1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ACPI probing code for ARM performance counters. 4 * 5 * Copyright (C) 2017 ARM Ltd. 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/cpumask.h> 10 #include <linux/init.h> 11 #include <linux/irq.h> 12 #include <linux/irqdesc.h> 13 #include <linux/percpu.h> 14 #include <linux/perf/arm_pmu.h> 15 16 #include <asm/cpu.h> 17 #include <asm/cputype.h> 18 19 static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus); 20 static DEFINE_PER_CPU(int, pmu_irqs); 21 22 static int arm_pmu_acpi_register_irq(int cpu) 23 { 24 struct acpi_madt_generic_interrupt *gicc; 25 int gsi, trigger; 26 27 gicc = acpi_cpu_get_madt_gicc(cpu); 28 29 gsi = gicc->performance_interrupt; 30 31 /* 32 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't 33 * have an interrupt. QEMU advertises this by using a GSI of zero, 34 * which is not known to be valid on any hardware despite being 35 * valid per the spec. Take the pragmatic approach and reject a 36 * GSI of zero for now. 37 */ 38 if (!gsi) 39 return 0; 40 41 if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE) 42 trigger = ACPI_EDGE_SENSITIVE; 43 else 44 trigger = ACPI_LEVEL_SENSITIVE; 45 46 /* 47 * Helpfully, the MADT GICC doesn't have a polarity flag for the 48 * "performance interrupt". Luckily, on compliant GICs the polarity is 49 * a fixed value in HW (for both SPIs and PPIs) that we cannot change 50 * from SW. 51 * 52 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This 53 * may not match the real polarity, but that should not matter. 54 * 55 * Other interrupt controllers are not supported with ACPI. 56 */ 57 return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH); 58 } 59 60 static void arm_pmu_acpi_unregister_irq(int cpu) 61 { 62 struct acpi_madt_generic_interrupt *gicc; 63 int gsi; 64 65 gicc = acpi_cpu_get_madt_gicc(cpu); 66 67 gsi = gicc->performance_interrupt; 68 if (gsi) 69 acpi_unregister_gsi(gsi); 70 } 71 72 static int __maybe_unused 73 arm_acpi_register_pmu_device(struct platform_device *pdev, u8 len, 74 u16 (*parse_gsi)(struct acpi_madt_generic_interrupt *)) 75 { 76 int cpu, this_hetid, hetid, irq, ret; 77 u16 this_gsi = 0, gsi = 0; 78 79 /* 80 * Ensure that platform device must have IORESOURCE_IRQ 81 * resource to hold gsi interrupt. 82 */ 83 if (pdev->num_resources != 1) 84 return -ENXIO; 85 86 if (pdev->resource[0].flags != IORESOURCE_IRQ) 87 return -ENXIO; 88 89 /* 90 * Sanity check all the GICC tables for the same interrupt 91 * number. For now, only support homogeneous ACPI machines. 92 */ 93 for_each_possible_cpu(cpu) { 94 struct acpi_madt_generic_interrupt *gicc; 95 96 gicc = acpi_cpu_get_madt_gicc(cpu); 97 if (gicc->header.length < len) 98 return gsi ? -ENXIO : 0; 99 100 this_gsi = parse_gsi(gicc); 101 this_hetid = find_acpi_cpu_topology_hetero_id(cpu); 102 if (!gsi) { 103 hetid = this_hetid; 104 gsi = this_gsi; 105 } else if (hetid != this_hetid || gsi != this_gsi) { 106 pr_warn("ACPI: %s: must be homogeneous\n", pdev->name); 107 return -ENXIO; 108 } 109 } 110 111 if (!this_gsi) 112 return 0; 113 114 irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_HIGH); 115 if (irq < 0) { 116 pr_warn("ACPI: %s Unable to register interrupt: %d\n", pdev->name, gsi); 117 return -ENXIO; 118 } 119 120 pdev->resource[0].start = irq; 121 ret = platform_device_register(pdev); 122 if (ret) 123 acpi_unregister_gsi(gsi); 124 125 return ret; 126 } 127 128 #if IS_ENABLED(CONFIG_ARM_SPE_PMU) 129 static struct resource spe_resources[] = { 130 { 131 /* irq */ 132 .flags = IORESOURCE_IRQ, 133 } 134 }; 135 136 static struct platform_device spe_dev = { 137 .name = ARMV8_SPE_PDEV_NAME, 138 .id = -1, 139 .resource = spe_resources, 140 .num_resources = ARRAY_SIZE(spe_resources) 141 }; 142 143 static u16 arm_spe_parse_gsi(struct acpi_madt_generic_interrupt *gicc) 144 { 145 return gicc->spe_interrupt; 146 } 147 148 /* 149 * For lack of a better place, hook the normal PMU MADT walk 150 * and create a SPE device if we detect a recent MADT with 151 * a homogeneous PPI mapping. 152 */ 153 static void arm_spe_acpi_register_device(void) 154 { 155 int ret = arm_acpi_register_pmu_device(&spe_dev, ACPI_MADT_GICC_SPE, 156 arm_spe_parse_gsi); 157 if (ret) 158 pr_warn("ACPI: SPE: Unable to register device\n"); 159 } 160 #else 161 static inline void arm_spe_acpi_register_device(void) 162 { 163 } 164 #endif /* CONFIG_ARM_SPE_PMU */ 165 166 #if IS_ENABLED(CONFIG_CORESIGHT_TRBE) 167 static struct resource trbe_resources[] = { 168 { 169 /* irq */ 170 .flags = IORESOURCE_IRQ, 171 } 172 }; 173 174 static struct platform_device trbe_dev = { 175 .name = ARMV8_TRBE_PDEV_NAME, 176 .id = -1, 177 .resource = trbe_resources, 178 .num_resources = ARRAY_SIZE(trbe_resources) 179 }; 180 181 static u16 arm_trbe_parse_gsi(struct acpi_madt_generic_interrupt *gicc) 182 { 183 return gicc->trbe_interrupt; 184 } 185 186 static void arm_trbe_acpi_register_device(void) 187 { 188 int ret = arm_acpi_register_pmu_device(&trbe_dev, ACPI_MADT_GICC_TRBE, 189 arm_trbe_parse_gsi); 190 if (ret) 191 pr_warn("ACPI: TRBE: Unable to register device\n"); 192 } 193 #else 194 static inline void arm_trbe_acpi_register_device(void) 195 { 196 197 } 198 #endif /* CONFIG_CORESIGHT_TRBE */ 199 200 static int arm_pmu_acpi_parse_irqs(void) 201 { 202 int irq, cpu, irq_cpu, err; 203 204 for_each_possible_cpu(cpu) { 205 irq = arm_pmu_acpi_register_irq(cpu); 206 if (irq < 0) { 207 err = irq; 208 pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n", 209 cpu, err); 210 goto out_err; 211 } else if (irq == 0) { 212 pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu); 213 } 214 215 /* 216 * Log and request the IRQ so the core arm_pmu code can manage 217 * it. We'll have to sanity-check IRQs later when we associate 218 * them with their PMUs. 219 */ 220 per_cpu(pmu_irqs, cpu) = irq; 221 err = armpmu_request_irq(irq, cpu); 222 if (err) 223 goto out_err; 224 } 225 226 return 0; 227 228 out_err: 229 for_each_possible_cpu(cpu) { 230 irq = per_cpu(pmu_irqs, cpu); 231 if (!irq) 232 continue; 233 234 arm_pmu_acpi_unregister_irq(cpu); 235 236 /* 237 * Blat all copies of the IRQ so that we only unregister the 238 * corresponding GSI once (e.g. when we have PPIs). 239 */ 240 for_each_possible_cpu(irq_cpu) { 241 if (per_cpu(pmu_irqs, irq_cpu) == irq) 242 per_cpu(pmu_irqs, irq_cpu) = 0; 243 } 244 } 245 246 return err; 247 } 248 249 static struct arm_pmu *arm_pmu_acpi_find_pmu(void) 250 { 251 unsigned long cpuid = read_cpuid_id(); 252 struct arm_pmu *pmu; 253 int cpu; 254 255 for_each_possible_cpu(cpu) { 256 pmu = per_cpu(probed_pmus, cpu); 257 if (!pmu || pmu->acpi_cpuid != cpuid) 258 continue; 259 260 return pmu; 261 } 262 263 return NULL; 264 } 265 266 /* 267 * Check whether the new IRQ is compatible with those already associated with 268 * the PMU (e.g. we don't have mismatched PPIs). 269 */ 270 static bool pmu_irq_matches(struct arm_pmu *pmu, int irq) 271 { 272 struct pmu_hw_events __percpu *hw_events = pmu->hw_events; 273 int cpu; 274 275 if (!irq) 276 return true; 277 278 for_each_cpu(cpu, &pmu->supported_cpus) { 279 int other_irq = per_cpu(hw_events->irq, cpu); 280 if (!other_irq) 281 continue; 282 283 if (irq == other_irq) 284 continue; 285 if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq)) 286 continue; 287 288 pr_warn("mismatched PPIs detected\n"); 289 return false; 290 } 291 292 return true; 293 } 294 295 static void arm_pmu_acpi_associate_pmu_cpu(struct arm_pmu *pmu, 296 unsigned int cpu) 297 { 298 int irq = per_cpu(pmu_irqs, cpu); 299 300 per_cpu(probed_pmus, cpu) = pmu; 301 302 if (pmu_irq_matches(pmu, irq)) { 303 struct pmu_hw_events __percpu *hw_events; 304 hw_events = pmu->hw_events; 305 per_cpu(hw_events->irq, cpu) = irq; 306 } 307 308 cpumask_set_cpu(cpu, &pmu->supported_cpus); 309 } 310 311 /* 312 * This must run before the common arm_pmu hotplug logic, so that we can 313 * associate a CPU and its interrupt before the common code tries to manage the 314 * affinity and so on. 315 * 316 * Note that hotplug events are serialized, so we cannot race with another CPU 317 * coming up. The perf core won't open events while a hotplug event is in 318 * progress. 319 */ 320 static int arm_pmu_acpi_cpu_starting(unsigned int cpu) 321 { 322 struct arm_pmu *pmu; 323 324 /* If we've already probed this CPU, we have nothing to do */ 325 if (per_cpu(probed_pmus, cpu)) 326 return 0; 327 328 pmu = arm_pmu_acpi_find_pmu(); 329 if (!pmu) { 330 pr_warn_ratelimited("Unable to associate CPU%d with a PMU\n", 331 cpu); 332 return 0; 333 } 334 335 arm_pmu_acpi_associate_pmu_cpu(pmu, cpu); 336 return 0; 337 } 338 339 static void arm_pmu_acpi_probe_matching_cpus(struct arm_pmu *pmu, 340 unsigned long cpuid) 341 { 342 int cpu; 343 344 for_each_online_cpu(cpu) { 345 unsigned long cpu_cpuid = per_cpu(cpu_data, cpu).reg_midr; 346 347 if (cpu_cpuid == cpuid) 348 arm_pmu_acpi_associate_pmu_cpu(pmu, cpu); 349 } 350 } 351 352 int arm_pmu_acpi_probe(armpmu_init_fn init_fn) 353 { 354 int pmu_idx = 0; 355 unsigned int cpu; 356 int ret; 357 358 ret = arm_pmu_acpi_parse_irqs(); 359 if (ret) 360 return ret; 361 362 ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_ACPI_STARTING, 363 "perf/arm/pmu_acpi:starting", 364 arm_pmu_acpi_cpu_starting, NULL); 365 if (ret) 366 return ret; 367 368 /* 369 * Initialise and register the set of PMUs which we know about right 370 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we 371 * could handle late hotplug, but this may lead to deadlock since we 372 * might try to register a hotplug notifier instance from within a 373 * hotplug notifier. 374 * 375 * There's also the problem of having access to the right init_fn, 376 * without tying this too deeply into the "real" PMU driver. 377 * 378 * For the moment, as with the platform/DT case, we need at least one 379 * of a PMU's CPUs to be online at probe time. 380 */ 381 for_each_online_cpu(cpu) { 382 struct arm_pmu *pmu = per_cpu(probed_pmus, cpu); 383 unsigned long cpuid; 384 char *base_name; 385 386 /* If we've already probed this CPU, we have nothing to do */ 387 if (pmu) 388 continue; 389 390 pmu = armpmu_alloc(); 391 if (!pmu) { 392 pr_warn("Unable to allocate PMU for CPU%d\n", 393 cpu); 394 return -ENOMEM; 395 } 396 397 cpuid = per_cpu(cpu_data, cpu).reg_midr; 398 pmu->acpi_cpuid = cpuid; 399 400 arm_pmu_acpi_probe_matching_cpus(pmu, cpuid); 401 402 ret = init_fn(pmu); 403 if (ret == -ENODEV) { 404 /* PMU not handled by this driver, or not present */ 405 continue; 406 } else if (ret) { 407 pr_warn("Unable to initialise PMU for CPU%d\n", cpu); 408 return ret; 409 } 410 411 base_name = pmu->name; 412 pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++); 413 if (!pmu->name) { 414 pr_warn("Unable to allocate PMU name for CPU%d\n", cpu); 415 return -ENOMEM; 416 } 417 418 ret = armpmu_register(pmu); 419 if (ret) { 420 pr_warn("Failed to register PMU for CPU%d\n", cpu); 421 kfree(pmu->name); 422 return ret; 423 } 424 } 425 426 return ret; 427 } 428 429 static int arm_pmu_acpi_init(void) 430 { 431 if (acpi_disabled) 432 return 0; 433 434 arm_spe_acpi_register_device(); 435 arm_trbe_acpi_register_device(); 436 437 return 0; 438 } 439 subsys_initcall(arm_pmu_acpi_init) 440