xref: /linux/drivers/perf/arm_pmuv3.c (revision 47b60ec7ba22a6359379bce9643bfff7a1ffe9ed)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ARMv8 PMUv3 Performance Events handling code.
4  *
5  * Copyright (C) 2012 ARM Limited
6  * Author: Will Deacon <will.deacon@arm.com>
7  *
8  * This code is based heavily on the ARMv7 perf event code.
9  */
10 
11 #include <asm/irq_regs.h>
12 #include <asm/perf_event.h>
13 #include <asm/virt.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 
17 #include <linux/acpi.h>
18 #include <linux/clocksource.h>
19 #include <linux/of.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/perf/arm_pmuv3.h>
22 #include <linux/platform_device.h>
23 #include <linux/sched_clock.h>
24 #include <linux/smp.h>
25 
26 #include <asm/arm_pmuv3.h>
27 
28 /* ARMv8 Cortex-A53 specific event types. */
29 #define ARMV8_A53_PERFCTR_PREF_LINEFILL				0xC2
30 
31 /* ARMv8 Cavium ThunderX specific event types. */
32 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST			0xE9
33 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS		0xEA
34 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS		0xEB
35 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS		0xEC
36 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS		0xED
37 
38 /*
39  * ARMv8 Architectural defined events, not all of these may
40  * be supported on any given implementation. Unsupported events will
41  * be disabled at run-time based on the PMCEID registers.
42  */
43 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
44 	PERF_MAP_ALL_UNSUPPORTED,
45 	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
46 	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV8_PMUV3_PERFCTR_INST_RETIRED,
47 	[PERF_COUNT_HW_CACHE_REFERENCES]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
48 	[PERF_COUNT_HW_CACHE_MISSES]		= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
49 	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
50 	[PERF_COUNT_HW_BUS_CYCLES]		= ARMV8_PMUV3_PERFCTR_BUS_CYCLES,
51 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV8_PMUV3_PERFCTR_STALL_FRONTEND,
52 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV8_PMUV3_PERFCTR_STALL_BACKEND,
53 };
54 
55 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
56 						[PERF_COUNT_HW_CACHE_OP_MAX]
57 						[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
58 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
59 
60 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
61 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
62 
63 	[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE,
64 	[C(L1I)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL,
65 
66 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL,
67 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB,
68 
69 	[C(ITLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL,
70 	[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB,
71 
72 	[C(LL)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD,
73 	[C(LL)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_RD,
74 
75 	[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_BR_PRED,
76 	[C(BPU)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
77 };
78 
79 static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
80 					      [PERF_COUNT_HW_CACHE_OP_MAX]
81 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
82 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
83 
84 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL,
85 
86 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
87 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
88 };
89 
90 static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
91 					      [PERF_COUNT_HW_CACHE_OP_MAX]
92 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
93 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
94 
95 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
96 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
97 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
98 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
99 
100 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
101 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
102 
103 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
104 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
105 };
106 
107 static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
108 					      [PERF_COUNT_HW_CACHE_OP_MAX]
109 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
110 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
111 
112 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
113 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
114 };
115 
116 static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
117 						   [PERF_COUNT_HW_CACHE_OP_MAX]
118 						   [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
119 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
120 
121 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
122 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
123 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
124 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST,
125 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS,
126 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS,
127 
128 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS,
129 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS,
130 
131 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
132 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
133 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
134 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
135 };
136 
137 static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
138 					      [PERF_COUNT_HW_CACHE_OP_MAX]
139 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
140 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
141 
142 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
143 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
144 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
145 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
146 
147 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
148 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
149 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
150 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
151 
152 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
153 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
154 };
155 
156 static ssize_t
157 armv8pmu_events_sysfs_show(struct device *dev,
158 			   struct device_attribute *attr, char *page)
159 {
160 	struct perf_pmu_events_attr *pmu_attr;
161 
162 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
163 
164 	return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
165 }
166 
167 #define ARMV8_EVENT_ATTR(name, config)						\
168 	PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config)
169 
170 static struct attribute *armv8_pmuv3_event_attrs[] = {
171 	ARMV8_EVENT_ATTR(sw_incr, ARMV8_PMUV3_PERFCTR_SW_INCR),
172 	ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
173 	ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
174 	ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
175 	ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
176 	ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
177 	ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
178 	ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
179 	ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
180 	ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
181 	ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
182 	ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
183 	ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
184 	ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
185 	ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
186 	ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
187 	ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
188 	ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
189 	ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
190 	ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
191 	ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
192 	ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
193 	ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
194 	ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
195 	ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
196 	ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
197 	ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
198 	ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
199 	ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
200 	ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
201 	/* Don't expose the chain event in /sys, since it's useless in isolation */
202 	ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
203 	ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
204 	ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
205 	ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
206 	ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
207 	ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
208 	ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
209 	ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
210 	ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
211 	ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
212 	ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
213 	ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
214 	ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
215 	ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
216 	ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
217 	ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
218 	ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
219 	ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
220 	ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
221 	ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
222 	ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
223 	ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
224 	ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
225 	ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
226 	ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
227 	ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
228 	ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD),
229 	ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED),
230 	ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC),
231 	ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL),
232 	ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND),
233 	ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND),
234 	ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT),
235 	ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
236 	ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
237 	ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
238 	ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
239 	ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES),
240 	ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM),
241 	ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS),
242 	ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD),
243 	ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS),
244 	ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD),
245 	ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP),
246 	ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG),
247 	ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0),
248 	ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1),
249 	ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2),
250 	ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3),
251 	ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4),
252 	ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5),
253 	ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6),
254 	ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7),
255 	ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT),
256 	ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT),
257 	ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT),
258 	ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED),
259 	ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD),
260 	ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR),
261 	NULL,
262 };
263 
264 static umode_t
265 armv8pmu_event_attr_is_visible(struct kobject *kobj,
266 			       struct attribute *attr, int unused)
267 {
268 	struct device *dev = kobj_to_dev(kobj);
269 	struct pmu *pmu = dev_get_drvdata(dev);
270 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
271 	struct perf_pmu_events_attr *pmu_attr;
272 
273 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
274 
275 	if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
276 	    test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap))
277 		return attr->mode;
278 
279 	if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) {
280 		u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE;
281 
282 		if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
283 		    test_bit(id, cpu_pmu->pmceid_ext_bitmap))
284 			return attr->mode;
285 	}
286 
287 	return 0;
288 }
289 
290 static const struct attribute_group armv8_pmuv3_events_attr_group = {
291 	.name = "events",
292 	.attrs = armv8_pmuv3_event_attrs,
293 	.is_visible = armv8pmu_event_attr_is_visible,
294 };
295 
296 PMU_FORMAT_ATTR(event, "config:0-15");
297 PMU_FORMAT_ATTR(long, "config1:0");
298 PMU_FORMAT_ATTR(rdpmc, "config1:1");
299 
300 static int sysctl_perf_user_access __read_mostly;
301 
302 static inline bool armv8pmu_event_is_64bit(struct perf_event *event)
303 {
304 	return event->attr.config1 & 0x1;
305 }
306 
307 static inline bool armv8pmu_event_want_user_access(struct perf_event *event)
308 {
309 	return event->attr.config1 & 0x2;
310 }
311 
312 static struct attribute *armv8_pmuv3_format_attrs[] = {
313 	&format_attr_event.attr,
314 	&format_attr_long.attr,
315 	&format_attr_rdpmc.attr,
316 	NULL,
317 };
318 
319 static const struct attribute_group armv8_pmuv3_format_attr_group = {
320 	.name = "format",
321 	.attrs = armv8_pmuv3_format_attrs,
322 };
323 
324 static ssize_t slots_show(struct device *dev, struct device_attribute *attr,
325 			  char *page)
326 {
327 	struct pmu *pmu = dev_get_drvdata(dev);
328 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
329 	u32 slots = cpu_pmu->reg_pmmir & ARMV8_PMU_SLOTS_MASK;
330 
331 	return sysfs_emit(page, "0x%08x\n", slots);
332 }
333 
334 static DEVICE_ATTR_RO(slots);
335 
336 static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr,
337 			      char *page)
338 {
339 	struct pmu *pmu = dev_get_drvdata(dev);
340 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
341 	u32 bus_slots = (cpu_pmu->reg_pmmir >> ARMV8_PMU_BUS_SLOTS_SHIFT)
342 			& ARMV8_PMU_BUS_SLOTS_MASK;
343 
344 	return sysfs_emit(page, "0x%08x\n", bus_slots);
345 }
346 
347 static DEVICE_ATTR_RO(bus_slots);
348 
349 static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr,
350 			      char *page)
351 {
352 	struct pmu *pmu = dev_get_drvdata(dev);
353 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
354 	u32 bus_width = (cpu_pmu->reg_pmmir >> ARMV8_PMU_BUS_WIDTH_SHIFT)
355 			& ARMV8_PMU_BUS_WIDTH_MASK;
356 	u32 val = 0;
357 
358 	/* Encoded as Log2(number of bytes), plus one */
359 	if (bus_width > 2 && bus_width < 13)
360 		val = 1 << (bus_width - 1);
361 
362 	return sysfs_emit(page, "0x%08x\n", val);
363 }
364 
365 static DEVICE_ATTR_RO(bus_width);
366 
367 static struct attribute *armv8_pmuv3_caps_attrs[] = {
368 	&dev_attr_slots.attr,
369 	&dev_attr_bus_slots.attr,
370 	&dev_attr_bus_width.attr,
371 	NULL,
372 };
373 
374 static const struct attribute_group armv8_pmuv3_caps_attr_group = {
375 	.name = "caps",
376 	.attrs = armv8_pmuv3_caps_attrs,
377 };
378 
379 /*
380  * Perf Events' indices
381  */
382 #define	ARMV8_IDX_CYCLE_COUNTER	0
383 #define	ARMV8_IDX_COUNTER0	1
384 #define	ARMV8_IDX_CYCLE_COUNTER_USER	32
385 
386 /*
387  * We unconditionally enable ARMv8.5-PMU long event counter support
388  * (64-bit events) where supported. Indicate if this arm_pmu has long
389  * event counter support.
390  *
391  * On AArch32, long counters make no sense (you can't access the top
392  * bits), so we only enable this on AArch64.
393  */
394 static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu)
395 {
396 	return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver));
397 }
398 
399 static inline bool armv8pmu_event_has_user_read(struct perf_event *event)
400 {
401 	return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT;
402 }
403 
404 /*
405  * We must chain two programmable counters for 64 bit events,
406  * except when we have allocated the 64bit cycle counter (for CPU
407  * cycles event) or when user space counter access is enabled.
408  */
409 static inline bool armv8pmu_event_is_chained(struct perf_event *event)
410 {
411 	int idx = event->hw.idx;
412 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
413 
414 	return !armv8pmu_event_has_user_read(event) &&
415 	       armv8pmu_event_is_64bit(event) &&
416 	       !armv8pmu_has_long_event(cpu_pmu) &&
417 	       (idx != ARMV8_IDX_CYCLE_COUNTER);
418 }
419 
420 /*
421  * ARMv8 low level PMU access
422  */
423 
424 /*
425  * Perf Event to low level counters mapping
426  */
427 #define	ARMV8_IDX_TO_COUNTER(x)	\
428 	(((x) - ARMV8_IDX_COUNTER0) & ARMV8_PMU_COUNTER_MASK)
429 
430 static inline u32 armv8pmu_pmcr_read(void)
431 {
432 	return read_pmcr();
433 }
434 
435 static inline void armv8pmu_pmcr_write(u32 val)
436 {
437 	val &= ARMV8_PMU_PMCR_MASK;
438 	isb();
439 	write_pmcr(val);
440 }
441 
442 static inline int armv8pmu_has_overflowed(u32 pmovsr)
443 {
444 	return pmovsr & ARMV8_PMU_OVERFLOWED_MASK;
445 }
446 
447 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
448 {
449 	return pmnc & BIT(ARMV8_IDX_TO_COUNTER(idx));
450 }
451 
452 static inline u64 armv8pmu_read_evcntr(int idx)
453 {
454 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
455 
456 	return read_pmevcntrn(counter);
457 }
458 
459 static inline u64 armv8pmu_read_hw_counter(struct perf_event *event)
460 {
461 	int idx = event->hw.idx;
462 	u64 val = armv8pmu_read_evcntr(idx);
463 
464 	if (armv8pmu_event_is_chained(event))
465 		val = (val << 32) | armv8pmu_read_evcntr(idx - 1);
466 	return val;
467 }
468 
469 /*
470  * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP
471  * is set the event counters also become 64-bit counters. Unless the
472  * user has requested a long counter (attr.config1) then we want to
473  * interrupt upon 32-bit overflow - we achieve this by applying a bias.
474  */
475 static bool armv8pmu_event_needs_bias(struct perf_event *event)
476 {
477 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
478 	struct hw_perf_event *hwc = &event->hw;
479 	int idx = hwc->idx;
480 
481 	if (armv8pmu_event_is_64bit(event))
482 		return false;
483 
484 	if (armv8pmu_has_long_event(cpu_pmu) ||
485 	    idx == ARMV8_IDX_CYCLE_COUNTER)
486 		return true;
487 
488 	return false;
489 }
490 
491 static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value)
492 {
493 	if (armv8pmu_event_needs_bias(event))
494 		value |= GENMASK_ULL(63, 32);
495 
496 	return value;
497 }
498 
499 static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value)
500 {
501 	if (armv8pmu_event_needs_bias(event))
502 		value &= ~GENMASK_ULL(63, 32);
503 
504 	return value;
505 }
506 
507 static u64 armv8pmu_read_counter(struct perf_event *event)
508 {
509 	struct hw_perf_event *hwc = &event->hw;
510 	int idx = hwc->idx;
511 	u64 value;
512 
513 	if (idx == ARMV8_IDX_CYCLE_COUNTER)
514 		value = read_pmccntr();
515 	else
516 		value = armv8pmu_read_hw_counter(event);
517 
518 	return  armv8pmu_unbias_long_counter(event, value);
519 }
520 
521 static inline void armv8pmu_write_evcntr(int idx, u64 value)
522 {
523 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
524 
525 	write_pmevcntrn(counter, value);
526 }
527 
528 static inline void armv8pmu_write_hw_counter(struct perf_event *event,
529 					     u64 value)
530 {
531 	int idx = event->hw.idx;
532 
533 	if (armv8pmu_event_is_chained(event)) {
534 		armv8pmu_write_evcntr(idx, upper_32_bits(value));
535 		armv8pmu_write_evcntr(idx - 1, lower_32_bits(value));
536 	} else {
537 		armv8pmu_write_evcntr(idx, value);
538 	}
539 }
540 
541 static void armv8pmu_write_counter(struct perf_event *event, u64 value)
542 {
543 	struct hw_perf_event *hwc = &event->hw;
544 	int idx = hwc->idx;
545 
546 	value = armv8pmu_bias_long_counter(event, value);
547 
548 	if (idx == ARMV8_IDX_CYCLE_COUNTER)
549 		write_pmccntr(value);
550 	else
551 		armv8pmu_write_hw_counter(event, value);
552 }
553 
554 static inline void armv8pmu_write_evtype(int idx, u32 val)
555 {
556 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
557 
558 	val &= ARMV8_PMU_EVTYPE_MASK;
559 	write_pmevtypern(counter, val);
560 }
561 
562 static inline void armv8pmu_write_event_type(struct perf_event *event)
563 {
564 	struct hw_perf_event *hwc = &event->hw;
565 	int idx = hwc->idx;
566 
567 	/*
568 	 * For chained events, the low counter is programmed to count
569 	 * the event of interest and the high counter is programmed
570 	 * with CHAIN event code with filters set to count at all ELs.
571 	 */
572 	if (armv8pmu_event_is_chained(event)) {
573 		u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN |
574 				ARMV8_PMU_INCLUDE_EL2;
575 
576 		armv8pmu_write_evtype(idx - 1, hwc->config_base);
577 		armv8pmu_write_evtype(idx, chain_evt);
578 	} else {
579 		if (idx == ARMV8_IDX_CYCLE_COUNTER)
580 			write_pmccfiltr(hwc->config_base);
581 		else
582 			armv8pmu_write_evtype(idx, hwc->config_base);
583 	}
584 }
585 
586 static u32 armv8pmu_event_cnten_mask(struct perf_event *event)
587 {
588 	int counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
589 	u32 mask = BIT(counter);
590 
591 	if (armv8pmu_event_is_chained(event))
592 		mask |= BIT(counter - 1);
593 	return mask;
594 }
595 
596 static inline void armv8pmu_enable_counter(u32 mask)
597 {
598 	/*
599 	 * Make sure event configuration register writes are visible before we
600 	 * enable the counter.
601 	 * */
602 	isb();
603 	write_pmcntenset(mask);
604 }
605 
606 static inline void armv8pmu_enable_event_counter(struct perf_event *event)
607 {
608 	struct perf_event_attr *attr = &event->attr;
609 	u32 mask = armv8pmu_event_cnten_mask(event);
610 
611 	kvm_set_pmu_events(mask, attr);
612 
613 	/* We rely on the hypervisor switch code to enable guest counters */
614 	if (!kvm_pmu_counter_deferred(attr))
615 		armv8pmu_enable_counter(mask);
616 }
617 
618 static inline void armv8pmu_disable_counter(u32 mask)
619 {
620 	write_pmcntenclr(mask);
621 	/*
622 	 * Make sure the effects of disabling the counter are visible before we
623 	 * start configuring the event.
624 	 */
625 	isb();
626 }
627 
628 static inline void armv8pmu_disable_event_counter(struct perf_event *event)
629 {
630 	struct perf_event_attr *attr = &event->attr;
631 	u32 mask = armv8pmu_event_cnten_mask(event);
632 
633 	kvm_clr_pmu_events(mask);
634 
635 	/* We rely on the hypervisor switch code to disable guest counters */
636 	if (!kvm_pmu_counter_deferred(attr))
637 		armv8pmu_disable_counter(mask);
638 }
639 
640 static inline void armv8pmu_enable_intens(u32 mask)
641 {
642 	write_pmintenset(mask);
643 }
644 
645 static inline void armv8pmu_enable_event_irq(struct perf_event *event)
646 {
647 	u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
648 	armv8pmu_enable_intens(BIT(counter));
649 }
650 
651 static inline void armv8pmu_disable_intens(u32 mask)
652 {
653 	write_pmintenclr(mask);
654 	isb();
655 	/* Clear the overflow flag in case an interrupt is pending. */
656 	write_pmovsclr(mask);
657 	isb();
658 }
659 
660 static inline void armv8pmu_disable_event_irq(struct perf_event *event)
661 {
662 	u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
663 	armv8pmu_disable_intens(BIT(counter));
664 }
665 
666 static inline u32 armv8pmu_getreset_flags(void)
667 {
668 	u32 value;
669 
670 	/* Read */
671 	value = read_pmovsclr();
672 
673 	/* Write to clear flags */
674 	value &= ARMV8_PMU_OVSR_MASK;
675 	write_pmovsclr(value);
676 
677 	return value;
678 }
679 
680 static void update_pmuserenr(u64 val)
681 {
682 	lockdep_assert_irqs_disabled();
683 
684 	/*
685 	 * The current PMUSERENR_EL0 value might be the value for the guest.
686 	 * If that's the case, have KVM keep tracking of the register value
687 	 * for the host EL0 so that KVM can restore it before returning to
688 	 * the host EL0. Otherwise, update the register now.
689 	 */
690 	if (kvm_set_pmuserenr(val))
691 		return;
692 
693 	write_pmuserenr(val);
694 }
695 
696 static void armv8pmu_disable_user_access(void)
697 {
698 	update_pmuserenr(0);
699 }
700 
701 static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu)
702 {
703 	int i;
704 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
705 
706 	/* Clear any unused counters to avoid leaking their contents */
707 	for_each_clear_bit(i, cpuc->used_mask, cpu_pmu->num_events) {
708 		if (i == ARMV8_IDX_CYCLE_COUNTER)
709 			write_pmccntr(0);
710 		else
711 			armv8pmu_write_evcntr(i, 0);
712 	}
713 
714 	update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR);
715 }
716 
717 static void armv8pmu_enable_event(struct perf_event *event)
718 {
719 	/*
720 	 * Enable counter and interrupt, and set the counter to count
721 	 * the event that we're interested in.
722 	 */
723 
724 	/*
725 	 * Disable counter
726 	 */
727 	armv8pmu_disable_event_counter(event);
728 
729 	/*
730 	 * Set event.
731 	 */
732 	armv8pmu_write_event_type(event);
733 
734 	/*
735 	 * Enable interrupt for this counter
736 	 */
737 	armv8pmu_enable_event_irq(event);
738 
739 	/*
740 	 * Enable counter
741 	 */
742 	armv8pmu_enable_event_counter(event);
743 }
744 
745 static void armv8pmu_disable_event(struct perf_event *event)
746 {
747 	/*
748 	 * Disable counter
749 	 */
750 	armv8pmu_disable_event_counter(event);
751 
752 	/*
753 	 * Disable interrupt for this counter
754 	 */
755 	armv8pmu_disable_event_irq(event);
756 }
757 
758 static void armv8pmu_start(struct arm_pmu *cpu_pmu)
759 {
760 	struct perf_event_context *ctx;
761 	int nr_user = 0;
762 
763 	ctx = perf_cpu_task_ctx();
764 	if (ctx)
765 		nr_user = ctx->nr_user;
766 
767 	if (sysctl_perf_user_access && nr_user)
768 		armv8pmu_enable_user_access(cpu_pmu);
769 	else
770 		armv8pmu_disable_user_access();
771 
772 	/* Enable all counters */
773 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E);
774 }
775 
776 static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
777 {
778 	/* Disable all counters */
779 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E);
780 }
781 
782 static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu)
783 {
784 	u32 pmovsr;
785 	struct perf_sample_data data;
786 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
787 	struct pt_regs *regs;
788 	int idx;
789 
790 	/*
791 	 * Get and reset the IRQ flags
792 	 */
793 	pmovsr = armv8pmu_getreset_flags();
794 
795 	/*
796 	 * Did an overflow occur?
797 	 */
798 	if (!armv8pmu_has_overflowed(pmovsr))
799 		return IRQ_NONE;
800 
801 	/*
802 	 * Handle the counter(s) overflow(s)
803 	 */
804 	regs = get_irq_regs();
805 
806 	/*
807 	 * Stop the PMU while processing the counter overflows
808 	 * to prevent skews in group events.
809 	 */
810 	armv8pmu_stop(cpu_pmu);
811 	for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
812 		struct perf_event *event = cpuc->events[idx];
813 		struct hw_perf_event *hwc;
814 
815 		/* Ignore if we don't have an event. */
816 		if (!event)
817 			continue;
818 
819 		/*
820 		 * We have a single interrupt for all counters. Check that
821 		 * each counter has overflowed before we process it.
822 		 */
823 		if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
824 			continue;
825 
826 		hwc = &event->hw;
827 		armpmu_event_update(event);
828 		perf_sample_data_init(&data, 0, hwc->last_period);
829 		if (!armpmu_event_set_period(event))
830 			continue;
831 
832 		/*
833 		 * Perf event overflow will queue the processing of the event as
834 		 * an irq_work which will be taken care of in the handling of
835 		 * IPI_IRQ_WORK.
836 		 */
837 		if (perf_event_overflow(event, &data, regs))
838 			cpu_pmu->disable(event);
839 	}
840 	armv8pmu_start(cpu_pmu);
841 
842 	return IRQ_HANDLED;
843 }
844 
845 static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc,
846 				    struct arm_pmu *cpu_pmu)
847 {
848 	int idx;
849 
850 	for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; idx++) {
851 		if (!test_and_set_bit(idx, cpuc->used_mask))
852 			return idx;
853 	}
854 	return -EAGAIN;
855 }
856 
857 static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc,
858 				   struct arm_pmu *cpu_pmu)
859 {
860 	int idx;
861 
862 	/*
863 	 * Chaining requires two consecutive event counters, where
864 	 * the lower idx must be even.
865 	 */
866 	for (idx = ARMV8_IDX_COUNTER0 + 1; idx < cpu_pmu->num_events; idx += 2) {
867 		if (!test_and_set_bit(idx, cpuc->used_mask)) {
868 			/* Check if the preceding even counter is available */
869 			if (!test_and_set_bit(idx - 1, cpuc->used_mask))
870 				return idx;
871 			/* Release the Odd counter */
872 			clear_bit(idx, cpuc->used_mask);
873 		}
874 	}
875 	return -EAGAIN;
876 }
877 
878 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
879 				  struct perf_event *event)
880 {
881 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
882 	struct hw_perf_event *hwc = &event->hw;
883 	unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT;
884 
885 	/* Always prefer to place a cycle counter into the cycle counter. */
886 	if (evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) {
887 		if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
888 			return ARMV8_IDX_CYCLE_COUNTER;
889 		else if (armv8pmu_event_is_64bit(event) &&
890 			   armv8pmu_event_want_user_access(event) &&
891 			   !armv8pmu_has_long_event(cpu_pmu))
892 				return -EAGAIN;
893 	}
894 
895 	/*
896 	 * Otherwise use events counters
897 	 */
898 	if (armv8pmu_event_is_chained(event))
899 		return	armv8pmu_get_chain_idx(cpuc, cpu_pmu);
900 	else
901 		return armv8pmu_get_single_idx(cpuc, cpu_pmu);
902 }
903 
904 static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc,
905 				     struct perf_event *event)
906 {
907 	int idx = event->hw.idx;
908 
909 	clear_bit(idx, cpuc->used_mask);
910 	if (armv8pmu_event_is_chained(event))
911 		clear_bit(idx - 1, cpuc->used_mask);
912 }
913 
914 static int armv8pmu_user_event_idx(struct perf_event *event)
915 {
916 	if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event))
917 		return 0;
918 
919 	/*
920 	 * We remap the cycle counter index to 32 to
921 	 * match the offset applied to the rest of
922 	 * the counter indices.
923 	 */
924 	if (event->hw.idx == ARMV8_IDX_CYCLE_COUNTER)
925 		return ARMV8_IDX_CYCLE_COUNTER_USER;
926 
927 	return event->hw.idx;
928 }
929 
930 /*
931  * Add an event filter to a given event.
932  */
933 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
934 				     struct perf_event_attr *attr)
935 {
936 	unsigned long config_base = 0;
937 
938 	if (attr->exclude_idle)
939 		return -EPERM;
940 
941 	/*
942 	 * If we're running in hyp mode, then we *are* the hypervisor.
943 	 * Therefore we ignore exclude_hv in this configuration, since
944 	 * there's no hypervisor to sample anyway. This is consistent
945 	 * with other architectures (x86 and Power).
946 	 */
947 	if (is_kernel_in_hyp_mode()) {
948 		if (!attr->exclude_kernel && !attr->exclude_host)
949 			config_base |= ARMV8_PMU_INCLUDE_EL2;
950 		if (attr->exclude_guest)
951 			config_base |= ARMV8_PMU_EXCLUDE_EL1;
952 		if (attr->exclude_host)
953 			config_base |= ARMV8_PMU_EXCLUDE_EL0;
954 	} else {
955 		if (!attr->exclude_hv && !attr->exclude_host)
956 			config_base |= ARMV8_PMU_INCLUDE_EL2;
957 	}
958 
959 	/*
960 	 * Filter out !VHE kernels and guest kernels
961 	 */
962 	if (attr->exclude_kernel)
963 		config_base |= ARMV8_PMU_EXCLUDE_EL1;
964 
965 	if (attr->exclude_user)
966 		config_base |= ARMV8_PMU_EXCLUDE_EL0;
967 
968 	/*
969 	 * Install the filter into config_base as this is used to
970 	 * construct the event type.
971 	 */
972 	event->config_base = config_base;
973 
974 	return 0;
975 }
976 
977 static void armv8pmu_reset(void *info)
978 {
979 	struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
980 	u32 pmcr;
981 
982 	/* The counter and interrupt enable registers are unknown at reset. */
983 	armv8pmu_disable_counter(U32_MAX);
984 	armv8pmu_disable_intens(U32_MAX);
985 
986 	/* Clear the counters we flip at guest entry/exit */
987 	kvm_clr_pmu_events(U32_MAX);
988 
989 	/*
990 	 * Initialize & Reset PMNC. Request overflow interrupt for
991 	 * 64 bit cycle counter but cheat in armv8pmu_write_counter().
992 	 */
993 	pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC;
994 
995 	/* Enable long event counter support where available */
996 	if (armv8pmu_has_long_event(cpu_pmu))
997 		pmcr |= ARMV8_PMU_PMCR_LP;
998 
999 	armv8pmu_pmcr_write(pmcr);
1000 }
1001 
1002 static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu,
1003 				      struct perf_event *event)
1004 {
1005 	if (event->attr.type == PERF_TYPE_HARDWARE &&
1006 	    event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) {
1007 
1008 		if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED,
1009 			     armpmu->pmceid_bitmap))
1010 			return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED;
1011 
1012 		if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED,
1013 			     armpmu->pmceid_bitmap))
1014 			return ARMV8_PMUV3_PERFCTR_BR_RETIRED;
1015 
1016 		return HW_OP_UNSUPPORTED;
1017 	}
1018 
1019 	return armpmu_map_event(event, &armv8_pmuv3_perf_map,
1020 				&armv8_pmuv3_perf_cache_map,
1021 				ARMV8_PMU_EVTYPE_EVENT);
1022 }
1023 
1024 static int __armv8_pmuv3_map_event(struct perf_event *event,
1025 				   const unsigned (*extra_event_map)
1026 						  [PERF_COUNT_HW_MAX],
1027 				   const unsigned (*extra_cache_map)
1028 						  [PERF_COUNT_HW_CACHE_MAX]
1029 						  [PERF_COUNT_HW_CACHE_OP_MAX]
1030 						  [PERF_COUNT_HW_CACHE_RESULT_MAX])
1031 {
1032 	int hw_event_id;
1033 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1034 
1035 	hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event);
1036 
1037 	/*
1038 	 * CHAIN events only work when paired with an adjacent counter, and it
1039 	 * never makes sense for a user to open one in isolation, as they'll be
1040 	 * rotated arbitrarily.
1041 	 */
1042 	if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN)
1043 		return -EINVAL;
1044 
1045 	if (armv8pmu_event_is_64bit(event))
1046 		event->hw.flags |= ARMPMU_EVT_64BIT;
1047 
1048 	/*
1049 	 * User events must be allocated into a single counter, and so
1050 	 * must not be chained.
1051 	 *
1052 	 * Most 64-bit events require long counter support, but 64-bit
1053 	 * CPU_CYCLES events can be placed into the dedicated cycle
1054 	 * counter when this is free.
1055 	 */
1056 	if (armv8pmu_event_want_user_access(event)) {
1057 		if (!(event->attach_state & PERF_ATTACH_TASK))
1058 			return -EINVAL;
1059 		if (armv8pmu_event_is_64bit(event) &&
1060 		    (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
1061 		    !armv8pmu_has_long_event(armpmu))
1062 			return -EOPNOTSUPP;
1063 
1064 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1065 	}
1066 
1067 	/* Only expose micro/arch events supported by this PMU */
1068 	if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS)
1069 	    && test_bit(hw_event_id, armpmu->pmceid_bitmap)) {
1070 		return hw_event_id;
1071 	}
1072 
1073 	return armpmu_map_event(event, extra_event_map, extra_cache_map,
1074 				ARMV8_PMU_EVTYPE_EVENT);
1075 }
1076 
1077 static int armv8_pmuv3_map_event(struct perf_event *event)
1078 {
1079 	return __armv8_pmuv3_map_event(event, NULL, NULL);
1080 }
1081 
1082 static int armv8_a53_map_event(struct perf_event *event)
1083 {
1084 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map);
1085 }
1086 
1087 static int armv8_a57_map_event(struct perf_event *event)
1088 {
1089 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map);
1090 }
1091 
1092 static int armv8_a73_map_event(struct perf_event *event)
1093 {
1094 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map);
1095 }
1096 
1097 static int armv8_thunder_map_event(struct perf_event *event)
1098 {
1099 	return __armv8_pmuv3_map_event(event, NULL,
1100 				       &armv8_thunder_perf_cache_map);
1101 }
1102 
1103 static int armv8_vulcan_map_event(struct perf_event *event)
1104 {
1105 	return __armv8_pmuv3_map_event(event, NULL,
1106 				       &armv8_vulcan_perf_cache_map);
1107 }
1108 
1109 struct armv8pmu_probe_info {
1110 	struct arm_pmu *pmu;
1111 	bool present;
1112 };
1113 
1114 static void __armv8pmu_probe_pmu(void *info)
1115 {
1116 	struct armv8pmu_probe_info *probe = info;
1117 	struct arm_pmu *cpu_pmu = probe->pmu;
1118 	u64 pmceid_raw[2];
1119 	u32 pmceid[2];
1120 	int pmuver;
1121 
1122 	pmuver = read_pmuver();
1123 	if (!pmuv3_implemented(pmuver))
1124 		return;
1125 
1126 	cpu_pmu->pmuver = pmuver;
1127 	probe->present = true;
1128 
1129 	/* Read the nb of CNTx counters supported from PMNC */
1130 	cpu_pmu->num_events = (armv8pmu_pmcr_read() >> ARMV8_PMU_PMCR_N_SHIFT)
1131 		& ARMV8_PMU_PMCR_N_MASK;
1132 
1133 	/* Add the CPU cycles counter */
1134 	cpu_pmu->num_events += 1;
1135 
1136 	pmceid[0] = pmceid_raw[0] = read_pmceid0();
1137 	pmceid[1] = pmceid_raw[1] = read_pmceid1();
1138 
1139 	bitmap_from_arr32(cpu_pmu->pmceid_bitmap,
1140 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1141 
1142 	pmceid[0] = pmceid_raw[0] >> 32;
1143 	pmceid[1] = pmceid_raw[1] >> 32;
1144 
1145 	bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap,
1146 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1147 
1148 	/* store PMMIR register for sysfs */
1149 	if (is_pmuv3p4(pmuver) && (pmceid_raw[1] & BIT(31)))
1150 		cpu_pmu->reg_pmmir = read_pmmir();
1151 	else
1152 		cpu_pmu->reg_pmmir = 0;
1153 }
1154 
1155 static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu)
1156 {
1157 	struct armv8pmu_probe_info probe = {
1158 		.pmu = cpu_pmu,
1159 		.present = false,
1160 	};
1161 	int ret;
1162 
1163 	ret = smp_call_function_any(&cpu_pmu->supported_cpus,
1164 				    __armv8pmu_probe_pmu,
1165 				    &probe, 1);
1166 	if (ret)
1167 		return ret;
1168 
1169 	return probe.present ? 0 : -ENODEV;
1170 }
1171 
1172 static void armv8pmu_disable_user_access_ipi(void *unused)
1173 {
1174 	armv8pmu_disable_user_access();
1175 }
1176 
1177 static int armv8pmu_proc_user_access_handler(struct ctl_table *table, int write,
1178 		void *buffer, size_t *lenp, loff_t *ppos)
1179 {
1180 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1181 	if (ret || !write || sysctl_perf_user_access)
1182 		return ret;
1183 
1184 	on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1);
1185 	return 0;
1186 }
1187 
1188 static struct ctl_table armv8_pmu_sysctl_table[] = {
1189 	{
1190 		.procname       = "perf_user_access",
1191 		.data		= &sysctl_perf_user_access,
1192 		.maxlen		= sizeof(unsigned int),
1193 		.mode           = 0644,
1194 		.proc_handler	= armv8pmu_proc_user_access_handler,
1195 		.extra1		= SYSCTL_ZERO,
1196 		.extra2		= SYSCTL_ONE,
1197 	},
1198 	{ }
1199 };
1200 
1201 static void armv8_pmu_register_sysctl_table(void)
1202 {
1203 	static u32 tbl_registered = 0;
1204 
1205 	if (!cmpxchg_relaxed(&tbl_registered, 0, 1))
1206 		register_sysctl("kernel", armv8_pmu_sysctl_table);
1207 }
1208 
1209 static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name,
1210 			  int (*map_event)(struct perf_event *event),
1211 			  const struct attribute_group *events,
1212 			  const struct attribute_group *format,
1213 			  const struct attribute_group *caps)
1214 {
1215 	int ret = armv8pmu_probe_pmu(cpu_pmu);
1216 	if (ret)
1217 		return ret;
1218 
1219 	cpu_pmu->handle_irq		= armv8pmu_handle_irq;
1220 	cpu_pmu->enable			= armv8pmu_enable_event;
1221 	cpu_pmu->disable		= armv8pmu_disable_event;
1222 	cpu_pmu->read_counter		= armv8pmu_read_counter;
1223 	cpu_pmu->write_counter		= armv8pmu_write_counter;
1224 	cpu_pmu->get_event_idx		= armv8pmu_get_event_idx;
1225 	cpu_pmu->clear_event_idx	= armv8pmu_clear_event_idx;
1226 	cpu_pmu->start			= armv8pmu_start;
1227 	cpu_pmu->stop			= armv8pmu_stop;
1228 	cpu_pmu->reset			= armv8pmu_reset;
1229 	cpu_pmu->set_event_filter	= armv8pmu_set_event_filter;
1230 
1231 	cpu_pmu->pmu.event_idx		= armv8pmu_user_event_idx;
1232 
1233 	cpu_pmu->name			= name;
1234 	cpu_pmu->map_event		= map_event;
1235 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = events ?
1236 			events : &armv8_pmuv3_events_attr_group;
1237 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = format ?
1238 			format : &armv8_pmuv3_format_attr_group;
1239 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = caps ?
1240 			caps : &armv8_pmuv3_caps_attr_group;
1241 
1242 	armv8_pmu_register_sysctl_table();
1243 	return 0;
1244 }
1245 
1246 static int armv8_pmu_init_nogroups(struct arm_pmu *cpu_pmu, char *name,
1247 				   int (*map_event)(struct perf_event *event))
1248 {
1249 	return armv8_pmu_init(cpu_pmu, name, map_event, NULL, NULL, NULL);
1250 }
1251 
1252 #define PMUV3_INIT_SIMPLE(name)						\
1253 static int name##_pmu_init(struct arm_pmu *cpu_pmu)			\
1254 {									\
1255 	return armv8_pmu_init_nogroups(cpu_pmu, #name, armv8_pmuv3_map_event);\
1256 }
1257 
1258 PMUV3_INIT_SIMPLE(armv8_pmuv3)
1259 
1260 PMUV3_INIT_SIMPLE(armv8_cortex_a34)
1261 PMUV3_INIT_SIMPLE(armv8_cortex_a55)
1262 PMUV3_INIT_SIMPLE(armv8_cortex_a65)
1263 PMUV3_INIT_SIMPLE(armv8_cortex_a75)
1264 PMUV3_INIT_SIMPLE(armv8_cortex_a76)
1265 PMUV3_INIT_SIMPLE(armv8_cortex_a77)
1266 PMUV3_INIT_SIMPLE(armv8_cortex_a78)
1267 PMUV3_INIT_SIMPLE(armv9_cortex_a510)
1268 PMUV3_INIT_SIMPLE(armv9_cortex_a710)
1269 PMUV3_INIT_SIMPLE(armv8_cortex_x1)
1270 PMUV3_INIT_SIMPLE(armv9_cortex_x2)
1271 PMUV3_INIT_SIMPLE(armv8_neoverse_e1)
1272 PMUV3_INIT_SIMPLE(armv8_neoverse_n1)
1273 PMUV3_INIT_SIMPLE(armv9_neoverse_n2)
1274 PMUV3_INIT_SIMPLE(armv8_neoverse_v1)
1275 
1276 PMUV3_INIT_SIMPLE(armv8_nvidia_carmel)
1277 PMUV3_INIT_SIMPLE(armv8_nvidia_denver)
1278 
1279 static int armv8_a35_pmu_init(struct arm_pmu *cpu_pmu)
1280 {
1281 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a35",
1282 				       armv8_a53_map_event);
1283 }
1284 
1285 static int armv8_a53_pmu_init(struct arm_pmu *cpu_pmu)
1286 {
1287 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a53",
1288 				       armv8_a53_map_event);
1289 }
1290 
1291 static int armv8_a57_pmu_init(struct arm_pmu *cpu_pmu)
1292 {
1293 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a57",
1294 				       armv8_a57_map_event);
1295 }
1296 
1297 static int armv8_a72_pmu_init(struct arm_pmu *cpu_pmu)
1298 {
1299 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a72",
1300 				       armv8_a57_map_event);
1301 }
1302 
1303 static int armv8_a73_pmu_init(struct arm_pmu *cpu_pmu)
1304 {
1305 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a73",
1306 				       armv8_a73_map_event);
1307 }
1308 
1309 static int armv8_thunder_pmu_init(struct arm_pmu *cpu_pmu)
1310 {
1311 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cavium_thunder",
1312 				       armv8_thunder_map_event);
1313 }
1314 
1315 static int armv8_vulcan_pmu_init(struct arm_pmu *cpu_pmu)
1316 {
1317 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_brcm_vulcan",
1318 				       armv8_vulcan_map_event);
1319 }
1320 
1321 static const struct of_device_id armv8_pmu_of_device_ids[] = {
1322 	{.compatible = "arm,armv8-pmuv3",	.data = armv8_pmuv3_pmu_init},
1323 	{.compatible = "arm,cortex-a34-pmu",	.data = armv8_cortex_a34_pmu_init},
1324 	{.compatible = "arm,cortex-a35-pmu",	.data = armv8_a35_pmu_init},
1325 	{.compatible = "arm,cortex-a53-pmu",	.data = armv8_a53_pmu_init},
1326 	{.compatible = "arm,cortex-a55-pmu",	.data = armv8_cortex_a55_pmu_init},
1327 	{.compatible = "arm,cortex-a57-pmu",	.data = armv8_a57_pmu_init},
1328 	{.compatible = "arm,cortex-a65-pmu",	.data = armv8_cortex_a65_pmu_init},
1329 	{.compatible = "arm,cortex-a72-pmu",	.data = armv8_a72_pmu_init},
1330 	{.compatible = "arm,cortex-a73-pmu",	.data = armv8_a73_pmu_init},
1331 	{.compatible = "arm,cortex-a75-pmu",	.data = armv8_cortex_a75_pmu_init},
1332 	{.compatible = "arm,cortex-a76-pmu",	.data = armv8_cortex_a76_pmu_init},
1333 	{.compatible = "arm,cortex-a77-pmu",	.data = armv8_cortex_a77_pmu_init},
1334 	{.compatible = "arm,cortex-a78-pmu",	.data = armv8_cortex_a78_pmu_init},
1335 	{.compatible = "arm,cortex-a510-pmu",	.data = armv9_cortex_a510_pmu_init},
1336 	{.compatible = "arm,cortex-a710-pmu",	.data = armv9_cortex_a710_pmu_init},
1337 	{.compatible = "arm,cortex-x1-pmu",	.data = armv8_cortex_x1_pmu_init},
1338 	{.compatible = "arm,cortex-x2-pmu",	.data = armv9_cortex_x2_pmu_init},
1339 	{.compatible = "arm,neoverse-e1-pmu",	.data = armv8_neoverse_e1_pmu_init},
1340 	{.compatible = "arm,neoverse-n1-pmu",	.data = armv8_neoverse_n1_pmu_init},
1341 	{.compatible = "arm,neoverse-n2-pmu",	.data = armv9_neoverse_n2_pmu_init},
1342 	{.compatible = "arm,neoverse-v1-pmu",	.data = armv8_neoverse_v1_pmu_init},
1343 	{.compatible = "cavium,thunder-pmu",	.data = armv8_thunder_pmu_init},
1344 	{.compatible = "brcm,vulcan-pmu",	.data = armv8_vulcan_pmu_init},
1345 	{.compatible = "nvidia,carmel-pmu",	.data = armv8_nvidia_carmel_pmu_init},
1346 	{.compatible = "nvidia,denver-pmu",	.data = armv8_nvidia_denver_pmu_init},
1347 	{},
1348 };
1349 
1350 static int armv8_pmu_device_probe(struct platform_device *pdev)
1351 {
1352 	return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
1353 }
1354 
1355 static struct platform_driver armv8_pmu_driver = {
1356 	.driver		= {
1357 		.name	= ARMV8_PMU_PDEV_NAME,
1358 		.of_match_table = armv8_pmu_of_device_ids,
1359 		.suppress_bind_attrs = true,
1360 	},
1361 	.probe		= armv8_pmu_device_probe,
1362 };
1363 
1364 static int __init armv8_pmu_driver_init(void)
1365 {
1366 	if (acpi_disabled)
1367 		return platform_driver_register(&armv8_pmu_driver);
1368 	else
1369 		return arm_pmu_acpi_probe(armv8_pmuv3_pmu_init);
1370 }
1371 device_initcall(armv8_pmu_driver_init)
1372 
1373 void arch_perf_update_userpage(struct perf_event *event,
1374 			       struct perf_event_mmap_page *userpg, u64 now)
1375 {
1376 	struct clock_read_data *rd;
1377 	unsigned int seq;
1378 	u64 ns;
1379 
1380 	userpg->cap_user_time = 0;
1381 	userpg->cap_user_time_zero = 0;
1382 	userpg->cap_user_time_short = 0;
1383 	userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event);
1384 
1385 	if (userpg->cap_user_rdpmc) {
1386 		if (event->hw.flags & ARMPMU_EVT_64BIT)
1387 			userpg->pmc_width = 64;
1388 		else
1389 			userpg->pmc_width = 32;
1390 	}
1391 
1392 	do {
1393 		rd = sched_clock_read_begin(&seq);
1394 
1395 		if (rd->read_sched_clock != arch_timer_read_counter)
1396 			return;
1397 
1398 		userpg->time_mult = rd->mult;
1399 		userpg->time_shift = rd->shift;
1400 		userpg->time_zero = rd->epoch_ns;
1401 		userpg->time_cycles = rd->epoch_cyc;
1402 		userpg->time_mask = rd->sched_clock_mask;
1403 
1404 		/*
1405 		 * Subtract the cycle base, such that software that
1406 		 * doesn't know about cap_user_time_short still 'works'
1407 		 * assuming no wraps.
1408 		 */
1409 		ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
1410 		userpg->time_zero -= ns;
1411 
1412 	} while (sched_clock_read_retry(seq));
1413 
1414 	userpg->time_offset = userpg->time_zero - now;
1415 
1416 	/*
1417 	 * time_shift is not expected to be greater than 31 due to
1418 	 * the original published conversion algorithm shifting a
1419 	 * 32-bit value (now specifies a 64-bit value) - refer
1420 	 * perf_event_mmap_page documentation in perf_event.h.
1421 	 */
1422 	if (userpg->time_shift == 32) {
1423 		userpg->time_shift = 31;
1424 		userpg->time_mult >>= 1;
1425 	}
1426 
1427 	/*
1428 	 * Internal timekeeping for enabled/running/stopped times
1429 	 * is always computed with the sched_clock.
1430 	 */
1431 	userpg->cap_user_time = 1;
1432 	userpg->cap_user_time_zero = 1;
1433 	userpg->cap_user_time_short = 1;
1434 }
1435