xref: /linux/drivers/perf/arm_pmu_acpi.c (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI probing code for ARM performance counters.
4  *
5  * Copyright (C) 2017 ARM Ltd.
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/cpumask.h>
10 #include <linux/init.h>
11 #include <linux/irq.h>
12 #include <linux/irqdesc.h>
13 #include <linux/percpu.h>
14 #include <linux/perf/arm_pmu.h>
15 
16 #include <asm/cputype.h>
17 
18 static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
19 static DEFINE_PER_CPU(int, pmu_irqs);
20 
21 static int arm_pmu_acpi_register_irq(int cpu)
22 {
23 	struct acpi_madt_generic_interrupt *gicc;
24 	int gsi, trigger;
25 
26 	gicc = acpi_cpu_get_madt_gicc(cpu);
27 
28 	gsi = gicc->performance_interrupt;
29 
30 	/*
31 	 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
32 	 * have an interrupt. QEMU advertises this by using a GSI of zero,
33 	 * which is not known to be valid on any hardware despite being
34 	 * valid per the spec. Take the pragmatic approach and reject a
35 	 * GSI of zero for now.
36 	 */
37 	if (!gsi)
38 		return 0;
39 
40 	if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
41 		trigger = ACPI_EDGE_SENSITIVE;
42 	else
43 		trigger = ACPI_LEVEL_SENSITIVE;
44 
45 	/*
46 	 * Helpfully, the MADT GICC doesn't have a polarity flag for the
47 	 * "performance interrupt". Luckily, on compliant GICs the polarity is
48 	 * a fixed value in HW (for both SPIs and PPIs) that we cannot change
49 	 * from SW.
50 	 *
51 	 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
52 	 * may not match the real polarity, but that should not matter.
53 	 *
54 	 * Other interrupt controllers are not supported with ACPI.
55 	 */
56 	return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
57 }
58 
59 static void arm_pmu_acpi_unregister_irq(int cpu)
60 {
61 	struct acpi_madt_generic_interrupt *gicc;
62 	int gsi;
63 
64 	gicc = acpi_cpu_get_madt_gicc(cpu);
65 
66 	gsi = gicc->performance_interrupt;
67 	if (gsi)
68 		acpi_unregister_gsi(gsi);
69 }
70 
71 #if IS_ENABLED(CONFIG_ARM_SPE_PMU)
72 static struct resource spe_resources[] = {
73 	{
74 		/* irq */
75 		.flags          = IORESOURCE_IRQ,
76 	}
77 };
78 
79 static struct platform_device spe_dev = {
80 	.name = ARMV8_SPE_PDEV_NAME,
81 	.id = -1,
82 	.resource = spe_resources,
83 	.num_resources = ARRAY_SIZE(spe_resources)
84 };
85 
86 /*
87  * For lack of a better place, hook the normal PMU MADT walk
88  * and create a SPE device if we detect a recent MADT with
89  * a homogeneous PPI mapping.
90  */
91 static void arm_spe_acpi_register_device(void)
92 {
93 	int cpu, hetid, irq, ret;
94 	bool first = true;
95 	u16 gsi = 0;
96 
97 	/*
98 	 * Sanity check all the GICC tables for the same interrupt number.
99 	 * For now, we only support homogeneous ACPI/SPE machines.
100 	 */
101 	for_each_possible_cpu(cpu) {
102 		struct acpi_madt_generic_interrupt *gicc;
103 
104 		gicc = acpi_cpu_get_madt_gicc(cpu);
105 		if (gicc->header.length < ACPI_MADT_GICC_SPE)
106 			return;
107 
108 		if (first) {
109 			gsi = gicc->spe_interrupt;
110 			if (!gsi)
111 				return;
112 			hetid = find_acpi_cpu_topology_hetero_id(cpu);
113 			first = false;
114 		} else if ((gsi != gicc->spe_interrupt) ||
115 			   (hetid != find_acpi_cpu_topology_hetero_id(cpu))) {
116 			pr_warn("ACPI: SPE must be homogeneous\n");
117 			return;
118 		}
119 	}
120 
121 	irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE,
122 				ACPI_ACTIVE_HIGH);
123 	if (irq < 0) {
124 		pr_warn("ACPI: SPE Unable to register interrupt: %d\n", gsi);
125 		return;
126 	}
127 
128 	spe_resources[0].start = irq;
129 	ret = platform_device_register(&spe_dev);
130 	if (ret < 0) {
131 		pr_warn("ACPI: SPE: Unable to register device\n");
132 		acpi_unregister_gsi(gsi);
133 	}
134 }
135 #else
136 static inline void arm_spe_acpi_register_device(void)
137 {
138 }
139 #endif /* CONFIG_ARM_SPE_PMU */
140 
141 static int arm_pmu_acpi_parse_irqs(void)
142 {
143 	int irq, cpu, irq_cpu, err;
144 
145 	for_each_possible_cpu(cpu) {
146 		irq = arm_pmu_acpi_register_irq(cpu);
147 		if (irq < 0) {
148 			err = irq;
149 			pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
150 				cpu, err);
151 			goto out_err;
152 		} else if (irq == 0) {
153 			pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
154 		}
155 
156 		/*
157 		 * Log and request the IRQ so the core arm_pmu code can manage
158 		 * it. We'll have to sanity-check IRQs later when we associate
159 		 * them with their PMUs.
160 		 */
161 		per_cpu(pmu_irqs, cpu) = irq;
162 		armpmu_request_irq(irq, cpu);
163 	}
164 
165 	return 0;
166 
167 out_err:
168 	for_each_possible_cpu(cpu) {
169 		irq = per_cpu(pmu_irqs, cpu);
170 		if (!irq)
171 			continue;
172 
173 		arm_pmu_acpi_unregister_irq(cpu);
174 
175 		/*
176 		 * Blat all copies of the IRQ so that we only unregister the
177 		 * corresponding GSI once (e.g. when we have PPIs).
178 		 */
179 		for_each_possible_cpu(irq_cpu) {
180 			if (per_cpu(pmu_irqs, irq_cpu) == irq)
181 				per_cpu(pmu_irqs, irq_cpu) = 0;
182 		}
183 	}
184 
185 	return err;
186 }
187 
188 static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void)
189 {
190 	unsigned long cpuid = read_cpuid_id();
191 	struct arm_pmu *pmu;
192 	int cpu;
193 
194 	for_each_possible_cpu(cpu) {
195 		pmu = per_cpu(probed_pmus, cpu);
196 		if (!pmu || pmu->acpi_cpuid != cpuid)
197 			continue;
198 
199 		return pmu;
200 	}
201 
202 	pmu = armpmu_alloc_atomic();
203 	if (!pmu) {
204 		pr_warn("Unable to allocate PMU for CPU%d\n",
205 			smp_processor_id());
206 		return NULL;
207 	}
208 
209 	pmu->acpi_cpuid = cpuid;
210 
211 	return pmu;
212 }
213 
214 /*
215  * Check whether the new IRQ is compatible with those already associated with
216  * the PMU (e.g. we don't have mismatched PPIs).
217  */
218 static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
219 {
220 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
221 	int cpu;
222 
223 	if (!irq)
224 		return true;
225 
226 	for_each_cpu(cpu, &pmu->supported_cpus) {
227 		int other_irq = per_cpu(hw_events->irq, cpu);
228 		if (!other_irq)
229 			continue;
230 
231 		if (irq == other_irq)
232 			continue;
233 		if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
234 			continue;
235 
236 		pr_warn("mismatched PPIs detected\n");
237 		return false;
238 	}
239 
240 	return true;
241 }
242 
243 /*
244  * This must run before the common arm_pmu hotplug logic, so that we can
245  * associate a CPU and its interrupt before the common code tries to manage the
246  * affinity and so on.
247  *
248  * Note that hotplug events are serialized, so we cannot race with another CPU
249  * coming up. The perf core won't open events while a hotplug event is in
250  * progress.
251  */
252 static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
253 {
254 	struct arm_pmu *pmu;
255 	struct pmu_hw_events __percpu *hw_events;
256 	int irq;
257 
258 	/* If we've already probed this CPU, we have nothing to do */
259 	if (per_cpu(probed_pmus, cpu))
260 		return 0;
261 
262 	irq = per_cpu(pmu_irqs, cpu);
263 
264 	pmu = arm_pmu_acpi_find_alloc_pmu();
265 	if (!pmu)
266 		return -ENOMEM;
267 
268 	per_cpu(probed_pmus, cpu) = pmu;
269 
270 	if (pmu_irq_matches(pmu, irq)) {
271 		hw_events = pmu->hw_events;
272 		per_cpu(hw_events->irq, cpu) = irq;
273 	}
274 
275 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
276 
277 	/*
278 	 * Ideally, we'd probe the PMU here when we find the first matching
279 	 * CPU. We can't do that for several reasons; see the comment in
280 	 * arm_pmu_acpi_init().
281 	 *
282 	 * So for the time being, we're done.
283 	 */
284 	return 0;
285 }
286 
287 int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
288 {
289 	int pmu_idx = 0;
290 	int cpu, ret;
291 
292 	/*
293 	 * Initialise and register the set of PMUs which we know about right
294 	 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
295 	 * could handle late hotplug, but this may lead to deadlock since we
296 	 * might try to register a hotplug notifier instance from within a
297 	 * hotplug notifier.
298 	 *
299 	 * There's also the problem of having access to the right init_fn,
300 	 * without tying this too deeply into the "real" PMU driver.
301 	 *
302 	 * For the moment, as with the platform/DT case, we need at least one
303 	 * of a PMU's CPUs to be online at probe time.
304 	 */
305 	for_each_possible_cpu(cpu) {
306 		struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
307 		char *base_name;
308 
309 		if (!pmu || pmu->name)
310 			continue;
311 
312 		ret = init_fn(pmu);
313 		if (ret == -ENODEV) {
314 			/* PMU not handled by this driver, or not present */
315 			continue;
316 		} else if (ret) {
317 			pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
318 			return ret;
319 		}
320 
321 		base_name = pmu->name;
322 		pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
323 		if (!pmu->name) {
324 			pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
325 			return -ENOMEM;
326 		}
327 
328 		ret = armpmu_register(pmu);
329 		if (ret) {
330 			pr_warn("Failed to register PMU for CPU%d\n", cpu);
331 			kfree(pmu->name);
332 			return ret;
333 		}
334 	}
335 
336 	return 0;
337 }
338 
339 static int arm_pmu_acpi_init(void)
340 {
341 	int ret;
342 
343 	if (acpi_disabled)
344 		return 0;
345 
346 	arm_spe_acpi_register_device();
347 
348 	ret = arm_pmu_acpi_parse_irqs();
349 	if (ret)
350 		return ret;
351 
352 	ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING,
353 				"perf/arm/pmu_acpi:starting",
354 				arm_pmu_acpi_cpu_starting, NULL);
355 
356 	return ret;
357 }
358 subsys_initcall(arm_pmu_acpi_init)
359