xref: /linux/drivers/perf/arm_pmu.c (revision 0c8a32eed1625a65798286fb73fea8710a908545)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3 
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int armpmu_count_irq_users(const int irq);
30 
31 struct pmu_irq_ops {
32 	void (*enable_pmuirq)(unsigned int irq);
33 	void (*disable_pmuirq)(unsigned int irq);
34 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36 
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 	free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41 
42 static const struct pmu_irq_ops pmuirq_ops = {
43 	.enable_pmuirq = enable_irq,
44 	.disable_pmuirq = disable_irq_nosync,
45 	.free_pmuirq = armpmu_free_pmuirq
46 };
47 
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 	free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52 
53 static const struct pmu_irq_ops pmunmi_ops = {
54 	.enable_pmuirq = enable_nmi,
55 	.disable_pmuirq = disable_nmi_nosync,
56 	.free_pmuirq = armpmu_free_pmunmi
57 };
58 
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63 
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 				   void __percpu *devid)
66 {
67 	if (armpmu_count_irq_users(irq) == 1)
68 		free_percpu_irq(irq, devid);
69 }
70 
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 	.disable_pmuirq = disable_percpu_irq,
74 	.free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76 
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 	if (!prepare_percpu_nmi(irq))
80 		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82 
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 	disable_percpu_nmi(irq);
86 	teardown_percpu_nmi(irq);
87 }
88 
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 				      void __percpu *devid)
91 {
92 	if (armpmu_count_irq_users(irq) == 1)
93 		free_percpu_nmi(irq, devid);
94 }
95 
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 	.free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101 
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105 
106 static bool has_nmi;
107 
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 	if (event->hw.flags & ARMPMU_EVT_64BIT)
111 		return GENMASK_ULL(63, 0);
112 	else
113 		return GENMASK_ULL(31, 0);
114 }
115 
116 static int
117 armpmu_map_cache_event(const unsigned (*cache_map)
118 				      [PERF_COUNT_HW_CACHE_MAX]
119 				      [PERF_COUNT_HW_CACHE_OP_MAX]
120 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
121 		       u64 config)
122 {
123 	unsigned int cache_type, cache_op, cache_result, ret;
124 
125 	cache_type = (config >>  0) & 0xff;
126 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
127 		return -EINVAL;
128 
129 	cache_op = (config >>  8) & 0xff;
130 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
131 		return -EINVAL;
132 
133 	cache_result = (config >> 16) & 0xff;
134 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
135 		return -EINVAL;
136 
137 	if (!cache_map)
138 		return -ENOENT;
139 
140 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
141 
142 	if (ret == CACHE_OP_UNSUPPORTED)
143 		return -ENOENT;
144 
145 	return ret;
146 }
147 
148 static int
149 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
150 {
151 	int mapping;
152 
153 	if (config >= PERF_COUNT_HW_MAX)
154 		return -EINVAL;
155 
156 	if (!event_map)
157 		return -ENOENT;
158 
159 	mapping = (*event_map)[config];
160 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
161 }
162 
163 static int
164 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
165 {
166 	return (int)(config & raw_event_mask);
167 }
168 
169 int
170 armpmu_map_event(struct perf_event *event,
171 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
172 		 const unsigned (*cache_map)
173 				[PERF_COUNT_HW_CACHE_MAX]
174 				[PERF_COUNT_HW_CACHE_OP_MAX]
175 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
176 		 u32 raw_event_mask)
177 {
178 	u64 config = event->attr.config;
179 	int type = event->attr.type;
180 
181 	if (type == event->pmu->type)
182 		return armpmu_map_raw_event(raw_event_mask, config);
183 
184 	switch (type) {
185 	case PERF_TYPE_HARDWARE:
186 		return armpmu_map_hw_event(event_map, config);
187 	case PERF_TYPE_HW_CACHE:
188 		return armpmu_map_cache_event(cache_map, config);
189 	case PERF_TYPE_RAW:
190 		return armpmu_map_raw_event(raw_event_mask, config);
191 	}
192 
193 	return -ENOENT;
194 }
195 
196 int armpmu_event_set_period(struct perf_event *event)
197 {
198 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
199 	struct hw_perf_event *hwc = &event->hw;
200 	s64 left = local64_read(&hwc->period_left);
201 	s64 period = hwc->sample_period;
202 	u64 max_period;
203 	int ret = 0;
204 
205 	max_period = arm_pmu_event_max_period(event);
206 	if (unlikely(left <= -period)) {
207 		left = period;
208 		local64_set(&hwc->period_left, left);
209 		hwc->last_period = period;
210 		ret = 1;
211 	}
212 
213 	if (unlikely(left <= 0)) {
214 		left += period;
215 		local64_set(&hwc->period_left, left);
216 		hwc->last_period = period;
217 		ret = 1;
218 	}
219 
220 	/*
221 	 * Limit the maximum period to prevent the counter value
222 	 * from overtaking the one we are about to program. In
223 	 * effect we are reducing max_period to account for
224 	 * interrupt latency (and we are being very conservative).
225 	 */
226 	if (left > (max_period >> 1))
227 		left = (max_period >> 1);
228 
229 	local64_set(&hwc->prev_count, (u64)-left);
230 
231 	armpmu->write_counter(event, (u64)(-left) & max_period);
232 
233 	perf_event_update_userpage(event);
234 
235 	return ret;
236 }
237 
238 u64 armpmu_event_update(struct perf_event *event)
239 {
240 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241 	struct hw_perf_event *hwc = &event->hw;
242 	u64 delta, prev_raw_count, new_raw_count;
243 	u64 max_period = arm_pmu_event_max_period(event);
244 
245 again:
246 	prev_raw_count = local64_read(&hwc->prev_count);
247 	new_raw_count = armpmu->read_counter(event);
248 
249 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
250 			     new_raw_count) != prev_raw_count)
251 		goto again;
252 
253 	delta = (new_raw_count - prev_raw_count) & max_period;
254 
255 	local64_add(delta, &event->count);
256 	local64_sub(delta, &hwc->period_left);
257 
258 	return new_raw_count;
259 }
260 
261 static void
262 armpmu_read(struct perf_event *event)
263 {
264 	armpmu_event_update(event);
265 }
266 
267 static void
268 armpmu_stop(struct perf_event *event, int flags)
269 {
270 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
271 	struct hw_perf_event *hwc = &event->hw;
272 
273 	/*
274 	 * ARM pmu always has to update the counter, so ignore
275 	 * PERF_EF_UPDATE, see comments in armpmu_start().
276 	 */
277 	if (!(hwc->state & PERF_HES_STOPPED)) {
278 		armpmu->disable(event);
279 		armpmu_event_update(event);
280 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
281 	}
282 }
283 
284 static void armpmu_start(struct perf_event *event, int flags)
285 {
286 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
287 	struct hw_perf_event *hwc = &event->hw;
288 
289 	/*
290 	 * ARM pmu always has to reprogram the period, so ignore
291 	 * PERF_EF_RELOAD, see the comment below.
292 	 */
293 	if (flags & PERF_EF_RELOAD)
294 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
295 
296 	hwc->state = 0;
297 	/*
298 	 * Set the period again. Some counters can't be stopped, so when we
299 	 * were stopped we simply disabled the IRQ source and the counter
300 	 * may have been left counting. If we don't do this step then we may
301 	 * get an interrupt too soon or *way* too late if the overflow has
302 	 * happened since disabling.
303 	 */
304 	armpmu_event_set_period(event);
305 	armpmu->enable(event);
306 }
307 
308 static void
309 armpmu_del(struct perf_event *event, int flags)
310 {
311 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
312 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
313 	struct hw_perf_event *hwc = &event->hw;
314 	int idx = hwc->idx;
315 
316 	armpmu_stop(event, PERF_EF_UPDATE);
317 	hw_events->events[idx] = NULL;
318 	armpmu->clear_event_idx(hw_events, event);
319 	perf_event_update_userpage(event);
320 	/* Clear the allocated counter */
321 	hwc->idx = -1;
322 }
323 
324 static int
325 armpmu_add(struct perf_event *event, int flags)
326 {
327 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
328 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
329 	struct hw_perf_event *hwc = &event->hw;
330 	int idx;
331 
332 	/* An event following a process won't be stopped earlier */
333 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
334 		return -ENOENT;
335 
336 	/* If we don't have a space for the counter then finish early. */
337 	idx = armpmu->get_event_idx(hw_events, event);
338 	if (idx < 0)
339 		return idx;
340 
341 	/*
342 	 * If there is an event in the counter we are going to use then make
343 	 * sure it is disabled.
344 	 */
345 	event->hw.idx = idx;
346 	armpmu->disable(event);
347 	hw_events->events[idx] = event;
348 
349 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
350 	if (flags & PERF_EF_START)
351 		armpmu_start(event, PERF_EF_RELOAD);
352 
353 	/* Propagate our changes to the userspace mapping. */
354 	perf_event_update_userpage(event);
355 
356 	return 0;
357 }
358 
359 static int
360 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
361 			       struct perf_event *event)
362 {
363 	struct arm_pmu *armpmu;
364 
365 	if (is_software_event(event))
366 		return 1;
367 
368 	/*
369 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
370 	 * core perf code won't check that the pmu->ctx == leader->ctx
371 	 * until after pmu->event_init(event).
372 	 */
373 	if (event->pmu != pmu)
374 		return 0;
375 
376 	if (event->state < PERF_EVENT_STATE_OFF)
377 		return 1;
378 
379 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
380 		return 1;
381 
382 	armpmu = to_arm_pmu(event->pmu);
383 	return armpmu->get_event_idx(hw_events, event) >= 0;
384 }
385 
386 static int
387 validate_group(struct perf_event *event)
388 {
389 	struct perf_event *sibling, *leader = event->group_leader;
390 	struct pmu_hw_events fake_pmu;
391 
392 	/*
393 	 * Initialise the fake PMU. We only need to populate the
394 	 * used_mask for the purposes of validation.
395 	 */
396 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
397 
398 	if (!validate_event(event->pmu, &fake_pmu, leader))
399 		return -EINVAL;
400 
401 	for_each_sibling_event(sibling, leader) {
402 		if (!validate_event(event->pmu, &fake_pmu, sibling))
403 			return -EINVAL;
404 	}
405 
406 	if (!validate_event(event->pmu, &fake_pmu, event))
407 		return -EINVAL;
408 
409 	return 0;
410 }
411 
412 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
413 {
414 	struct arm_pmu *armpmu;
415 	int ret;
416 	u64 start_clock, finish_clock;
417 
418 	/*
419 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
420 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
421 	 * do any necessary shifting, we just need to perform the first
422 	 * dereference.
423 	 */
424 	armpmu = *(void **)dev;
425 	if (WARN_ON_ONCE(!armpmu))
426 		return IRQ_NONE;
427 
428 	start_clock = sched_clock();
429 	ret = armpmu->handle_irq(armpmu);
430 	finish_clock = sched_clock();
431 
432 	perf_sample_event_took(finish_clock - start_clock);
433 	return ret;
434 }
435 
436 static int
437 __hw_perf_event_init(struct perf_event *event)
438 {
439 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
440 	struct hw_perf_event *hwc = &event->hw;
441 	int mapping;
442 
443 	hwc->flags = 0;
444 	mapping = armpmu->map_event(event);
445 
446 	if (mapping < 0) {
447 		pr_debug("event %x:%llx not supported\n", event->attr.type,
448 			 event->attr.config);
449 		return mapping;
450 	}
451 
452 	/*
453 	 * We don't assign an index until we actually place the event onto
454 	 * hardware. Use -1 to signify that we haven't decided where to put it
455 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
456 	 * clever allocation or constraints checking at this point.
457 	 */
458 	hwc->idx		= -1;
459 	hwc->config_base	= 0;
460 	hwc->config		= 0;
461 	hwc->event_base		= 0;
462 
463 	/*
464 	 * Check whether we need to exclude the counter from certain modes.
465 	 */
466 	if (armpmu->set_event_filter &&
467 	    armpmu->set_event_filter(hwc, &event->attr)) {
468 		pr_debug("ARM performance counters do not support "
469 			 "mode exclusion\n");
470 		return -EOPNOTSUPP;
471 	}
472 
473 	/*
474 	 * Store the event encoding into the config_base field.
475 	 */
476 	hwc->config_base	    |= (unsigned long)mapping;
477 
478 	if (!is_sampling_event(event)) {
479 		/*
480 		 * For non-sampling runs, limit the sample_period to half
481 		 * of the counter width. That way, the new counter value
482 		 * is far less likely to overtake the previous one unless
483 		 * you have some serious IRQ latency issues.
484 		 */
485 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
486 		hwc->last_period    = hwc->sample_period;
487 		local64_set(&hwc->period_left, hwc->sample_period);
488 	}
489 
490 	if (event->group_leader != event) {
491 		if (validate_group(event) != 0)
492 			return -EINVAL;
493 	}
494 
495 	return 0;
496 }
497 
498 static int armpmu_event_init(struct perf_event *event)
499 {
500 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
501 
502 	/*
503 	 * Reject CPU-affine events for CPUs that are of a different class to
504 	 * that which this PMU handles. Process-following events (where
505 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
506 	 * reject them later (in armpmu_add) if they're scheduled on a
507 	 * different class of CPU.
508 	 */
509 	if (event->cpu != -1 &&
510 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
511 		return -ENOENT;
512 
513 	/* does not support taken branch sampling */
514 	if (has_branch_stack(event))
515 		return -EOPNOTSUPP;
516 
517 	if (armpmu->map_event(event) == -ENOENT)
518 		return -ENOENT;
519 
520 	return __hw_perf_event_init(event);
521 }
522 
523 static void armpmu_enable(struct pmu *pmu)
524 {
525 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
526 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
527 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
528 
529 	/* For task-bound events we may be called on other CPUs */
530 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
531 		return;
532 
533 	if (enabled)
534 		armpmu->start(armpmu);
535 }
536 
537 static void armpmu_disable(struct pmu *pmu)
538 {
539 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
540 
541 	/* For task-bound events we may be called on other CPUs */
542 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
543 		return;
544 
545 	armpmu->stop(armpmu);
546 }
547 
548 /*
549  * In heterogeneous systems, events are specific to a particular
550  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
551  * the same microarchitecture.
552  */
553 static int armpmu_filter_match(struct perf_event *event)
554 {
555 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
556 	unsigned int cpu = smp_processor_id();
557 	int ret;
558 
559 	ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
560 	if (ret && armpmu->filter_match)
561 		return armpmu->filter_match(event);
562 
563 	return ret;
564 }
565 
566 static ssize_t armpmu_cpumask_show(struct device *dev,
567 				   struct device_attribute *attr, char *buf)
568 {
569 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
570 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
571 }
572 
573 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
574 
575 static struct attribute *armpmu_common_attrs[] = {
576 	&dev_attr_cpus.attr,
577 	NULL,
578 };
579 
580 static struct attribute_group armpmu_common_attr_group = {
581 	.attrs = armpmu_common_attrs,
582 };
583 
584 /* Set at runtime when we know what CPU type we are. */
585 static struct arm_pmu *__oprofile_cpu_pmu;
586 
587 /*
588  * Despite the names, these two functions are CPU-specific and are used
589  * by the OProfile/perf code.
590  */
591 const char *perf_pmu_name(void)
592 {
593 	if (!__oprofile_cpu_pmu)
594 		return NULL;
595 
596 	return __oprofile_cpu_pmu->name;
597 }
598 EXPORT_SYMBOL_GPL(perf_pmu_name);
599 
600 int perf_num_counters(void)
601 {
602 	int max_events = 0;
603 
604 	if (__oprofile_cpu_pmu != NULL)
605 		max_events = __oprofile_cpu_pmu->num_events;
606 
607 	return max_events;
608 }
609 EXPORT_SYMBOL_GPL(perf_num_counters);
610 
611 static int armpmu_count_irq_users(const int irq)
612 {
613 	int cpu, count = 0;
614 
615 	for_each_possible_cpu(cpu) {
616 		if (per_cpu(cpu_irq, cpu) == irq)
617 			count++;
618 	}
619 
620 	return count;
621 }
622 
623 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
624 {
625 	const struct pmu_irq_ops *ops = NULL;
626 	int cpu;
627 
628 	for_each_possible_cpu(cpu) {
629 		if (per_cpu(cpu_irq, cpu) != irq)
630 			continue;
631 
632 		ops = per_cpu(cpu_irq_ops, cpu);
633 		if (ops)
634 			break;
635 	}
636 
637 	return ops;
638 }
639 
640 void armpmu_free_irq(int irq, int cpu)
641 {
642 	if (per_cpu(cpu_irq, cpu) == 0)
643 		return;
644 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
645 		return;
646 
647 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
648 
649 	per_cpu(cpu_irq, cpu) = 0;
650 	per_cpu(cpu_irq_ops, cpu) = NULL;
651 }
652 
653 int armpmu_request_irq(int irq, int cpu)
654 {
655 	int err = 0;
656 	const irq_handler_t handler = armpmu_dispatch_irq;
657 	const struct pmu_irq_ops *irq_ops;
658 
659 	if (!irq)
660 		return 0;
661 
662 	if (!irq_is_percpu_devid(irq)) {
663 		unsigned long irq_flags;
664 
665 		err = irq_force_affinity(irq, cpumask_of(cpu));
666 
667 		if (err && num_possible_cpus() > 1) {
668 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
669 				irq, cpu);
670 			goto err_out;
671 		}
672 
673 		irq_flags = IRQF_PERCPU |
674 			    IRQF_NOBALANCING |
675 			    IRQF_NO_THREAD;
676 
677 		irq_set_status_flags(irq, IRQ_NOAUTOEN);
678 
679 		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
680 				  per_cpu_ptr(&cpu_armpmu, cpu));
681 
682 		/* If cannot get an NMI, get a normal interrupt */
683 		if (err) {
684 			err = request_irq(irq, handler, irq_flags, "arm-pmu",
685 					  per_cpu_ptr(&cpu_armpmu, cpu));
686 			irq_ops = &pmuirq_ops;
687 		} else {
688 			has_nmi = true;
689 			irq_ops = &pmunmi_ops;
690 		}
691 	} else if (armpmu_count_irq_users(irq) == 0) {
692 		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
693 
694 		/* If cannot get an NMI, get a normal interrupt */
695 		if (err) {
696 			err = request_percpu_irq(irq, handler, "arm-pmu",
697 						 &cpu_armpmu);
698 			irq_ops = &percpu_pmuirq_ops;
699 		} else {
700 			has_nmi= true;
701 			irq_ops = &percpu_pmunmi_ops;
702 		}
703 	} else {
704 		/* Per cpudevid irq was already requested by another CPU */
705 		irq_ops = armpmu_find_irq_ops(irq);
706 
707 		if (WARN_ON(!irq_ops))
708 			err = -EINVAL;
709 	}
710 
711 	if (err)
712 		goto err_out;
713 
714 	per_cpu(cpu_irq, cpu) = irq;
715 	per_cpu(cpu_irq_ops, cpu) = irq_ops;
716 	return 0;
717 
718 err_out:
719 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
720 	return err;
721 }
722 
723 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
724 {
725 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
726 	return per_cpu(hw_events->irq, cpu);
727 }
728 
729 bool arm_pmu_irq_is_nmi(void)
730 {
731 	return has_nmi;
732 }
733 
734 /*
735  * PMU hardware loses all context when a CPU goes offline.
736  * When a CPU is hotplugged back in, since some hardware registers are
737  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
738  * junk values out of them.
739  */
740 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
741 {
742 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
743 	int irq;
744 
745 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
746 		return 0;
747 	if (pmu->reset)
748 		pmu->reset(pmu);
749 
750 	per_cpu(cpu_armpmu, cpu) = pmu;
751 
752 	irq = armpmu_get_cpu_irq(pmu, cpu);
753 	if (irq)
754 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
755 
756 	return 0;
757 }
758 
759 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
760 {
761 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
762 	int irq;
763 
764 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
765 		return 0;
766 
767 	irq = armpmu_get_cpu_irq(pmu, cpu);
768 	if (irq)
769 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
770 
771 	per_cpu(cpu_armpmu, cpu) = NULL;
772 
773 	return 0;
774 }
775 
776 #ifdef CONFIG_CPU_PM
777 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
778 {
779 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
780 	struct perf_event *event;
781 	int idx;
782 
783 	for (idx = 0; idx < armpmu->num_events; idx++) {
784 		event = hw_events->events[idx];
785 		if (!event)
786 			continue;
787 
788 		switch (cmd) {
789 		case CPU_PM_ENTER:
790 			/*
791 			 * Stop and update the counter
792 			 */
793 			armpmu_stop(event, PERF_EF_UPDATE);
794 			break;
795 		case CPU_PM_EXIT:
796 		case CPU_PM_ENTER_FAILED:
797 			 /*
798 			  * Restore and enable the counter.
799 			  * armpmu_start() indirectly calls
800 			  *
801 			  * perf_event_update_userpage()
802 			  *
803 			  * that requires RCU read locking to be functional,
804 			  * wrap the call within RCU_NONIDLE to make the
805 			  * RCU subsystem aware this cpu is not idle from
806 			  * an RCU perspective for the armpmu_start() call
807 			  * duration.
808 			  */
809 			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
810 			break;
811 		default:
812 			break;
813 		}
814 	}
815 }
816 
817 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
818 			     void *v)
819 {
820 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
821 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
822 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
823 
824 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
825 		return NOTIFY_DONE;
826 
827 	/*
828 	 * Always reset the PMU registers on power-up even if
829 	 * there are no events running.
830 	 */
831 	if (cmd == CPU_PM_EXIT && armpmu->reset)
832 		armpmu->reset(armpmu);
833 
834 	if (!enabled)
835 		return NOTIFY_OK;
836 
837 	switch (cmd) {
838 	case CPU_PM_ENTER:
839 		armpmu->stop(armpmu);
840 		cpu_pm_pmu_setup(armpmu, cmd);
841 		break;
842 	case CPU_PM_EXIT:
843 	case CPU_PM_ENTER_FAILED:
844 		cpu_pm_pmu_setup(armpmu, cmd);
845 		armpmu->start(armpmu);
846 		break;
847 	default:
848 		return NOTIFY_DONE;
849 	}
850 
851 	return NOTIFY_OK;
852 }
853 
854 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
855 {
856 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
857 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
858 }
859 
860 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
861 {
862 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
863 }
864 #else
865 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
866 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
867 #endif
868 
869 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
870 {
871 	int err;
872 
873 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
874 				       &cpu_pmu->node);
875 	if (err)
876 		goto out;
877 
878 	err = cpu_pm_pmu_register(cpu_pmu);
879 	if (err)
880 		goto out_unregister;
881 
882 	return 0;
883 
884 out_unregister:
885 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
886 					    &cpu_pmu->node);
887 out:
888 	return err;
889 }
890 
891 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
892 {
893 	cpu_pm_pmu_unregister(cpu_pmu);
894 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
895 					    &cpu_pmu->node);
896 }
897 
898 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
899 {
900 	struct arm_pmu *pmu;
901 	int cpu;
902 
903 	pmu = kzalloc(sizeof(*pmu), flags);
904 	if (!pmu) {
905 		pr_info("failed to allocate PMU device!\n");
906 		goto out;
907 	}
908 
909 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
910 	if (!pmu->hw_events) {
911 		pr_info("failed to allocate per-cpu PMU data.\n");
912 		goto out_free_pmu;
913 	}
914 
915 	pmu->pmu = (struct pmu) {
916 		.pmu_enable	= armpmu_enable,
917 		.pmu_disable	= armpmu_disable,
918 		.event_init	= armpmu_event_init,
919 		.add		= armpmu_add,
920 		.del		= armpmu_del,
921 		.start		= armpmu_start,
922 		.stop		= armpmu_stop,
923 		.read		= armpmu_read,
924 		.filter_match	= armpmu_filter_match,
925 		.attr_groups	= pmu->attr_groups,
926 		/*
927 		 * This is a CPU PMU potentially in a heterogeneous
928 		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
929 		 * and we have taken ctx sharing into account (e.g. with our
930 		 * pmu::filter_match callback and pmu::event_init group
931 		 * validation).
932 		 */
933 		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS,
934 	};
935 
936 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
937 		&armpmu_common_attr_group;
938 
939 	for_each_possible_cpu(cpu) {
940 		struct pmu_hw_events *events;
941 
942 		events = per_cpu_ptr(pmu->hw_events, cpu);
943 		raw_spin_lock_init(&events->pmu_lock);
944 		events->percpu_pmu = pmu;
945 	}
946 
947 	return pmu;
948 
949 out_free_pmu:
950 	kfree(pmu);
951 out:
952 	return NULL;
953 }
954 
955 struct arm_pmu *armpmu_alloc(void)
956 {
957 	return __armpmu_alloc(GFP_KERNEL);
958 }
959 
960 struct arm_pmu *armpmu_alloc_atomic(void)
961 {
962 	return __armpmu_alloc(GFP_ATOMIC);
963 }
964 
965 
966 void armpmu_free(struct arm_pmu *pmu)
967 {
968 	free_percpu(pmu->hw_events);
969 	kfree(pmu);
970 }
971 
972 int armpmu_register(struct arm_pmu *pmu)
973 {
974 	int ret;
975 
976 	ret = cpu_pmu_init(pmu);
977 	if (ret)
978 		return ret;
979 
980 	if (!pmu->set_event_filter)
981 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
982 
983 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
984 	if (ret)
985 		goto out_destroy;
986 
987 	if (!__oprofile_cpu_pmu)
988 		__oprofile_cpu_pmu = pmu;
989 
990 	pr_info("enabled with %s PMU driver, %d counters available%s\n",
991 		pmu->name, pmu->num_events,
992 		has_nmi ? ", using NMIs" : "");
993 
994 	return 0;
995 
996 out_destroy:
997 	cpu_pmu_destroy(pmu);
998 	return ret;
999 }
1000 
1001 static int arm_pmu_hp_init(void)
1002 {
1003 	int ret;
1004 
1005 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
1006 				      "perf/arm/pmu:starting",
1007 				      arm_perf_starting_cpu,
1008 				      arm_perf_teardown_cpu);
1009 	if (ret)
1010 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1011 		       ret);
1012 	return ret;
1013 }
1014 subsys_initcall(arm_pmu_hp_init);
1015