1208 
1209 	/* Read the nb of CNTx counters supported from PMNC */
1210 	cpu_pmu->num_events = FIELD_GET(ARMV8_PMU_PMCR_N, armv8pmu_pmcr_read());
1211 
1212 	/* Add the CPU cycles counter */
1213 	cpu_pmu->num_events += 1;
1214 
1215 	pmceid[0] = pmceid_raw[0] = read_pmceid0();
1216 	pmceid[1] = pmceid_raw[1] = read_pmceid1();
1217 
1218 	bitmap_from_arr32(cpu_pmu->pmceid_bitmap,
1219 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1220 
1221 	pmceid[0] = pmceid_raw[0] >> 32;
1222 	pmceid[1] = pmceid_raw[1] >> 32;
1223 
1224 	bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap,
1225 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1226 
1227 	/* store PMMIR register for sysfs */
1228 	if (is_pmuv3p4(pmuver))
1229 		cpu_pmu->reg_pmmir = read_pmmir();
1230 	else
1231 		cpu_pmu->reg_pmmir = 0;
1232 }
1233 
1234 static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu)
1235 {
1236 	struct armv8pmu_probe_info probe = {
1237 		.pmu = cpu_pmu,
1238 		.present = false,
1239 	};
1240 	int ret;
1241 
1242 	ret = smp_call_function_any(&cpu_pmu->supported_cpus,
1243 				    __armv8pmu_probe_pmu,
1244 				    &probe, 1);
1245 	if (ret)
1246 		return ret;
1247 
1248 	return probe.present ? 0 : -ENODEV;
1249 }
1250 
1251 static void armv8pmu_disable_user_access_ipi(void *unused)
1252 {
1253 	armv8pmu_disable_user_access();
1254 }
1255 
1256 static int armv8pmu_proc_user_access_handler(struct ctl_table *table, int write,
1257 		void *buffer, size_t *lenp, loff_t *ppos)
1258 {
1259 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1260 	if (ret || !write || sysctl_perf_user_access)
1261 		return ret;
1262 
1263 	on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1);
1264 	return 0;
1265 }
1266 
1267 static struct ctl_table armv8_pmu_sysctl_table[] = {
1268 	{
1269 		.procname       = "perf_user_access",
1270 		.data		= &sysctl_perf_user_access,
1271 		.maxlen		= sizeof(unsigned int),
1272 		.mode           = 0644,
1273 		.proc_handler	= armv8pmu_proc_user_access_handler,
1274 		.extra1		= SYSCTL_ZERO,
1275 		.extra2		= SYSCTL_ONE,
1276 	},
1277 };
1278 
1279 static void armv8_pmu_register_sysctl_table(void)
1280 {
1281 	static u32 tbl_registered = 0;
1282 
1283 	if (!cmpxchg_relaxed(&tbl_registered, 0, 1))
1284 		register_sysctl("kernel", armv8_pmu_sysctl_table);
1285 }
1286 
1287 static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name,
1288 			  int (*map_event)(struct perf_event *event))
1289 {
1290 	int ret = armv8pmu_probe_pmu(cpu_pmu);
1291 	if (ret)
1292 		return ret;
1293 
1294 	cpu_pmu->handle_irq		= armv8pmu_handle_irq;
1295 	cpu_pmu->enable			= armv8pmu_enable_event;
1296 	cpu_pmu->disable		= armv8pmu_disable_event;
1297 	cpu_pmu->read_counter		= armv8pmu_read_counter;
1298 	cpu_pmu->write_counter		= armv8pmu_write_counter;
1299 	cpu_pmu->get_event_idx		= armv8pmu_get_event_idx;
1300 	cpu_pmu->clear_event_idx	= armv8pmu_clear_event_idx;
1301 	cpu_pmu->start			= armv8pmu_start;
1302 	cpu_pmu->stop			= armv8pmu_stop;
1303 	cpu_pmu->reset			= armv8pmu_reset;
1304 	cpu_pmu->set_event_filter	= armv8pmu_set_event_filter;
1305 
1306 	cpu_pmu->pmu.event_idx		= armv8pmu_user_event_idx;
1307 
1308 	cpu_pmu->name			= name;
1309 	cpu_pmu->map_event		= map_event;
1310 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = &armv8_pmuv3_events_attr_group;
1311 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = &armv8_pmuv3_format_attr_group;
1312 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = &armv8_pmuv3_caps_attr_group;
1313 	armv8_pmu_register_sysctl_table();
1314 	return 0;
1315 }
1316 
1317 #define PMUV3_INIT_SIMPLE(name)						\
1318 static int name##_pmu_init(struct arm_pmu *cpu_pmu)			\
1319 {									\
1320 	return armv8_pmu_init(cpu_pmu, #name, armv8_pmuv3_map_event);	\
1321 }
1322 
1323 #define PMUV3_INIT_MAP_EVENT(name, map_event)				\
1324 static int name##_pmu_init(struct arm_pmu *cpu_pmu)			\
1325 {									\
1326 	return armv8_pmu_init(cpu_pmu, #name, map_event);		\
1327 }
1328 
1329 PMUV3_INIT_SIMPLE(armv8_pmuv3)
1330 
1331 PMUV3_INIT_SIMPLE(armv8_cortex_a34)
1332 PMUV3_INIT_SIMPLE(armv8_cortex_a55)
1333 PMUV3_INIT_SIMPLE(armv8_cortex_a65)
1334 PMUV3_INIT_SIMPLE(armv8_cortex_a75)
1335 PMUV3_INIT_SIMPLE(armv8_cortex_a76)
1336 PMUV3_INIT_SIMPLE(armv8_cortex_a77)
1337 PMUV3_INIT_SIMPLE(armv8_cortex_a78)
1338 PMUV3_INIT_SIMPLE(armv9_cortex_a510)
1339 PMUV3_INIT_SIMPLE(armv9_cortex_a520)
1340 PMUV3_INIT_SIMPLE(armv9_cortex_a710)
1341 PMUV3_INIT_SIMPLE(armv9_cortex_a715)
1342 PMUV3_INIT_SIMPLE(armv9_cortex_a720)
1343 PMUV3_INIT_SIMPLE(armv8_cortex_x1)
1344 PMUV3_INIT_SIMPLE(armv9_cortex_x2)
1345 PMUV3_INIT_SIMPLE(armv9_cortex_x3)
1346 PMUV3_INIT_SIMPLE(armv9_cortex_x4)
1347 PMUV3_INIT_SIMPLE(armv8_neoverse_e1)
1348 PMUV3_INIT_SIMPLE(armv8_neoverse_n1)
1349 PMUV3_INIT_SIMPLE(armv9_neoverse_n2)
1350 PMUV3_INIT_SIMPLE(armv8_neoverse_v1)
1351 
1352 PMUV3_INIT_SIMPLE(armv8_nvidia_carmel)
1353 PMUV3_INIT_SIMPLE(armv8_nvidia_denver)
1354 
1355 PMUV3_INIT_MAP_EVENT(armv8_cortex_a35, armv8_a53_map_event)
1356 PMUV3_INIT_MAP_EVENT(armv8_cortex_a53, armv8_a53_map_event)
1357 PMUV3_INIT_MAP_EVENT(armv8_cortex_a57, armv8_a57_map_event)
1358 PMUV3_INIT_MAP_EVENT(armv8_cortex_a72, armv8_a57_map_event)
1359 PMUV3_INIT_MAP_EVENT(armv8_cortex_a73, armv8_a73_map_event)
1360 PMUV3_INIT_MAP_EVENT(armv8_cavium_thunder, armv8_thunder_map_event)
1361 PMUV3_INIT_MAP_EVENT(armv8_brcm_vulcan, armv8_vulcan_map_event)
1362 
1363 static const struct of_device_id armv8_pmu_of_device_ids[] = {
1364 	{.compatible = "arm,armv8-pmuv3",	.data = armv8_pmuv3_pmu_init},
1365 	{.compatible = "arm,cortex-a34-pmu",	.data = armv8_cortex_a34_pmu_init},
1366 	{.compatible = "arm,cortex-a35-pmu",	.data = armv8_cortex_a35_pmu_init},
1367 	{.compatible = "arm,cortex-a53-pmu",	.data = armv8_cortex_a53_pmu_init},
1368 	{.compatible = "arm,cortex-a55-pmu",	.data = armv8_cortex_a55_pmu_init},
1369 	{.compatible = "arm,cortex-a57-pmu",	.data = armv8_cortex_a57_pmu_init},
1370 	{.compatible = "arm,cortex-a65-pmu",	.data = armv8_cortex_a65_pmu_init},
1371 	{.compatible = "arm,cortex-a72-pmu",	.data = armv8_cortex_a72_pmu_init},
1372 	{.compatible = "arm,cortex-a73-pmu",	.data = armv8_cortex_a73_pmu_init},
1373 	{.compatible = "arm,cortex-a75-pmu",	.data = armv8_cortex_a75_pmu_init},
1374 	{.compatible = "arm,cortex-a76-pmu",	.data = armv8_cortex_a76_pmu_init},
1375 	{.compatible = "arm,cortex-a77-pmu",	.data = armv8_cortex_a77_pmu_init},
1376 	{.compatible = "arm,cortex-a78-pmu",	.data = armv8_cortex_a78_pmu_init},
1377 	{.compatible = "arm,cortex-a510-pmu",	.data = armv9_cortex_a510_pmu_init},
1378 	{.compatible = "arm,cortex-a520-pmu",	.data = armv9_cortex_a520_pmu_init},
1379 	{.compatible = "arm,cortex-a710-pmu",	.data = armv9_cortex_a710_pmu_init},
1380 	{.compatible = "arm,cortex-a715-pmu",	.data = armv9_cortex_a715_pmu_init},
1381 	{.compatible = "arm,cortex-a720-pmu",	.data = armv9_cortex_a720_pmu_init},
1382 	{.compatible = "arm,cortex-x1-pmu",	.data = armv8_cortex_x1_pmu_init},
1383 	{.compatible = "arm,cortex-x2-pmu",	.data = armv9_cortex_x2_pmu_init},
1384 	{.compatible = "arm,cortex-x3-pmu",	.data = armv9_cortex_x3_pmu_init},
1385 	{.compatible = "arm,cortex-x4-pmu",	.data = armv9_cortex_x4_pmu_init},
1386 	{.compatible = "arm,neoverse-e1-pmu",	.data = armv8_neoverse_e1_pmu_init},
1387 	{.compatible = "arm,neoverse-n1-pmu",	.data = armv8_neoverse_n1_pmu_init},
1388 	{.compatible = "arm,neoverse-n2-pmu",	.data = armv9_neoverse_n2_pmu_init},
1389 	{.compatible = "arm,neoverse-v1-pmu",	.data = armv8_neoverse_v1_pmu_init},
1390 	{.compatible = "cavium,thunder-pmu",	.data = armv8_cavium_thunder_pmu_init},
1391 	{.compatible = "brcm,vulcan-pmu",	.data = armv8_brcm_vulcan_pmu_init},
1392 	{.compatible = "nvidia,carmel-pmu",	.data = armv8_nvidia_carmel_pmu_init},
1393 	{.compatible = "nvidia,denver-pmu",	.data = armv8_nvidia_denver_pmu_init},
1394 	{},
1395 };
1396 
1397 static int armv8_pmu_device_probe(struct platform_device *pdev)
1398 {
1399 	return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
1400 }
1401 
1402 static struct platform_driver armv8_pmu_driver = {
1403 	.driver		= {
1404 		.name	= ARMV8_PMU_PDEV_NAME,
1405 		.of_match_table = armv8_pmu_of_device_ids,
1406 		.suppress_bind_attrs = true,
1407 	},
1408 	.probe		= armv8_pmu_device_probe,
1409 };
1410 
1411 static int __init armv8_pmu_driver_init(void)
1412 {
1413 	int ret;
1414 
1415 	if (acpi_disabled)
1416 		ret = platform_driver_register(&armv8_pmu_driver);
1417 	else
1418 		ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init);
1419 
1420 	if (!ret)
1421 		lockup_detector_retry_init();
1422 
1423 	return ret;
1424 }
1425 device_initcall(armv8_pmu_driver_init)
1426 
1427 void arch_perf_update_userpage(struct perf_event *event,
1428 			       struct perf_event_mmap_page *userpg, u64 now)
1429 {
1430 	struct clock_read_data *rd;
1431 	unsigned int seq;
1432 	u64 ns;
1433 
1434 	userpg->cap_user_time = 0;
1435 	userpg->cap_user_time_zero = 0;
1436 	userpg->cap_user_time_short = 0;
1437 	userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event);
1438 
1439 	if (userpg->cap_user_rdpmc) {
1440 		if (event->hw.flags & ARMPMU_EVT_64BIT)
1441 			userpg->pmc_width = 64;
1442 		else
1443 			userpg->pmc_width = 32;
1444 	}
1445 
1446 	do {
1447 		rd = sched_clock_read_begin(&seq);
1448 
1449 		if (rd->read_sched_clock != arch_timer_read_counter)
1450 			return;
1451 
1452 		userpg->time_mult = rd->mult;
1453 		userpg->time_shift = rd->shift;
1454 		userpg->time_zero = rd->epoch_ns;
1455 		userpg->time_cycles = rd->epoch_cyc;
1456 		userpg->time_mask = rd->sched_clock_mask;
1457 
1458 		/*
1459 		 * Subtract the cycle base, such that software that
1460 		 * doesn't know about cap_user_time_short still 'works'
1461 		 * assuming no wraps.
1462 		 */
1463 		ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
1464 		userpg->time_zero -= ns;
1465 
1466 	} while (sched_clock_read_retry(seq));
1467 
1468 	userpg->time_offset = userpg->time_zero - now;
1469 
1470 	/*
1471 	 * time_shift is not expected to be greater than 31 due to
1472 	 * the original published conversion algorithm shifting a
1473 	 * 32-bit value (now specifies a 64-bit value) - refer
1474 	 * perf_event_mmap_page documentation in perf_event.h.
1475 	 */
1476 	if (userpg->time_shift == 32) {
1477 		userpg->time_shift = 31;
1478 		userpg->time_mult >>= 1;
1479 	}
1480 
1481 	/*
1482 	 * Internal timekeeping for enabled/running/stopped times
1483 	 * is always computed with the sched_clock.
1484 	 */
1485 	userpg->cap_user_time = 1;
1486 	userpg->cap_user_time_zero = 1;
1487 	userpg->cap_user_time_short = 1;
1488 }
1489