1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ARMv8 PMUv3 Performance Events handling code. 4 * 5 * Copyright (C) 2012 ARM Limited 6 * Author: Will Deacon <will.deacon@arm.com> 7 * 8 * This code is based heavily on the ARMv7 perf event code. 9 */ 10 11 #include <asm/irq_regs.h> 12 #include <asm/perf_event.h> 13 #include <asm/virt.h> 14 15 #include <clocksource/arm_arch_timer.h> 16 17 #include <linux/acpi.h> 18 #include <linux/bitfield.h> 19 #include <linux/clocksource.h> 20 #include <linux/of.h> 21 #include <linux/perf/arm_pmu.h> 22 #include <linux/perf/arm_pmuv3.h> 23 #include <linux/platform_device.h> 24 #include <linux/sched_clock.h> 25 #include <linux/smp.h> 26 #include <linux/nmi.h> 27 28 #include "arm_brbe.h" 29 30 /* ARMv8 Cortex-A53 specific event types. */ 31 #define ARMV8_A53_PERFCTR_PREF_LINEFILL 0xC2 32 33 /* ARMv8 Cavium ThunderX specific event types. */ 34 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST 0xE9 35 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS 0xEA 36 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS 0xEB 37 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS 0xEC 38 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS 0xED 39 40 /* 41 * ARMv8 Architectural defined events, not all of these may 42 * be supported on any given implementation. Unsupported events will 43 * be disabled at run-time based on the PMCEID registers. 44 */ 45 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = { 46 PERF_MAP_ALL_UNSUPPORTED, 47 [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CPU_CYCLES, 48 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INST_RETIRED, 49 [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE, 50 [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL, 51 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED, 52 [PERF_COUNT_HW_BUS_CYCLES] = ARMV8_PMUV3_PERFCTR_BUS_CYCLES, 53 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV8_PMUV3_PERFCTR_STALL_FRONTEND, 54 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV8_PMUV3_PERFCTR_STALL_BACKEND, 55 }; 56 57 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 58 [PERF_COUNT_HW_CACHE_OP_MAX] 59 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 60 PERF_CACHE_MAP_ALL_UNSUPPORTED, 61 62 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE, 63 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL, 64 65 [C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE, 66 [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL, 67 68 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL, 69 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB, 70 71 [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL, 72 [C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB, 73 74 [C(LL)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD, 75 [C(LL)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_RD, 76 77 [C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_BR_PRED, 78 [C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED, 79 }; 80 81 static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 82 [PERF_COUNT_HW_CACHE_OP_MAX] 83 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 84 PERF_CACHE_MAP_ALL_UNSUPPORTED, 85 86 [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL, 87 88 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, 89 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, 90 }; 91 92 static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 93 [PERF_COUNT_HW_CACHE_OP_MAX] 94 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 95 PERF_CACHE_MAP_ALL_UNSUPPORTED, 96 97 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, 98 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, 99 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, 100 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR, 101 102 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, 103 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, 104 105 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, 106 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, 107 }; 108 109 static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 110 [PERF_COUNT_HW_CACHE_OP_MAX] 111 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 112 PERF_CACHE_MAP_ALL_UNSUPPORTED, 113 114 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, 115 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, 116 }; 117 118 static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 119 [PERF_COUNT_HW_CACHE_OP_MAX] 120 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 121 PERF_CACHE_MAP_ALL_UNSUPPORTED, 122 123 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, 124 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, 125 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, 126 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST, 127 [C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS, 128 [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS, 129 130 [C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS, 131 [C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS, 132 133 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD, 134 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, 135 [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR, 136 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, 137 }; 138 139 static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] 140 [PERF_COUNT_HW_CACHE_OP_MAX] 141 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 142 PERF_CACHE_MAP_ALL_UNSUPPORTED, 143 144 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, 145 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, 146 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, 147 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR, 148 149 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD, 150 [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR, 151 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, 152 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, 153 154 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, 155 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, 156 }; 157 158 static ssize_t 159 armv8pmu_events_sysfs_show(struct device *dev, 160 struct device_attribute *attr, char *page) 161 { 162 struct perf_pmu_events_attr *pmu_attr; 163 164 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 165 166 return sprintf(page, "event=0x%04llx\n", pmu_attr->id); 167 } 168 169 #define ARMV8_EVENT_ATTR(name, config) \ 170 PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config) 171 172 static struct attribute *armv8_pmuv3_event_attrs[] = { 173 /* 174 * Don't expose the sw_incr event in /sys. It's not usable as writes to 175 * PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation 176 * means we don't have a fixed event<->counter relationship regardless. 177 */ 178 ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL), 179 ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL), 180 ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL), 181 ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE), 182 ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL), 183 ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED), 184 ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED), 185 ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED), 186 ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN), 187 ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN), 188 ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED), 189 ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED), 190 ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED), 191 ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED), 192 ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED), 193 ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED), 194 ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES), 195 ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED), 196 ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS), 197 ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE), 198 ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB), 199 ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE), 200 ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL), 201 ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB), 202 ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS), 203 ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR), 204 ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC), 205 ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED), 206 ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES), 207 /* Don't expose the chain event in /sys, since it's useless in isolation */ 208 ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE), 209 ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE), 210 ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED), 211 ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED), 212 ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND), 213 ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND), 214 ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB), 215 ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB), 216 ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE), 217 ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL), 218 ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE), 219 ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL), 220 ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE), 221 ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB), 222 ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL), 223 ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL), 224 ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB), 225 ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB), 226 ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS), 227 ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE), 228 ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS), 229 ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK), 230 ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK), 231 ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD), 232 ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD), 233 ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD), 234 ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD), 235 ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED), 236 ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC), 237 ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL), 238 ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND), 239 ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND), 240 ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT), 241 ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP), 242 ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED), 243 ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE), 244 ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION), 245 ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES), 246 ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM), 247 ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS), 248 ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD), 249 ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS), 250 ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD), 251 ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP), 252 ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG), 253 ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0), 254 ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1), 255 ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2), 256 ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3), 257 ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4), 258 ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5), 259 ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6), 260 ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7), 261 ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT), 262 ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT), 263 ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT), 264 ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED), 265 ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD), 266 ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR), 267 NULL, 268 }; 269 270 static umode_t 271 armv8pmu_event_attr_is_visible(struct kobject *kobj, 272 struct attribute *attr, int unused) 273 { 274 struct device *dev = kobj_to_dev(kobj); 275 struct pmu *pmu = dev_get_drvdata(dev); 276 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 277 struct perf_pmu_events_attr *pmu_attr; 278 279 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); 280 281 if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS && 282 test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap)) 283 return attr->mode; 284 285 if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) { 286 u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE; 287 288 if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS && 289 test_bit(id, cpu_pmu->pmceid_ext_bitmap)) 290 return attr->mode; 291 } 292 293 return 0; 294 } 295 296 static const struct attribute_group armv8_pmuv3_events_attr_group = { 297 .name = "events", 298 .attrs = armv8_pmuv3_event_attrs, 299 .is_visible = armv8pmu_event_attr_is_visible, 300 }; 301 302 /* User ABI */ 303 #define ATTR_CFG_FLD_event_CFG config 304 #define ATTR_CFG_FLD_event_LO 0 305 #define ATTR_CFG_FLD_event_HI 15 306 #define ATTR_CFG_FLD_long_CFG config1 307 #define ATTR_CFG_FLD_long_LO 0 308 #define ATTR_CFG_FLD_long_HI 0 309 #define ATTR_CFG_FLD_rdpmc_CFG config1 310 #define ATTR_CFG_FLD_rdpmc_LO 1 311 #define ATTR_CFG_FLD_rdpmc_HI 1 312 #define ATTR_CFG_FLD_threshold_count_CFG config1 /* PMEVTYPER.TC[0] */ 313 #define ATTR_CFG_FLD_threshold_count_LO 2 314 #define ATTR_CFG_FLD_threshold_count_HI 2 315 #define ATTR_CFG_FLD_threshold_compare_CFG config1 /* PMEVTYPER.TC[2:1] */ 316 #define ATTR_CFG_FLD_threshold_compare_LO 3 317 #define ATTR_CFG_FLD_threshold_compare_HI 4 318 #define ATTR_CFG_FLD_threshold_CFG config1 /* PMEVTYPER.TH */ 319 #define ATTR_CFG_FLD_threshold_LO 5 320 #define ATTR_CFG_FLD_threshold_HI 16 321 322 GEN_PMU_FORMAT_ATTR(event); 323 GEN_PMU_FORMAT_ATTR(long); 324 GEN_PMU_FORMAT_ATTR(rdpmc); 325 GEN_PMU_FORMAT_ATTR(threshold_count); 326 GEN_PMU_FORMAT_ATTR(threshold_compare); 327 GEN_PMU_FORMAT_ATTR(threshold); 328 329 static int sysctl_perf_user_access __read_mostly; 330 331 static bool armv8pmu_event_is_64bit(struct perf_event *event) 332 { 333 return ATTR_CFG_GET_FLD(&event->attr, long); 334 } 335 336 static bool armv8pmu_event_want_user_access(struct perf_event *event) 337 { 338 return ATTR_CFG_GET_FLD(&event->attr, rdpmc); 339 } 340 341 static u32 armv8pmu_event_get_threshold(struct perf_event_attr *attr) 342 { 343 return ATTR_CFG_GET_FLD(attr, threshold); 344 } 345 346 static u8 armv8pmu_event_threshold_control(struct perf_event_attr *attr) 347 { 348 u8 th_compare = ATTR_CFG_GET_FLD(attr, threshold_compare); 349 u8 th_count = ATTR_CFG_GET_FLD(attr, threshold_count); 350 351 /* 352 * The count bit is always the bottom bit of the full control field, and 353 * the comparison is the upper two bits, but it's not explicitly 354 * labelled in the Arm ARM. For the Perf interface we split it into two 355 * fields, so reconstruct it here. 356 */ 357 return (th_compare << 1) | th_count; 358 } 359 360 static struct attribute *armv8_pmuv3_format_attrs[] = { 361 &format_attr_event.attr, 362 &format_attr_long.attr, 363 &format_attr_rdpmc.attr, 364 &format_attr_threshold.attr, 365 &format_attr_threshold_compare.attr, 366 &format_attr_threshold_count.attr, 367 NULL, 368 }; 369 370 static const struct attribute_group armv8_pmuv3_format_attr_group = { 371 .name = "format", 372 .attrs = armv8_pmuv3_format_attrs, 373 }; 374 375 static ssize_t slots_show(struct device *dev, struct device_attribute *attr, 376 char *page) 377 { 378 struct pmu *pmu = dev_get_drvdata(dev); 379 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 380 u32 slots = FIELD_GET(ARMV8_PMU_SLOTS, cpu_pmu->reg_pmmir); 381 382 return sysfs_emit(page, "0x%08x\n", slots); 383 } 384 385 static DEVICE_ATTR_RO(slots); 386 387 static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr, 388 char *page) 389 { 390 struct pmu *pmu = dev_get_drvdata(dev); 391 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 392 u32 bus_slots = FIELD_GET(ARMV8_PMU_BUS_SLOTS, cpu_pmu->reg_pmmir); 393 394 return sysfs_emit(page, "0x%08x\n", bus_slots); 395 } 396 397 static DEVICE_ATTR_RO(bus_slots); 398 399 static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr, 400 char *page) 401 { 402 struct pmu *pmu = dev_get_drvdata(dev); 403 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 404 u32 bus_width = FIELD_GET(ARMV8_PMU_BUS_WIDTH, cpu_pmu->reg_pmmir); 405 u32 val = 0; 406 407 /* Encoded as Log2(number of bytes), plus one */ 408 if (bus_width > 2 && bus_width < 13) 409 val = 1 << (bus_width - 1); 410 411 return sysfs_emit(page, "0x%08x\n", val); 412 } 413 414 static DEVICE_ATTR_RO(bus_width); 415 416 static u32 threshold_max(struct arm_pmu *cpu_pmu) 417 { 418 /* 419 * PMMIR.THWIDTH is readable and non-zero on aarch32, but it would be 420 * impossible to write the threshold in the upper 32 bits of PMEVTYPER. 421 */ 422 if (IS_ENABLED(CONFIG_ARM)) 423 return 0; 424 425 /* 426 * The largest value that can be written to PMEVTYPER<n>_EL0.TH is 427 * (2 ^ PMMIR.THWIDTH) - 1. 428 */ 429 return (1 << FIELD_GET(ARMV8_PMU_THWIDTH, cpu_pmu->reg_pmmir)) - 1; 430 } 431 432 static ssize_t threshold_max_show(struct device *dev, 433 struct device_attribute *attr, char *page) 434 { 435 struct pmu *pmu = dev_get_drvdata(dev); 436 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 437 438 return sysfs_emit(page, "0x%08x\n", threshold_max(cpu_pmu)); 439 } 440 441 static DEVICE_ATTR_RO(threshold_max); 442 443 static ssize_t branches_show(struct device *dev, 444 struct device_attribute *attr, char *page) 445 { 446 struct pmu *pmu = dev_get_drvdata(dev); 447 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 448 449 return sysfs_emit(page, "%d\n", brbe_num_branch_records(cpu_pmu)); 450 } 451 452 static DEVICE_ATTR_RO(branches); 453 454 static struct attribute *armv8_pmuv3_caps_attrs[] = { 455 &dev_attr_branches.attr, 456 &dev_attr_slots.attr, 457 &dev_attr_bus_slots.attr, 458 &dev_attr_bus_width.attr, 459 &dev_attr_threshold_max.attr, 460 NULL, 461 }; 462 463 static umode_t caps_is_visible(struct kobject *kobj, struct attribute *attr, int i) 464 { 465 struct device *dev = kobj_to_dev(kobj); 466 struct pmu *pmu = dev_get_drvdata(dev); 467 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); 468 469 if (i == 0) 470 return brbe_num_branch_records(cpu_pmu) ? attr->mode : 0; 471 472 return attr->mode; 473 } 474 475 static const struct attribute_group armv8_pmuv3_caps_attr_group = { 476 .name = "caps", 477 .attrs = armv8_pmuv3_caps_attrs, 478 .is_visible = caps_is_visible, 479 }; 480 481 /* 482 * We unconditionally enable ARMv8.5-PMU long event counter support 483 * (64-bit events) where supported. Indicate if this arm_pmu has long 484 * event counter support. 485 * 486 * On AArch32, long counters make no sense (you can't access the top 487 * bits), so we only enable this on AArch64. 488 */ 489 static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu) 490 { 491 return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver)); 492 } 493 494 static bool armv8pmu_event_has_user_read(struct perf_event *event) 495 { 496 return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT; 497 } 498 499 /* 500 * We must chain two programmable counters for 64 bit events, 501 * except when we have allocated the 64bit cycle counter (for CPU 502 * cycles event) or when user space counter access is enabled. 503 */ 504 static bool armv8pmu_event_is_chained(struct perf_event *event) 505 { 506 int idx = event->hw.idx; 507 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); 508 509 return !armv8pmu_event_has_user_read(event) && 510 armv8pmu_event_is_64bit(event) && 511 !armv8pmu_has_long_event(cpu_pmu) && 512 (idx < ARMV8_PMU_MAX_GENERAL_COUNTERS); 513 } 514 515 /* 516 * ARMv8 low level PMU access 517 */ 518 static u64 armv8pmu_pmcr_read(void) 519 { 520 return read_pmcr(); 521 } 522 523 static void armv8pmu_pmcr_write(u64 val) 524 { 525 val &= ARMV8_PMU_PMCR_MASK; 526 isb(); 527 write_pmcr(val); 528 } 529 530 static int armv8pmu_has_overflowed(u64 pmovsr) 531 { 532 return !!(pmovsr & ARMV8_PMU_OVERFLOWED_MASK); 533 } 534 535 static int armv8pmu_counter_has_overflowed(u64 pmnc, int idx) 536 { 537 return !!(pmnc & BIT(idx)); 538 } 539 540 static u64 armv8pmu_read_evcntr(int idx) 541 { 542 return read_pmevcntrn(idx); 543 } 544 545 static u64 armv8pmu_read_hw_counter(struct perf_event *event) 546 { 547 int idx = event->hw.idx; 548 u64 val = armv8pmu_read_evcntr(idx); 549 550 if (armv8pmu_event_is_chained(event)) 551 val = (val << 32) | armv8pmu_read_evcntr(idx - 1); 552 return val; 553 } 554 555 /* 556 * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP 557 * is set the event counters also become 64-bit counters. Unless the 558 * user has requested a long counter (attr.config1) then we want to 559 * interrupt upon 32-bit overflow - we achieve this by applying a bias. 560 */ 561 static bool armv8pmu_event_needs_bias(struct perf_event *event) 562 { 563 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); 564 struct hw_perf_event *hwc = &event->hw; 565 int idx = hwc->idx; 566 567 if (armv8pmu_event_is_64bit(event)) 568 return false; 569 570 if (armv8pmu_has_long_event(cpu_pmu) || 571 idx >= ARMV8_PMU_MAX_GENERAL_COUNTERS) 572 return true; 573 574 return false; 575 } 576 577 static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value) 578 { 579 if (armv8pmu_event_needs_bias(event)) 580 value |= GENMASK_ULL(63, 32); 581 582 return value; 583 } 584 585 static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value) 586 { 587 if (armv8pmu_event_needs_bias(event)) 588 value &= ~GENMASK_ULL(63, 32); 589 590 return value; 591 } 592 593 static u64 armv8pmu_read_counter(struct perf_event *event) 594 { 595 struct hw_perf_event *hwc = &event->hw; 596 int idx = hwc->idx; 597 u64 value; 598 599 if (idx == ARMV8_PMU_CYCLE_IDX) 600 value = read_pmccntr(); 601 else if (idx == ARMV8_PMU_INSTR_IDX) 602 value = read_pmicntr(); 603 else 604 value = armv8pmu_read_hw_counter(event); 605 606 return armv8pmu_unbias_long_counter(event, value); 607 } 608 609 static void armv8pmu_write_evcntr(int idx, u64 value) 610 { 611 write_pmevcntrn(idx, value); 612 } 613 614 static void armv8pmu_write_hw_counter(struct perf_event *event, 615 u64 value) 616 { 617 int idx = event->hw.idx; 618 619 if (armv8pmu_event_is_chained(event)) { 620 armv8pmu_write_evcntr(idx, upper_32_bits(value)); 621 armv8pmu_write_evcntr(idx - 1, lower_32_bits(value)); 622 } else { 623 armv8pmu_write_evcntr(idx, value); 624 } 625 } 626 627 static void armv8pmu_write_counter(struct perf_event *event, u64 value) 628 { 629 struct hw_perf_event *hwc = &event->hw; 630 int idx = hwc->idx; 631 632 value = armv8pmu_bias_long_counter(event, value); 633 634 if (idx == ARMV8_PMU_CYCLE_IDX) 635 write_pmccntr(value); 636 else if (idx == ARMV8_PMU_INSTR_IDX) 637 write_pmicntr(value); 638 else 639 armv8pmu_write_hw_counter(event, value); 640 } 641 642 static void armv8pmu_write_evtype(int idx, unsigned long val) 643 { 644 unsigned long mask = ARMV8_PMU_EVTYPE_EVENT | 645 ARMV8_PMU_INCLUDE_EL2 | 646 ARMV8_PMU_EXCLUDE_EL0 | 647 ARMV8_PMU_EXCLUDE_EL1; 648 649 if (IS_ENABLED(CONFIG_ARM64)) 650 mask |= ARMV8_PMU_EVTYPE_TC | ARMV8_PMU_EVTYPE_TH; 651 652 val &= mask; 653 write_pmevtypern(idx, val); 654 } 655 656 static void armv8pmu_write_event_type(struct perf_event *event) 657 { 658 struct hw_perf_event *hwc = &event->hw; 659 int idx = hwc->idx; 660 661 /* 662 * For chained events, the low counter is programmed to count 663 * the event of interest and the high counter is programmed 664 * with CHAIN event code with filters set to count at all ELs. 665 */ 666 if (armv8pmu_event_is_chained(event)) { 667 u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN | 668 ARMV8_PMU_INCLUDE_EL2; 669 670 armv8pmu_write_evtype(idx - 1, hwc->config_base); 671 armv8pmu_write_evtype(idx, chain_evt); 672 } else { 673 if (idx == ARMV8_PMU_CYCLE_IDX) 674 write_pmccfiltr(hwc->config_base); 675 else if (idx == ARMV8_PMU_INSTR_IDX) 676 write_pmicfiltr(hwc->config_base); 677 else 678 armv8pmu_write_evtype(idx, hwc->config_base); 679 } 680 } 681 682 static u64 armv8pmu_event_cnten_mask(struct perf_event *event) 683 { 684 int counter = event->hw.idx; 685 u64 mask = BIT(counter); 686 687 if (armv8pmu_event_is_chained(event)) 688 mask |= BIT(counter - 1); 689 return mask; 690 } 691 692 static void armv8pmu_enable_counter(u64 mask) 693 { 694 /* 695 * Make sure event configuration register writes are visible before we 696 * enable the counter. 697 * */ 698 isb(); 699 write_pmcntenset(mask); 700 } 701 702 static void armv8pmu_enable_event_counter(struct perf_event *event) 703 { 704 struct perf_event_attr *attr = &event->attr; 705 u64 mask = armv8pmu_event_cnten_mask(event); 706 707 kvm_set_pmu_events(mask, attr); 708 709 /* We rely on the hypervisor switch code to enable guest counters */ 710 if (!kvm_pmu_counter_deferred(attr)) 711 armv8pmu_enable_counter(mask); 712 } 713 714 static void armv8pmu_disable_counter(u64 mask) 715 { 716 write_pmcntenclr(mask); 717 /* 718 * Make sure the effects of disabling the counter are visible before we 719 * start configuring the event. 720 */ 721 isb(); 722 } 723 724 static void armv8pmu_disable_event_counter(struct perf_event *event) 725 { 726 struct perf_event_attr *attr = &event->attr; 727 u64 mask = armv8pmu_event_cnten_mask(event); 728 729 kvm_clr_pmu_events(mask); 730 731 /* We rely on the hypervisor switch code to disable guest counters */ 732 if (!kvm_pmu_counter_deferred(attr)) 733 armv8pmu_disable_counter(mask); 734 } 735 736 static void armv8pmu_enable_intens(u64 mask) 737 { 738 write_pmintenset(mask); 739 } 740 741 static void armv8pmu_enable_event_irq(struct perf_event *event) 742 { 743 armv8pmu_enable_intens(BIT(event->hw.idx)); 744 } 745 746 static void armv8pmu_disable_intens(u64 mask) 747 { 748 write_pmintenclr(mask); 749 isb(); 750 /* Clear the overflow flag in case an interrupt is pending. */ 751 write_pmovsclr(mask); 752 isb(); 753 } 754 755 static void armv8pmu_disable_event_irq(struct perf_event *event) 756 { 757 armv8pmu_disable_intens(BIT(event->hw.idx)); 758 } 759 760 static u64 armv8pmu_getreset_flags(void) 761 { 762 u64 value; 763 764 /* Read */ 765 value = read_pmovsclr(); 766 767 /* Write to clear flags */ 768 value &= ARMV8_PMU_OVERFLOWED_MASK; 769 write_pmovsclr(value); 770 771 return value; 772 } 773 774 static void update_pmuserenr(u64 val) 775 { 776 lockdep_assert_irqs_disabled(); 777 778 /* 779 * The current PMUSERENR_EL0 value might be the value for the guest. 780 * If that's the case, have KVM keep tracking of the register value 781 * for the host EL0 so that KVM can restore it before returning to 782 * the host EL0. Otherwise, update the register now. 783 */ 784 if (kvm_set_pmuserenr(val)) 785 return; 786 787 write_pmuserenr(val); 788 } 789 790 static void armv8pmu_disable_user_access(void) 791 { 792 update_pmuserenr(0); 793 } 794 795 static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu) 796 { 797 int i; 798 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events); 799 800 if (is_pmuv3p9(cpu_pmu->pmuver)) { 801 u64 mask = 0; 802 for_each_set_bit(i, cpuc->used_mask, ARMPMU_MAX_HWEVENTS) { 803 if (armv8pmu_event_has_user_read(cpuc->events[i])) 804 mask |= BIT(i); 805 } 806 write_pmuacr(mask); 807 } else { 808 /* Clear any unused counters to avoid leaking their contents */ 809 for_each_andnot_bit(i, cpu_pmu->cntr_mask, cpuc->used_mask, 810 ARMPMU_MAX_HWEVENTS) { 811 if (i == ARMV8_PMU_CYCLE_IDX) 812 write_pmccntr(0); 813 else if (i == ARMV8_PMU_INSTR_IDX) 814 write_pmicntr(0); 815 else 816 armv8pmu_write_evcntr(i, 0); 817 } 818 } 819 820 update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_UEN); 821 } 822 823 static void armv8pmu_enable_event(struct perf_event *event) 824 { 825 armv8pmu_write_event_type(event); 826 armv8pmu_enable_event_irq(event); 827 armv8pmu_enable_event_counter(event); 828 } 829 830 static void armv8pmu_disable_event(struct perf_event *event) 831 { 832 armv8pmu_disable_event_counter(event); 833 armv8pmu_disable_event_irq(event); 834 } 835 836 static void armv8pmu_start(struct arm_pmu *cpu_pmu) 837 { 838 struct perf_event_context *ctx; 839 struct pmu_hw_events *hw_events = this_cpu_ptr(cpu_pmu->hw_events); 840 int nr_user = 0; 841 842 ctx = perf_cpu_task_ctx(); 843 if (ctx) 844 nr_user = ctx->nr_user; 845 846 if (sysctl_perf_user_access && nr_user) 847 armv8pmu_enable_user_access(cpu_pmu); 848 else 849 armv8pmu_disable_user_access(); 850 851 kvm_vcpu_pmu_resync_el0(); 852 853 if (hw_events->branch_users) 854 brbe_enable(cpu_pmu); 855 856 /* Enable all counters */ 857 armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E); 858 } 859 860 static void armv8pmu_stop(struct arm_pmu *cpu_pmu) 861 { 862 struct pmu_hw_events *hw_events = this_cpu_ptr(cpu_pmu->hw_events); 863 864 if (hw_events->branch_users) 865 brbe_disable(); 866 867 /* Disable all counters */ 868 armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E); 869 } 870 871 static void read_branch_records(struct pmu_hw_events *cpuc, 872 struct perf_event *event, 873 struct perf_sample_data *data) 874 { 875 struct perf_branch_stack *branch_stack = cpuc->branch_stack; 876 877 brbe_read_filtered_entries(branch_stack, event); 878 perf_sample_save_brstack(data, event, branch_stack, NULL); 879 } 880 881 static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu) 882 { 883 u64 pmovsr; 884 struct perf_sample_data data; 885 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events); 886 struct pt_regs *regs; 887 int idx; 888 889 /* 890 * Get and reset the IRQ flags 891 */ 892 pmovsr = armv8pmu_getreset_flags(); 893 894 /* 895 * Did an overflow occur? 896 */ 897 if (!armv8pmu_has_overflowed(pmovsr)) 898 return IRQ_NONE; 899 900 /* 901 * Handle the counter(s) overflow(s) 902 */ 903 regs = get_irq_regs(); 904 905 /* 906 * Stop the PMU while processing the counter overflows 907 * to prevent skews in group events. 908 */ 909 armv8pmu_stop(cpu_pmu); 910 for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMPMU_MAX_HWEVENTS) { 911 struct perf_event *event = cpuc->events[idx]; 912 struct hw_perf_event *hwc; 913 914 /* Ignore if we don't have an event. */ 915 if (!event) 916 continue; 917 918 /* 919 * We have a single interrupt for all counters. Check that 920 * each counter has overflowed before we process it. 921 */ 922 if (!armv8pmu_counter_has_overflowed(pmovsr, idx)) 923 continue; 924 925 hwc = &event->hw; 926 armpmu_event_update(event); 927 perf_sample_data_init(&data, 0, hwc->last_period); 928 if (!armpmu_event_set_period(event)) 929 continue; 930 931 if (has_branch_stack(event)) 932 read_branch_records(cpuc, event, &data); 933 934 /* 935 * Perf event overflow will queue the processing of the event as 936 * an irq_work which will be taken care of in the handling of 937 * IPI_IRQ_WORK. 938 */ 939 perf_event_overflow(event, &data, regs); 940 } 941 armv8pmu_start(cpu_pmu); 942 943 return IRQ_HANDLED; 944 } 945 946 static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc, 947 struct arm_pmu *cpu_pmu) 948 { 949 int idx; 950 951 for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS) { 952 if (!test_and_set_bit(idx, cpuc->used_mask)) 953 return idx; 954 } 955 return -EAGAIN; 956 } 957 958 static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc, 959 struct arm_pmu *cpu_pmu) 960 { 961 int idx; 962 963 /* 964 * Chaining requires two consecutive event counters, where 965 * the lower idx must be even. 966 */ 967 for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS) { 968 if (!(idx & 0x1)) 969 continue; 970 if (!test_and_set_bit(idx, cpuc->used_mask)) { 971 /* Check if the preceding even counter is available */ 972 if (!test_and_set_bit(idx - 1, cpuc->used_mask)) 973 return idx; 974 /* Release the Odd counter */ 975 clear_bit(idx, cpuc->used_mask); 976 } 977 } 978 return -EAGAIN; 979 } 980 981 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc, 982 struct perf_event *event) 983 { 984 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); 985 struct hw_perf_event *hwc = &event->hw; 986 unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT; 987 988 /* Always prefer to place a cycle counter into the cycle counter. */ 989 if ((evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) && 990 !armv8pmu_event_get_threshold(&event->attr) && !has_branch_stack(event)) { 991 if (!test_and_set_bit(ARMV8_PMU_CYCLE_IDX, cpuc->used_mask)) 992 return ARMV8_PMU_CYCLE_IDX; 993 else if (armv8pmu_event_is_64bit(event) && 994 armv8pmu_event_want_user_access(event) && 995 !armv8pmu_has_long_event(cpu_pmu)) 996 return -EAGAIN; 997 } 998 999 /* 1000 * Always prefer to place a instruction counter into the instruction counter, 1001 * but don't expose the instruction counter to userspace access as userspace 1002 * may not know how to handle it. 1003 */ 1004 if ((evtype == ARMV8_PMUV3_PERFCTR_INST_RETIRED) && 1005 !armv8pmu_event_get_threshold(&event->attr) && 1006 test_bit(ARMV8_PMU_INSTR_IDX, cpu_pmu->cntr_mask) && 1007 !armv8pmu_event_want_user_access(event)) { 1008 if (!test_and_set_bit(ARMV8_PMU_INSTR_IDX, cpuc->used_mask)) 1009 return ARMV8_PMU_INSTR_IDX; 1010 } 1011 1012 /* 1013 * Otherwise use events counters 1014 */ 1015 if (armv8pmu_event_is_chained(event)) 1016 return armv8pmu_get_chain_idx(cpuc, cpu_pmu); 1017 else 1018 return armv8pmu_get_single_idx(cpuc, cpu_pmu); 1019 } 1020 1021 static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc, 1022 struct perf_event *event) 1023 { 1024 int idx = event->hw.idx; 1025 1026 clear_bit(idx, cpuc->used_mask); 1027 if (armv8pmu_event_is_chained(event)) 1028 clear_bit(idx - 1, cpuc->used_mask); 1029 } 1030 1031 static int armv8pmu_user_event_idx(struct perf_event *event) 1032 { 1033 if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event)) 1034 return 0; 1035 1036 return event->hw.idx + 1; 1037 } 1038 1039 static void armv8pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, 1040 struct task_struct *task, bool sched_in) 1041 { 1042 struct arm_pmu *armpmu = *this_cpu_ptr(&cpu_armpmu); 1043 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 1044 1045 if (!hw_events->branch_users) 1046 return; 1047 1048 if (sched_in) 1049 brbe_invalidate(); 1050 } 1051 1052 /* 1053 * Add an event filter to a given event. 1054 */ 1055 static int armv8pmu_set_event_filter(struct hw_perf_event *event, 1056 struct perf_event_attr *attr) 1057 { 1058 unsigned long config_base = 0; 1059 struct perf_event *perf_event = container_of(attr, struct perf_event, 1060 attr); 1061 struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu); 1062 u32 th; 1063 1064 if (attr->exclude_idle) { 1065 pr_debug("ARM performance counters do not support mode exclusion\n"); 1066 return -EOPNOTSUPP; 1067 } 1068 1069 if (has_branch_stack(perf_event)) { 1070 if (!brbe_num_branch_records(cpu_pmu) || !brbe_branch_attr_valid(perf_event)) 1071 return -EOPNOTSUPP; 1072 1073 perf_event->attach_state |= PERF_ATTACH_SCHED_CB; 1074 } 1075 1076 /* 1077 * If we're running in hyp mode, then we *are* the hypervisor. 1078 * Therefore we ignore exclude_hv in this configuration, since 1079 * there's no hypervisor to sample anyway. This is consistent 1080 * with other architectures (x86 and Power). 1081 */ 1082 if (is_kernel_in_hyp_mode()) { 1083 if (!attr->exclude_kernel && !attr->exclude_host) 1084 config_base |= ARMV8_PMU_INCLUDE_EL2; 1085 if (attr->exclude_guest) 1086 config_base |= ARMV8_PMU_EXCLUDE_EL1; 1087 if (attr->exclude_host) 1088 config_base |= ARMV8_PMU_EXCLUDE_EL0; 1089 } else { 1090 if (!attr->exclude_hv && !attr->exclude_host) 1091 config_base |= ARMV8_PMU_INCLUDE_EL2; 1092 } 1093 1094 /* 1095 * Filter out !VHE kernels and guest kernels 1096 */ 1097 if (attr->exclude_kernel) 1098 config_base |= ARMV8_PMU_EXCLUDE_EL1; 1099 1100 if (attr->exclude_user) 1101 config_base |= ARMV8_PMU_EXCLUDE_EL0; 1102 1103 /* 1104 * If FEAT_PMUv3_TH isn't implemented, then THWIDTH (threshold_max) will 1105 * be 0 and will also trigger this check, preventing it from being used. 1106 */ 1107 th = armv8pmu_event_get_threshold(attr); 1108 if (th > threshold_max(cpu_pmu)) { 1109 pr_debug("PMU event threshold exceeds max value\n"); 1110 return -EINVAL; 1111 } 1112 1113 if (th) { 1114 config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TH, th); 1115 config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TC, 1116 armv8pmu_event_threshold_control(attr)); 1117 } 1118 1119 /* 1120 * Install the filter into config_base as this is used to 1121 * construct the event type. 1122 */ 1123 event->config_base = config_base; 1124 1125 return 0; 1126 } 1127 1128 static void armv8pmu_reset(void *info) 1129 { 1130 struct arm_pmu *cpu_pmu = (struct arm_pmu *)info; 1131 u64 pmcr, mask; 1132 1133 bitmap_to_arr64(&mask, cpu_pmu->cntr_mask, ARMPMU_MAX_HWEVENTS); 1134 1135 /* The counter and interrupt enable registers are unknown at reset. */ 1136 armv8pmu_disable_counter(mask); 1137 armv8pmu_disable_intens(mask); 1138 1139 /* Clear the counters we flip at guest entry/exit */ 1140 kvm_clr_pmu_events(mask); 1141 1142 if (brbe_num_branch_records(cpu_pmu)) { 1143 brbe_disable(); 1144 brbe_invalidate(); 1145 } 1146 1147 /* 1148 * Initialize & Reset PMNC. Request overflow interrupt for 1149 * 64 bit cycle counter but cheat in armv8pmu_write_counter(). 1150 */ 1151 pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC; 1152 1153 /* Enable long event counter support where available */ 1154 if (armv8pmu_has_long_event(cpu_pmu)) 1155 pmcr |= ARMV8_PMU_PMCR_LP; 1156 1157 armv8pmu_pmcr_write(pmcr); 1158 } 1159 1160 static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu, 1161 struct perf_event *event) 1162 { 1163 if (event->attr.type == PERF_TYPE_HARDWARE && 1164 event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) { 1165 1166 if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED, 1167 armpmu->pmceid_bitmap)) 1168 return ARMV8_PMUV3_PERFCTR_BR_RETIRED; 1169 1170 if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED, 1171 armpmu->pmceid_bitmap)) 1172 return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED; 1173 1174 return HW_OP_UNSUPPORTED; 1175 } 1176 1177 return armpmu_map_event(event, &armv8_pmuv3_perf_map, 1178 &armv8_pmuv3_perf_cache_map, 1179 ARMV8_PMU_EVTYPE_EVENT); 1180 } 1181 1182 static int __armv8_pmuv3_map_event(struct perf_event *event, 1183 const unsigned (*extra_event_map) 1184 [PERF_COUNT_HW_MAX], 1185 const unsigned (*extra_cache_map) 1186 [PERF_COUNT_HW_CACHE_MAX] 1187 [PERF_COUNT_HW_CACHE_OP_MAX] 1188 [PERF_COUNT_HW_CACHE_RESULT_MAX]) 1189 { 1190 int hw_event_id; 1191 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 1192 1193 hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event); 1194 1195 /* 1196 * CHAIN events only work when paired with an adjacent counter, and it 1197 * never makes sense for a user to open one in isolation, as they'll be 1198 * rotated arbitrarily. 1199 */ 1200 if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN) 1201 return -EINVAL; 1202 1203 if (armv8pmu_event_is_64bit(event)) 1204 event->hw.flags |= ARMPMU_EVT_64BIT; 1205 1206 /* 1207 * User events must be allocated into a single counter, and so 1208 * must not be chained. 1209 * 1210 * Most 64-bit events require long counter support, but 64-bit 1211 * CPU_CYCLES events can be placed into the dedicated cycle 1212 * counter when this is free. 1213 */ 1214 if (armv8pmu_event_want_user_access(event)) { 1215 if (!(event->attach_state & PERF_ATTACH_TASK)) 1216 return -EINVAL; 1217 if (armv8pmu_event_is_64bit(event) && 1218 (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) && 1219 !armv8pmu_has_long_event(armpmu)) 1220 return -EOPNOTSUPP; 1221 1222 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; 1223 } 1224 1225 /* Only expose micro/arch events supported by this PMU */ 1226 if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS) 1227 && test_bit(hw_event_id, armpmu->pmceid_bitmap)) { 1228 return hw_event_id; 1229 } 1230 1231 return armpmu_map_event(event, extra_event_map, extra_cache_map, 1232 ARMV8_PMU_EVTYPE_EVENT); 1233 } 1234 1235 static int armv8_pmuv3_map_event(struct perf_event *event) 1236 { 1237 return __armv8_pmuv3_map_event(event, NULL, NULL); 1238 } 1239 1240 static int armv8_a53_map_event(struct perf_event *event) 1241 { 1242 return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map); 1243 } 1244 1245 static int armv8_a57_map_event(struct perf_event *event) 1246 { 1247 return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map); 1248 } 1249 1250 static int armv8_a73_map_event(struct perf_event *event) 1251 { 1252 return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map); 1253 } 1254 1255 static int armv8_thunder_map_event(struct perf_event *event) 1256 { 1257 return __armv8_pmuv3_map_event(event, NULL, 1258 &armv8_thunder_perf_cache_map); 1259 } 1260 1261 static int armv8_vulcan_map_event(struct perf_event *event) 1262 { 1263 return __armv8_pmuv3_map_event(event, NULL, 1264 &armv8_vulcan_perf_cache_map); 1265 } 1266 1267 struct armv8pmu_probe_info { 1268 struct arm_pmu *pmu; 1269 bool present; 1270 }; 1271 1272 static void __armv8pmu_probe_pmu(void *info) 1273 { 1274 struct armv8pmu_probe_info *probe = info; 1275 struct arm_pmu *cpu_pmu = probe->pmu; 1276 u64 pmceid_raw[2]; 1277 u32 pmceid[2]; 1278 int pmuver; 1279 1280 pmuver = read_pmuver(); 1281 if (!pmuv3_implemented(pmuver)) 1282 return; 1283 1284 cpu_pmu->pmuver = pmuver; 1285 probe->present = true; 1286 1287 /* Read the nb of CNTx counters supported from PMNC */ 1288 bitmap_set(cpu_pmu->cntr_mask, 1289 0, FIELD_GET(ARMV8_PMU_PMCR_N, armv8pmu_pmcr_read())); 1290 1291 /* Add the CPU cycles counter */ 1292 set_bit(ARMV8_PMU_CYCLE_IDX, cpu_pmu->cntr_mask); 1293 1294 /* Add the CPU instructions counter */ 1295 if (pmuv3_has_icntr()) 1296 set_bit(ARMV8_PMU_INSTR_IDX, cpu_pmu->cntr_mask); 1297 1298 pmceid[0] = pmceid_raw[0] = read_pmceid0(); 1299 pmceid[1] = pmceid_raw[1] = read_pmceid1(); 1300 1301 bitmap_from_arr32(cpu_pmu->pmceid_bitmap, 1302 pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS); 1303 1304 pmceid[0] = pmceid_raw[0] >> 32; 1305 pmceid[1] = pmceid_raw[1] >> 32; 1306 1307 bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap, 1308 pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS); 1309 1310 /* store PMMIR register for sysfs */ 1311 if (is_pmuv3p4(pmuver)) 1312 cpu_pmu->reg_pmmir = read_pmmir(); 1313 else 1314 cpu_pmu->reg_pmmir = 0; 1315 1316 brbe_probe(cpu_pmu); 1317 } 1318 1319 static int branch_records_alloc(struct arm_pmu *armpmu) 1320 { 1321 size_t size = struct_size_t(struct perf_branch_stack, entries, 1322 brbe_num_branch_records(armpmu)); 1323 int cpu; 1324 1325 for_each_cpu(cpu, &armpmu->supported_cpus) { 1326 struct pmu_hw_events *events_cpu; 1327 1328 events_cpu = per_cpu_ptr(armpmu->hw_events, cpu); 1329 events_cpu->branch_stack = kmalloc(size, GFP_KERNEL); 1330 if (!events_cpu->branch_stack) 1331 return -ENOMEM; 1332 } 1333 return 0; 1334 } 1335 1336 static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu) 1337 { 1338 struct armv8pmu_probe_info probe = { 1339 .pmu = cpu_pmu, 1340 .present = false, 1341 }; 1342 int ret; 1343 1344 ret = smp_call_function_any(&cpu_pmu->supported_cpus, 1345 __armv8pmu_probe_pmu, 1346 &probe, 1); 1347 if (ret) 1348 return ret; 1349 1350 if (!probe.present) 1351 return -ENODEV; 1352 1353 if (brbe_num_branch_records(cpu_pmu)) { 1354 ret = branch_records_alloc(cpu_pmu); 1355 if (ret) 1356 return ret; 1357 } 1358 return 0; 1359 } 1360 1361 static void armv8pmu_disable_user_access_ipi(void *unused) 1362 { 1363 armv8pmu_disable_user_access(); 1364 } 1365 1366 static int armv8pmu_proc_user_access_handler(const struct ctl_table *table, int write, 1367 void *buffer, size_t *lenp, loff_t *ppos) 1368 { 1369 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 1370 if (ret || !write || sysctl_perf_user_access) 1371 return ret; 1372 1373 on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1); 1374 return 0; 1375 } 1376 1377 static const struct ctl_table armv8_pmu_sysctl_table[] = { 1378 { 1379 .procname = "perf_user_access", 1380 .data = &sysctl_perf_user_access, 1381 .maxlen = sizeof(unsigned int), 1382 .mode = 0644, 1383 .proc_handler = armv8pmu_proc_user_access_handler, 1384 .extra1 = SYSCTL_ZERO, 1385 .extra2 = SYSCTL_ONE, 1386 }, 1387 }; 1388 1389 static void armv8_pmu_register_sysctl_table(void) 1390 { 1391 static u32 tbl_registered = 0; 1392 1393 if (!cmpxchg_relaxed(&tbl_registered, 0, 1)) 1394 register_sysctl("kernel", armv8_pmu_sysctl_table); 1395 } 1396 1397 static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name, 1398 int (*map_event)(struct perf_event *event)) 1399 { 1400 int ret = armv8pmu_probe_pmu(cpu_pmu); 1401 if (ret) 1402 return ret; 1403 1404 cpu_pmu->handle_irq = armv8pmu_handle_irq; 1405 cpu_pmu->enable = armv8pmu_enable_event; 1406 cpu_pmu->disable = armv8pmu_disable_event; 1407 cpu_pmu->read_counter = armv8pmu_read_counter; 1408 cpu_pmu->write_counter = armv8pmu_write_counter; 1409 cpu_pmu->get_event_idx = armv8pmu_get_event_idx; 1410 cpu_pmu->clear_event_idx = armv8pmu_clear_event_idx; 1411 cpu_pmu->start = armv8pmu_start; 1412 cpu_pmu->stop = armv8pmu_stop; 1413 cpu_pmu->reset = armv8pmu_reset; 1414 cpu_pmu->set_event_filter = armv8pmu_set_event_filter; 1415 1416 cpu_pmu->pmu.event_idx = armv8pmu_user_event_idx; 1417 if (brbe_num_branch_records(cpu_pmu)) 1418 cpu_pmu->pmu.sched_task = armv8pmu_sched_task; 1419 1420 cpu_pmu->name = name; 1421 cpu_pmu->map_event = map_event; 1422 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = &armv8_pmuv3_events_attr_group; 1423 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = &armv8_pmuv3_format_attr_group; 1424 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = &armv8_pmuv3_caps_attr_group; 1425 armv8_pmu_register_sysctl_table(); 1426 return 0; 1427 } 1428 1429 #define PMUV3_INIT_SIMPLE(name) \ 1430 static int name##_pmu_init(struct arm_pmu *cpu_pmu) \ 1431 { \ 1432 return armv8_pmu_init(cpu_pmu, #name, armv8_pmuv3_map_event); \ 1433 } 1434 1435 #define PMUV3_INIT_MAP_EVENT(name, map_event) \ 1436 static int name##_pmu_init(struct arm_pmu *cpu_pmu) \ 1437 { \ 1438 return armv8_pmu_init(cpu_pmu, #name, map_event); \ 1439 } 1440 1441 PMUV3_INIT_SIMPLE(armv8_pmuv3) 1442 1443 PMUV3_INIT_SIMPLE(armv8_cortex_a34) 1444 PMUV3_INIT_SIMPLE(armv8_cortex_a55) 1445 PMUV3_INIT_SIMPLE(armv8_cortex_a65) 1446 PMUV3_INIT_SIMPLE(armv8_cortex_a75) 1447 PMUV3_INIT_SIMPLE(armv8_cortex_a76) 1448 PMUV3_INIT_SIMPLE(armv8_cortex_a77) 1449 PMUV3_INIT_SIMPLE(armv8_cortex_a78) 1450 PMUV3_INIT_SIMPLE(armv9_cortex_a510) 1451 PMUV3_INIT_SIMPLE(armv9_cortex_a520) 1452 PMUV3_INIT_SIMPLE(armv9_cortex_a710) 1453 PMUV3_INIT_SIMPLE(armv9_cortex_a715) 1454 PMUV3_INIT_SIMPLE(armv9_cortex_a720) 1455 PMUV3_INIT_SIMPLE(armv9_cortex_a725) 1456 PMUV3_INIT_SIMPLE(armv8_cortex_x1) 1457 PMUV3_INIT_SIMPLE(armv9_cortex_x2) 1458 PMUV3_INIT_SIMPLE(armv9_cortex_x3) 1459 PMUV3_INIT_SIMPLE(armv9_cortex_x4) 1460 PMUV3_INIT_SIMPLE(armv9_cortex_x925) 1461 PMUV3_INIT_SIMPLE(armv8_neoverse_e1) 1462 PMUV3_INIT_SIMPLE(armv8_neoverse_n1) 1463 PMUV3_INIT_SIMPLE(armv9_neoverse_n2) 1464 PMUV3_INIT_SIMPLE(armv9_neoverse_n3) 1465 PMUV3_INIT_SIMPLE(armv8_neoverse_v1) 1466 PMUV3_INIT_SIMPLE(armv8_neoverse_v2) 1467 PMUV3_INIT_SIMPLE(armv8_neoverse_v3) 1468 PMUV3_INIT_SIMPLE(armv8_neoverse_v3ae) 1469 PMUV3_INIT_SIMPLE(armv8_rainier) 1470 1471 PMUV3_INIT_SIMPLE(armv8_nvidia_carmel) 1472 PMUV3_INIT_SIMPLE(armv8_nvidia_denver) 1473 1474 PMUV3_INIT_SIMPLE(armv8_samsung_mongoose) 1475 1476 PMUV3_INIT_MAP_EVENT(armv8_cortex_a35, armv8_a53_map_event) 1477 PMUV3_INIT_MAP_EVENT(armv8_cortex_a53, armv8_a53_map_event) 1478 PMUV3_INIT_MAP_EVENT(armv8_cortex_a57, armv8_a57_map_event) 1479 PMUV3_INIT_MAP_EVENT(armv8_cortex_a72, armv8_a57_map_event) 1480 PMUV3_INIT_MAP_EVENT(armv8_cortex_a73, armv8_a73_map_event) 1481 PMUV3_INIT_MAP_EVENT(armv8_cavium_thunder, armv8_thunder_map_event) 1482 PMUV3_INIT_MAP_EVENT(armv8_brcm_vulcan, armv8_vulcan_map_event) 1483 1484 static const struct of_device_id armv8_pmu_of_device_ids[] = { 1485 {.compatible = "arm,armv8-pmuv3", .data = armv8_pmuv3_pmu_init}, 1486 {.compatible = "arm,cortex-a34-pmu", .data = armv8_cortex_a34_pmu_init}, 1487 {.compatible = "arm,cortex-a35-pmu", .data = armv8_cortex_a35_pmu_init}, 1488 {.compatible = "arm,cortex-a53-pmu", .data = armv8_cortex_a53_pmu_init}, 1489 {.compatible = "arm,cortex-a55-pmu", .data = armv8_cortex_a55_pmu_init}, 1490 {.compatible = "arm,cortex-a57-pmu", .data = armv8_cortex_a57_pmu_init}, 1491 {.compatible = "arm,cortex-a65-pmu", .data = armv8_cortex_a65_pmu_init}, 1492 {.compatible = "arm,cortex-a72-pmu", .data = armv8_cortex_a72_pmu_init}, 1493 {.compatible = "arm,cortex-a73-pmu", .data = armv8_cortex_a73_pmu_init}, 1494 {.compatible = "arm,cortex-a75-pmu", .data = armv8_cortex_a75_pmu_init}, 1495 {.compatible = "arm,cortex-a76-pmu", .data = armv8_cortex_a76_pmu_init}, 1496 {.compatible = "arm,cortex-a77-pmu", .data = armv8_cortex_a77_pmu_init}, 1497 {.compatible = "arm,cortex-a78-pmu", .data = armv8_cortex_a78_pmu_init}, 1498 {.compatible = "arm,cortex-a510-pmu", .data = armv9_cortex_a510_pmu_init}, 1499 {.compatible = "arm,cortex-a520-pmu", .data = armv9_cortex_a520_pmu_init}, 1500 {.compatible = "arm,cortex-a710-pmu", .data = armv9_cortex_a710_pmu_init}, 1501 {.compatible = "arm,cortex-a715-pmu", .data = armv9_cortex_a715_pmu_init}, 1502 {.compatible = "arm,cortex-a720-pmu", .data = armv9_cortex_a720_pmu_init}, 1503 {.compatible = "arm,cortex-a725-pmu", .data = armv9_cortex_a725_pmu_init}, 1504 {.compatible = "arm,cortex-x1-pmu", .data = armv8_cortex_x1_pmu_init}, 1505 {.compatible = "arm,cortex-x2-pmu", .data = armv9_cortex_x2_pmu_init}, 1506 {.compatible = "arm,cortex-x3-pmu", .data = armv9_cortex_x3_pmu_init}, 1507 {.compatible = "arm,cortex-x4-pmu", .data = armv9_cortex_x4_pmu_init}, 1508 {.compatible = "arm,cortex-x925-pmu", .data = armv9_cortex_x925_pmu_init}, 1509 {.compatible = "arm,neoverse-e1-pmu", .data = armv8_neoverse_e1_pmu_init}, 1510 {.compatible = "arm,neoverse-n1-pmu", .data = armv8_neoverse_n1_pmu_init}, 1511 {.compatible = "arm,neoverse-n2-pmu", .data = armv9_neoverse_n2_pmu_init}, 1512 {.compatible = "arm,neoverse-n3-pmu", .data = armv9_neoverse_n3_pmu_init}, 1513 {.compatible = "arm,neoverse-v1-pmu", .data = armv8_neoverse_v1_pmu_init}, 1514 {.compatible = "arm,neoverse-v2-pmu", .data = armv8_neoverse_v2_pmu_init}, 1515 {.compatible = "arm,neoverse-v3-pmu", .data = armv8_neoverse_v3_pmu_init}, 1516 {.compatible = "arm,neoverse-v3ae-pmu", .data = armv8_neoverse_v3ae_pmu_init}, 1517 {.compatible = "arm,rainier-pmu", .data = armv8_rainier_pmu_init}, 1518 {.compatible = "cavium,thunder-pmu", .data = armv8_cavium_thunder_pmu_init}, 1519 {.compatible = "brcm,vulcan-pmu", .data = armv8_brcm_vulcan_pmu_init}, 1520 {.compatible = "nvidia,carmel-pmu", .data = armv8_nvidia_carmel_pmu_init}, 1521 {.compatible = "nvidia,denver-pmu", .data = armv8_nvidia_denver_pmu_init}, 1522 {.compatible = "samsung,mongoose-pmu", .data = armv8_samsung_mongoose_pmu_init}, 1523 {}, 1524 }; 1525 1526 static int armv8_pmu_device_probe(struct platform_device *pdev) 1527 { 1528 return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL); 1529 } 1530 1531 static struct platform_driver armv8_pmu_driver = { 1532 .driver = { 1533 .name = ARMV8_PMU_PDEV_NAME, 1534 .of_match_table = armv8_pmu_of_device_ids, 1535 .suppress_bind_attrs = true, 1536 }, 1537 .probe = armv8_pmu_device_probe, 1538 }; 1539 1540 static int __init armv8_pmu_driver_init(void) 1541 { 1542 int ret; 1543 1544 if (acpi_disabled) 1545 ret = platform_driver_register(&armv8_pmu_driver); 1546 else 1547 ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init); 1548 1549 if (!ret) 1550 lockup_detector_retry_init(); 1551 1552 return ret; 1553 } 1554 device_initcall(armv8_pmu_driver_init) 1555 1556 void arch_perf_update_userpage(struct perf_event *event, 1557 struct perf_event_mmap_page *userpg, u64 now) 1558 { 1559 struct clock_read_data *rd; 1560 unsigned int seq; 1561 u64 ns; 1562 1563 userpg->cap_user_time = 0; 1564 userpg->cap_user_time_zero = 0; 1565 userpg->cap_user_time_short = 0; 1566 userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event); 1567 1568 if (userpg->cap_user_rdpmc) { 1569 if (event->hw.flags & ARMPMU_EVT_64BIT) 1570 userpg->pmc_width = 64; 1571 else 1572 userpg->pmc_width = 32; 1573 } 1574 1575 do { 1576 rd = sched_clock_read_begin(&seq); 1577 1578 if (rd->read_sched_clock != arch_timer_read_counter) 1579 return; 1580 1581 userpg->time_mult = rd->mult; 1582 userpg->time_shift = rd->shift; 1583 userpg->time_zero = rd->epoch_ns; 1584 userpg->time_cycles = rd->epoch_cyc; 1585 userpg->time_mask = rd->sched_clock_mask; 1586 1587 /* 1588 * Subtract the cycle base, such that software that 1589 * doesn't know about cap_user_time_short still 'works' 1590 * assuming no wraps. 1591 */ 1592 ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift); 1593 userpg->time_zero -= ns; 1594 1595 } while (sched_clock_read_retry(seq)); 1596 1597 userpg->time_offset = userpg->time_zero - now; 1598 1599 /* 1600 * time_shift is not expected to be greater than 31 due to 1601 * the original published conversion algorithm shifting a 1602 * 32-bit value (now specifies a 64-bit value) - refer 1603 * perf_event_mmap_page documentation in perf_event.h. 1604 */ 1605 if (userpg->time_shift == 32) { 1606 userpg->time_shift = 31; 1607 userpg->time_mult >>= 1; 1608 } 1609 1610 /* 1611 * Internal timekeeping for enabled/running/stopped times 1612 * is always computed with the sched_clock. 1613 */ 1614 userpg->cap_user_time = 1; 1615 userpg->cap_user_time_zero = 1; 1616 userpg->cap_user_time_short = 1; 1617 } 1618