xref: /linux/drivers/perf/arm_pmu.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3 
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int armpmu_count_irq_users(const struct cpumask *affinity,
30 				  const int irq);
31 
32 struct pmu_irq_ops {
33 	void (*enable_pmuirq)(unsigned int irq);
34 	void (*disable_pmuirq)(unsigned int irq);
35 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
36 };
37 
38 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
39 {
40 	free_irq(irq, per_cpu_ptr(devid, cpu));
41 }
42 
43 static const struct pmu_irq_ops pmuirq_ops = {
44 	.enable_pmuirq = enable_irq,
45 	.disable_pmuirq = disable_irq_nosync,
46 	.free_pmuirq = armpmu_free_pmuirq
47 };
48 
49 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
50 {
51 	free_nmi(irq, per_cpu_ptr(devid, cpu));
52 }
53 
54 static const struct pmu_irq_ops pmunmi_ops = {
55 	.enable_pmuirq = enable_nmi,
56 	.disable_pmuirq = disable_nmi_nosync,
57 	.free_pmuirq = armpmu_free_pmunmi
58 };
59 
60 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
61 {
62 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
63 }
64 
65 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
66 				   void __percpu *devid)
67 {
68 	struct arm_pmu *armpmu = *per_cpu_ptr((void * __percpu *)devid, cpu);
69 
70 	if (armpmu_count_irq_users(&armpmu->supported_cpus, irq) == 1)
71 		free_percpu_irq(irq, devid);
72 }
73 
74 static const struct pmu_irq_ops percpu_pmuirq_ops = {
75 	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
76 	.disable_pmuirq = disable_percpu_irq,
77 	.free_pmuirq = armpmu_free_percpu_pmuirq
78 };
79 
80 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
81 {
82 	if (!prepare_percpu_nmi(irq))
83 		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
84 }
85 
86 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
87 {
88 	disable_percpu_nmi(irq);
89 	teardown_percpu_nmi(irq);
90 }
91 
92 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
93 				      void __percpu *devid)
94 {
95 	struct arm_pmu *armpmu = *per_cpu_ptr((void * __percpu *)devid, cpu);
96 
97 	if (armpmu_count_irq_users(&armpmu->supported_cpus, irq) == 1)
98 		free_percpu_nmi(irq, devid);
99 }
100 
101 static const struct pmu_irq_ops percpu_pmunmi_ops = {
102 	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
103 	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
104 	.free_pmuirq = armpmu_free_percpu_pmunmi
105 };
106 
107 static DEFINE_PER_CPU(int, cpu_irq);
108 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
109 
110 static bool has_nmi;
111 
112 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
113 {
114 	if (event->hw.flags & ARMPMU_EVT_64BIT)
115 		return GENMASK_ULL(63, 0);
116 	else if (event->hw.flags & ARMPMU_EVT_63BIT)
117 		return GENMASK_ULL(62, 0);
118 	else if (event->hw.flags & ARMPMU_EVT_47BIT)
119 		return GENMASK_ULL(46, 0);
120 	else
121 		return GENMASK_ULL(31, 0);
122 }
123 
124 static int
125 armpmu_map_cache_event(const unsigned (*cache_map)
126 				      [PERF_COUNT_HW_CACHE_MAX]
127 				      [PERF_COUNT_HW_CACHE_OP_MAX]
128 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
129 		       u64 config)
130 {
131 	unsigned int cache_type, cache_op, cache_result, ret;
132 
133 	cache_type = (config >>  0) & 0xff;
134 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
135 		return -EINVAL;
136 
137 	cache_op = (config >>  8) & 0xff;
138 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
139 		return -EINVAL;
140 
141 	cache_result = (config >> 16) & 0xff;
142 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
143 		return -EINVAL;
144 
145 	if (!cache_map)
146 		return -ENOENT;
147 
148 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
149 
150 	if (ret == CACHE_OP_UNSUPPORTED)
151 		return -ENOENT;
152 
153 	return ret;
154 }
155 
156 static int
157 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
158 {
159 	int mapping;
160 
161 	if (config >= PERF_COUNT_HW_MAX)
162 		return -EINVAL;
163 
164 	if (!event_map)
165 		return -ENOENT;
166 
167 	mapping = (*event_map)[config];
168 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
169 }
170 
171 static int
172 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
173 {
174 	return (int)(config & raw_event_mask);
175 }
176 
177 int
178 armpmu_map_event(struct perf_event *event,
179 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
180 		 const unsigned (*cache_map)
181 				[PERF_COUNT_HW_CACHE_MAX]
182 				[PERF_COUNT_HW_CACHE_OP_MAX]
183 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
184 		 u32 raw_event_mask)
185 {
186 	u64 config = event->attr.config;
187 	int type = event->attr.type;
188 
189 	if (type == event->pmu->type)
190 		return armpmu_map_raw_event(raw_event_mask, config);
191 
192 	switch (type) {
193 	case PERF_TYPE_HARDWARE:
194 		return armpmu_map_hw_event(event_map, config);
195 	case PERF_TYPE_HW_CACHE:
196 		return armpmu_map_cache_event(cache_map, config);
197 	case PERF_TYPE_RAW:
198 		return armpmu_map_raw_event(raw_event_mask, config);
199 	}
200 
201 	return -ENOENT;
202 }
203 
204 int armpmu_event_set_period(struct perf_event *event)
205 {
206 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
207 	struct hw_perf_event *hwc = &event->hw;
208 	s64 left = local64_read(&hwc->period_left);
209 	s64 period = hwc->sample_period;
210 	u64 max_period;
211 	int ret = 0;
212 
213 	max_period = arm_pmu_event_max_period(event);
214 	if (unlikely(left <= -period)) {
215 		left = period;
216 		local64_set(&hwc->period_left, left);
217 		hwc->last_period = period;
218 		ret = 1;
219 	}
220 
221 	if (unlikely(left <= 0)) {
222 		left += period;
223 		local64_set(&hwc->period_left, left);
224 		hwc->last_period = period;
225 		ret = 1;
226 	}
227 
228 	/*
229 	 * Limit the maximum period to prevent the counter value
230 	 * from overtaking the one we are about to program. In
231 	 * effect we are reducing max_period to account for
232 	 * interrupt latency (and we are being very conservative).
233 	 */
234 	if (left > (max_period >> 1))
235 		left = (max_period >> 1);
236 
237 	local64_set(&hwc->prev_count, (u64)-left);
238 
239 	armpmu->write_counter(event, (u64)(-left) & max_period);
240 
241 	perf_event_update_userpage(event);
242 
243 	return ret;
244 }
245 
246 u64 armpmu_event_update(struct perf_event *event)
247 {
248 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
249 	struct hw_perf_event *hwc = &event->hw;
250 	u64 delta, prev_raw_count, new_raw_count;
251 	u64 max_period = arm_pmu_event_max_period(event);
252 
253 again:
254 	prev_raw_count = local64_read(&hwc->prev_count);
255 	new_raw_count = armpmu->read_counter(event);
256 
257 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
258 			     new_raw_count) != prev_raw_count)
259 		goto again;
260 
261 	delta = (new_raw_count - prev_raw_count) & max_period;
262 
263 	local64_add(delta, &event->count);
264 	local64_sub(delta, &hwc->period_left);
265 
266 	return new_raw_count;
267 }
268 
269 static void
270 armpmu_read(struct perf_event *event)
271 {
272 	armpmu_event_update(event);
273 }
274 
275 static void
276 armpmu_stop(struct perf_event *event, int flags)
277 {
278 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
279 	struct hw_perf_event *hwc = &event->hw;
280 
281 	/*
282 	 * ARM pmu always has to update the counter, so ignore
283 	 * PERF_EF_UPDATE, see comments in armpmu_start().
284 	 */
285 	if (!(hwc->state & PERF_HES_STOPPED)) {
286 		armpmu->disable(event);
287 		armpmu_event_update(event);
288 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
289 	}
290 }
291 
292 static void armpmu_start(struct perf_event *event, int flags)
293 {
294 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
295 	struct hw_perf_event *hwc = &event->hw;
296 
297 	/*
298 	 * ARM pmu always has to reprogram the period, so ignore
299 	 * PERF_EF_RELOAD, see the comment below.
300 	 */
301 	if (flags & PERF_EF_RELOAD)
302 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
303 
304 	hwc->state = 0;
305 	/*
306 	 * Set the period again. Some counters can't be stopped, so when we
307 	 * were stopped we simply disabled the IRQ source and the counter
308 	 * may have been left counting. If we don't do this step then we may
309 	 * get an interrupt too soon or *way* too late if the overflow has
310 	 * happened since disabling.
311 	 */
312 	armpmu_event_set_period(event);
313 	armpmu->enable(event);
314 }
315 
316 static void
317 armpmu_del(struct perf_event *event, int flags)
318 {
319 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
320 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
321 	struct hw_perf_event *hwc = &event->hw;
322 	int idx = hwc->idx;
323 
324 	armpmu_stop(event, PERF_EF_UPDATE);
325 
326 	if (has_branch_stack(event)) {
327 		hw_events->branch_users--;
328 		perf_sched_cb_dec(event->pmu);
329 	}
330 
331 	hw_events->events[idx] = NULL;
332 	armpmu->clear_event_idx(hw_events, event);
333 	perf_event_update_userpage(event);
334 	/* Clear the allocated counter */
335 	hwc->idx = -1;
336 }
337 
338 static int
339 armpmu_add(struct perf_event *event, int flags)
340 {
341 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
342 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
343 	struct hw_perf_event *hwc = &event->hw;
344 	int idx;
345 
346 	/* An event following a process won't be stopped earlier */
347 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
348 		return -ENOENT;
349 
350 	/* If we don't have a space for the counter then finish early. */
351 	idx = armpmu->get_event_idx(hw_events, event);
352 	if (idx < 0)
353 		return idx;
354 
355 	/* The newly-allocated counter should be empty */
356 	WARN_ON_ONCE(hw_events->events[idx]);
357 
358 	if (has_branch_stack(event)) {
359 		hw_events->branch_users++;
360 		perf_sched_cb_inc(event->pmu);
361 	}
362 
363 	event->hw.idx = idx;
364 	hw_events->events[idx] = event;
365 
366 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
367 	if (flags & PERF_EF_START)
368 		armpmu_start(event, PERF_EF_RELOAD);
369 
370 	/* Propagate our changes to the userspace mapping. */
371 	perf_event_update_userpage(event);
372 
373 	return 0;
374 }
375 
376 static int
377 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
378 			       struct perf_event *event)
379 {
380 	struct arm_pmu *armpmu;
381 
382 	if (is_software_event(event))
383 		return 1;
384 
385 	/*
386 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
387 	 * core perf code won't check that the pmu->ctx == leader->ctx
388 	 * until after pmu->event_init(event).
389 	 */
390 	if (event->pmu != pmu)
391 		return 0;
392 
393 	if (event->state < PERF_EVENT_STATE_OFF)
394 		return 1;
395 
396 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
397 		return 1;
398 
399 	armpmu = to_arm_pmu(event->pmu);
400 	return armpmu->get_event_idx(hw_events, event) >= 0;
401 }
402 
403 static int
404 validate_group(struct perf_event *event)
405 {
406 	struct perf_event *sibling, *leader = event->group_leader;
407 	struct pmu_hw_events fake_pmu;
408 
409 	/*
410 	 * Initialise the fake PMU. We only need to populate the
411 	 * used_mask for the purposes of validation.
412 	 */
413 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
414 
415 	if (!validate_event(event->pmu, &fake_pmu, leader))
416 		return -EINVAL;
417 
418 	if (event == leader)
419 		return 0;
420 
421 	for_each_sibling_event(sibling, leader) {
422 		if (!validate_event(event->pmu, &fake_pmu, sibling))
423 			return -EINVAL;
424 	}
425 
426 	if (!validate_event(event->pmu, &fake_pmu, event))
427 		return -EINVAL;
428 
429 	return 0;
430 }
431 
432 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
433 {
434 	struct arm_pmu *armpmu;
435 	int ret;
436 	u64 start_clock, finish_clock;
437 
438 	/*
439 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
440 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
441 	 * do any necessary shifting, we just need to perform the first
442 	 * dereference.
443 	 */
444 	armpmu = *(void **)dev;
445 	if (WARN_ON_ONCE(!armpmu))
446 		return IRQ_NONE;
447 
448 	start_clock = sched_clock();
449 	ret = armpmu->handle_irq(armpmu);
450 	finish_clock = sched_clock();
451 
452 	perf_sample_event_took(finish_clock - start_clock);
453 	return ret;
454 }
455 
456 static int
457 __hw_perf_event_init(struct perf_event *event)
458 {
459 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
460 	struct hw_perf_event *hwc = &event->hw;
461 	int mapping, ret;
462 
463 	hwc->flags = 0;
464 	mapping = armpmu->map_event(event);
465 
466 	if (mapping < 0) {
467 		pr_debug("event %x:%llx not supported\n", event->attr.type,
468 			 event->attr.config);
469 		return mapping;
470 	}
471 
472 	/*
473 	 * We don't assign an index until we actually place the event onto
474 	 * hardware. Use -1 to signify that we haven't decided where to put it
475 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
476 	 * clever allocation or constraints checking at this point.
477 	 */
478 	hwc->idx		= -1;
479 	hwc->config_base	= 0;
480 	hwc->config		= 0;
481 	hwc->event_base		= 0;
482 
483 	/*
484 	 * Check whether we need to exclude the counter from certain modes.
485 	 */
486 	if (armpmu->set_event_filter) {
487 		ret = armpmu->set_event_filter(hwc, &event->attr);
488 		if (ret)
489 			return ret;
490 	}
491 
492 	/*
493 	 * Store the event encoding into the config_base field.
494 	 */
495 	hwc->config_base	    |= (unsigned long)mapping;
496 
497 	if (!is_sampling_event(event)) {
498 		/*
499 		 * For non-sampling runs, limit the sample_period to half
500 		 * of the counter width. That way, the new counter value
501 		 * is far less likely to overtake the previous one unless
502 		 * you have some serious IRQ latency issues.
503 		 */
504 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
505 		hwc->last_period    = hwc->sample_period;
506 		local64_set(&hwc->period_left, hwc->sample_period);
507 	}
508 
509 	return validate_group(event);
510 }
511 
512 static int armpmu_event_init(struct perf_event *event)
513 {
514 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
515 
516 	/*
517 	 * Reject CPU-affine events for CPUs that are of a different class to
518 	 * that which this PMU handles. Process-following events (where
519 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
520 	 * reject them later (in armpmu_add) if they're scheduled on a
521 	 * different class of CPU.
522 	 */
523 	if (event->cpu != -1 &&
524 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
525 		return -ENOENT;
526 
527 	if (has_branch_stack(event) && !armpmu->reg_brbidr)
528 		return -EOPNOTSUPP;
529 
530 	return __hw_perf_event_init(event);
531 }
532 
533 static void armpmu_enable(struct pmu *pmu)
534 {
535 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
536 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
537 	bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
538 
539 	/* For task-bound events we may be called on other CPUs */
540 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541 		return;
542 
543 	if (enabled)
544 		armpmu->start(armpmu);
545 }
546 
547 static void armpmu_disable(struct pmu *pmu)
548 {
549 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
550 
551 	/* For task-bound events we may be called on other CPUs */
552 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
553 		return;
554 
555 	armpmu->stop(armpmu);
556 }
557 
558 /*
559  * In heterogeneous systems, events are specific to a particular
560  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
561  * the same microarchitecture.
562  */
563 static bool armpmu_filter(struct pmu *pmu, int cpu)
564 {
565 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
566 	return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
567 }
568 
569 static ssize_t cpus_show(struct device *dev,
570 			 struct device_attribute *attr, char *buf)
571 {
572 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
573 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
574 }
575 
576 static DEVICE_ATTR_RO(cpus);
577 
578 static struct attribute *armpmu_common_attrs[] = {
579 	&dev_attr_cpus.attr,
580 	NULL,
581 };
582 
583 static const struct attribute_group armpmu_common_attr_group = {
584 	.attrs = armpmu_common_attrs,
585 };
586 
587 static int armpmu_count_irq_users(const struct cpumask *affinity, const int irq)
588 {
589 	int cpu, count = 0;
590 
591 	for_each_cpu(cpu, affinity) {
592 		if (per_cpu(cpu_irq, cpu) == irq)
593 			count++;
594 	}
595 
596 	return count;
597 }
598 
599 static const struct pmu_irq_ops *
600 armpmu_find_irq_ops(const struct cpumask *affinity, int irq)
601 {
602 	const struct pmu_irq_ops *ops = NULL;
603 	int cpu;
604 
605 	for_each_cpu(cpu, affinity) {
606 		if (per_cpu(cpu_irq, cpu) != irq)
607 			continue;
608 
609 		ops = per_cpu(cpu_irq_ops, cpu);
610 		if (ops)
611 			break;
612 	}
613 
614 	return ops;
615 }
616 
617 void armpmu_free_irq(struct arm_pmu * __percpu *armpmu, int irq, int cpu)
618 {
619 	if (per_cpu(cpu_irq, cpu) == 0)
620 		return;
621 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
622 		return;
623 
624 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, armpmu);
625 
626 	per_cpu(cpu_irq, cpu) = 0;
627 	per_cpu(cpu_irq_ops, cpu) = NULL;
628 }
629 
630 int armpmu_request_irq(struct arm_pmu * __percpu *pcpu_armpmu, int irq, int cpu)
631 {
632 	int err = 0;
633 	struct arm_pmu **armpmu = per_cpu_ptr(pcpu_armpmu, cpu);
634 	const struct cpumask *affinity = *armpmu ? &(*armpmu)->supported_cpus :
635 						   cpu_possible_mask; /* ACPI */
636 	const irq_handler_t handler = armpmu_dispatch_irq;
637 	const struct pmu_irq_ops *irq_ops;
638 
639 	if (!irq)
640 		return 0;
641 
642 	if (!irq_is_percpu_devid(irq)) {
643 		unsigned long irq_flags;
644 
645 		err = irq_force_affinity(irq, cpumask_of(cpu));
646 
647 		if (err && num_possible_cpus() > 1) {
648 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
649 				irq, cpu);
650 			goto err_out;
651 		}
652 
653 		irq_flags = IRQF_PERCPU |
654 			    IRQF_NOBALANCING | IRQF_NO_AUTOEN |
655 			    IRQF_NO_THREAD;
656 
657 		err = request_nmi(irq, handler, irq_flags, "arm-pmu", armpmu);
658 
659 		/* If cannot get an NMI, get a normal interrupt */
660 		if (err) {
661 			err = request_irq(irq, handler, irq_flags, "arm-pmu",
662 					  armpmu);
663 			irq_ops = &pmuirq_ops;
664 		} else {
665 			has_nmi = true;
666 			irq_ops = &pmunmi_ops;
667 		}
668 	} else if (armpmu_count_irq_users(affinity, irq) == 0) {
669 		err = request_percpu_nmi(irq, handler, "arm-pmu", affinity, pcpu_armpmu);
670 
671 		/* If cannot get an NMI, get a normal interrupt */
672 		if (err) {
673 			err = request_percpu_irq_affinity(irq, handler, "arm-pmu",
674 							  affinity, pcpu_armpmu);
675 			irq_ops = &percpu_pmuirq_ops;
676 		} else {
677 			has_nmi = true;
678 			irq_ops = &percpu_pmunmi_ops;
679 		}
680 	} else {
681 		/* Per cpudevid irq was already requested by another CPU */
682 		irq_ops = armpmu_find_irq_ops(affinity, irq);
683 
684 		if (WARN_ON(!irq_ops))
685 			err = -EINVAL;
686 	}
687 
688 	if (err)
689 		goto err_out;
690 
691 	per_cpu(cpu_irq, cpu) = irq;
692 	per_cpu(cpu_irq_ops, cpu) = irq_ops;
693 	return 0;
694 
695 err_out:
696 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
697 	return err;
698 }
699 
700 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
701 {
702 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
703 	return per_cpu(hw_events->irq, cpu);
704 }
705 
706 bool arm_pmu_irq_is_nmi(void)
707 {
708 	return has_nmi;
709 }
710 
711 /*
712  * PMU hardware loses all context when a CPU goes offline.
713  * When a CPU is hotplugged back in, since some hardware registers are
714  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
715  * junk values out of them.
716  */
717 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
718 {
719 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
720 	int irq;
721 
722 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
723 		return 0;
724 	if (pmu->reset)
725 		pmu->reset(pmu);
726 
727 	irq = armpmu_get_cpu_irq(pmu, cpu);
728 	if (irq)
729 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
730 
731 	return 0;
732 }
733 
734 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
735 {
736 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
737 	int irq;
738 
739 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
740 		return 0;
741 
742 	irq = armpmu_get_cpu_irq(pmu, cpu);
743 	if (irq)
744 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
745 
746 	return 0;
747 }
748 
749 #ifdef CONFIG_CPU_PM
750 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
751 {
752 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
753 	struct perf_event *event;
754 	int idx;
755 
756 	for_each_set_bit(idx, armpmu->cntr_mask, ARMPMU_MAX_HWEVENTS) {
757 		event = hw_events->events[idx];
758 		if (!event)
759 			continue;
760 
761 		switch (cmd) {
762 		case CPU_PM_ENTER:
763 			/*
764 			 * Stop and update the counter
765 			 */
766 			armpmu_stop(event, PERF_EF_UPDATE);
767 			break;
768 		case CPU_PM_EXIT:
769 		case CPU_PM_ENTER_FAILED:
770 			 /*
771 			  * Restore and enable the counter.
772 			  */
773 			armpmu_start(event, PERF_EF_RELOAD);
774 			break;
775 		default:
776 			break;
777 		}
778 	}
779 }
780 
781 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
782 			     void *v)
783 {
784 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
785 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
786 	bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
787 
788 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
789 		return NOTIFY_DONE;
790 
791 	/*
792 	 * Always reset the PMU registers on power-up even if
793 	 * there are no events running.
794 	 */
795 	if (cmd == CPU_PM_EXIT && armpmu->reset)
796 		armpmu->reset(armpmu);
797 
798 	if (!enabled)
799 		return NOTIFY_OK;
800 
801 	switch (cmd) {
802 	case CPU_PM_ENTER:
803 		armpmu->stop(armpmu);
804 		cpu_pm_pmu_setup(armpmu, cmd);
805 		break;
806 	case CPU_PM_EXIT:
807 	case CPU_PM_ENTER_FAILED:
808 		cpu_pm_pmu_setup(armpmu, cmd);
809 		armpmu->start(armpmu);
810 		break;
811 	default:
812 		return NOTIFY_DONE;
813 	}
814 
815 	return NOTIFY_OK;
816 }
817 
818 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
819 {
820 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
821 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
822 }
823 
824 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
825 {
826 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
827 }
828 #else
829 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
830 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
831 #endif
832 
833 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
834 {
835 	int err;
836 
837 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
838 				       &cpu_pmu->node);
839 	if (err)
840 		goto out;
841 
842 	err = cpu_pm_pmu_register(cpu_pmu);
843 	if (err)
844 		goto out_unregister;
845 
846 	return 0;
847 
848 out_unregister:
849 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
850 					    &cpu_pmu->node);
851 out:
852 	return err;
853 }
854 
855 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
856 {
857 	cpu_pm_pmu_unregister(cpu_pmu);
858 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
859 					    &cpu_pmu->node);
860 }
861 
862 struct arm_pmu *armpmu_alloc(void)
863 {
864 	struct arm_pmu *pmu;
865 	int cpu;
866 
867 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
868 	if (!pmu)
869 		goto out;
870 
871 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
872 	if (!pmu->hw_events) {
873 		pr_info("failed to allocate per-cpu PMU data.\n");
874 		goto out_free_pmu;
875 	}
876 
877 	pmu->pmu = (struct pmu) {
878 		.pmu_enable	= armpmu_enable,
879 		.pmu_disable	= armpmu_disable,
880 		.event_init	= armpmu_event_init,
881 		.add		= armpmu_add,
882 		.del		= armpmu_del,
883 		.start		= armpmu_start,
884 		.stop		= armpmu_stop,
885 		.read		= armpmu_read,
886 		.filter		= armpmu_filter,
887 		.attr_groups	= pmu->attr_groups,
888 		/*
889 		 * This is a CPU PMU potentially in a heterogeneous
890 		 * configuration (e.g. big.LITTLE) so
891 		 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
892 		 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
893 		 * specific PMU.
894 		 */
895 		.capabilities	= PERF_PMU_CAP_EXTENDED_REGS |
896 				  PERF_PMU_CAP_EXTENDED_HW_TYPE,
897 	};
898 
899 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
900 		&armpmu_common_attr_group;
901 
902 	for_each_possible_cpu(cpu) {
903 		struct pmu_hw_events *events;
904 
905 		events = per_cpu_ptr(pmu->hw_events, cpu);
906 		events->percpu_pmu = pmu;
907 	}
908 
909 	return pmu;
910 
911 out_free_pmu:
912 	kfree(pmu);
913 out:
914 	return NULL;
915 }
916 
917 void armpmu_free(struct arm_pmu *pmu)
918 {
919 	free_percpu(pmu->hw_events);
920 	kfree(pmu);
921 }
922 
923 int armpmu_register(struct arm_pmu *pmu)
924 {
925 	int ret;
926 
927 	ret = cpu_pmu_init(pmu);
928 	if (ret)
929 		return ret;
930 
931 	/*
932 	 * By this stage we know our supported CPUs on either DT/ACPI platforms,
933 	 * detect the SMT implementation.
934 	 */
935 	pmu->has_smt = topology_core_has_smt(cpumask_first(&pmu->supported_cpus));
936 
937 	if (!pmu->set_event_filter)
938 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
939 
940 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
941 	if (ret)
942 		goto out_destroy;
943 
944 	pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n",
945 		pmu->name, bitmap_weight(pmu->cntr_mask, ARMPMU_MAX_HWEVENTS),
946 		ARMPMU_MAX_HWEVENTS, &pmu->cntr_mask,
947 		has_nmi ? ", using NMIs" : "");
948 
949 	kvm_host_pmu_init(pmu);
950 
951 	return 0;
952 
953 out_destroy:
954 	cpu_pmu_destroy(pmu);
955 	return ret;
956 }
957 
958 static int arm_pmu_hp_init(void)
959 {
960 	int ret;
961 
962 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
963 				      "perf/arm/pmu:starting",
964 				      arm_perf_starting_cpu,
965 				      arm_perf_teardown_cpu);
966 	if (ret)
967 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
968 		       ret);
969 	return ret;
970 }
971 subsys_initcall(arm_pmu_hp_init);
972