1 // SPDX-License-Identifier: GPL-2.0-only 2 #undef DEBUG 3 4 /* 5 * ARM performance counter support. 6 * 7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles 8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> 9 * 10 * This code is based on the sparc64 perf event code, which is in turn based 11 * on the x86 code. 12 */ 13 #define pr_fmt(fmt) "hw perfevents: " fmt 14 15 #include <linux/bitmap.h> 16 #include <linux/cpumask.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/perf/arm_pmu.h> 21 #include <linux/slab.h> 22 #include <linux/sched/clock.h> 23 #include <linux/spinlock.h> 24 #include <linux/irq.h> 25 #include <linux/irqdesc.h> 26 27 #include <asm/irq_regs.h> 28 29 static int armpmu_count_irq_users(const struct cpumask *affinity, 30 const int irq); 31 32 struct pmu_irq_ops { 33 void (*enable_pmuirq)(unsigned int irq); 34 void (*disable_pmuirq)(unsigned int irq); 35 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid); 36 }; 37 38 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid) 39 { 40 free_irq(irq, per_cpu_ptr(devid, cpu)); 41 } 42 43 static const struct pmu_irq_ops pmuirq_ops = { 44 .enable_pmuirq = enable_irq, 45 .disable_pmuirq = disable_irq_nosync, 46 .free_pmuirq = armpmu_free_pmuirq 47 }; 48 49 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid) 50 { 51 free_nmi(irq, per_cpu_ptr(devid, cpu)); 52 } 53 54 static const struct pmu_irq_ops pmunmi_ops = { 55 .enable_pmuirq = enable_nmi, 56 .disable_pmuirq = disable_nmi_nosync, 57 .free_pmuirq = armpmu_free_pmunmi 58 }; 59 60 static void armpmu_enable_percpu_pmuirq(unsigned int irq) 61 { 62 enable_percpu_irq(irq, IRQ_TYPE_NONE); 63 } 64 65 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu, 66 void __percpu *devid) 67 { 68 struct arm_pmu *armpmu = *per_cpu_ptr((void * __percpu *)devid, cpu); 69 70 if (armpmu_count_irq_users(&armpmu->supported_cpus, irq) == 1) 71 free_percpu_irq(irq, devid); 72 } 73 74 static const struct pmu_irq_ops percpu_pmuirq_ops = { 75 .enable_pmuirq = armpmu_enable_percpu_pmuirq, 76 .disable_pmuirq = disable_percpu_irq, 77 .free_pmuirq = armpmu_free_percpu_pmuirq 78 }; 79 80 static void armpmu_enable_percpu_pmunmi(unsigned int irq) 81 { 82 if (!prepare_percpu_nmi(irq)) 83 enable_percpu_nmi(irq, IRQ_TYPE_NONE); 84 } 85 86 static void armpmu_disable_percpu_pmunmi(unsigned int irq) 87 { 88 disable_percpu_nmi(irq); 89 teardown_percpu_nmi(irq); 90 } 91 92 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu, 93 void __percpu *devid) 94 { 95 struct arm_pmu *armpmu = *per_cpu_ptr((void * __percpu *)devid, cpu); 96 97 if (armpmu_count_irq_users(&armpmu->supported_cpus, irq) == 1) 98 free_percpu_nmi(irq, devid); 99 } 100 101 static const struct pmu_irq_ops percpu_pmunmi_ops = { 102 .enable_pmuirq = armpmu_enable_percpu_pmunmi, 103 .disable_pmuirq = armpmu_disable_percpu_pmunmi, 104 .free_pmuirq = armpmu_free_percpu_pmunmi 105 }; 106 107 static DEFINE_PER_CPU(int, cpu_irq); 108 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops); 109 110 static bool has_nmi; 111 112 static inline u64 arm_pmu_event_max_period(struct perf_event *event) 113 { 114 if (event->hw.flags & ARMPMU_EVT_64BIT) 115 return GENMASK_ULL(63, 0); 116 else if (event->hw.flags & ARMPMU_EVT_63BIT) 117 return GENMASK_ULL(62, 0); 118 else if (event->hw.flags & ARMPMU_EVT_47BIT) 119 return GENMASK_ULL(46, 0); 120 else 121 return GENMASK_ULL(31, 0); 122 } 123 124 static int 125 armpmu_map_cache_event(const unsigned (*cache_map) 126 [PERF_COUNT_HW_CACHE_MAX] 127 [PERF_COUNT_HW_CACHE_OP_MAX] 128 [PERF_COUNT_HW_CACHE_RESULT_MAX], 129 u64 config) 130 { 131 unsigned int cache_type, cache_op, cache_result, ret; 132 133 cache_type = (config >> 0) & 0xff; 134 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 135 return -EINVAL; 136 137 cache_op = (config >> 8) & 0xff; 138 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 139 return -EINVAL; 140 141 cache_result = (config >> 16) & 0xff; 142 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 143 return -EINVAL; 144 145 if (!cache_map) 146 return -ENOENT; 147 148 ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; 149 150 if (ret == CACHE_OP_UNSUPPORTED) 151 return -ENOENT; 152 153 return ret; 154 } 155 156 static int 157 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) 158 { 159 int mapping; 160 161 if (config >= PERF_COUNT_HW_MAX) 162 return -EINVAL; 163 164 if (!event_map) 165 return -ENOENT; 166 167 mapping = (*event_map)[config]; 168 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; 169 } 170 171 static int 172 armpmu_map_raw_event(u32 raw_event_mask, u64 config) 173 { 174 return (int)(config & raw_event_mask); 175 } 176 177 int 178 armpmu_map_event(struct perf_event *event, 179 const unsigned (*event_map)[PERF_COUNT_HW_MAX], 180 const unsigned (*cache_map) 181 [PERF_COUNT_HW_CACHE_MAX] 182 [PERF_COUNT_HW_CACHE_OP_MAX] 183 [PERF_COUNT_HW_CACHE_RESULT_MAX], 184 u32 raw_event_mask) 185 { 186 u64 config = event->attr.config; 187 int type = event->attr.type; 188 189 if (type == event->pmu->type) 190 return armpmu_map_raw_event(raw_event_mask, config); 191 192 switch (type) { 193 case PERF_TYPE_HARDWARE: 194 return armpmu_map_hw_event(event_map, config); 195 case PERF_TYPE_HW_CACHE: 196 return armpmu_map_cache_event(cache_map, config); 197 case PERF_TYPE_RAW: 198 return armpmu_map_raw_event(raw_event_mask, config); 199 } 200 201 return -ENOENT; 202 } 203 204 int armpmu_event_set_period(struct perf_event *event) 205 { 206 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 207 struct hw_perf_event *hwc = &event->hw; 208 s64 left = local64_read(&hwc->period_left); 209 s64 period = hwc->sample_period; 210 u64 max_period; 211 int ret = 0; 212 213 max_period = arm_pmu_event_max_period(event); 214 if (unlikely(left <= -period)) { 215 left = period; 216 local64_set(&hwc->period_left, left); 217 hwc->last_period = period; 218 ret = 1; 219 } 220 221 if (unlikely(left <= 0)) { 222 left += period; 223 local64_set(&hwc->period_left, left); 224 hwc->last_period = period; 225 ret = 1; 226 } 227 228 /* 229 * Limit the maximum period to prevent the counter value 230 * from overtaking the one we are about to program. In 231 * effect we are reducing max_period to account for 232 * interrupt latency (and we are being very conservative). 233 */ 234 if (left > (max_period >> 1)) 235 left = (max_period >> 1); 236 237 local64_set(&hwc->prev_count, (u64)-left); 238 239 armpmu->write_counter(event, (u64)(-left) & max_period); 240 241 perf_event_update_userpage(event); 242 243 return ret; 244 } 245 246 u64 armpmu_event_update(struct perf_event *event) 247 { 248 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 249 struct hw_perf_event *hwc = &event->hw; 250 u64 delta, prev_raw_count, new_raw_count; 251 u64 max_period = arm_pmu_event_max_period(event); 252 253 again: 254 prev_raw_count = local64_read(&hwc->prev_count); 255 new_raw_count = armpmu->read_counter(event); 256 257 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 258 new_raw_count) != prev_raw_count) 259 goto again; 260 261 delta = (new_raw_count - prev_raw_count) & max_period; 262 263 local64_add(delta, &event->count); 264 local64_sub(delta, &hwc->period_left); 265 266 return new_raw_count; 267 } 268 269 static void 270 armpmu_read(struct perf_event *event) 271 { 272 armpmu_event_update(event); 273 } 274 275 static void 276 armpmu_stop(struct perf_event *event, int flags) 277 { 278 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 279 struct hw_perf_event *hwc = &event->hw; 280 281 /* 282 * ARM pmu always has to update the counter, so ignore 283 * PERF_EF_UPDATE, see comments in armpmu_start(). 284 */ 285 if (!(hwc->state & PERF_HES_STOPPED)) { 286 armpmu->disable(event); 287 armpmu_event_update(event); 288 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 289 } 290 } 291 292 static void armpmu_start(struct perf_event *event, int flags) 293 { 294 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 295 struct hw_perf_event *hwc = &event->hw; 296 297 /* 298 * ARM pmu always has to reprogram the period, so ignore 299 * PERF_EF_RELOAD, see the comment below. 300 */ 301 if (flags & PERF_EF_RELOAD) 302 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 303 304 hwc->state = 0; 305 /* 306 * Set the period again. Some counters can't be stopped, so when we 307 * were stopped we simply disabled the IRQ source and the counter 308 * may have been left counting. If we don't do this step then we may 309 * get an interrupt too soon or *way* too late if the overflow has 310 * happened since disabling. 311 */ 312 armpmu_event_set_period(event); 313 armpmu->enable(event); 314 } 315 316 static void 317 armpmu_del(struct perf_event *event, int flags) 318 { 319 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 320 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 321 struct hw_perf_event *hwc = &event->hw; 322 int idx = hwc->idx; 323 324 armpmu_stop(event, PERF_EF_UPDATE); 325 326 if (has_branch_stack(event)) { 327 hw_events->branch_users--; 328 perf_sched_cb_dec(event->pmu); 329 } 330 331 hw_events->events[idx] = NULL; 332 armpmu->clear_event_idx(hw_events, event); 333 perf_event_update_userpage(event); 334 /* Clear the allocated counter */ 335 hwc->idx = -1; 336 } 337 338 static int 339 armpmu_add(struct perf_event *event, int flags) 340 { 341 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 342 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 343 struct hw_perf_event *hwc = &event->hw; 344 int idx; 345 346 /* An event following a process won't be stopped earlier */ 347 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 348 return -ENOENT; 349 350 /* If we don't have a space for the counter then finish early. */ 351 idx = armpmu->get_event_idx(hw_events, event); 352 if (idx < 0) 353 return idx; 354 355 /* The newly-allocated counter should be empty */ 356 WARN_ON_ONCE(hw_events->events[idx]); 357 358 if (has_branch_stack(event)) { 359 hw_events->branch_users++; 360 perf_sched_cb_inc(event->pmu); 361 } 362 363 event->hw.idx = idx; 364 hw_events->events[idx] = event; 365 366 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 367 if (flags & PERF_EF_START) 368 armpmu_start(event, PERF_EF_RELOAD); 369 370 /* Propagate our changes to the userspace mapping. */ 371 perf_event_update_userpage(event); 372 373 return 0; 374 } 375 376 static int 377 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, 378 struct perf_event *event) 379 { 380 struct arm_pmu *armpmu; 381 382 if (is_software_event(event)) 383 return 1; 384 385 /* 386 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 387 * core perf code won't check that the pmu->ctx == leader->ctx 388 * until after pmu->event_init(event). 389 */ 390 if (event->pmu != pmu) 391 return 0; 392 393 if (event->state < PERF_EVENT_STATE_OFF) 394 return 1; 395 396 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 397 return 1; 398 399 armpmu = to_arm_pmu(event->pmu); 400 return armpmu->get_event_idx(hw_events, event) >= 0; 401 } 402 403 static int 404 validate_group(struct perf_event *event) 405 { 406 struct perf_event *sibling, *leader = event->group_leader; 407 struct pmu_hw_events fake_pmu; 408 409 /* 410 * Initialise the fake PMU. We only need to populate the 411 * used_mask for the purposes of validation. 412 */ 413 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); 414 415 if (!validate_event(event->pmu, &fake_pmu, leader)) 416 return -EINVAL; 417 418 if (event == leader) 419 return 0; 420 421 for_each_sibling_event(sibling, leader) { 422 if (!validate_event(event->pmu, &fake_pmu, sibling)) 423 return -EINVAL; 424 } 425 426 if (!validate_event(event->pmu, &fake_pmu, event)) 427 return -EINVAL; 428 429 return 0; 430 } 431 432 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) 433 { 434 struct arm_pmu *armpmu; 435 int ret; 436 u64 start_clock, finish_clock; 437 438 /* 439 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but 440 * the handlers expect a struct arm_pmu*. The percpu_irq framework will 441 * do any necessary shifting, we just need to perform the first 442 * dereference. 443 */ 444 armpmu = *(void **)dev; 445 if (WARN_ON_ONCE(!armpmu)) 446 return IRQ_NONE; 447 448 start_clock = sched_clock(); 449 ret = armpmu->handle_irq(armpmu); 450 finish_clock = sched_clock(); 451 452 perf_sample_event_took(finish_clock - start_clock); 453 return ret; 454 } 455 456 static int 457 __hw_perf_event_init(struct perf_event *event) 458 { 459 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 460 struct hw_perf_event *hwc = &event->hw; 461 int mapping, ret; 462 463 hwc->flags = 0; 464 mapping = armpmu->map_event(event); 465 466 if (mapping < 0) { 467 pr_debug("event %x:%llx not supported\n", event->attr.type, 468 event->attr.config); 469 return mapping; 470 } 471 472 /* 473 * We don't assign an index until we actually place the event onto 474 * hardware. Use -1 to signify that we haven't decided where to put it 475 * yet. For SMP systems, each core has it's own PMU so we can't do any 476 * clever allocation or constraints checking at this point. 477 */ 478 hwc->idx = -1; 479 hwc->config_base = 0; 480 hwc->config = 0; 481 hwc->event_base = 0; 482 483 /* 484 * Check whether we need to exclude the counter from certain modes. 485 */ 486 if (armpmu->set_event_filter) { 487 ret = armpmu->set_event_filter(hwc, &event->attr); 488 if (ret) 489 return ret; 490 } 491 492 /* 493 * Store the event encoding into the config_base field. 494 */ 495 hwc->config_base |= (unsigned long)mapping; 496 497 if (!is_sampling_event(event)) { 498 /* 499 * For non-sampling runs, limit the sample_period to half 500 * of the counter width. That way, the new counter value 501 * is far less likely to overtake the previous one unless 502 * you have some serious IRQ latency issues. 503 */ 504 hwc->sample_period = arm_pmu_event_max_period(event) >> 1; 505 hwc->last_period = hwc->sample_period; 506 local64_set(&hwc->period_left, hwc->sample_period); 507 } 508 509 return validate_group(event); 510 } 511 512 static int armpmu_event_init(struct perf_event *event) 513 { 514 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 515 516 /* 517 * Reject CPU-affine events for CPUs that are of a different class to 518 * that which this PMU handles. Process-following events (where 519 * event->cpu == -1) can be migrated between CPUs, and thus we have to 520 * reject them later (in armpmu_add) if they're scheduled on a 521 * different class of CPU. 522 */ 523 if (event->cpu != -1 && 524 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) 525 return -ENOENT; 526 527 if (has_branch_stack(event) && !armpmu->reg_brbidr) 528 return -EOPNOTSUPP; 529 530 return __hw_perf_event_init(event); 531 } 532 533 static void armpmu_enable(struct pmu *pmu) 534 { 535 struct arm_pmu *armpmu = to_arm_pmu(pmu); 536 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 537 bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS); 538 539 /* For task-bound events we may be called on other CPUs */ 540 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 541 return; 542 543 if (enabled) 544 armpmu->start(armpmu); 545 } 546 547 static void armpmu_disable(struct pmu *pmu) 548 { 549 struct arm_pmu *armpmu = to_arm_pmu(pmu); 550 551 /* For task-bound events we may be called on other CPUs */ 552 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 553 return; 554 555 armpmu->stop(armpmu); 556 } 557 558 /* 559 * In heterogeneous systems, events are specific to a particular 560 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of 561 * the same microarchitecture. 562 */ 563 static bool armpmu_filter(struct pmu *pmu, int cpu) 564 { 565 struct arm_pmu *armpmu = to_arm_pmu(pmu); 566 return !cpumask_test_cpu(cpu, &armpmu->supported_cpus); 567 } 568 569 static ssize_t cpus_show(struct device *dev, 570 struct device_attribute *attr, char *buf) 571 { 572 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); 573 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); 574 } 575 576 static DEVICE_ATTR_RO(cpus); 577 578 static struct attribute *armpmu_common_attrs[] = { 579 &dev_attr_cpus.attr, 580 NULL, 581 }; 582 583 static const struct attribute_group armpmu_common_attr_group = { 584 .attrs = armpmu_common_attrs, 585 }; 586 587 static int armpmu_count_irq_users(const struct cpumask *affinity, const int irq) 588 { 589 int cpu, count = 0; 590 591 for_each_cpu(cpu, affinity) { 592 if (per_cpu(cpu_irq, cpu) == irq) 593 count++; 594 } 595 596 return count; 597 } 598 599 static const struct pmu_irq_ops * 600 armpmu_find_irq_ops(const struct cpumask *affinity, int irq) 601 { 602 const struct pmu_irq_ops *ops = NULL; 603 int cpu; 604 605 for_each_cpu(cpu, affinity) { 606 if (per_cpu(cpu_irq, cpu) != irq) 607 continue; 608 609 ops = per_cpu(cpu_irq_ops, cpu); 610 if (ops) 611 break; 612 } 613 614 return ops; 615 } 616 617 void armpmu_free_irq(struct arm_pmu * __percpu *armpmu, int irq, int cpu) 618 { 619 if (per_cpu(cpu_irq, cpu) == 0) 620 return; 621 if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) 622 return; 623 624 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, armpmu); 625 626 per_cpu(cpu_irq, cpu) = 0; 627 per_cpu(cpu_irq_ops, cpu) = NULL; 628 } 629 630 int armpmu_request_irq(struct arm_pmu * __percpu *pcpu_armpmu, int irq, int cpu) 631 { 632 int err = 0; 633 struct arm_pmu **armpmu = per_cpu_ptr(pcpu_armpmu, cpu); 634 const struct cpumask *affinity = *armpmu ? &(*armpmu)->supported_cpus : 635 cpu_possible_mask; /* ACPI */ 636 const irq_handler_t handler = armpmu_dispatch_irq; 637 const struct pmu_irq_ops *irq_ops; 638 639 if (!irq) 640 return 0; 641 642 if (!irq_is_percpu_devid(irq)) { 643 unsigned long irq_flags; 644 645 err = irq_force_affinity(irq, cpumask_of(cpu)); 646 647 if (err && num_possible_cpus() > 1) { 648 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", 649 irq, cpu); 650 goto err_out; 651 } 652 653 irq_flags = IRQF_PERCPU | 654 IRQF_NOBALANCING | IRQF_NO_AUTOEN | 655 IRQF_NO_THREAD; 656 657 err = request_nmi(irq, handler, irq_flags, "arm-pmu", armpmu); 658 659 /* If cannot get an NMI, get a normal interrupt */ 660 if (err) { 661 err = request_irq(irq, handler, irq_flags, "arm-pmu", 662 armpmu); 663 irq_ops = &pmuirq_ops; 664 } else { 665 has_nmi = true; 666 irq_ops = &pmunmi_ops; 667 } 668 } else if (armpmu_count_irq_users(affinity, irq) == 0) { 669 err = request_percpu_nmi(irq, handler, "arm-pmu", affinity, pcpu_armpmu); 670 671 /* If cannot get an NMI, get a normal interrupt */ 672 if (err) { 673 err = request_percpu_irq_affinity(irq, handler, "arm-pmu", 674 affinity, pcpu_armpmu); 675 irq_ops = &percpu_pmuirq_ops; 676 } else { 677 has_nmi = true; 678 irq_ops = &percpu_pmunmi_ops; 679 } 680 } else { 681 /* Per cpudevid irq was already requested by another CPU */ 682 irq_ops = armpmu_find_irq_ops(affinity, irq); 683 684 if (WARN_ON(!irq_ops)) 685 err = -EINVAL; 686 } 687 688 if (err) 689 goto err_out; 690 691 per_cpu(cpu_irq, cpu) = irq; 692 per_cpu(cpu_irq_ops, cpu) = irq_ops; 693 return 0; 694 695 err_out: 696 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); 697 return err; 698 } 699 700 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) 701 { 702 struct pmu_hw_events __percpu *hw_events = pmu->hw_events; 703 return per_cpu(hw_events->irq, cpu); 704 } 705 706 bool arm_pmu_irq_is_nmi(void) 707 { 708 return has_nmi; 709 } 710 711 /* 712 * PMU hardware loses all context when a CPU goes offline. 713 * When a CPU is hotplugged back in, since some hardware registers are 714 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading 715 * junk values out of them. 716 */ 717 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) 718 { 719 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 720 int irq; 721 722 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 723 return 0; 724 if (pmu->reset) 725 pmu->reset(pmu); 726 727 irq = armpmu_get_cpu_irq(pmu, cpu); 728 if (irq) 729 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq); 730 731 return 0; 732 } 733 734 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) 735 { 736 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 737 int irq; 738 739 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 740 return 0; 741 742 irq = armpmu_get_cpu_irq(pmu, cpu); 743 if (irq) 744 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq); 745 746 return 0; 747 } 748 749 #ifdef CONFIG_CPU_PM 750 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) 751 { 752 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 753 struct perf_event *event; 754 int idx; 755 756 for_each_set_bit(idx, armpmu->cntr_mask, ARMPMU_MAX_HWEVENTS) { 757 event = hw_events->events[idx]; 758 if (!event) 759 continue; 760 761 switch (cmd) { 762 case CPU_PM_ENTER: 763 /* 764 * Stop and update the counter 765 */ 766 armpmu_stop(event, PERF_EF_UPDATE); 767 break; 768 case CPU_PM_EXIT: 769 case CPU_PM_ENTER_FAILED: 770 /* 771 * Restore and enable the counter. 772 */ 773 armpmu_start(event, PERF_EF_RELOAD); 774 break; 775 default: 776 break; 777 } 778 } 779 } 780 781 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 782 void *v) 783 { 784 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); 785 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 786 bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS); 787 788 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 789 return NOTIFY_DONE; 790 791 /* 792 * Always reset the PMU registers on power-up even if 793 * there are no events running. 794 */ 795 if (cmd == CPU_PM_EXIT && armpmu->reset) 796 armpmu->reset(armpmu); 797 798 if (!enabled) 799 return NOTIFY_OK; 800 801 switch (cmd) { 802 case CPU_PM_ENTER: 803 armpmu->stop(armpmu); 804 cpu_pm_pmu_setup(armpmu, cmd); 805 break; 806 case CPU_PM_EXIT: 807 case CPU_PM_ENTER_FAILED: 808 cpu_pm_pmu_setup(armpmu, cmd); 809 armpmu->start(armpmu); 810 break; 811 default: 812 return NOTIFY_DONE; 813 } 814 815 return NOTIFY_OK; 816 } 817 818 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) 819 { 820 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; 821 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); 822 } 823 824 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) 825 { 826 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); 827 } 828 #else 829 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } 830 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } 831 #endif 832 833 static int cpu_pmu_init(struct arm_pmu *cpu_pmu) 834 { 835 int err; 836 837 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, 838 &cpu_pmu->node); 839 if (err) 840 goto out; 841 842 err = cpu_pm_pmu_register(cpu_pmu); 843 if (err) 844 goto out_unregister; 845 846 return 0; 847 848 out_unregister: 849 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 850 &cpu_pmu->node); 851 out: 852 return err; 853 } 854 855 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) 856 { 857 cpu_pm_pmu_unregister(cpu_pmu); 858 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 859 &cpu_pmu->node); 860 } 861 862 struct arm_pmu *armpmu_alloc(void) 863 { 864 struct arm_pmu *pmu; 865 int cpu; 866 867 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL); 868 if (!pmu) 869 goto out; 870 871 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL); 872 if (!pmu->hw_events) { 873 pr_info("failed to allocate per-cpu PMU data.\n"); 874 goto out_free_pmu; 875 } 876 877 pmu->pmu = (struct pmu) { 878 .pmu_enable = armpmu_enable, 879 .pmu_disable = armpmu_disable, 880 .event_init = armpmu_event_init, 881 .add = armpmu_add, 882 .del = armpmu_del, 883 .start = armpmu_start, 884 .stop = armpmu_stop, 885 .read = armpmu_read, 886 .filter = armpmu_filter, 887 .attr_groups = pmu->attr_groups, 888 /* 889 * This is a CPU PMU potentially in a heterogeneous 890 * configuration (e.g. big.LITTLE) so 891 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open 892 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a 893 * specific PMU. 894 */ 895 .capabilities = PERF_PMU_CAP_EXTENDED_REGS | 896 PERF_PMU_CAP_EXTENDED_HW_TYPE, 897 }; 898 899 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = 900 &armpmu_common_attr_group; 901 902 for_each_possible_cpu(cpu) { 903 struct pmu_hw_events *events; 904 905 events = per_cpu_ptr(pmu->hw_events, cpu); 906 events->percpu_pmu = pmu; 907 } 908 909 return pmu; 910 911 out_free_pmu: 912 kfree(pmu); 913 out: 914 return NULL; 915 } 916 917 void armpmu_free(struct arm_pmu *pmu) 918 { 919 free_percpu(pmu->hw_events); 920 kfree(pmu); 921 } 922 923 int armpmu_register(struct arm_pmu *pmu) 924 { 925 int ret; 926 927 ret = cpu_pmu_init(pmu); 928 if (ret) 929 return ret; 930 931 /* 932 * By this stage we know our supported CPUs on either DT/ACPI platforms, 933 * detect the SMT implementation. 934 */ 935 pmu->has_smt = topology_core_has_smt(cpumask_first(&pmu->supported_cpus)); 936 937 if (!pmu->set_event_filter) 938 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; 939 940 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); 941 if (ret) 942 goto out_destroy; 943 944 pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n", 945 pmu->name, bitmap_weight(pmu->cntr_mask, ARMPMU_MAX_HWEVENTS), 946 ARMPMU_MAX_HWEVENTS, &pmu->cntr_mask, 947 has_nmi ? ", using NMIs" : ""); 948 949 kvm_host_pmu_init(pmu); 950 951 return 0; 952 953 out_destroy: 954 cpu_pmu_destroy(pmu); 955 return ret; 956 } 957 958 static int arm_pmu_hp_init(void) 959 { 960 int ret; 961 962 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, 963 "perf/arm/pmu:starting", 964 arm_perf_starting_cpu, 965 arm_perf_teardown_cpu); 966 if (ret) 967 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", 968 ret); 969 return ret; 970 } 971 subsys_initcall(arm_pmu_hp_init); 972