xref: /linux/drivers/perf/arm_pmu.c (revision a1944676767e855869b6af8e1c7e185372feaf31)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3 
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int armpmu_count_irq_users(const int irq);
30 
31 struct pmu_irq_ops {
32 	void (*enable_pmuirq)(unsigned int irq);
33 	void (*disable_pmuirq)(unsigned int irq);
34 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36 
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 	free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41 
42 static const struct pmu_irq_ops pmuirq_ops = {
43 	.enable_pmuirq = enable_irq,
44 	.disable_pmuirq = disable_irq_nosync,
45 	.free_pmuirq = armpmu_free_pmuirq
46 };
47 
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 	free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52 
53 static const struct pmu_irq_ops pmunmi_ops = {
54 	.enable_pmuirq = enable_nmi,
55 	.disable_pmuirq = disable_nmi_nosync,
56 	.free_pmuirq = armpmu_free_pmunmi
57 };
58 
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63 
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 				   void __percpu *devid)
66 {
67 	if (armpmu_count_irq_users(irq) == 1)
68 		free_percpu_irq(irq, devid);
69 }
70 
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 	.disable_pmuirq = disable_percpu_irq,
74 	.free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76 
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 	if (!prepare_percpu_nmi(irq))
80 		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82 
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 	disable_percpu_nmi(irq);
86 	teardown_percpu_nmi(irq);
87 }
88 
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 				      void __percpu *devid)
91 {
92 	if (armpmu_count_irq_users(irq) == 1)
93 		free_percpu_nmi(irq, devid);
94 }
95 
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 	.free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101 
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105 
106 static bool has_nmi;
107 
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 	if (event->hw.flags & ARMPMU_EVT_64BIT)
111 		return GENMASK_ULL(63, 0);
112 	else if (event->hw.flags & ARMPMU_EVT_63BIT)
113 		return GENMASK_ULL(62, 0);
114 	else if (event->hw.flags & ARMPMU_EVT_47BIT)
115 		return GENMASK_ULL(46, 0);
116 	else
117 		return GENMASK_ULL(31, 0);
118 }
119 
120 static int
121 armpmu_map_cache_event(const unsigned (*cache_map)
122 				      [PERF_COUNT_HW_CACHE_MAX]
123 				      [PERF_COUNT_HW_CACHE_OP_MAX]
124 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
125 		       u64 config)
126 {
127 	unsigned int cache_type, cache_op, cache_result, ret;
128 
129 	cache_type = (config >>  0) & 0xff;
130 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
131 		return -EINVAL;
132 
133 	cache_op = (config >>  8) & 0xff;
134 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135 		return -EINVAL;
136 
137 	cache_result = (config >> 16) & 0xff;
138 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
139 		return -EINVAL;
140 
141 	if (!cache_map)
142 		return -ENOENT;
143 
144 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
145 
146 	if (ret == CACHE_OP_UNSUPPORTED)
147 		return -ENOENT;
148 
149 	return ret;
150 }
151 
152 static int
153 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
154 {
155 	int mapping;
156 
157 	if (config >= PERF_COUNT_HW_MAX)
158 		return -EINVAL;
159 
160 	if (!event_map)
161 		return -ENOENT;
162 
163 	mapping = (*event_map)[config];
164 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
165 }
166 
167 static int
168 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
169 {
170 	return (int)(config & raw_event_mask);
171 }
172 
173 int
174 armpmu_map_event(struct perf_event *event,
175 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
176 		 const unsigned (*cache_map)
177 				[PERF_COUNT_HW_CACHE_MAX]
178 				[PERF_COUNT_HW_CACHE_OP_MAX]
179 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
180 		 u32 raw_event_mask)
181 {
182 	u64 config = event->attr.config;
183 	int type = event->attr.type;
184 
185 	if (type == event->pmu->type)
186 		return armpmu_map_raw_event(raw_event_mask, config);
187 
188 	switch (type) {
189 	case PERF_TYPE_HARDWARE:
190 		return armpmu_map_hw_event(event_map, config);
191 	case PERF_TYPE_HW_CACHE:
192 		return armpmu_map_cache_event(cache_map, config);
193 	case PERF_TYPE_RAW:
194 		return armpmu_map_raw_event(raw_event_mask, config);
195 	}
196 
197 	return -ENOENT;
198 }
199 
200 int armpmu_event_set_period(struct perf_event *event)
201 {
202 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203 	struct hw_perf_event *hwc = &event->hw;
204 	s64 left = local64_read(&hwc->period_left);
205 	s64 period = hwc->sample_period;
206 	u64 max_period;
207 	int ret = 0;
208 
209 	max_period = arm_pmu_event_max_period(event);
210 	if (unlikely(left <= -period)) {
211 		left = period;
212 		local64_set(&hwc->period_left, left);
213 		hwc->last_period = period;
214 		ret = 1;
215 	}
216 
217 	if (unlikely(left <= 0)) {
218 		left += period;
219 		local64_set(&hwc->period_left, left);
220 		hwc->last_period = period;
221 		ret = 1;
222 	}
223 
224 	/*
225 	 * Limit the maximum period to prevent the counter value
226 	 * from overtaking the one we are about to program. In
227 	 * effect we are reducing max_period to account for
228 	 * interrupt latency (and we are being very conservative).
229 	 */
230 	if (left > (max_period >> 1))
231 		left = (max_period >> 1);
232 
233 	local64_set(&hwc->prev_count, (u64)-left);
234 
235 	armpmu->write_counter(event, (u64)(-left) & max_period);
236 
237 	perf_event_update_userpage(event);
238 
239 	return ret;
240 }
241 
242 u64 armpmu_event_update(struct perf_event *event)
243 {
244 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
245 	struct hw_perf_event *hwc = &event->hw;
246 	u64 delta, prev_raw_count, new_raw_count;
247 	u64 max_period = arm_pmu_event_max_period(event);
248 
249 again:
250 	prev_raw_count = local64_read(&hwc->prev_count);
251 	new_raw_count = armpmu->read_counter(event);
252 
253 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
254 			     new_raw_count) != prev_raw_count)
255 		goto again;
256 
257 	delta = (new_raw_count - prev_raw_count) & max_period;
258 
259 	local64_add(delta, &event->count);
260 	local64_sub(delta, &hwc->period_left);
261 
262 	return new_raw_count;
263 }
264 
265 static void
266 armpmu_read(struct perf_event *event)
267 {
268 	armpmu_event_update(event);
269 }
270 
271 static void
272 armpmu_stop(struct perf_event *event, int flags)
273 {
274 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275 	struct hw_perf_event *hwc = &event->hw;
276 
277 	/*
278 	 * ARM pmu always has to update the counter, so ignore
279 	 * PERF_EF_UPDATE, see comments in armpmu_start().
280 	 */
281 	if (!(hwc->state & PERF_HES_STOPPED)) {
282 		armpmu->disable(event);
283 		armpmu_event_update(event);
284 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
285 	}
286 }
287 
288 static void armpmu_start(struct perf_event *event, int flags)
289 {
290 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
291 	struct hw_perf_event *hwc = &event->hw;
292 
293 	/*
294 	 * ARM pmu always has to reprogram the period, so ignore
295 	 * PERF_EF_RELOAD, see the comment below.
296 	 */
297 	if (flags & PERF_EF_RELOAD)
298 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
299 
300 	hwc->state = 0;
301 	/*
302 	 * Set the period again. Some counters can't be stopped, so when we
303 	 * were stopped we simply disabled the IRQ source and the counter
304 	 * may have been left counting. If we don't do this step then we may
305 	 * get an interrupt too soon or *way* too late if the overflow has
306 	 * happened since disabling.
307 	 */
308 	armpmu_event_set_period(event);
309 	armpmu->enable(event);
310 }
311 
312 static void
313 armpmu_del(struct perf_event *event, int flags)
314 {
315 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
317 	struct hw_perf_event *hwc = &event->hw;
318 	int idx = hwc->idx;
319 
320 	armpmu_stop(event, PERF_EF_UPDATE);
321 	hw_events->events[idx] = NULL;
322 	armpmu->clear_event_idx(hw_events, event);
323 	perf_event_update_userpage(event);
324 	/* Clear the allocated counter */
325 	hwc->idx = -1;
326 }
327 
328 static int
329 armpmu_add(struct perf_event *event, int flags)
330 {
331 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
333 	struct hw_perf_event *hwc = &event->hw;
334 	int idx;
335 
336 	/* An event following a process won't be stopped earlier */
337 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
338 		return -ENOENT;
339 
340 	/* If we don't have a space for the counter then finish early. */
341 	idx = armpmu->get_event_idx(hw_events, event);
342 	if (idx < 0)
343 		return idx;
344 
345 	/*
346 	 * If there is an event in the counter we are going to use then make
347 	 * sure it is disabled.
348 	 */
349 	event->hw.idx = idx;
350 	armpmu->disable(event);
351 	hw_events->events[idx] = event;
352 
353 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
354 	if (flags & PERF_EF_START)
355 		armpmu_start(event, PERF_EF_RELOAD);
356 
357 	/* Propagate our changes to the userspace mapping. */
358 	perf_event_update_userpage(event);
359 
360 	return 0;
361 }
362 
363 static int
364 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
365 			       struct perf_event *event)
366 {
367 	struct arm_pmu *armpmu;
368 
369 	if (is_software_event(event))
370 		return 1;
371 
372 	/*
373 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
374 	 * core perf code won't check that the pmu->ctx == leader->ctx
375 	 * until after pmu->event_init(event).
376 	 */
377 	if (event->pmu != pmu)
378 		return 0;
379 
380 	if (event->state < PERF_EVENT_STATE_OFF)
381 		return 1;
382 
383 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
384 		return 1;
385 
386 	armpmu = to_arm_pmu(event->pmu);
387 	return armpmu->get_event_idx(hw_events, event) >= 0;
388 }
389 
390 static int
391 validate_group(struct perf_event *event)
392 {
393 	struct perf_event *sibling, *leader = event->group_leader;
394 	struct pmu_hw_events fake_pmu;
395 
396 	/*
397 	 * Initialise the fake PMU. We only need to populate the
398 	 * used_mask for the purposes of validation.
399 	 */
400 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
401 
402 	if (!validate_event(event->pmu, &fake_pmu, leader))
403 		return -EINVAL;
404 
405 	if (event == leader)
406 		return 0;
407 
408 	for_each_sibling_event(sibling, leader) {
409 		if (!validate_event(event->pmu, &fake_pmu, sibling))
410 			return -EINVAL;
411 	}
412 
413 	if (!validate_event(event->pmu, &fake_pmu, event))
414 		return -EINVAL;
415 
416 	return 0;
417 }
418 
419 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
420 {
421 	struct arm_pmu *armpmu;
422 	int ret;
423 	u64 start_clock, finish_clock;
424 
425 	/*
426 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
427 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
428 	 * do any necessary shifting, we just need to perform the first
429 	 * dereference.
430 	 */
431 	armpmu = *(void **)dev;
432 	if (WARN_ON_ONCE(!armpmu))
433 		return IRQ_NONE;
434 
435 	start_clock = sched_clock();
436 	ret = armpmu->handle_irq(armpmu);
437 	finish_clock = sched_clock();
438 
439 	perf_sample_event_took(finish_clock - start_clock);
440 	return ret;
441 }
442 
443 static int
444 __hw_perf_event_init(struct perf_event *event)
445 {
446 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
447 	struct hw_perf_event *hwc = &event->hw;
448 	int mapping, ret;
449 
450 	hwc->flags = 0;
451 	mapping = armpmu->map_event(event);
452 
453 	if (mapping < 0) {
454 		pr_debug("event %x:%llx not supported\n", event->attr.type,
455 			 event->attr.config);
456 		return mapping;
457 	}
458 
459 	/*
460 	 * We don't assign an index until we actually place the event onto
461 	 * hardware. Use -1 to signify that we haven't decided where to put it
462 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
463 	 * clever allocation or constraints checking at this point.
464 	 */
465 	hwc->idx		= -1;
466 	hwc->config_base	= 0;
467 	hwc->config		= 0;
468 	hwc->event_base		= 0;
469 
470 	/*
471 	 * Check whether we need to exclude the counter from certain modes.
472 	 */
473 	if (armpmu->set_event_filter) {
474 		ret = armpmu->set_event_filter(hwc, &event->attr);
475 		if (ret)
476 			return ret;
477 	}
478 
479 	/*
480 	 * Store the event encoding into the config_base field.
481 	 */
482 	hwc->config_base	    |= (unsigned long)mapping;
483 
484 	if (!is_sampling_event(event)) {
485 		/*
486 		 * For non-sampling runs, limit the sample_period to half
487 		 * of the counter width. That way, the new counter value
488 		 * is far less likely to overtake the previous one unless
489 		 * you have some serious IRQ latency issues.
490 		 */
491 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
492 		hwc->last_period    = hwc->sample_period;
493 		local64_set(&hwc->period_left, hwc->sample_period);
494 	}
495 
496 	return validate_group(event);
497 }
498 
499 static int armpmu_event_init(struct perf_event *event)
500 {
501 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
502 
503 	/*
504 	 * Reject CPU-affine events for CPUs that are of a different class to
505 	 * that which this PMU handles. Process-following events (where
506 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
507 	 * reject them later (in armpmu_add) if they're scheduled on a
508 	 * different class of CPU.
509 	 */
510 	if (event->cpu != -1 &&
511 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
512 		return -ENOENT;
513 
514 	/* does not support taken branch sampling */
515 	if (has_branch_stack(event))
516 		return -EOPNOTSUPP;
517 
518 	return __hw_perf_event_init(event);
519 }
520 
521 static void armpmu_enable(struct pmu *pmu)
522 {
523 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
524 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
525 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
526 
527 	/* For task-bound events we may be called on other CPUs */
528 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
529 		return;
530 
531 	if (enabled)
532 		armpmu->start(armpmu);
533 }
534 
535 static void armpmu_disable(struct pmu *pmu)
536 {
537 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
538 
539 	/* For task-bound events we may be called on other CPUs */
540 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541 		return;
542 
543 	armpmu->stop(armpmu);
544 }
545 
546 /*
547  * In heterogeneous systems, events are specific to a particular
548  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
549  * the same microarchitecture.
550  */
551 static bool armpmu_filter(struct pmu *pmu, int cpu)
552 {
553 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
554 	return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
555 }
556 
557 static ssize_t cpus_show(struct device *dev,
558 			 struct device_attribute *attr, char *buf)
559 {
560 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
561 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
562 }
563 
564 static DEVICE_ATTR_RO(cpus);
565 
566 static struct attribute *armpmu_common_attrs[] = {
567 	&dev_attr_cpus.attr,
568 	NULL,
569 };
570 
571 static const struct attribute_group armpmu_common_attr_group = {
572 	.attrs = armpmu_common_attrs,
573 };
574 
575 static int armpmu_count_irq_users(const int irq)
576 {
577 	int cpu, count = 0;
578 
579 	for_each_possible_cpu(cpu) {
580 		if (per_cpu(cpu_irq, cpu) == irq)
581 			count++;
582 	}
583 
584 	return count;
585 }
586 
587 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
588 {
589 	const struct pmu_irq_ops *ops = NULL;
590 	int cpu;
591 
592 	for_each_possible_cpu(cpu) {
593 		if (per_cpu(cpu_irq, cpu) != irq)
594 			continue;
595 
596 		ops = per_cpu(cpu_irq_ops, cpu);
597 		if (ops)
598 			break;
599 	}
600 
601 	return ops;
602 }
603 
604 void armpmu_free_irq(int irq, int cpu)
605 {
606 	if (per_cpu(cpu_irq, cpu) == 0)
607 		return;
608 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
609 		return;
610 
611 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
612 
613 	per_cpu(cpu_irq, cpu) = 0;
614 	per_cpu(cpu_irq_ops, cpu) = NULL;
615 }
616 
617 int armpmu_request_irq(int irq, int cpu)
618 {
619 	int err = 0;
620 	const irq_handler_t handler = armpmu_dispatch_irq;
621 	const struct pmu_irq_ops *irq_ops;
622 
623 	if (!irq)
624 		return 0;
625 
626 	if (!irq_is_percpu_devid(irq)) {
627 		unsigned long irq_flags;
628 
629 		err = irq_force_affinity(irq, cpumask_of(cpu));
630 
631 		if (err && num_possible_cpus() > 1) {
632 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
633 				irq, cpu);
634 			goto err_out;
635 		}
636 
637 		irq_flags = IRQF_PERCPU |
638 			    IRQF_NOBALANCING | IRQF_NO_AUTOEN |
639 			    IRQF_NO_THREAD;
640 
641 		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
642 				  per_cpu_ptr(&cpu_armpmu, cpu));
643 
644 		/* If cannot get an NMI, get a normal interrupt */
645 		if (err) {
646 			err = request_irq(irq, handler, irq_flags, "arm-pmu",
647 					  per_cpu_ptr(&cpu_armpmu, cpu));
648 			irq_ops = &pmuirq_ops;
649 		} else {
650 			has_nmi = true;
651 			irq_ops = &pmunmi_ops;
652 		}
653 	} else if (armpmu_count_irq_users(irq) == 0) {
654 		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
655 
656 		/* If cannot get an NMI, get a normal interrupt */
657 		if (err) {
658 			err = request_percpu_irq(irq, handler, "arm-pmu",
659 						 &cpu_armpmu);
660 			irq_ops = &percpu_pmuirq_ops;
661 		} else {
662 			has_nmi = true;
663 			irq_ops = &percpu_pmunmi_ops;
664 		}
665 	} else {
666 		/* Per cpudevid irq was already requested by another CPU */
667 		irq_ops = armpmu_find_irq_ops(irq);
668 
669 		if (WARN_ON(!irq_ops))
670 			err = -EINVAL;
671 	}
672 
673 	if (err)
674 		goto err_out;
675 
676 	per_cpu(cpu_irq, cpu) = irq;
677 	per_cpu(cpu_irq_ops, cpu) = irq_ops;
678 	return 0;
679 
680 err_out:
681 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
682 	return err;
683 }
684 
685 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
686 {
687 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
688 	return per_cpu(hw_events->irq, cpu);
689 }
690 
691 bool arm_pmu_irq_is_nmi(void)
692 {
693 	return has_nmi;
694 }
695 
696 /*
697  * PMU hardware loses all context when a CPU goes offline.
698  * When a CPU is hotplugged back in, since some hardware registers are
699  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
700  * junk values out of them.
701  */
702 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
703 {
704 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
705 	int irq;
706 
707 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
708 		return 0;
709 	if (pmu->reset)
710 		pmu->reset(pmu);
711 
712 	per_cpu(cpu_armpmu, cpu) = pmu;
713 
714 	irq = armpmu_get_cpu_irq(pmu, cpu);
715 	if (irq)
716 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
717 
718 	return 0;
719 }
720 
721 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
722 {
723 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
724 	int irq;
725 
726 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
727 		return 0;
728 
729 	irq = armpmu_get_cpu_irq(pmu, cpu);
730 	if (irq)
731 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
732 
733 	per_cpu(cpu_armpmu, cpu) = NULL;
734 
735 	return 0;
736 }
737 
738 #ifdef CONFIG_CPU_PM
739 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
740 {
741 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
742 	struct perf_event *event;
743 	int idx;
744 
745 	for (idx = 0; idx < armpmu->num_events; idx++) {
746 		event = hw_events->events[idx];
747 		if (!event)
748 			continue;
749 
750 		switch (cmd) {
751 		case CPU_PM_ENTER:
752 			/*
753 			 * Stop and update the counter
754 			 */
755 			armpmu_stop(event, PERF_EF_UPDATE);
756 			break;
757 		case CPU_PM_EXIT:
758 		case CPU_PM_ENTER_FAILED:
759 			 /*
760 			  * Restore and enable the counter.
761 			  */
762 			armpmu_start(event, PERF_EF_RELOAD);
763 			break;
764 		default:
765 			break;
766 		}
767 	}
768 }
769 
770 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
771 			     void *v)
772 {
773 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
774 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
775 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
776 
777 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
778 		return NOTIFY_DONE;
779 
780 	/*
781 	 * Always reset the PMU registers on power-up even if
782 	 * there are no events running.
783 	 */
784 	if (cmd == CPU_PM_EXIT && armpmu->reset)
785 		armpmu->reset(armpmu);
786 
787 	if (!enabled)
788 		return NOTIFY_OK;
789 
790 	switch (cmd) {
791 	case CPU_PM_ENTER:
792 		armpmu->stop(armpmu);
793 		cpu_pm_pmu_setup(armpmu, cmd);
794 		break;
795 	case CPU_PM_EXIT:
796 	case CPU_PM_ENTER_FAILED:
797 		cpu_pm_pmu_setup(armpmu, cmd);
798 		armpmu->start(armpmu);
799 		break;
800 	default:
801 		return NOTIFY_DONE;
802 	}
803 
804 	return NOTIFY_OK;
805 }
806 
807 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
808 {
809 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
810 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
811 }
812 
813 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
814 {
815 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
816 }
817 #else
818 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
819 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
820 #endif
821 
822 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
823 {
824 	int err;
825 
826 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
827 				       &cpu_pmu->node);
828 	if (err)
829 		goto out;
830 
831 	err = cpu_pm_pmu_register(cpu_pmu);
832 	if (err)
833 		goto out_unregister;
834 
835 	return 0;
836 
837 out_unregister:
838 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
839 					    &cpu_pmu->node);
840 out:
841 	return err;
842 }
843 
844 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
845 {
846 	cpu_pm_pmu_unregister(cpu_pmu);
847 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
848 					    &cpu_pmu->node);
849 }
850 
851 struct arm_pmu *armpmu_alloc(void)
852 {
853 	struct arm_pmu *pmu;
854 	int cpu;
855 
856 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
857 	if (!pmu)
858 		goto out;
859 
860 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
861 	if (!pmu->hw_events) {
862 		pr_info("failed to allocate per-cpu PMU data.\n");
863 		goto out_free_pmu;
864 	}
865 
866 	pmu->pmu = (struct pmu) {
867 		.pmu_enable	= armpmu_enable,
868 		.pmu_disable	= armpmu_disable,
869 		.event_init	= armpmu_event_init,
870 		.add		= armpmu_add,
871 		.del		= armpmu_del,
872 		.start		= armpmu_start,
873 		.stop		= armpmu_stop,
874 		.read		= armpmu_read,
875 		.filter		= armpmu_filter,
876 		.attr_groups	= pmu->attr_groups,
877 		/*
878 		 * This is a CPU PMU potentially in a heterogeneous
879 		 * configuration (e.g. big.LITTLE) so
880 		 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
881 		 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
882 		 * specific PMU.
883 		 */
884 		.capabilities	= PERF_PMU_CAP_EXTENDED_REGS |
885 				  PERF_PMU_CAP_EXTENDED_HW_TYPE,
886 	};
887 
888 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
889 		&armpmu_common_attr_group;
890 
891 	for_each_possible_cpu(cpu) {
892 		struct pmu_hw_events *events;
893 
894 		events = per_cpu_ptr(pmu->hw_events, cpu);
895 		events->percpu_pmu = pmu;
896 	}
897 
898 	return pmu;
899 
900 out_free_pmu:
901 	kfree(pmu);
902 out:
903 	return NULL;
904 }
905 
906 void armpmu_free(struct arm_pmu *pmu)
907 {
908 	free_percpu(pmu->hw_events);
909 	kfree(pmu);
910 }
911 
912 int armpmu_register(struct arm_pmu *pmu)
913 {
914 	int ret;
915 
916 	ret = cpu_pmu_init(pmu);
917 	if (ret)
918 		return ret;
919 
920 	if (!pmu->set_event_filter)
921 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
922 
923 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
924 	if (ret)
925 		goto out_destroy;
926 
927 	pr_info("enabled with %s PMU driver, %d counters available%s\n",
928 		pmu->name, pmu->num_events,
929 		has_nmi ? ", using NMIs" : "");
930 
931 	kvm_host_pmu_init(pmu);
932 
933 	return 0;
934 
935 out_destroy:
936 	cpu_pmu_destroy(pmu);
937 	return ret;
938 }
939 
940 static int arm_pmu_hp_init(void)
941 {
942 	int ret;
943 
944 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
945 				      "perf/arm/pmu:starting",
946 				      arm_perf_starting_cpu,
947 				      arm_perf_teardown_cpu);
948 	if (ret)
949 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
950 		       ret);
951 	return ret;
952 }
953 subsys_initcall(arm_pmu_hp_init);
954