1 // SPDX-License-Identifier: GPL-2.0-only 2 #undef DEBUG 3 4 /* 5 * ARM performance counter support. 6 * 7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles 8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> 9 * 10 * This code is based on the sparc64 perf event code, which is in turn based 11 * on the x86 code. 12 */ 13 #define pr_fmt(fmt) "hw perfevents: " fmt 14 15 #include <linux/bitmap.h> 16 #include <linux/cpumask.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/perf/arm_pmu.h> 21 #include <linux/slab.h> 22 #include <linux/sched/clock.h> 23 #include <linux/spinlock.h> 24 #include <linux/irq.h> 25 #include <linux/irqdesc.h> 26 27 #include <asm/irq_regs.h> 28 29 static int armpmu_count_irq_users(const int irq); 30 31 struct pmu_irq_ops { 32 void (*enable_pmuirq)(unsigned int irq); 33 void (*disable_pmuirq)(unsigned int irq); 34 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid); 35 }; 36 37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid) 38 { 39 free_irq(irq, per_cpu_ptr(devid, cpu)); 40 } 41 42 static const struct pmu_irq_ops pmuirq_ops = { 43 .enable_pmuirq = enable_irq, 44 .disable_pmuirq = disable_irq_nosync, 45 .free_pmuirq = armpmu_free_pmuirq 46 }; 47 48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid) 49 { 50 free_nmi(irq, per_cpu_ptr(devid, cpu)); 51 } 52 53 static const struct pmu_irq_ops pmunmi_ops = { 54 .enable_pmuirq = enable_nmi, 55 .disable_pmuirq = disable_nmi_nosync, 56 .free_pmuirq = armpmu_free_pmunmi 57 }; 58 59 static void armpmu_enable_percpu_pmuirq(unsigned int irq) 60 { 61 enable_percpu_irq(irq, IRQ_TYPE_NONE); 62 } 63 64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu, 65 void __percpu *devid) 66 { 67 if (armpmu_count_irq_users(irq) == 1) 68 free_percpu_irq(irq, devid); 69 } 70 71 static const struct pmu_irq_ops percpu_pmuirq_ops = { 72 .enable_pmuirq = armpmu_enable_percpu_pmuirq, 73 .disable_pmuirq = disable_percpu_irq, 74 .free_pmuirq = armpmu_free_percpu_pmuirq 75 }; 76 77 static void armpmu_enable_percpu_pmunmi(unsigned int irq) 78 { 79 if (!prepare_percpu_nmi(irq)) 80 enable_percpu_nmi(irq, IRQ_TYPE_NONE); 81 } 82 83 static void armpmu_disable_percpu_pmunmi(unsigned int irq) 84 { 85 disable_percpu_nmi(irq); 86 teardown_percpu_nmi(irq); 87 } 88 89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu, 90 void __percpu *devid) 91 { 92 if (armpmu_count_irq_users(irq) == 1) 93 free_percpu_nmi(irq, devid); 94 } 95 96 static const struct pmu_irq_ops percpu_pmunmi_ops = { 97 .enable_pmuirq = armpmu_enable_percpu_pmunmi, 98 .disable_pmuirq = armpmu_disable_percpu_pmunmi, 99 .free_pmuirq = armpmu_free_percpu_pmunmi 100 }; 101 102 DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu); 103 static DEFINE_PER_CPU(int, cpu_irq); 104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops); 105 106 static bool has_nmi; 107 108 static inline u64 arm_pmu_event_max_period(struct perf_event *event) 109 { 110 if (event->hw.flags & ARMPMU_EVT_64BIT) 111 return GENMASK_ULL(63, 0); 112 else if (event->hw.flags & ARMPMU_EVT_63BIT) 113 return GENMASK_ULL(62, 0); 114 else if (event->hw.flags & ARMPMU_EVT_47BIT) 115 return GENMASK_ULL(46, 0); 116 else 117 return GENMASK_ULL(31, 0); 118 } 119 120 static int 121 armpmu_map_cache_event(const unsigned (*cache_map) 122 [PERF_COUNT_HW_CACHE_MAX] 123 [PERF_COUNT_HW_CACHE_OP_MAX] 124 [PERF_COUNT_HW_CACHE_RESULT_MAX], 125 u64 config) 126 { 127 unsigned int cache_type, cache_op, cache_result, ret; 128 129 cache_type = (config >> 0) & 0xff; 130 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 131 return -EINVAL; 132 133 cache_op = (config >> 8) & 0xff; 134 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 135 return -EINVAL; 136 137 cache_result = (config >> 16) & 0xff; 138 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 139 return -EINVAL; 140 141 if (!cache_map) 142 return -ENOENT; 143 144 ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; 145 146 if (ret == CACHE_OP_UNSUPPORTED) 147 return -ENOENT; 148 149 return ret; 150 } 151 152 static int 153 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) 154 { 155 int mapping; 156 157 if (config >= PERF_COUNT_HW_MAX) 158 return -EINVAL; 159 160 if (!event_map) 161 return -ENOENT; 162 163 mapping = (*event_map)[config]; 164 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; 165 } 166 167 static int 168 armpmu_map_raw_event(u32 raw_event_mask, u64 config) 169 { 170 return (int)(config & raw_event_mask); 171 } 172 173 int 174 armpmu_map_event(struct perf_event *event, 175 const unsigned (*event_map)[PERF_COUNT_HW_MAX], 176 const unsigned (*cache_map) 177 [PERF_COUNT_HW_CACHE_MAX] 178 [PERF_COUNT_HW_CACHE_OP_MAX] 179 [PERF_COUNT_HW_CACHE_RESULT_MAX], 180 u32 raw_event_mask) 181 { 182 u64 config = event->attr.config; 183 int type = event->attr.type; 184 185 if (type == event->pmu->type) 186 return armpmu_map_raw_event(raw_event_mask, config); 187 188 switch (type) { 189 case PERF_TYPE_HARDWARE: 190 return armpmu_map_hw_event(event_map, config); 191 case PERF_TYPE_HW_CACHE: 192 return armpmu_map_cache_event(cache_map, config); 193 case PERF_TYPE_RAW: 194 return armpmu_map_raw_event(raw_event_mask, config); 195 } 196 197 return -ENOENT; 198 } 199 200 int armpmu_event_set_period(struct perf_event *event) 201 { 202 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 203 struct hw_perf_event *hwc = &event->hw; 204 s64 left = local64_read(&hwc->period_left); 205 s64 period = hwc->sample_period; 206 u64 max_period; 207 int ret = 0; 208 209 max_period = arm_pmu_event_max_period(event); 210 if (unlikely(left <= -period)) { 211 left = period; 212 local64_set(&hwc->period_left, left); 213 hwc->last_period = period; 214 ret = 1; 215 } 216 217 if (unlikely(left <= 0)) { 218 left += period; 219 local64_set(&hwc->period_left, left); 220 hwc->last_period = period; 221 ret = 1; 222 } 223 224 /* 225 * Limit the maximum period to prevent the counter value 226 * from overtaking the one we are about to program. In 227 * effect we are reducing max_period to account for 228 * interrupt latency (and we are being very conservative). 229 */ 230 if (left > (max_period >> 1)) 231 left = (max_period >> 1); 232 233 local64_set(&hwc->prev_count, (u64)-left); 234 235 armpmu->write_counter(event, (u64)(-left) & max_period); 236 237 perf_event_update_userpage(event); 238 239 return ret; 240 } 241 242 u64 armpmu_event_update(struct perf_event *event) 243 { 244 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 245 struct hw_perf_event *hwc = &event->hw; 246 u64 delta, prev_raw_count, new_raw_count; 247 u64 max_period = arm_pmu_event_max_period(event); 248 249 again: 250 prev_raw_count = local64_read(&hwc->prev_count); 251 new_raw_count = armpmu->read_counter(event); 252 253 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 254 new_raw_count) != prev_raw_count) 255 goto again; 256 257 delta = (new_raw_count - prev_raw_count) & max_period; 258 259 local64_add(delta, &event->count); 260 local64_sub(delta, &hwc->period_left); 261 262 return new_raw_count; 263 } 264 265 static void 266 armpmu_read(struct perf_event *event) 267 { 268 armpmu_event_update(event); 269 } 270 271 static void 272 armpmu_stop(struct perf_event *event, int flags) 273 { 274 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 275 struct hw_perf_event *hwc = &event->hw; 276 277 /* 278 * ARM pmu always has to update the counter, so ignore 279 * PERF_EF_UPDATE, see comments in armpmu_start(). 280 */ 281 if (!(hwc->state & PERF_HES_STOPPED)) { 282 armpmu->disable(event); 283 armpmu_event_update(event); 284 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 285 } 286 } 287 288 static void armpmu_start(struct perf_event *event, int flags) 289 { 290 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 291 struct hw_perf_event *hwc = &event->hw; 292 293 /* 294 * ARM pmu always has to reprogram the period, so ignore 295 * PERF_EF_RELOAD, see the comment below. 296 */ 297 if (flags & PERF_EF_RELOAD) 298 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 299 300 hwc->state = 0; 301 /* 302 * Set the period again. Some counters can't be stopped, so when we 303 * were stopped we simply disabled the IRQ source and the counter 304 * may have been left counting. If we don't do this step then we may 305 * get an interrupt too soon or *way* too late if the overflow has 306 * happened since disabling. 307 */ 308 armpmu_event_set_period(event); 309 armpmu->enable(event); 310 } 311 312 static void 313 armpmu_del(struct perf_event *event, int flags) 314 { 315 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 316 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 317 struct hw_perf_event *hwc = &event->hw; 318 int idx = hwc->idx; 319 320 armpmu_stop(event, PERF_EF_UPDATE); 321 322 if (has_branch_stack(event)) { 323 hw_events->branch_users--; 324 perf_sched_cb_dec(event->pmu); 325 } 326 327 hw_events->events[idx] = NULL; 328 armpmu->clear_event_idx(hw_events, event); 329 perf_event_update_userpage(event); 330 /* Clear the allocated counter */ 331 hwc->idx = -1; 332 } 333 334 static int 335 armpmu_add(struct perf_event *event, int flags) 336 { 337 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 338 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 339 struct hw_perf_event *hwc = &event->hw; 340 int idx; 341 342 /* An event following a process won't be stopped earlier */ 343 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 344 return -ENOENT; 345 346 /* If we don't have a space for the counter then finish early. */ 347 idx = armpmu->get_event_idx(hw_events, event); 348 if (idx < 0) 349 return idx; 350 351 /* The newly-allocated counter should be empty */ 352 WARN_ON_ONCE(hw_events->events[idx]); 353 354 if (has_branch_stack(event)) { 355 hw_events->branch_users++; 356 perf_sched_cb_inc(event->pmu); 357 } 358 359 event->hw.idx = idx; 360 hw_events->events[idx] = event; 361 362 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 363 if (flags & PERF_EF_START) 364 armpmu_start(event, PERF_EF_RELOAD); 365 366 /* Propagate our changes to the userspace mapping. */ 367 perf_event_update_userpage(event); 368 369 return 0; 370 } 371 372 static int 373 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, 374 struct perf_event *event) 375 { 376 struct arm_pmu *armpmu; 377 378 if (is_software_event(event)) 379 return 1; 380 381 /* 382 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 383 * core perf code won't check that the pmu->ctx == leader->ctx 384 * until after pmu->event_init(event). 385 */ 386 if (event->pmu != pmu) 387 return 0; 388 389 if (event->state < PERF_EVENT_STATE_OFF) 390 return 1; 391 392 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 393 return 1; 394 395 armpmu = to_arm_pmu(event->pmu); 396 return armpmu->get_event_idx(hw_events, event) >= 0; 397 } 398 399 static int 400 validate_group(struct perf_event *event) 401 { 402 struct perf_event *sibling, *leader = event->group_leader; 403 struct pmu_hw_events fake_pmu; 404 405 /* 406 * Initialise the fake PMU. We only need to populate the 407 * used_mask for the purposes of validation. 408 */ 409 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); 410 411 if (!validate_event(event->pmu, &fake_pmu, leader)) 412 return -EINVAL; 413 414 if (event == leader) 415 return 0; 416 417 for_each_sibling_event(sibling, leader) { 418 if (!validate_event(event->pmu, &fake_pmu, sibling)) 419 return -EINVAL; 420 } 421 422 if (!validate_event(event->pmu, &fake_pmu, event)) 423 return -EINVAL; 424 425 return 0; 426 } 427 428 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) 429 { 430 struct arm_pmu *armpmu; 431 int ret; 432 u64 start_clock, finish_clock; 433 434 /* 435 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but 436 * the handlers expect a struct arm_pmu*. The percpu_irq framework will 437 * do any necessary shifting, we just need to perform the first 438 * dereference. 439 */ 440 armpmu = *(void **)dev; 441 if (WARN_ON_ONCE(!armpmu)) 442 return IRQ_NONE; 443 444 start_clock = sched_clock(); 445 ret = armpmu->handle_irq(armpmu); 446 finish_clock = sched_clock(); 447 448 perf_sample_event_took(finish_clock - start_clock); 449 return ret; 450 } 451 452 static int 453 __hw_perf_event_init(struct perf_event *event) 454 { 455 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 456 struct hw_perf_event *hwc = &event->hw; 457 int mapping, ret; 458 459 hwc->flags = 0; 460 mapping = armpmu->map_event(event); 461 462 if (mapping < 0) { 463 pr_debug("event %x:%llx not supported\n", event->attr.type, 464 event->attr.config); 465 return mapping; 466 } 467 468 /* 469 * We don't assign an index until we actually place the event onto 470 * hardware. Use -1 to signify that we haven't decided where to put it 471 * yet. For SMP systems, each core has it's own PMU so we can't do any 472 * clever allocation or constraints checking at this point. 473 */ 474 hwc->idx = -1; 475 hwc->config_base = 0; 476 hwc->config = 0; 477 hwc->event_base = 0; 478 479 /* 480 * Check whether we need to exclude the counter from certain modes. 481 */ 482 if (armpmu->set_event_filter) { 483 ret = armpmu->set_event_filter(hwc, &event->attr); 484 if (ret) 485 return ret; 486 } 487 488 /* 489 * Store the event encoding into the config_base field. 490 */ 491 hwc->config_base |= (unsigned long)mapping; 492 493 if (!is_sampling_event(event)) { 494 /* 495 * For non-sampling runs, limit the sample_period to half 496 * of the counter width. That way, the new counter value 497 * is far less likely to overtake the previous one unless 498 * you have some serious IRQ latency issues. 499 */ 500 hwc->sample_period = arm_pmu_event_max_period(event) >> 1; 501 hwc->last_period = hwc->sample_period; 502 local64_set(&hwc->period_left, hwc->sample_period); 503 } 504 505 return validate_group(event); 506 } 507 508 static int armpmu_event_init(struct perf_event *event) 509 { 510 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 511 512 /* 513 * Reject CPU-affine events for CPUs that are of a different class to 514 * that which this PMU handles. Process-following events (where 515 * event->cpu == -1) can be migrated between CPUs, and thus we have to 516 * reject them later (in armpmu_add) if they're scheduled on a 517 * different class of CPU. 518 */ 519 if (event->cpu != -1 && 520 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) 521 return -ENOENT; 522 523 if (has_branch_stack(event) && !armpmu->reg_brbidr) 524 return -EOPNOTSUPP; 525 526 return __hw_perf_event_init(event); 527 } 528 529 static void armpmu_enable(struct pmu *pmu) 530 { 531 struct arm_pmu *armpmu = to_arm_pmu(pmu); 532 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 533 bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS); 534 535 /* For task-bound events we may be called on other CPUs */ 536 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 537 return; 538 539 if (enabled) 540 armpmu->start(armpmu); 541 } 542 543 static void armpmu_disable(struct pmu *pmu) 544 { 545 struct arm_pmu *armpmu = to_arm_pmu(pmu); 546 547 /* For task-bound events we may be called on other CPUs */ 548 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 549 return; 550 551 armpmu->stop(armpmu); 552 } 553 554 /* 555 * In heterogeneous systems, events are specific to a particular 556 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of 557 * the same microarchitecture. 558 */ 559 static bool armpmu_filter(struct pmu *pmu, int cpu) 560 { 561 struct arm_pmu *armpmu = to_arm_pmu(pmu); 562 return !cpumask_test_cpu(cpu, &armpmu->supported_cpus); 563 } 564 565 static ssize_t cpus_show(struct device *dev, 566 struct device_attribute *attr, char *buf) 567 { 568 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); 569 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); 570 } 571 572 static DEVICE_ATTR_RO(cpus); 573 574 static struct attribute *armpmu_common_attrs[] = { 575 &dev_attr_cpus.attr, 576 NULL, 577 }; 578 579 static const struct attribute_group armpmu_common_attr_group = { 580 .attrs = armpmu_common_attrs, 581 }; 582 583 static int armpmu_count_irq_users(const int irq) 584 { 585 int cpu, count = 0; 586 587 for_each_possible_cpu(cpu) { 588 if (per_cpu(cpu_irq, cpu) == irq) 589 count++; 590 } 591 592 return count; 593 } 594 595 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq) 596 { 597 const struct pmu_irq_ops *ops = NULL; 598 int cpu; 599 600 for_each_possible_cpu(cpu) { 601 if (per_cpu(cpu_irq, cpu) != irq) 602 continue; 603 604 ops = per_cpu(cpu_irq_ops, cpu); 605 if (ops) 606 break; 607 } 608 609 return ops; 610 } 611 612 void armpmu_free_irq(int irq, int cpu) 613 { 614 if (per_cpu(cpu_irq, cpu) == 0) 615 return; 616 if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) 617 return; 618 619 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu); 620 621 per_cpu(cpu_irq, cpu) = 0; 622 per_cpu(cpu_irq_ops, cpu) = NULL; 623 } 624 625 int armpmu_request_irq(int irq, int cpu) 626 { 627 int err = 0; 628 const irq_handler_t handler = armpmu_dispatch_irq; 629 const struct pmu_irq_ops *irq_ops; 630 631 if (!irq) 632 return 0; 633 634 if (!irq_is_percpu_devid(irq)) { 635 unsigned long irq_flags; 636 637 err = irq_force_affinity(irq, cpumask_of(cpu)); 638 639 if (err && num_possible_cpus() > 1) { 640 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", 641 irq, cpu); 642 goto err_out; 643 } 644 645 irq_flags = IRQF_PERCPU | 646 IRQF_NOBALANCING | IRQF_NO_AUTOEN | 647 IRQF_NO_THREAD; 648 649 err = request_nmi(irq, handler, irq_flags, "arm-pmu", 650 per_cpu_ptr(&cpu_armpmu, cpu)); 651 652 /* If cannot get an NMI, get a normal interrupt */ 653 if (err) { 654 err = request_irq(irq, handler, irq_flags, "arm-pmu", 655 per_cpu_ptr(&cpu_armpmu, cpu)); 656 irq_ops = &pmuirq_ops; 657 } else { 658 has_nmi = true; 659 irq_ops = &pmunmi_ops; 660 } 661 } else if (armpmu_count_irq_users(irq) == 0) { 662 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu); 663 664 /* If cannot get an NMI, get a normal interrupt */ 665 if (err) { 666 err = request_percpu_irq(irq, handler, "arm-pmu", 667 &cpu_armpmu); 668 irq_ops = &percpu_pmuirq_ops; 669 } else { 670 has_nmi = true; 671 irq_ops = &percpu_pmunmi_ops; 672 } 673 } else { 674 /* Per cpudevid irq was already requested by another CPU */ 675 irq_ops = armpmu_find_irq_ops(irq); 676 677 if (WARN_ON(!irq_ops)) 678 err = -EINVAL; 679 } 680 681 if (err) 682 goto err_out; 683 684 per_cpu(cpu_irq, cpu) = irq; 685 per_cpu(cpu_irq_ops, cpu) = irq_ops; 686 return 0; 687 688 err_out: 689 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); 690 return err; 691 } 692 693 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) 694 { 695 struct pmu_hw_events __percpu *hw_events = pmu->hw_events; 696 return per_cpu(hw_events->irq, cpu); 697 } 698 699 bool arm_pmu_irq_is_nmi(void) 700 { 701 return has_nmi; 702 } 703 704 /* 705 * PMU hardware loses all context when a CPU goes offline. 706 * When a CPU is hotplugged back in, since some hardware registers are 707 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading 708 * junk values out of them. 709 */ 710 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) 711 { 712 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 713 int irq; 714 715 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 716 return 0; 717 if (pmu->reset) 718 pmu->reset(pmu); 719 720 per_cpu(cpu_armpmu, cpu) = pmu; 721 722 irq = armpmu_get_cpu_irq(pmu, cpu); 723 if (irq) 724 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq); 725 726 return 0; 727 } 728 729 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) 730 { 731 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 732 int irq; 733 734 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 735 return 0; 736 737 irq = armpmu_get_cpu_irq(pmu, cpu); 738 if (irq) 739 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq); 740 741 per_cpu(cpu_armpmu, cpu) = NULL; 742 743 return 0; 744 } 745 746 #ifdef CONFIG_CPU_PM 747 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) 748 { 749 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 750 struct perf_event *event; 751 int idx; 752 753 for_each_set_bit(idx, armpmu->cntr_mask, ARMPMU_MAX_HWEVENTS) { 754 event = hw_events->events[idx]; 755 if (!event) 756 continue; 757 758 switch (cmd) { 759 case CPU_PM_ENTER: 760 /* 761 * Stop and update the counter 762 */ 763 armpmu_stop(event, PERF_EF_UPDATE); 764 break; 765 case CPU_PM_EXIT: 766 case CPU_PM_ENTER_FAILED: 767 /* 768 * Restore and enable the counter. 769 */ 770 armpmu_start(event, PERF_EF_RELOAD); 771 break; 772 default: 773 break; 774 } 775 } 776 } 777 778 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 779 void *v) 780 { 781 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); 782 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 783 bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS); 784 785 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 786 return NOTIFY_DONE; 787 788 /* 789 * Always reset the PMU registers on power-up even if 790 * there are no events running. 791 */ 792 if (cmd == CPU_PM_EXIT && armpmu->reset) 793 armpmu->reset(armpmu); 794 795 if (!enabled) 796 return NOTIFY_OK; 797 798 switch (cmd) { 799 case CPU_PM_ENTER: 800 armpmu->stop(armpmu); 801 cpu_pm_pmu_setup(armpmu, cmd); 802 break; 803 case CPU_PM_EXIT: 804 case CPU_PM_ENTER_FAILED: 805 cpu_pm_pmu_setup(armpmu, cmd); 806 armpmu->start(armpmu); 807 break; 808 default: 809 return NOTIFY_DONE; 810 } 811 812 return NOTIFY_OK; 813 } 814 815 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) 816 { 817 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; 818 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); 819 } 820 821 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) 822 { 823 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); 824 } 825 #else 826 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } 827 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } 828 #endif 829 830 static int cpu_pmu_init(struct arm_pmu *cpu_pmu) 831 { 832 int err; 833 834 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, 835 &cpu_pmu->node); 836 if (err) 837 goto out; 838 839 err = cpu_pm_pmu_register(cpu_pmu); 840 if (err) 841 goto out_unregister; 842 843 return 0; 844 845 out_unregister: 846 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 847 &cpu_pmu->node); 848 out: 849 return err; 850 } 851 852 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) 853 { 854 cpu_pm_pmu_unregister(cpu_pmu); 855 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 856 &cpu_pmu->node); 857 } 858 859 struct arm_pmu *armpmu_alloc(void) 860 { 861 struct arm_pmu *pmu; 862 int cpu; 863 864 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL); 865 if (!pmu) 866 goto out; 867 868 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL); 869 if (!pmu->hw_events) { 870 pr_info("failed to allocate per-cpu PMU data.\n"); 871 goto out_free_pmu; 872 } 873 874 pmu->pmu = (struct pmu) { 875 .pmu_enable = armpmu_enable, 876 .pmu_disable = armpmu_disable, 877 .event_init = armpmu_event_init, 878 .add = armpmu_add, 879 .del = armpmu_del, 880 .start = armpmu_start, 881 .stop = armpmu_stop, 882 .read = armpmu_read, 883 .filter = armpmu_filter, 884 .attr_groups = pmu->attr_groups, 885 /* 886 * This is a CPU PMU potentially in a heterogeneous 887 * configuration (e.g. big.LITTLE) so 888 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open 889 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a 890 * specific PMU. 891 */ 892 .capabilities = PERF_PMU_CAP_EXTENDED_REGS | 893 PERF_PMU_CAP_EXTENDED_HW_TYPE, 894 }; 895 896 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = 897 &armpmu_common_attr_group; 898 899 for_each_possible_cpu(cpu) { 900 struct pmu_hw_events *events; 901 902 events = per_cpu_ptr(pmu->hw_events, cpu); 903 events->percpu_pmu = pmu; 904 } 905 906 return pmu; 907 908 out_free_pmu: 909 kfree(pmu); 910 out: 911 return NULL; 912 } 913 914 void armpmu_free(struct arm_pmu *pmu) 915 { 916 free_percpu(pmu->hw_events); 917 kfree(pmu); 918 } 919 920 int armpmu_register(struct arm_pmu *pmu) 921 { 922 int ret; 923 924 ret = cpu_pmu_init(pmu); 925 if (ret) 926 return ret; 927 928 if (!pmu->set_event_filter) 929 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; 930 931 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); 932 if (ret) 933 goto out_destroy; 934 935 pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n", 936 pmu->name, bitmap_weight(pmu->cntr_mask, ARMPMU_MAX_HWEVENTS), 937 ARMPMU_MAX_HWEVENTS, &pmu->cntr_mask, 938 has_nmi ? ", using NMIs" : ""); 939 940 kvm_host_pmu_init(pmu); 941 942 return 0; 943 944 out_destroy: 945 cpu_pmu_destroy(pmu); 946 return ret; 947 } 948 949 static int arm_pmu_hp_init(void) 950 { 951 int ret; 952 953 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, 954 "perf/arm/pmu:starting", 955 arm_perf_starting_cpu, 956 arm_perf_teardown_cpu); 957 if (ret) 958 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", 959 ret); 960 return ret; 961 } 962 subsys_initcall(arm_pmu_hp_init); 963