1 // SPDX-License-Identifier: GPL-2.0-only 2 #undef DEBUG 3 4 /* 5 * ARM performance counter support. 6 * 7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles 8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> 9 * 10 * This code is based on the sparc64 perf event code, which is in turn based 11 * on the x86 code. 12 */ 13 #define pr_fmt(fmt) "hw perfevents: " fmt 14 15 #include <linux/bitmap.h> 16 #include <linux/cpumask.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/perf/arm_pmu.h> 21 #include <linux/slab.h> 22 #include <linux/sched/clock.h> 23 #include <linux/spinlock.h> 24 #include <linux/irq.h> 25 #include <linux/irqdesc.h> 26 27 #include <asm/irq_regs.h> 28 29 static int armpmu_count_irq_users(const int irq); 30 31 struct pmu_irq_ops { 32 void (*enable_pmuirq)(unsigned int irq); 33 void (*disable_pmuirq)(unsigned int irq); 34 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid); 35 }; 36 37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid) 38 { 39 free_irq(irq, per_cpu_ptr(devid, cpu)); 40 } 41 42 static const struct pmu_irq_ops pmuirq_ops = { 43 .enable_pmuirq = enable_irq, 44 .disable_pmuirq = disable_irq_nosync, 45 .free_pmuirq = armpmu_free_pmuirq 46 }; 47 48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid) 49 { 50 free_nmi(irq, per_cpu_ptr(devid, cpu)); 51 } 52 53 static const struct pmu_irq_ops pmunmi_ops = { 54 .enable_pmuirq = enable_nmi, 55 .disable_pmuirq = disable_nmi_nosync, 56 .free_pmuirq = armpmu_free_pmunmi 57 }; 58 59 static void armpmu_enable_percpu_pmuirq(unsigned int irq) 60 { 61 enable_percpu_irq(irq, IRQ_TYPE_NONE); 62 } 63 64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu, 65 void __percpu *devid) 66 { 67 if (armpmu_count_irq_users(irq) == 1) 68 free_percpu_irq(irq, devid); 69 } 70 71 static const struct pmu_irq_ops percpu_pmuirq_ops = { 72 .enable_pmuirq = armpmu_enable_percpu_pmuirq, 73 .disable_pmuirq = disable_percpu_irq, 74 .free_pmuirq = armpmu_free_percpu_pmuirq 75 }; 76 77 static void armpmu_enable_percpu_pmunmi(unsigned int irq) 78 { 79 if (!prepare_percpu_nmi(irq)) 80 enable_percpu_nmi(irq, IRQ_TYPE_NONE); 81 } 82 83 static void armpmu_disable_percpu_pmunmi(unsigned int irq) 84 { 85 disable_percpu_nmi(irq); 86 teardown_percpu_nmi(irq); 87 } 88 89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu, 90 void __percpu *devid) 91 { 92 if (armpmu_count_irq_users(irq) == 1) 93 free_percpu_nmi(irq, devid); 94 } 95 96 static const struct pmu_irq_ops percpu_pmunmi_ops = { 97 .enable_pmuirq = armpmu_enable_percpu_pmunmi, 98 .disable_pmuirq = armpmu_disable_percpu_pmunmi, 99 .free_pmuirq = armpmu_free_percpu_pmunmi 100 }; 101 102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu); 103 static DEFINE_PER_CPU(int, cpu_irq); 104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops); 105 106 static bool has_nmi; 107 108 static inline u64 arm_pmu_event_max_period(struct perf_event *event) 109 { 110 if (event->hw.flags & ARMPMU_EVT_64BIT) 111 return GENMASK_ULL(63, 0); 112 else 113 return GENMASK_ULL(31, 0); 114 } 115 116 static int 117 armpmu_map_cache_event(const unsigned (*cache_map) 118 [PERF_COUNT_HW_CACHE_MAX] 119 [PERF_COUNT_HW_CACHE_OP_MAX] 120 [PERF_COUNT_HW_CACHE_RESULT_MAX], 121 u64 config) 122 { 123 unsigned int cache_type, cache_op, cache_result, ret; 124 125 cache_type = (config >> 0) & 0xff; 126 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 127 return -EINVAL; 128 129 cache_op = (config >> 8) & 0xff; 130 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 131 return -EINVAL; 132 133 cache_result = (config >> 16) & 0xff; 134 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 135 return -EINVAL; 136 137 if (!cache_map) 138 return -ENOENT; 139 140 ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; 141 142 if (ret == CACHE_OP_UNSUPPORTED) 143 return -ENOENT; 144 145 return ret; 146 } 147 148 static int 149 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) 150 { 151 int mapping; 152 153 if (config >= PERF_COUNT_HW_MAX) 154 return -EINVAL; 155 156 if (!event_map) 157 return -ENOENT; 158 159 mapping = (*event_map)[config]; 160 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; 161 } 162 163 static int 164 armpmu_map_raw_event(u32 raw_event_mask, u64 config) 165 { 166 return (int)(config & raw_event_mask); 167 } 168 169 int 170 armpmu_map_event(struct perf_event *event, 171 const unsigned (*event_map)[PERF_COUNT_HW_MAX], 172 const unsigned (*cache_map) 173 [PERF_COUNT_HW_CACHE_MAX] 174 [PERF_COUNT_HW_CACHE_OP_MAX] 175 [PERF_COUNT_HW_CACHE_RESULT_MAX], 176 u32 raw_event_mask) 177 { 178 u64 config = event->attr.config; 179 int type = event->attr.type; 180 181 if (type == event->pmu->type) 182 return armpmu_map_raw_event(raw_event_mask, config); 183 184 switch (type) { 185 case PERF_TYPE_HARDWARE: 186 return armpmu_map_hw_event(event_map, config); 187 case PERF_TYPE_HW_CACHE: 188 return armpmu_map_cache_event(cache_map, config); 189 case PERF_TYPE_RAW: 190 return armpmu_map_raw_event(raw_event_mask, config); 191 } 192 193 return -ENOENT; 194 } 195 196 int armpmu_event_set_period(struct perf_event *event) 197 { 198 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 199 struct hw_perf_event *hwc = &event->hw; 200 s64 left = local64_read(&hwc->period_left); 201 s64 period = hwc->sample_period; 202 u64 max_period; 203 int ret = 0; 204 205 max_period = arm_pmu_event_max_period(event); 206 if (unlikely(left <= -period)) { 207 left = period; 208 local64_set(&hwc->period_left, left); 209 hwc->last_period = period; 210 ret = 1; 211 } 212 213 if (unlikely(left <= 0)) { 214 left += period; 215 local64_set(&hwc->period_left, left); 216 hwc->last_period = period; 217 ret = 1; 218 } 219 220 /* 221 * Limit the maximum period to prevent the counter value 222 * from overtaking the one we are about to program. In 223 * effect we are reducing max_period to account for 224 * interrupt latency (and we are being very conservative). 225 */ 226 if (left > (max_period >> 1)) 227 left = (max_period >> 1); 228 229 local64_set(&hwc->prev_count, (u64)-left); 230 231 armpmu->write_counter(event, (u64)(-left) & max_period); 232 233 perf_event_update_userpage(event); 234 235 return ret; 236 } 237 238 u64 armpmu_event_update(struct perf_event *event) 239 { 240 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 241 struct hw_perf_event *hwc = &event->hw; 242 u64 delta, prev_raw_count, new_raw_count; 243 u64 max_period = arm_pmu_event_max_period(event); 244 245 again: 246 prev_raw_count = local64_read(&hwc->prev_count); 247 new_raw_count = armpmu->read_counter(event); 248 249 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 250 new_raw_count) != prev_raw_count) 251 goto again; 252 253 delta = (new_raw_count - prev_raw_count) & max_period; 254 255 local64_add(delta, &event->count); 256 local64_sub(delta, &hwc->period_left); 257 258 return new_raw_count; 259 } 260 261 static void 262 armpmu_read(struct perf_event *event) 263 { 264 armpmu_event_update(event); 265 } 266 267 static void 268 armpmu_stop(struct perf_event *event, int flags) 269 { 270 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 271 struct hw_perf_event *hwc = &event->hw; 272 273 /* 274 * ARM pmu always has to update the counter, so ignore 275 * PERF_EF_UPDATE, see comments in armpmu_start(). 276 */ 277 if (!(hwc->state & PERF_HES_STOPPED)) { 278 armpmu->disable(event); 279 armpmu_event_update(event); 280 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 281 } 282 } 283 284 static void armpmu_start(struct perf_event *event, int flags) 285 { 286 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 287 struct hw_perf_event *hwc = &event->hw; 288 289 /* 290 * ARM pmu always has to reprogram the period, so ignore 291 * PERF_EF_RELOAD, see the comment below. 292 */ 293 if (flags & PERF_EF_RELOAD) 294 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 295 296 hwc->state = 0; 297 /* 298 * Set the period again. Some counters can't be stopped, so when we 299 * were stopped we simply disabled the IRQ source and the counter 300 * may have been left counting. If we don't do this step then we may 301 * get an interrupt too soon or *way* too late if the overflow has 302 * happened since disabling. 303 */ 304 armpmu_event_set_period(event); 305 armpmu->enable(event); 306 } 307 308 static void 309 armpmu_del(struct perf_event *event, int flags) 310 { 311 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 312 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 313 struct hw_perf_event *hwc = &event->hw; 314 int idx = hwc->idx; 315 316 armpmu_stop(event, PERF_EF_UPDATE); 317 hw_events->events[idx] = NULL; 318 armpmu->clear_event_idx(hw_events, event); 319 perf_event_update_userpage(event); 320 /* Clear the allocated counter */ 321 hwc->idx = -1; 322 } 323 324 static int 325 armpmu_add(struct perf_event *event, int flags) 326 { 327 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 328 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 329 struct hw_perf_event *hwc = &event->hw; 330 int idx; 331 332 /* An event following a process won't be stopped earlier */ 333 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 334 return -ENOENT; 335 336 /* If we don't have a space for the counter then finish early. */ 337 idx = armpmu->get_event_idx(hw_events, event); 338 if (idx < 0) 339 return idx; 340 341 /* 342 * If there is an event in the counter we are going to use then make 343 * sure it is disabled. 344 */ 345 event->hw.idx = idx; 346 armpmu->disable(event); 347 hw_events->events[idx] = event; 348 349 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 350 if (flags & PERF_EF_START) 351 armpmu_start(event, PERF_EF_RELOAD); 352 353 /* Propagate our changes to the userspace mapping. */ 354 perf_event_update_userpage(event); 355 356 return 0; 357 } 358 359 static int 360 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, 361 struct perf_event *event) 362 { 363 struct arm_pmu *armpmu; 364 365 if (is_software_event(event)) 366 return 1; 367 368 /* 369 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 370 * core perf code won't check that the pmu->ctx == leader->ctx 371 * until after pmu->event_init(event). 372 */ 373 if (event->pmu != pmu) 374 return 0; 375 376 if (event->state < PERF_EVENT_STATE_OFF) 377 return 1; 378 379 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 380 return 1; 381 382 armpmu = to_arm_pmu(event->pmu); 383 return armpmu->get_event_idx(hw_events, event) >= 0; 384 } 385 386 static int 387 validate_group(struct perf_event *event) 388 { 389 struct perf_event *sibling, *leader = event->group_leader; 390 struct pmu_hw_events fake_pmu; 391 392 /* 393 * Initialise the fake PMU. We only need to populate the 394 * used_mask for the purposes of validation. 395 */ 396 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); 397 398 if (!validate_event(event->pmu, &fake_pmu, leader)) 399 return -EINVAL; 400 401 for_each_sibling_event(sibling, leader) { 402 if (!validate_event(event->pmu, &fake_pmu, sibling)) 403 return -EINVAL; 404 } 405 406 if (!validate_event(event->pmu, &fake_pmu, event)) 407 return -EINVAL; 408 409 return 0; 410 } 411 412 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) 413 { 414 struct arm_pmu *armpmu; 415 int ret; 416 u64 start_clock, finish_clock; 417 418 /* 419 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but 420 * the handlers expect a struct arm_pmu*. The percpu_irq framework will 421 * do any necessary shifting, we just need to perform the first 422 * dereference. 423 */ 424 armpmu = *(void **)dev; 425 if (WARN_ON_ONCE(!armpmu)) 426 return IRQ_NONE; 427 428 start_clock = sched_clock(); 429 ret = armpmu->handle_irq(armpmu); 430 finish_clock = sched_clock(); 431 432 perf_sample_event_took(finish_clock - start_clock); 433 return ret; 434 } 435 436 static int 437 __hw_perf_event_init(struct perf_event *event) 438 { 439 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 440 struct hw_perf_event *hwc = &event->hw; 441 int mapping; 442 443 hwc->flags = 0; 444 mapping = armpmu->map_event(event); 445 446 if (mapping < 0) { 447 pr_debug("event %x:%llx not supported\n", event->attr.type, 448 event->attr.config); 449 return mapping; 450 } 451 452 /* 453 * We don't assign an index until we actually place the event onto 454 * hardware. Use -1 to signify that we haven't decided where to put it 455 * yet. For SMP systems, each core has it's own PMU so we can't do any 456 * clever allocation or constraints checking at this point. 457 */ 458 hwc->idx = -1; 459 hwc->config_base = 0; 460 hwc->config = 0; 461 hwc->event_base = 0; 462 463 /* 464 * Check whether we need to exclude the counter from certain modes. 465 */ 466 if (armpmu->set_event_filter && 467 armpmu->set_event_filter(hwc, &event->attr)) { 468 pr_debug("ARM performance counters do not support " 469 "mode exclusion\n"); 470 return -EOPNOTSUPP; 471 } 472 473 /* 474 * Store the event encoding into the config_base field. 475 */ 476 hwc->config_base |= (unsigned long)mapping; 477 478 if (!is_sampling_event(event)) { 479 /* 480 * For non-sampling runs, limit the sample_period to half 481 * of the counter width. That way, the new counter value 482 * is far less likely to overtake the previous one unless 483 * you have some serious IRQ latency issues. 484 */ 485 hwc->sample_period = arm_pmu_event_max_period(event) >> 1; 486 hwc->last_period = hwc->sample_period; 487 local64_set(&hwc->period_left, hwc->sample_period); 488 } 489 490 if (event->group_leader != event) { 491 if (validate_group(event) != 0) 492 return -EINVAL; 493 } 494 495 return 0; 496 } 497 498 static int armpmu_event_init(struct perf_event *event) 499 { 500 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 501 502 /* 503 * Reject CPU-affine events for CPUs that are of a different class to 504 * that which this PMU handles. Process-following events (where 505 * event->cpu == -1) can be migrated between CPUs, and thus we have to 506 * reject them later (in armpmu_add) if they're scheduled on a 507 * different class of CPU. 508 */ 509 if (event->cpu != -1 && 510 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) 511 return -ENOENT; 512 513 /* does not support taken branch sampling */ 514 if (has_branch_stack(event)) 515 return -EOPNOTSUPP; 516 517 if (armpmu->map_event(event) == -ENOENT) 518 return -ENOENT; 519 520 return __hw_perf_event_init(event); 521 } 522 523 static void armpmu_enable(struct pmu *pmu) 524 { 525 struct arm_pmu *armpmu = to_arm_pmu(pmu); 526 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 527 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 528 529 /* For task-bound events we may be called on other CPUs */ 530 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 531 return; 532 533 if (enabled) 534 armpmu->start(armpmu); 535 } 536 537 static void armpmu_disable(struct pmu *pmu) 538 { 539 struct arm_pmu *armpmu = to_arm_pmu(pmu); 540 541 /* For task-bound events we may be called on other CPUs */ 542 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 543 return; 544 545 armpmu->stop(armpmu); 546 } 547 548 /* 549 * In heterogeneous systems, events are specific to a particular 550 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of 551 * the same microarchitecture. 552 */ 553 static int armpmu_filter_match(struct perf_event *event) 554 { 555 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 556 unsigned int cpu = smp_processor_id(); 557 int ret; 558 559 ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus); 560 if (ret && armpmu->filter_match) 561 return armpmu->filter_match(event); 562 563 return ret; 564 } 565 566 static ssize_t armpmu_cpumask_show(struct device *dev, 567 struct device_attribute *attr, char *buf) 568 { 569 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); 570 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); 571 } 572 573 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL); 574 575 static struct attribute *armpmu_common_attrs[] = { 576 &dev_attr_cpus.attr, 577 NULL, 578 }; 579 580 static const struct attribute_group armpmu_common_attr_group = { 581 .attrs = armpmu_common_attrs, 582 }; 583 584 static int armpmu_count_irq_users(const int irq) 585 { 586 int cpu, count = 0; 587 588 for_each_possible_cpu(cpu) { 589 if (per_cpu(cpu_irq, cpu) == irq) 590 count++; 591 } 592 593 return count; 594 } 595 596 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq) 597 { 598 const struct pmu_irq_ops *ops = NULL; 599 int cpu; 600 601 for_each_possible_cpu(cpu) { 602 if (per_cpu(cpu_irq, cpu) != irq) 603 continue; 604 605 ops = per_cpu(cpu_irq_ops, cpu); 606 if (ops) 607 break; 608 } 609 610 return ops; 611 } 612 613 void armpmu_free_irq(int irq, int cpu) 614 { 615 if (per_cpu(cpu_irq, cpu) == 0) 616 return; 617 if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) 618 return; 619 620 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu); 621 622 per_cpu(cpu_irq, cpu) = 0; 623 per_cpu(cpu_irq_ops, cpu) = NULL; 624 } 625 626 int armpmu_request_irq(int irq, int cpu) 627 { 628 int err = 0; 629 const irq_handler_t handler = armpmu_dispatch_irq; 630 const struct pmu_irq_ops *irq_ops; 631 632 if (!irq) 633 return 0; 634 635 if (!irq_is_percpu_devid(irq)) { 636 unsigned long irq_flags; 637 638 err = irq_force_affinity(irq, cpumask_of(cpu)); 639 640 if (err && num_possible_cpus() > 1) { 641 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", 642 irq, cpu); 643 goto err_out; 644 } 645 646 irq_flags = IRQF_PERCPU | 647 IRQF_NOBALANCING | 648 IRQF_NO_THREAD; 649 650 irq_set_status_flags(irq, IRQ_NOAUTOEN); 651 652 err = request_nmi(irq, handler, irq_flags, "arm-pmu", 653 per_cpu_ptr(&cpu_armpmu, cpu)); 654 655 /* If cannot get an NMI, get a normal interrupt */ 656 if (err) { 657 err = request_irq(irq, handler, irq_flags, "arm-pmu", 658 per_cpu_ptr(&cpu_armpmu, cpu)); 659 irq_ops = &pmuirq_ops; 660 } else { 661 has_nmi = true; 662 irq_ops = &pmunmi_ops; 663 } 664 } else if (armpmu_count_irq_users(irq) == 0) { 665 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu); 666 667 /* If cannot get an NMI, get a normal interrupt */ 668 if (err) { 669 err = request_percpu_irq(irq, handler, "arm-pmu", 670 &cpu_armpmu); 671 irq_ops = &percpu_pmuirq_ops; 672 } else { 673 has_nmi= true; 674 irq_ops = &percpu_pmunmi_ops; 675 } 676 } else { 677 /* Per cpudevid irq was already requested by another CPU */ 678 irq_ops = armpmu_find_irq_ops(irq); 679 680 if (WARN_ON(!irq_ops)) 681 err = -EINVAL; 682 } 683 684 if (err) 685 goto err_out; 686 687 per_cpu(cpu_irq, cpu) = irq; 688 per_cpu(cpu_irq_ops, cpu) = irq_ops; 689 return 0; 690 691 err_out: 692 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); 693 return err; 694 } 695 696 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) 697 { 698 struct pmu_hw_events __percpu *hw_events = pmu->hw_events; 699 return per_cpu(hw_events->irq, cpu); 700 } 701 702 /* 703 * PMU hardware loses all context when a CPU goes offline. 704 * When a CPU is hotplugged back in, since some hardware registers are 705 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading 706 * junk values out of them. 707 */ 708 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) 709 { 710 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 711 int irq; 712 713 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 714 return 0; 715 if (pmu->reset) 716 pmu->reset(pmu); 717 718 per_cpu(cpu_armpmu, cpu) = pmu; 719 720 irq = armpmu_get_cpu_irq(pmu, cpu); 721 if (irq) 722 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq); 723 724 return 0; 725 } 726 727 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) 728 { 729 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 730 int irq; 731 732 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 733 return 0; 734 735 irq = armpmu_get_cpu_irq(pmu, cpu); 736 if (irq) 737 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq); 738 739 per_cpu(cpu_armpmu, cpu) = NULL; 740 741 return 0; 742 } 743 744 #ifdef CONFIG_CPU_PM 745 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) 746 { 747 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 748 struct perf_event *event; 749 int idx; 750 751 for (idx = 0; idx < armpmu->num_events; idx++) { 752 event = hw_events->events[idx]; 753 if (!event) 754 continue; 755 756 switch (cmd) { 757 case CPU_PM_ENTER: 758 /* 759 * Stop and update the counter 760 */ 761 armpmu_stop(event, PERF_EF_UPDATE); 762 break; 763 case CPU_PM_EXIT: 764 case CPU_PM_ENTER_FAILED: 765 /* 766 * Restore and enable the counter. 767 * armpmu_start() indirectly calls 768 * 769 * perf_event_update_userpage() 770 * 771 * that requires RCU read locking to be functional, 772 * wrap the call within RCU_NONIDLE to make the 773 * RCU subsystem aware this cpu is not idle from 774 * an RCU perspective for the armpmu_start() call 775 * duration. 776 */ 777 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); 778 break; 779 default: 780 break; 781 } 782 } 783 } 784 785 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 786 void *v) 787 { 788 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); 789 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 790 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 791 792 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 793 return NOTIFY_DONE; 794 795 /* 796 * Always reset the PMU registers on power-up even if 797 * there are no events running. 798 */ 799 if (cmd == CPU_PM_EXIT && armpmu->reset) 800 armpmu->reset(armpmu); 801 802 if (!enabled) 803 return NOTIFY_OK; 804 805 switch (cmd) { 806 case CPU_PM_ENTER: 807 armpmu->stop(armpmu); 808 cpu_pm_pmu_setup(armpmu, cmd); 809 break; 810 case CPU_PM_EXIT: 811 case CPU_PM_ENTER_FAILED: 812 cpu_pm_pmu_setup(armpmu, cmd); 813 armpmu->start(armpmu); 814 break; 815 default: 816 return NOTIFY_DONE; 817 } 818 819 return NOTIFY_OK; 820 } 821 822 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) 823 { 824 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; 825 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); 826 } 827 828 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) 829 { 830 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); 831 } 832 #else 833 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } 834 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } 835 #endif 836 837 static int cpu_pmu_init(struct arm_pmu *cpu_pmu) 838 { 839 int err; 840 841 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, 842 &cpu_pmu->node); 843 if (err) 844 goto out; 845 846 err = cpu_pm_pmu_register(cpu_pmu); 847 if (err) 848 goto out_unregister; 849 850 return 0; 851 852 out_unregister: 853 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 854 &cpu_pmu->node); 855 out: 856 return err; 857 } 858 859 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) 860 { 861 cpu_pm_pmu_unregister(cpu_pmu); 862 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 863 &cpu_pmu->node); 864 } 865 866 static struct arm_pmu *__armpmu_alloc(gfp_t flags) 867 { 868 struct arm_pmu *pmu; 869 int cpu; 870 871 pmu = kzalloc(sizeof(*pmu), flags); 872 if (!pmu) { 873 pr_info("failed to allocate PMU device!\n"); 874 goto out; 875 } 876 877 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags); 878 if (!pmu->hw_events) { 879 pr_info("failed to allocate per-cpu PMU data.\n"); 880 goto out_free_pmu; 881 } 882 883 pmu->pmu = (struct pmu) { 884 .pmu_enable = armpmu_enable, 885 .pmu_disable = armpmu_disable, 886 .event_init = armpmu_event_init, 887 .add = armpmu_add, 888 .del = armpmu_del, 889 .start = armpmu_start, 890 .stop = armpmu_stop, 891 .read = armpmu_read, 892 .filter_match = armpmu_filter_match, 893 .attr_groups = pmu->attr_groups, 894 /* 895 * This is a CPU PMU potentially in a heterogeneous 896 * configuration (e.g. big.LITTLE). This is not an uncore PMU, 897 * and we have taken ctx sharing into account (e.g. with our 898 * pmu::filter_match callback and pmu::event_init group 899 * validation). 900 */ 901 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS, 902 }; 903 904 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = 905 &armpmu_common_attr_group; 906 907 for_each_possible_cpu(cpu) { 908 struct pmu_hw_events *events; 909 910 events = per_cpu_ptr(pmu->hw_events, cpu); 911 raw_spin_lock_init(&events->pmu_lock); 912 events->percpu_pmu = pmu; 913 } 914 915 return pmu; 916 917 out_free_pmu: 918 kfree(pmu); 919 out: 920 return NULL; 921 } 922 923 struct arm_pmu *armpmu_alloc(void) 924 { 925 return __armpmu_alloc(GFP_KERNEL); 926 } 927 928 struct arm_pmu *armpmu_alloc_atomic(void) 929 { 930 return __armpmu_alloc(GFP_ATOMIC); 931 } 932 933 934 void armpmu_free(struct arm_pmu *pmu) 935 { 936 free_percpu(pmu->hw_events); 937 kfree(pmu); 938 } 939 940 int armpmu_register(struct arm_pmu *pmu) 941 { 942 int ret; 943 944 ret = cpu_pmu_init(pmu); 945 if (ret) 946 return ret; 947 948 if (!pmu->set_event_filter) 949 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; 950 951 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); 952 if (ret) 953 goto out_destroy; 954 955 pr_info("enabled with %s PMU driver, %d counters available%s\n", 956 pmu->name, pmu->num_events, 957 has_nmi ? ", using NMIs" : ""); 958 959 return 0; 960 961 out_destroy: 962 cpu_pmu_destroy(pmu); 963 return ret; 964 } 965 966 static int arm_pmu_hp_init(void) 967 { 968 int ret; 969 970 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, 971 "perf/arm/pmu:starting", 972 arm_perf_starting_cpu, 973 arm_perf_teardown_cpu); 974 if (ret) 975 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", 976 ret); 977 return ret; 978 } 979 subsys_initcall(arm_pmu_hp_init); 980