1 // SPDX-License-Identifier: GPL-2.0-only 2 #undef DEBUG 3 4 /* 5 * ARM performance counter support. 6 * 7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles 8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> 9 * 10 * This code is based on the sparc64 perf event code, which is in turn based 11 * on the x86 code. 12 */ 13 #define pr_fmt(fmt) "hw perfevents: " fmt 14 15 #include <linux/bitmap.h> 16 #include <linux/cpumask.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/perf/arm_pmu.h> 21 #include <linux/slab.h> 22 #include <linux/sched/clock.h> 23 #include <linux/spinlock.h> 24 #include <linux/irq.h> 25 #include <linux/irqdesc.h> 26 27 #include <asm/irq_regs.h> 28 29 static int armpmu_count_irq_users(const int irq); 30 31 struct pmu_irq_ops { 32 void (*enable_pmuirq)(unsigned int irq); 33 void (*disable_pmuirq)(unsigned int irq); 34 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid); 35 }; 36 37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid) 38 { 39 free_irq(irq, per_cpu_ptr(devid, cpu)); 40 } 41 42 static const struct pmu_irq_ops pmuirq_ops = { 43 .enable_pmuirq = enable_irq, 44 .disable_pmuirq = disable_irq_nosync, 45 .free_pmuirq = armpmu_free_pmuirq 46 }; 47 48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid) 49 { 50 free_nmi(irq, per_cpu_ptr(devid, cpu)); 51 } 52 53 static const struct pmu_irq_ops pmunmi_ops = { 54 .enable_pmuirq = enable_nmi, 55 .disable_pmuirq = disable_nmi_nosync, 56 .free_pmuirq = armpmu_free_pmunmi 57 }; 58 59 static void armpmu_enable_percpu_pmuirq(unsigned int irq) 60 { 61 enable_percpu_irq(irq, IRQ_TYPE_NONE); 62 } 63 64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu, 65 void __percpu *devid) 66 { 67 if (armpmu_count_irq_users(irq) == 1) 68 free_percpu_irq(irq, devid); 69 } 70 71 static const struct pmu_irq_ops percpu_pmuirq_ops = { 72 .enable_pmuirq = armpmu_enable_percpu_pmuirq, 73 .disable_pmuirq = disable_percpu_irq, 74 .free_pmuirq = armpmu_free_percpu_pmuirq 75 }; 76 77 static void armpmu_enable_percpu_pmunmi(unsigned int irq) 78 { 79 if (!prepare_percpu_nmi(irq)) 80 enable_percpu_nmi(irq, IRQ_TYPE_NONE); 81 } 82 83 static void armpmu_disable_percpu_pmunmi(unsigned int irq) 84 { 85 disable_percpu_nmi(irq); 86 teardown_percpu_nmi(irq); 87 } 88 89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu, 90 void __percpu *devid) 91 { 92 if (armpmu_count_irq_users(irq) == 1) 93 free_percpu_nmi(irq, devid); 94 } 95 96 static const struct pmu_irq_ops percpu_pmunmi_ops = { 97 .enable_pmuirq = armpmu_enable_percpu_pmunmi, 98 .disable_pmuirq = armpmu_disable_percpu_pmunmi, 99 .free_pmuirq = armpmu_free_percpu_pmunmi 100 }; 101 102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu); 103 static DEFINE_PER_CPU(int, cpu_irq); 104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops); 105 106 static bool has_nmi; 107 108 static inline u64 arm_pmu_event_max_period(struct perf_event *event) 109 { 110 if (event->hw.flags & ARMPMU_EVT_64BIT) 111 return GENMASK_ULL(63, 0); 112 else if (event->hw.flags & ARMPMU_EVT_47BIT) 113 return GENMASK_ULL(46, 0); 114 else 115 return GENMASK_ULL(31, 0); 116 } 117 118 static int 119 armpmu_map_cache_event(const unsigned (*cache_map) 120 [PERF_COUNT_HW_CACHE_MAX] 121 [PERF_COUNT_HW_CACHE_OP_MAX] 122 [PERF_COUNT_HW_CACHE_RESULT_MAX], 123 u64 config) 124 { 125 unsigned int cache_type, cache_op, cache_result, ret; 126 127 cache_type = (config >> 0) & 0xff; 128 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 129 return -EINVAL; 130 131 cache_op = (config >> 8) & 0xff; 132 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 133 return -EINVAL; 134 135 cache_result = (config >> 16) & 0xff; 136 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 137 return -EINVAL; 138 139 if (!cache_map) 140 return -ENOENT; 141 142 ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; 143 144 if (ret == CACHE_OP_UNSUPPORTED) 145 return -ENOENT; 146 147 return ret; 148 } 149 150 static int 151 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) 152 { 153 int mapping; 154 155 if (config >= PERF_COUNT_HW_MAX) 156 return -EINVAL; 157 158 if (!event_map) 159 return -ENOENT; 160 161 mapping = (*event_map)[config]; 162 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; 163 } 164 165 static int 166 armpmu_map_raw_event(u32 raw_event_mask, u64 config) 167 { 168 return (int)(config & raw_event_mask); 169 } 170 171 int 172 armpmu_map_event(struct perf_event *event, 173 const unsigned (*event_map)[PERF_COUNT_HW_MAX], 174 const unsigned (*cache_map) 175 [PERF_COUNT_HW_CACHE_MAX] 176 [PERF_COUNT_HW_CACHE_OP_MAX] 177 [PERF_COUNT_HW_CACHE_RESULT_MAX], 178 u32 raw_event_mask) 179 { 180 u64 config = event->attr.config; 181 int type = event->attr.type; 182 183 if (type == event->pmu->type) 184 return armpmu_map_raw_event(raw_event_mask, config); 185 186 switch (type) { 187 case PERF_TYPE_HARDWARE: 188 return armpmu_map_hw_event(event_map, config); 189 case PERF_TYPE_HW_CACHE: 190 return armpmu_map_cache_event(cache_map, config); 191 case PERF_TYPE_RAW: 192 return armpmu_map_raw_event(raw_event_mask, config); 193 } 194 195 return -ENOENT; 196 } 197 198 int armpmu_event_set_period(struct perf_event *event) 199 { 200 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 201 struct hw_perf_event *hwc = &event->hw; 202 s64 left = local64_read(&hwc->period_left); 203 s64 period = hwc->sample_period; 204 u64 max_period; 205 int ret = 0; 206 207 max_period = arm_pmu_event_max_period(event); 208 if (unlikely(left <= -period)) { 209 left = period; 210 local64_set(&hwc->period_left, left); 211 hwc->last_period = period; 212 ret = 1; 213 } 214 215 if (unlikely(left <= 0)) { 216 left += period; 217 local64_set(&hwc->period_left, left); 218 hwc->last_period = period; 219 ret = 1; 220 } 221 222 /* 223 * Limit the maximum period to prevent the counter value 224 * from overtaking the one we are about to program. In 225 * effect we are reducing max_period to account for 226 * interrupt latency (and we are being very conservative). 227 */ 228 if (left > (max_period >> 1)) 229 left = (max_period >> 1); 230 231 local64_set(&hwc->prev_count, (u64)-left); 232 233 armpmu->write_counter(event, (u64)(-left) & max_period); 234 235 perf_event_update_userpage(event); 236 237 return ret; 238 } 239 240 u64 armpmu_event_update(struct perf_event *event) 241 { 242 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 243 struct hw_perf_event *hwc = &event->hw; 244 u64 delta, prev_raw_count, new_raw_count; 245 u64 max_period = arm_pmu_event_max_period(event); 246 247 again: 248 prev_raw_count = local64_read(&hwc->prev_count); 249 new_raw_count = armpmu->read_counter(event); 250 251 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 252 new_raw_count) != prev_raw_count) 253 goto again; 254 255 delta = (new_raw_count - prev_raw_count) & max_period; 256 257 local64_add(delta, &event->count); 258 local64_sub(delta, &hwc->period_left); 259 260 return new_raw_count; 261 } 262 263 static void 264 armpmu_read(struct perf_event *event) 265 { 266 armpmu_event_update(event); 267 } 268 269 static void 270 armpmu_stop(struct perf_event *event, int flags) 271 { 272 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 273 struct hw_perf_event *hwc = &event->hw; 274 275 /* 276 * ARM pmu always has to update the counter, so ignore 277 * PERF_EF_UPDATE, see comments in armpmu_start(). 278 */ 279 if (!(hwc->state & PERF_HES_STOPPED)) { 280 armpmu->disable(event); 281 armpmu_event_update(event); 282 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 283 } 284 } 285 286 static void armpmu_start(struct perf_event *event, int flags) 287 { 288 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 289 struct hw_perf_event *hwc = &event->hw; 290 291 /* 292 * ARM pmu always has to reprogram the period, so ignore 293 * PERF_EF_RELOAD, see the comment below. 294 */ 295 if (flags & PERF_EF_RELOAD) 296 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 297 298 hwc->state = 0; 299 /* 300 * Set the period again. Some counters can't be stopped, so when we 301 * were stopped we simply disabled the IRQ source and the counter 302 * may have been left counting. If we don't do this step then we may 303 * get an interrupt too soon or *way* too late if the overflow has 304 * happened since disabling. 305 */ 306 armpmu_event_set_period(event); 307 armpmu->enable(event); 308 } 309 310 static void 311 armpmu_del(struct perf_event *event, int flags) 312 { 313 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 314 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 315 struct hw_perf_event *hwc = &event->hw; 316 int idx = hwc->idx; 317 318 armpmu_stop(event, PERF_EF_UPDATE); 319 hw_events->events[idx] = NULL; 320 armpmu->clear_event_idx(hw_events, event); 321 perf_event_update_userpage(event); 322 /* Clear the allocated counter */ 323 hwc->idx = -1; 324 } 325 326 static int 327 armpmu_add(struct perf_event *event, int flags) 328 { 329 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 330 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 331 struct hw_perf_event *hwc = &event->hw; 332 int idx; 333 334 /* An event following a process won't be stopped earlier */ 335 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 336 return -ENOENT; 337 338 /* If we don't have a space for the counter then finish early. */ 339 idx = armpmu->get_event_idx(hw_events, event); 340 if (idx < 0) 341 return idx; 342 343 /* 344 * If there is an event in the counter we are going to use then make 345 * sure it is disabled. 346 */ 347 event->hw.idx = idx; 348 armpmu->disable(event); 349 hw_events->events[idx] = event; 350 351 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 352 if (flags & PERF_EF_START) 353 armpmu_start(event, PERF_EF_RELOAD); 354 355 /* Propagate our changes to the userspace mapping. */ 356 perf_event_update_userpage(event); 357 358 return 0; 359 } 360 361 static int 362 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, 363 struct perf_event *event) 364 { 365 struct arm_pmu *armpmu; 366 367 if (is_software_event(event)) 368 return 1; 369 370 /* 371 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 372 * core perf code won't check that the pmu->ctx == leader->ctx 373 * until after pmu->event_init(event). 374 */ 375 if (event->pmu != pmu) 376 return 0; 377 378 if (event->state < PERF_EVENT_STATE_OFF) 379 return 1; 380 381 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 382 return 1; 383 384 armpmu = to_arm_pmu(event->pmu); 385 return armpmu->get_event_idx(hw_events, event) >= 0; 386 } 387 388 static int 389 validate_group(struct perf_event *event) 390 { 391 struct perf_event *sibling, *leader = event->group_leader; 392 struct pmu_hw_events fake_pmu; 393 394 /* 395 * Initialise the fake PMU. We only need to populate the 396 * used_mask for the purposes of validation. 397 */ 398 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); 399 400 if (!validate_event(event->pmu, &fake_pmu, leader)) 401 return -EINVAL; 402 403 if (event == leader) 404 return 0; 405 406 for_each_sibling_event(sibling, leader) { 407 if (!validate_event(event->pmu, &fake_pmu, sibling)) 408 return -EINVAL; 409 } 410 411 if (!validate_event(event->pmu, &fake_pmu, event)) 412 return -EINVAL; 413 414 return 0; 415 } 416 417 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) 418 { 419 struct arm_pmu *armpmu; 420 int ret; 421 u64 start_clock, finish_clock; 422 423 /* 424 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but 425 * the handlers expect a struct arm_pmu*. The percpu_irq framework will 426 * do any necessary shifting, we just need to perform the first 427 * dereference. 428 */ 429 armpmu = *(void **)dev; 430 if (WARN_ON_ONCE(!armpmu)) 431 return IRQ_NONE; 432 433 start_clock = sched_clock(); 434 ret = armpmu->handle_irq(armpmu); 435 finish_clock = sched_clock(); 436 437 perf_sample_event_took(finish_clock - start_clock); 438 return ret; 439 } 440 441 static int 442 __hw_perf_event_init(struct perf_event *event) 443 { 444 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 445 struct hw_perf_event *hwc = &event->hw; 446 int mapping; 447 448 hwc->flags = 0; 449 mapping = armpmu->map_event(event); 450 451 if (mapping < 0) { 452 pr_debug("event %x:%llx not supported\n", event->attr.type, 453 event->attr.config); 454 return mapping; 455 } 456 457 /* 458 * We don't assign an index until we actually place the event onto 459 * hardware. Use -1 to signify that we haven't decided where to put it 460 * yet. For SMP systems, each core has it's own PMU so we can't do any 461 * clever allocation or constraints checking at this point. 462 */ 463 hwc->idx = -1; 464 hwc->config_base = 0; 465 hwc->config = 0; 466 hwc->event_base = 0; 467 468 /* 469 * Check whether we need to exclude the counter from certain modes. 470 */ 471 if (armpmu->set_event_filter && 472 armpmu->set_event_filter(hwc, &event->attr)) { 473 pr_debug("ARM performance counters do not support " 474 "mode exclusion\n"); 475 return -EOPNOTSUPP; 476 } 477 478 /* 479 * Store the event encoding into the config_base field. 480 */ 481 hwc->config_base |= (unsigned long)mapping; 482 483 if (!is_sampling_event(event)) { 484 /* 485 * For non-sampling runs, limit the sample_period to half 486 * of the counter width. That way, the new counter value 487 * is far less likely to overtake the previous one unless 488 * you have some serious IRQ latency issues. 489 */ 490 hwc->sample_period = arm_pmu_event_max_period(event) >> 1; 491 hwc->last_period = hwc->sample_period; 492 local64_set(&hwc->period_left, hwc->sample_period); 493 } 494 495 return validate_group(event); 496 } 497 498 static int armpmu_event_init(struct perf_event *event) 499 { 500 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 501 502 /* 503 * Reject CPU-affine events for CPUs that are of a different class to 504 * that which this PMU handles. Process-following events (where 505 * event->cpu == -1) can be migrated between CPUs, and thus we have to 506 * reject them later (in armpmu_add) if they're scheduled on a 507 * different class of CPU. 508 */ 509 if (event->cpu != -1 && 510 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) 511 return -ENOENT; 512 513 /* does not support taken branch sampling */ 514 if (has_branch_stack(event)) 515 return -EOPNOTSUPP; 516 517 return __hw_perf_event_init(event); 518 } 519 520 static void armpmu_enable(struct pmu *pmu) 521 { 522 struct arm_pmu *armpmu = to_arm_pmu(pmu); 523 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 524 bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events); 525 526 /* For task-bound events we may be called on other CPUs */ 527 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 528 return; 529 530 if (enabled) 531 armpmu->start(armpmu); 532 } 533 534 static void armpmu_disable(struct pmu *pmu) 535 { 536 struct arm_pmu *armpmu = to_arm_pmu(pmu); 537 538 /* For task-bound events we may be called on other CPUs */ 539 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 540 return; 541 542 armpmu->stop(armpmu); 543 } 544 545 /* 546 * In heterogeneous systems, events are specific to a particular 547 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of 548 * the same microarchitecture. 549 */ 550 static bool armpmu_filter(struct pmu *pmu, int cpu) 551 { 552 struct arm_pmu *armpmu = to_arm_pmu(pmu); 553 bool ret; 554 555 ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus); 556 if (ret && armpmu->filter) 557 return armpmu->filter(pmu, cpu); 558 559 return ret; 560 } 561 562 static ssize_t cpus_show(struct device *dev, 563 struct device_attribute *attr, char *buf) 564 { 565 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); 566 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); 567 } 568 569 static DEVICE_ATTR_RO(cpus); 570 571 static struct attribute *armpmu_common_attrs[] = { 572 &dev_attr_cpus.attr, 573 NULL, 574 }; 575 576 static const struct attribute_group armpmu_common_attr_group = { 577 .attrs = armpmu_common_attrs, 578 }; 579 580 static int armpmu_count_irq_users(const int irq) 581 { 582 int cpu, count = 0; 583 584 for_each_possible_cpu(cpu) { 585 if (per_cpu(cpu_irq, cpu) == irq) 586 count++; 587 } 588 589 return count; 590 } 591 592 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq) 593 { 594 const struct pmu_irq_ops *ops = NULL; 595 int cpu; 596 597 for_each_possible_cpu(cpu) { 598 if (per_cpu(cpu_irq, cpu) != irq) 599 continue; 600 601 ops = per_cpu(cpu_irq_ops, cpu); 602 if (ops) 603 break; 604 } 605 606 return ops; 607 } 608 609 void armpmu_free_irq(int irq, int cpu) 610 { 611 if (per_cpu(cpu_irq, cpu) == 0) 612 return; 613 if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) 614 return; 615 616 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu); 617 618 per_cpu(cpu_irq, cpu) = 0; 619 per_cpu(cpu_irq_ops, cpu) = NULL; 620 } 621 622 int armpmu_request_irq(int irq, int cpu) 623 { 624 int err = 0; 625 const irq_handler_t handler = armpmu_dispatch_irq; 626 const struct pmu_irq_ops *irq_ops; 627 628 if (!irq) 629 return 0; 630 631 if (!irq_is_percpu_devid(irq)) { 632 unsigned long irq_flags; 633 634 err = irq_force_affinity(irq, cpumask_of(cpu)); 635 636 if (err && num_possible_cpus() > 1) { 637 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", 638 irq, cpu); 639 goto err_out; 640 } 641 642 irq_flags = IRQF_PERCPU | 643 IRQF_NOBALANCING | IRQF_NO_AUTOEN | 644 IRQF_NO_THREAD; 645 646 err = request_nmi(irq, handler, irq_flags, "arm-pmu", 647 per_cpu_ptr(&cpu_armpmu, cpu)); 648 649 /* If cannot get an NMI, get a normal interrupt */ 650 if (err) { 651 err = request_irq(irq, handler, irq_flags, "arm-pmu", 652 per_cpu_ptr(&cpu_armpmu, cpu)); 653 irq_ops = &pmuirq_ops; 654 } else { 655 has_nmi = true; 656 irq_ops = &pmunmi_ops; 657 } 658 } else if (armpmu_count_irq_users(irq) == 0) { 659 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu); 660 661 /* If cannot get an NMI, get a normal interrupt */ 662 if (err) { 663 err = request_percpu_irq(irq, handler, "arm-pmu", 664 &cpu_armpmu); 665 irq_ops = &percpu_pmuirq_ops; 666 } else { 667 has_nmi = true; 668 irq_ops = &percpu_pmunmi_ops; 669 } 670 } else { 671 /* Per cpudevid irq was already requested by another CPU */ 672 irq_ops = armpmu_find_irq_ops(irq); 673 674 if (WARN_ON(!irq_ops)) 675 err = -EINVAL; 676 } 677 678 if (err) 679 goto err_out; 680 681 per_cpu(cpu_irq, cpu) = irq; 682 per_cpu(cpu_irq_ops, cpu) = irq_ops; 683 return 0; 684 685 err_out: 686 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); 687 return err; 688 } 689 690 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) 691 { 692 struct pmu_hw_events __percpu *hw_events = pmu->hw_events; 693 return per_cpu(hw_events->irq, cpu); 694 } 695 696 /* 697 * PMU hardware loses all context when a CPU goes offline. 698 * When a CPU is hotplugged back in, since some hardware registers are 699 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading 700 * junk values out of them. 701 */ 702 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) 703 { 704 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 705 int irq; 706 707 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 708 return 0; 709 if (pmu->reset) 710 pmu->reset(pmu); 711 712 per_cpu(cpu_armpmu, cpu) = pmu; 713 714 irq = armpmu_get_cpu_irq(pmu, cpu); 715 if (irq) 716 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq); 717 718 return 0; 719 } 720 721 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) 722 { 723 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 724 int irq; 725 726 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 727 return 0; 728 729 irq = armpmu_get_cpu_irq(pmu, cpu); 730 if (irq) 731 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq); 732 733 per_cpu(cpu_armpmu, cpu) = NULL; 734 735 return 0; 736 } 737 738 #ifdef CONFIG_CPU_PM 739 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) 740 { 741 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 742 struct perf_event *event; 743 int idx; 744 745 for (idx = 0; idx < armpmu->num_events; idx++) { 746 event = hw_events->events[idx]; 747 if (!event) 748 continue; 749 750 switch (cmd) { 751 case CPU_PM_ENTER: 752 /* 753 * Stop and update the counter 754 */ 755 armpmu_stop(event, PERF_EF_UPDATE); 756 break; 757 case CPU_PM_EXIT: 758 case CPU_PM_ENTER_FAILED: 759 /* 760 * Restore and enable the counter. 761 * armpmu_start() indirectly calls 762 * 763 * perf_event_update_userpage() 764 * 765 * that requires RCU read locking to be functional, 766 * wrap the call within RCU_NONIDLE to make the 767 * RCU subsystem aware this cpu is not idle from 768 * an RCU perspective for the armpmu_start() call 769 * duration. 770 */ 771 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); 772 break; 773 default: 774 break; 775 } 776 } 777 } 778 779 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 780 void *v) 781 { 782 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); 783 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 784 bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events); 785 786 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 787 return NOTIFY_DONE; 788 789 /* 790 * Always reset the PMU registers on power-up even if 791 * there are no events running. 792 */ 793 if (cmd == CPU_PM_EXIT && armpmu->reset) 794 armpmu->reset(armpmu); 795 796 if (!enabled) 797 return NOTIFY_OK; 798 799 switch (cmd) { 800 case CPU_PM_ENTER: 801 armpmu->stop(armpmu); 802 cpu_pm_pmu_setup(armpmu, cmd); 803 break; 804 case CPU_PM_EXIT: 805 case CPU_PM_ENTER_FAILED: 806 cpu_pm_pmu_setup(armpmu, cmd); 807 armpmu->start(armpmu); 808 break; 809 default: 810 return NOTIFY_DONE; 811 } 812 813 return NOTIFY_OK; 814 } 815 816 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) 817 { 818 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; 819 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); 820 } 821 822 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) 823 { 824 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); 825 } 826 #else 827 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } 828 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } 829 #endif 830 831 static int cpu_pmu_init(struct arm_pmu *cpu_pmu) 832 { 833 int err; 834 835 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, 836 &cpu_pmu->node); 837 if (err) 838 goto out; 839 840 err = cpu_pm_pmu_register(cpu_pmu); 841 if (err) 842 goto out_unregister; 843 844 return 0; 845 846 out_unregister: 847 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 848 &cpu_pmu->node); 849 out: 850 return err; 851 } 852 853 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) 854 { 855 cpu_pm_pmu_unregister(cpu_pmu); 856 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 857 &cpu_pmu->node); 858 } 859 860 struct arm_pmu *armpmu_alloc(void) 861 { 862 struct arm_pmu *pmu; 863 int cpu; 864 865 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL); 866 if (!pmu) 867 goto out; 868 869 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL); 870 if (!pmu->hw_events) { 871 pr_info("failed to allocate per-cpu PMU data.\n"); 872 goto out_free_pmu; 873 } 874 875 pmu->pmu = (struct pmu) { 876 .pmu_enable = armpmu_enable, 877 .pmu_disable = armpmu_disable, 878 .event_init = armpmu_event_init, 879 .add = armpmu_add, 880 .del = armpmu_del, 881 .start = armpmu_start, 882 .stop = armpmu_stop, 883 .read = armpmu_read, 884 .filter = armpmu_filter, 885 .attr_groups = pmu->attr_groups, 886 /* 887 * This is a CPU PMU potentially in a heterogeneous 888 * configuration (e.g. big.LITTLE). This is not an uncore PMU, 889 * and we have taken ctx sharing into account (e.g. with our 890 * pmu::filter callback and pmu::event_init group validation). 891 */ 892 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS | PERF_PMU_CAP_EXTENDED_REGS, 893 }; 894 895 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = 896 &armpmu_common_attr_group; 897 898 for_each_possible_cpu(cpu) { 899 struct pmu_hw_events *events; 900 901 events = per_cpu_ptr(pmu->hw_events, cpu); 902 raw_spin_lock_init(&events->pmu_lock); 903 events->percpu_pmu = pmu; 904 } 905 906 return pmu; 907 908 out_free_pmu: 909 kfree(pmu); 910 out: 911 return NULL; 912 } 913 914 void armpmu_free(struct arm_pmu *pmu) 915 { 916 free_percpu(pmu->hw_events); 917 kfree(pmu); 918 } 919 920 int armpmu_register(struct arm_pmu *pmu) 921 { 922 int ret; 923 924 ret = cpu_pmu_init(pmu); 925 if (ret) 926 return ret; 927 928 if (!pmu->set_event_filter) 929 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; 930 931 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); 932 if (ret) 933 goto out_destroy; 934 935 pr_info("enabled with %s PMU driver, %d counters available%s\n", 936 pmu->name, pmu->num_events, 937 has_nmi ? ", using NMIs" : ""); 938 939 kvm_host_pmu_init(pmu); 940 941 return 0; 942 943 out_destroy: 944 cpu_pmu_destroy(pmu); 945 return ret; 946 } 947 948 static int arm_pmu_hp_init(void) 949 { 950 int ret; 951 952 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, 953 "perf/arm/pmu:starting", 954 arm_perf_starting_cpu, 955 arm_perf_teardown_cpu); 956 if (ret) 957 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", 958 ret); 959 return ret; 960 } 961 subsys_initcall(arm_pmu_hp_init); 962