xref: /linux/drivers/perf/arm_cspmu/arm_cspmu.c (revision c5dbf04160005e07e8ca7232a7faa77ab1547ae0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARM CoreSight Architecture PMU driver.
4  *
5  * This driver adds support for uncore PMU based on ARM CoreSight Performance
6  * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
7  * like other uncore PMUs, it does not support process specific events and
8  * cannot be used in sampling mode.
9  *
10  * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
11  * generic implementation to operate the PMU according to CoreSight PMU
12  * architecture and ACPI ARM PMU table (APMT) documents below:
13  *   - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
14  *   - APMT document number: ARM DEN0117.
15  *
16  * The user should refer to the vendor technical documentation to get details
17  * about the supported events.
18  *
19  * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
20  *
21  */
22 
23 #include <linux/acpi.h>
24 #include <linux/cacheinfo.h>
25 #include <linux/ctype.h>
26 #include <linux/interrupt.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/module.h>
29 #include <linux/mutex.h>
30 #include <linux/perf_event.h>
31 #include <linux/platform_device.h>
32 
33 #include "arm_cspmu.h"
34 
35 #define PMUNAME "arm_cspmu"
36 #define DRVNAME "arm-cs-arch-pmu"
37 
38 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config)			\
39 	ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show,	\
40 				(unsigned long)_config)
41 
42 /*
43  * CoreSight PMU Arch register offsets.
44  */
45 #define PMEVCNTR_LO					0x0
46 #define PMEVCNTR_HI					0x4
47 #define PMEVTYPER					0x400
48 #define PMCCFILTR					0x47C
49 #define PMEVFILTR					0xA00
50 #define PMCNTENSET					0xC00
51 #define PMCNTENCLR					0xC20
52 #define PMINTENSET					0xC40
53 #define PMINTENCLR					0xC60
54 #define PMOVSCLR					0xC80
55 #define PMOVSSET					0xCC0
56 #define PMCFGR						0xE00
57 #define PMCR						0xE04
58 #define PMIIDR						0xE08
59 
60 /* PMCFGR register field */
61 #define PMCFGR_NCG					GENMASK(31, 28)
62 #define PMCFGR_HDBG					BIT(24)
63 #define PMCFGR_TRO					BIT(23)
64 #define PMCFGR_SS					BIT(22)
65 #define PMCFGR_FZO					BIT(21)
66 #define PMCFGR_MSI					BIT(20)
67 #define PMCFGR_UEN					BIT(19)
68 #define PMCFGR_NA					BIT(17)
69 #define PMCFGR_EX					BIT(16)
70 #define PMCFGR_CCD					BIT(15)
71 #define PMCFGR_CC					BIT(14)
72 #define PMCFGR_SIZE					GENMASK(13, 8)
73 #define PMCFGR_N					GENMASK(7, 0)
74 
75 /* PMCR register field */
76 #define PMCR_TRO					BIT(11)
77 #define PMCR_HDBG					BIT(10)
78 #define PMCR_FZO					BIT(9)
79 #define PMCR_NA						BIT(8)
80 #define PMCR_DP						BIT(5)
81 #define PMCR_X						BIT(4)
82 #define PMCR_D						BIT(3)
83 #define PMCR_C						BIT(2)
84 #define PMCR_P						BIT(1)
85 #define PMCR_E						BIT(0)
86 
87 /* Each SET/CLR register supports up to 32 counters. */
88 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT		5
89 #define ARM_CSPMU_SET_CLR_COUNTER_NUM		\
90 	(1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
91 
92 /* Convert counter idx into SET/CLR register number. */
93 #define COUNTER_TO_SET_CLR_ID(idx)			\
94 	(idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
95 
96 /* Convert counter idx into SET/CLR register bit. */
97 #define COUNTER_TO_SET_CLR_BIT(idx)			\
98 	(idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
99 
100 #define ARM_CSPMU_ACTIVE_CPU_MASK		0x0
101 #define ARM_CSPMU_ASSOCIATED_CPU_MASK		0x1
102 
103 /* Check and use default if implementer doesn't provide attribute callback */
104 #define CHECK_DEFAULT_IMPL_OPS(ops, callback)			\
105 	do {							\
106 		if (!ops->callback)				\
107 			ops->callback = arm_cspmu_ ## callback;	\
108 	} while (0)
109 
110 /*
111  * Maximum poll count for reading counter value using high-low-high sequence.
112  */
113 #define HILOHI_MAX_POLL	1000
114 
115 static unsigned long arm_cspmu_cpuhp_state;
116 
117 static DEFINE_MUTEX(arm_cspmu_lock);
118 
119 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
120 				    struct hw_perf_event *hwc, u32 filter);
121 
122 static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
123 {
124 	return *(struct acpi_apmt_node **)dev_get_platdata(dev);
125 }
126 
127 /*
128  * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
129  * counter register. The counter register can be implemented as 32-bit or 64-bit
130  * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
131  * single-copy 64-bit atomic support is implementation defined. APMT node flag
132  * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
133  * single copy atomic is not supported, the driver treats the register as a pair
134  * of 32-bit register.
135  */
136 
137 /*
138  * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
139  */
140 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
141 {
142 	u32 val_lo, val_hi;
143 	u64 val;
144 
145 	/* Use high-low-high sequence to avoid tearing */
146 	do {
147 		if (max_poll_count-- == 0) {
148 			pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
149 			return 0;
150 		}
151 
152 		val_hi = readl(addr + 4);
153 		val_lo = readl(addr);
154 	} while (val_hi != readl(addr + 4));
155 
156 	val = (((u64)val_hi << 32) | val_lo);
157 
158 	return val;
159 }
160 
161 /* Check if cycle counter is supported. */
162 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
163 {
164 	return (cspmu->pmcfgr & PMCFGR_CC);
165 }
166 
167 /* Get counter size, which is (PMCFGR_SIZE + 1). */
168 static inline u32 counter_size(const struct arm_cspmu *cspmu)
169 {
170 	return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
171 }
172 
173 /* Get counter mask. */
174 static inline u64 counter_mask(const struct arm_cspmu *cspmu)
175 {
176 	return GENMASK_ULL(counter_size(cspmu) - 1, 0);
177 }
178 
179 /* Check if counter is implemented as 64-bit register. */
180 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
181 {
182 	return (counter_size(cspmu) > 32);
183 }
184 
185 ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
186 				struct device_attribute *attr, char *buf)
187 {
188 	struct perf_pmu_events_attr *pmu_attr;
189 
190 	pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
191 	return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
192 }
193 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
194 
195 /* Default event list. */
196 static struct attribute *arm_cspmu_event_attrs[] = {
197 	ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
198 	NULL,
199 };
200 
201 static struct attribute **
202 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
203 {
204 	struct attribute **attrs;
205 
206 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
207 		sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
208 
209 	return attrs;
210 }
211 
212 static umode_t
213 arm_cspmu_event_attr_is_visible(struct kobject *kobj,
214 				struct attribute *attr, int unused)
215 {
216 	struct device *dev = kobj_to_dev(kobj);
217 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
218 	struct perf_pmu_events_attr *eattr;
219 
220 	eattr = container_of(attr, typeof(*eattr), attr.attr);
221 
222 	/* Hide cycle event if not supported */
223 	if (!supports_cycle_counter(cspmu) &&
224 	    eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
225 		return 0;
226 
227 	return attr->mode;
228 }
229 
230 ssize_t arm_cspmu_sysfs_format_show(struct device *dev,
231 				struct device_attribute *attr,
232 				char *buf)
233 {
234 	struct dev_ext_attribute *eattr =
235 		container_of(attr, struct dev_ext_attribute, attr);
236 	return sysfs_emit(buf, "%s\n", (char *)eattr->var);
237 }
238 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_format_show);
239 
240 static struct attribute *arm_cspmu_format_attrs[] = {
241 	ARM_CSPMU_FORMAT_EVENT_ATTR,
242 	ARM_CSPMU_FORMAT_FILTER_ATTR,
243 	NULL,
244 };
245 
246 static struct attribute **
247 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
248 {
249 	struct attribute **attrs;
250 
251 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
252 		sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
253 
254 	return attrs;
255 }
256 
257 static u32 arm_cspmu_event_type(const struct perf_event *event)
258 {
259 	return event->attr.config & ARM_CSPMU_EVENT_MASK;
260 }
261 
262 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
263 {
264 	return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
265 }
266 
267 static u32 arm_cspmu_event_filter(const struct perf_event *event)
268 {
269 	return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
270 }
271 
272 static ssize_t arm_cspmu_identifier_show(struct device *dev,
273 					 struct device_attribute *attr,
274 					 char *page)
275 {
276 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
277 
278 	return sysfs_emit(page, "%s\n", cspmu->identifier);
279 }
280 
281 static struct device_attribute arm_cspmu_identifier_attr =
282 	__ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
283 
284 static struct attribute *arm_cspmu_identifier_attrs[] = {
285 	&arm_cspmu_identifier_attr.attr,
286 	NULL,
287 };
288 
289 static struct attribute_group arm_cspmu_identifier_attr_group = {
290 	.attrs = arm_cspmu_identifier_attrs,
291 };
292 
293 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
294 {
295 	const char *identifier =
296 		devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
297 			       cspmu->impl.pmiidr);
298 	return identifier;
299 }
300 
301 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
302 	"mc",
303 	"smmu",
304 	"pcie",
305 	"acpi",
306 	"cache",
307 };
308 
309 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
310 {
311 	struct device *dev;
312 	struct acpi_apmt_node *apmt_node;
313 	u8 pmu_type;
314 	char *name;
315 	char acpi_hid_string[ACPI_ID_LEN] = { 0 };
316 	static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
317 
318 	dev = cspmu->dev;
319 	apmt_node = arm_cspmu_apmt_node(dev);
320 	pmu_type = apmt_node->type;
321 
322 	if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
323 		dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
324 		return NULL;
325 	}
326 
327 	if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
328 		memcpy(acpi_hid_string,
329 			&apmt_node->inst_primary,
330 			sizeof(apmt_node->inst_primary));
331 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
332 				      arm_cspmu_type_str[pmu_type],
333 				      acpi_hid_string,
334 				      apmt_node->inst_secondary);
335 	} else {
336 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
337 				      arm_cspmu_type_str[pmu_type],
338 				      atomic_fetch_inc(&pmu_idx[pmu_type]));
339 	}
340 
341 	return name;
342 }
343 
344 static ssize_t arm_cspmu_cpumask_show(struct device *dev,
345 				      struct device_attribute *attr,
346 				      char *buf)
347 {
348 	struct pmu *pmu = dev_get_drvdata(dev);
349 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
350 	struct dev_ext_attribute *eattr =
351 		container_of(attr, struct dev_ext_attribute, attr);
352 	unsigned long mask_id = (unsigned long)eattr->var;
353 	const cpumask_t *cpumask;
354 
355 	switch (mask_id) {
356 	case ARM_CSPMU_ACTIVE_CPU_MASK:
357 		cpumask = &cspmu->active_cpu;
358 		break;
359 	case ARM_CSPMU_ASSOCIATED_CPU_MASK:
360 		cpumask = &cspmu->associated_cpus;
361 		break;
362 	default:
363 		return 0;
364 	}
365 	return cpumap_print_to_pagebuf(true, buf, cpumask);
366 }
367 
368 static struct attribute *arm_cspmu_cpumask_attrs[] = {
369 	ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
370 	ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
371 	NULL,
372 };
373 
374 static struct attribute_group arm_cspmu_cpumask_attr_group = {
375 	.attrs = arm_cspmu_cpumask_attrs,
376 };
377 
378 static struct arm_cspmu_impl_match impl_match[] = {
379 	{
380 		.module_name	= "nvidia_cspmu",
381 		.pmiidr_val	= ARM_CSPMU_IMPL_ID_NVIDIA,
382 		.pmiidr_mask	= ARM_CSPMU_PMIIDR_IMPLEMENTER,
383 		.module		= NULL,
384 		.impl_init_ops	= NULL,
385 	},
386 	{
387 		.module_name	= "ampere_cspmu",
388 		.pmiidr_val	= ARM_CSPMU_IMPL_ID_AMPERE,
389 		.pmiidr_mask	= ARM_CSPMU_PMIIDR_IMPLEMENTER,
390 		.module		= NULL,
391 		.impl_init_ops	= NULL,
392 	},
393 
394 	{0}
395 };
396 
397 static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
398 {
399 	struct arm_cspmu_impl_match *match = impl_match;
400 
401 	for (; match->pmiidr_val; match++) {
402 		u32 mask = match->pmiidr_mask;
403 
404 		if ((match->pmiidr_val & mask) == (pmiidr & mask))
405 			return match;
406 	}
407 
408 	return NULL;
409 }
410 
411 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
412 {
413 	int ret = 0;
414 	struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
415 	struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
416 	struct arm_cspmu_impl_match *match;
417 
418 	/*
419 	 * Get PMU implementer and product id from APMT node.
420 	 * If APMT node doesn't have implementer/product id, try get it
421 	 * from PMIIDR.
422 	 */
423 	cspmu->impl.pmiidr =
424 		(apmt_node->impl_id) ? apmt_node->impl_id :
425 				       readl(cspmu->base0 + PMIIDR);
426 
427 	/* Find implementer specific attribute ops. */
428 	match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
429 
430 	/* Load implementer module and initialize the callbacks. */
431 	if (match) {
432 		mutex_lock(&arm_cspmu_lock);
433 
434 		if (match->impl_init_ops) {
435 			/* Prevent unload until PMU registration is done. */
436 			if (try_module_get(match->module)) {
437 				cspmu->impl.module = match->module;
438 				cspmu->impl.match = match;
439 				ret = match->impl_init_ops(cspmu);
440 				if (ret)
441 					module_put(match->module);
442 			} else {
443 				WARN(1, "arm_cspmu failed to get module: %s\n",
444 					match->module_name);
445 				ret = -EINVAL;
446 			}
447 		} else {
448 			request_module_nowait(match->module_name);
449 			ret = -EPROBE_DEFER;
450 		}
451 
452 		mutex_unlock(&arm_cspmu_lock);
453 
454 		if (ret)
455 			return ret;
456 	} else
457 		cspmu->impl.module = THIS_MODULE;
458 
459 	/* Use default callbacks if implementer doesn't provide one. */
460 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_event_attrs);
461 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_format_attrs);
462 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_identifier);
463 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_name);
464 	CHECK_DEFAULT_IMPL_OPS(impl_ops, is_cycle_counter_event);
465 	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_type);
466 	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_filter);
467 	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_attr_is_visible);
468 	CHECK_DEFAULT_IMPL_OPS(impl_ops, set_ev_filter);
469 
470 	return 0;
471 }
472 
473 static struct attribute_group *
474 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
475 {
476 	struct attribute_group *event_group;
477 	struct device *dev = cspmu->dev;
478 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
479 
480 	event_group =
481 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
482 	if (!event_group)
483 		return NULL;
484 
485 	event_group->name = "events";
486 	event_group->is_visible = impl_ops->event_attr_is_visible;
487 	event_group->attrs = impl_ops->get_event_attrs(cspmu);
488 
489 	if (!event_group->attrs)
490 		return NULL;
491 
492 	return event_group;
493 }
494 
495 static struct attribute_group *
496 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
497 {
498 	struct attribute_group *format_group;
499 	struct device *dev = cspmu->dev;
500 
501 	format_group =
502 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
503 	if (!format_group)
504 		return NULL;
505 
506 	format_group->name = "format";
507 	format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
508 
509 	if (!format_group->attrs)
510 		return NULL;
511 
512 	return format_group;
513 }
514 
515 static struct attribute_group **
516 arm_cspmu_alloc_attr_group(struct arm_cspmu *cspmu)
517 {
518 	struct attribute_group **attr_groups = NULL;
519 	struct device *dev = cspmu->dev;
520 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
521 
522 	cspmu->identifier = impl_ops->get_identifier(cspmu);
523 	cspmu->name = impl_ops->get_name(cspmu);
524 
525 	if (!cspmu->identifier || !cspmu->name)
526 		return NULL;
527 
528 	attr_groups = devm_kcalloc(dev, 5, sizeof(struct attribute_group *),
529 				   GFP_KERNEL);
530 	if (!attr_groups)
531 		return NULL;
532 
533 	attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
534 	attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
535 	attr_groups[2] = &arm_cspmu_identifier_attr_group;
536 	attr_groups[3] = &arm_cspmu_cpumask_attr_group;
537 
538 	if (!attr_groups[0] || !attr_groups[1])
539 		return NULL;
540 
541 	return attr_groups;
542 }
543 
544 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
545 {
546 	u32 pmcr = 0;
547 
548 	pmcr |= PMCR_P;
549 	pmcr |= PMCR_C;
550 	writel(pmcr, cspmu->base0 + PMCR);
551 }
552 
553 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
554 {
555 	writel(PMCR_E, cspmu->base0 + PMCR);
556 }
557 
558 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
559 {
560 	writel(0, cspmu->base0 + PMCR);
561 }
562 
563 static void arm_cspmu_enable(struct pmu *pmu)
564 {
565 	bool disabled;
566 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
567 
568 	disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
569 				cspmu->num_logical_ctrs);
570 
571 	if (disabled)
572 		return;
573 
574 	arm_cspmu_start_counters(cspmu);
575 }
576 
577 static void arm_cspmu_disable(struct pmu *pmu)
578 {
579 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
580 
581 	arm_cspmu_stop_counters(cspmu);
582 }
583 
584 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
585 				struct perf_event *event)
586 {
587 	int idx, ret;
588 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
589 
590 	if (supports_cycle_counter(cspmu)) {
591 		if (cspmu->impl.ops.is_cycle_counter_event(event)) {
592 			/* Search for available cycle counter. */
593 			if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
594 					     hw_events->used_ctrs))
595 				return -EAGAIN;
596 
597 			return cspmu->cycle_counter_logical_idx;
598 		}
599 
600 		/*
601 		 * Search a regular counter from the used counter bitmap.
602 		 * The cycle counter divides the bitmap into two parts. Search
603 		 * the first then second half to exclude the cycle counter bit.
604 		 */
605 		idx = find_first_zero_bit(hw_events->used_ctrs,
606 					  cspmu->cycle_counter_logical_idx);
607 		if (idx >= cspmu->cycle_counter_logical_idx) {
608 			idx = find_next_zero_bit(
609 				hw_events->used_ctrs,
610 				cspmu->num_logical_ctrs,
611 				cspmu->cycle_counter_logical_idx + 1);
612 		}
613 	} else {
614 		idx = find_first_zero_bit(hw_events->used_ctrs,
615 					  cspmu->num_logical_ctrs);
616 	}
617 
618 	if (idx >= cspmu->num_logical_ctrs)
619 		return -EAGAIN;
620 
621 	if (cspmu->impl.ops.validate_event) {
622 		ret = cspmu->impl.ops.validate_event(cspmu, event);
623 		if (ret)
624 			return ret;
625 	}
626 
627 	set_bit(idx, hw_events->used_ctrs);
628 
629 	return idx;
630 }
631 
632 static bool arm_cspmu_validate_event(struct pmu *pmu,
633 				 struct arm_cspmu_hw_events *hw_events,
634 				 struct perf_event *event)
635 {
636 	if (is_software_event(event))
637 		return true;
638 
639 	/* Reject groups spanning multiple HW PMUs. */
640 	if (event->pmu != pmu)
641 		return false;
642 
643 	return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
644 }
645 
646 /*
647  * Make sure the group of events can be scheduled at once
648  * on the PMU.
649  */
650 static bool arm_cspmu_validate_group(struct perf_event *event)
651 {
652 	struct perf_event *sibling, *leader = event->group_leader;
653 	struct arm_cspmu_hw_events fake_hw_events;
654 
655 	if (event->group_leader == event)
656 		return true;
657 
658 	memset(&fake_hw_events, 0, sizeof(fake_hw_events));
659 
660 	if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
661 		return false;
662 
663 	for_each_sibling_event(sibling, leader) {
664 		if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
665 						  sibling))
666 			return false;
667 	}
668 
669 	return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
670 }
671 
672 static int arm_cspmu_event_init(struct perf_event *event)
673 {
674 	struct arm_cspmu *cspmu;
675 	struct hw_perf_event *hwc = &event->hw;
676 
677 	cspmu = to_arm_cspmu(event->pmu);
678 
679 	if (event->attr.type != event->pmu->type)
680 		return -ENOENT;
681 
682 	/*
683 	 * Following other "uncore" PMUs, we do not support sampling mode or
684 	 * attach to a task (per-process mode).
685 	 */
686 	if (is_sampling_event(event)) {
687 		dev_dbg(cspmu->pmu.dev,
688 			"Can't support sampling events\n");
689 		return -EOPNOTSUPP;
690 	}
691 
692 	if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
693 		dev_dbg(cspmu->pmu.dev,
694 			"Can't support per-task counters\n");
695 		return -EINVAL;
696 	}
697 
698 	/*
699 	 * Make sure the CPU assignment is on one of the CPUs associated with
700 	 * this PMU.
701 	 */
702 	if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
703 		dev_dbg(cspmu->pmu.dev,
704 			"Requested cpu is not associated with the PMU\n");
705 		return -EINVAL;
706 	}
707 
708 	/* Enforce the current active CPU to handle the events in this PMU. */
709 	event->cpu = cpumask_first(&cspmu->active_cpu);
710 	if (event->cpu >= nr_cpu_ids)
711 		return -EINVAL;
712 
713 	if (!arm_cspmu_validate_group(event))
714 		return -EINVAL;
715 
716 	/*
717 	 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
718 	 * The physical counter id is tracked with hw_perf_event.idx.
719 	 * We don't assign an index until we actually place the event onto
720 	 * hardware. Use -1 to signify that we haven't decided where to put it
721 	 * yet.
722 	 */
723 	hwc->idx = -1;
724 	hwc->extra_reg.idx = -1;
725 	hwc->config = cspmu->impl.ops.event_type(event);
726 
727 	return 0;
728 }
729 
730 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
731 {
732 	return (PMEVCNTR_LO + (reg_sz * ctr_idx));
733 }
734 
735 static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
736 {
737 	u32 offset;
738 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
739 
740 	if (use_64b_counter_reg(cspmu)) {
741 		offset = counter_offset(sizeof(u64), event->hw.idx);
742 
743 		if (cspmu->has_atomic_dword)
744 			writeq(val, cspmu->base1 + offset);
745 		else
746 			lo_hi_writeq(val, cspmu->base1 + offset);
747 	} else {
748 		offset = counter_offset(sizeof(u32), event->hw.idx);
749 
750 		writel(lower_32_bits(val), cspmu->base1 + offset);
751 	}
752 }
753 
754 static u64 arm_cspmu_read_counter(struct perf_event *event)
755 {
756 	u32 offset;
757 	const void __iomem *counter_addr;
758 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
759 
760 	if (use_64b_counter_reg(cspmu)) {
761 		offset = counter_offset(sizeof(u64), event->hw.idx);
762 		counter_addr = cspmu->base1 + offset;
763 
764 		return cspmu->has_atomic_dword ?
765 			       readq(counter_addr) :
766 			       read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
767 	}
768 
769 	offset = counter_offset(sizeof(u32), event->hw.idx);
770 	return readl(cspmu->base1 + offset);
771 }
772 
773 /*
774  * arm_cspmu_set_event_period: Set the period for the counter.
775  *
776  * To handle cases of extreme interrupt latency, we program
777  * the counter with half of the max count for the counters.
778  */
779 static void arm_cspmu_set_event_period(struct perf_event *event)
780 {
781 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
782 	u64 val = counter_mask(cspmu) >> 1ULL;
783 
784 	local64_set(&event->hw.prev_count, val);
785 	arm_cspmu_write_counter(event, val);
786 }
787 
788 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
789 {
790 	u32 reg_id, reg_bit, inten_off, cnten_off;
791 
792 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
793 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
794 
795 	inten_off = PMINTENSET + (4 * reg_id);
796 	cnten_off = PMCNTENSET + (4 * reg_id);
797 
798 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
799 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
800 }
801 
802 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
803 {
804 	u32 reg_id, reg_bit, inten_off, cnten_off;
805 
806 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
807 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
808 
809 	inten_off = PMINTENCLR + (4 * reg_id);
810 	cnten_off = PMCNTENCLR + (4 * reg_id);
811 
812 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
813 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
814 }
815 
816 static void arm_cspmu_event_update(struct perf_event *event)
817 {
818 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
819 	struct hw_perf_event *hwc = &event->hw;
820 	u64 delta, prev, now;
821 
822 	do {
823 		prev = local64_read(&hwc->prev_count);
824 		now = arm_cspmu_read_counter(event);
825 	} while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
826 
827 	delta = (now - prev) & counter_mask(cspmu);
828 	local64_add(delta, &event->count);
829 }
830 
831 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
832 					struct hw_perf_event *hwc)
833 {
834 	u32 offset = PMEVTYPER + (4 * hwc->idx);
835 
836 	writel(hwc->config, cspmu->base0 + offset);
837 }
838 
839 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
840 					struct hw_perf_event *hwc,
841 					u32 filter)
842 {
843 	u32 offset = PMEVFILTR + (4 * hwc->idx);
844 
845 	writel(filter, cspmu->base0 + offset);
846 }
847 
848 static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
849 {
850 	u32 offset = PMCCFILTR;
851 
852 	writel(filter, cspmu->base0 + offset);
853 }
854 
855 static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
856 {
857 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
858 	struct hw_perf_event *hwc = &event->hw;
859 	u32 filter;
860 
861 	/* We always reprogram the counter */
862 	if (pmu_flags & PERF_EF_RELOAD)
863 		WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
864 
865 	arm_cspmu_set_event_period(event);
866 
867 	filter = cspmu->impl.ops.event_filter(event);
868 
869 	if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
870 		arm_cspmu_set_cc_filter(cspmu, filter);
871 	} else {
872 		arm_cspmu_set_event(cspmu, hwc);
873 		cspmu->impl.ops.set_ev_filter(cspmu, hwc, filter);
874 	}
875 
876 	hwc->state = 0;
877 
878 	arm_cspmu_enable_counter(cspmu, hwc->idx);
879 }
880 
881 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
882 {
883 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
884 	struct hw_perf_event *hwc = &event->hw;
885 
886 	if (hwc->state & PERF_HES_STOPPED)
887 		return;
888 
889 	arm_cspmu_disable_counter(cspmu, hwc->idx);
890 	arm_cspmu_event_update(event);
891 
892 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
893 }
894 
895 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
896 {
897 	return (idx == cspmu->cycle_counter_logical_idx) ?
898 		ARM_CSPMU_CYCLE_CNTR_IDX : idx;
899 }
900 
901 static int arm_cspmu_add(struct perf_event *event, int flags)
902 {
903 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
904 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
905 	struct hw_perf_event *hwc = &event->hw;
906 	int idx;
907 
908 	if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
909 					   &cspmu->associated_cpus)))
910 		return -ENOENT;
911 
912 	idx = arm_cspmu_get_event_idx(hw_events, event);
913 	if (idx < 0)
914 		return idx;
915 
916 	hw_events->events[idx] = event;
917 	hwc->idx = to_phys_idx(cspmu, idx);
918 	hwc->extra_reg.idx = idx;
919 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
920 
921 	if (flags & PERF_EF_START)
922 		arm_cspmu_start(event, PERF_EF_RELOAD);
923 
924 	/* Propagate changes to the userspace mapping. */
925 	perf_event_update_userpage(event);
926 
927 	return 0;
928 }
929 
930 static void arm_cspmu_del(struct perf_event *event, int flags)
931 {
932 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
933 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
934 	struct hw_perf_event *hwc = &event->hw;
935 	int idx = hwc->extra_reg.idx;
936 
937 	arm_cspmu_stop(event, PERF_EF_UPDATE);
938 
939 	hw_events->events[idx] = NULL;
940 
941 	clear_bit(idx, hw_events->used_ctrs);
942 
943 	perf_event_update_userpage(event);
944 }
945 
946 static void arm_cspmu_read(struct perf_event *event)
947 {
948 	arm_cspmu_event_update(event);
949 }
950 
951 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
952 {
953 	struct acpi_apmt_node *apmt_node;
954 	struct arm_cspmu *cspmu;
955 	struct device *dev = &pdev->dev;
956 
957 	cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
958 	if (!cspmu)
959 		return NULL;
960 
961 	cspmu->dev = dev;
962 	platform_set_drvdata(pdev, cspmu);
963 
964 	apmt_node = arm_cspmu_apmt_node(dev);
965 	cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
966 
967 	return cspmu;
968 }
969 
970 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
971 {
972 	struct device *dev;
973 	struct platform_device *pdev;
974 
975 	dev = cspmu->dev;
976 	pdev = to_platform_device(dev);
977 
978 	/* Base address for page 0. */
979 	cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
980 	if (IS_ERR(cspmu->base0)) {
981 		dev_err(dev, "ioremap failed for page-0 resource\n");
982 		return PTR_ERR(cspmu->base0);
983 	}
984 
985 	/* Base address for page 1 if supported. Otherwise point to page 0. */
986 	cspmu->base1 = cspmu->base0;
987 	if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
988 		cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
989 		if (IS_ERR(cspmu->base1)) {
990 			dev_err(dev, "ioremap failed for page-1 resource\n");
991 			return PTR_ERR(cspmu->base1);
992 		}
993 	}
994 
995 	cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
996 
997 	cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
998 
999 	cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
1000 
1001 	if (supports_cycle_counter(cspmu)) {
1002 		/*
1003 		 * The last logical counter is mapped to cycle counter if
1004 		 * there is a gap between regular and cycle counter. Otherwise,
1005 		 * logical and physical have 1-to-1 mapping.
1006 		 */
1007 		cspmu->cycle_counter_logical_idx =
1008 			(cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
1009 				cspmu->num_logical_ctrs - 1 :
1010 				ARM_CSPMU_CYCLE_CNTR_IDX;
1011 	}
1012 
1013 	cspmu->num_set_clr_reg =
1014 		DIV_ROUND_UP(cspmu->num_logical_ctrs,
1015 				ARM_CSPMU_SET_CLR_COUNTER_NUM);
1016 
1017 	cspmu->hw_events.events =
1018 		devm_kcalloc(dev, cspmu->num_logical_ctrs,
1019 			     sizeof(*cspmu->hw_events.events), GFP_KERNEL);
1020 
1021 	if (!cspmu->hw_events.events)
1022 		return -ENOMEM;
1023 
1024 	return 0;
1025 }
1026 
1027 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
1028 					       u32 *pmovs)
1029 {
1030 	int i;
1031 	u32 pmovclr_offset = PMOVSCLR;
1032 	u32 has_overflowed = 0;
1033 
1034 	for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
1035 		pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
1036 		has_overflowed |= pmovs[i];
1037 		writel(pmovs[i], cspmu->base1 + pmovclr_offset);
1038 		pmovclr_offset += sizeof(u32);
1039 	}
1040 
1041 	return has_overflowed != 0;
1042 }
1043 
1044 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
1045 {
1046 	int idx, has_overflowed;
1047 	struct perf_event *event;
1048 	struct arm_cspmu *cspmu = dev;
1049 	DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
1050 	bool handled = false;
1051 
1052 	arm_cspmu_stop_counters(cspmu);
1053 
1054 	has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
1055 	if (!has_overflowed)
1056 		goto done;
1057 
1058 	for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
1059 			cspmu->num_logical_ctrs) {
1060 		event = cspmu->hw_events.events[idx];
1061 
1062 		if (!event)
1063 			continue;
1064 
1065 		if (!test_bit(event->hw.idx, pmovs))
1066 			continue;
1067 
1068 		arm_cspmu_event_update(event);
1069 		arm_cspmu_set_event_period(event);
1070 
1071 		handled = true;
1072 	}
1073 
1074 done:
1075 	arm_cspmu_start_counters(cspmu);
1076 	return IRQ_RETVAL(handled);
1077 }
1078 
1079 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1080 {
1081 	int irq, ret;
1082 	struct device *dev;
1083 	struct platform_device *pdev;
1084 
1085 	dev = cspmu->dev;
1086 	pdev = to_platform_device(dev);
1087 
1088 	/* Skip IRQ request if the PMU does not support overflow interrupt. */
1089 	irq = platform_get_irq_optional(pdev, 0);
1090 	if (irq < 0)
1091 		return irq == -ENXIO ? 0 : irq;
1092 
1093 	ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1094 			       IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1095 			       cspmu);
1096 	if (ret) {
1097 		dev_err(dev, "Could not request IRQ %d\n", irq);
1098 		return ret;
1099 	}
1100 
1101 	cspmu->irq = irq;
1102 
1103 	return 0;
1104 }
1105 
1106 #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
1107 #include <acpi/processor.h>
1108 
1109 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1110 {
1111 	u64 acpi_uid;
1112 	struct device *cpu_dev;
1113 	struct acpi_device *acpi_dev;
1114 
1115 	cpu_dev = get_cpu_device(cpu);
1116 	if (!cpu_dev)
1117 		return -ENODEV;
1118 
1119 	acpi_dev = ACPI_COMPANION(cpu_dev);
1120 	while (acpi_dev) {
1121 		if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, NULL) &&
1122 		    !acpi_dev_uid_to_integer(acpi_dev, &acpi_uid) && acpi_uid == container_uid)
1123 			return 0;
1124 
1125 		acpi_dev = acpi_dev_parent(acpi_dev);
1126 	}
1127 
1128 	return -ENODEV;
1129 }
1130 
1131 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1132 {
1133 	struct acpi_apmt_node *apmt_node;
1134 	int affinity_flag;
1135 	int cpu;
1136 
1137 	apmt_node = arm_cspmu_apmt_node(cspmu->dev);
1138 	affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1139 
1140 	if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1141 		for_each_possible_cpu(cpu) {
1142 			if (apmt_node->proc_affinity ==
1143 			    get_acpi_id_for_cpu(cpu)) {
1144 				cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1145 				break;
1146 			}
1147 		}
1148 	} else {
1149 		for_each_possible_cpu(cpu) {
1150 			if (arm_cspmu_find_cpu_container(
1151 				    cpu, apmt_node->proc_affinity))
1152 				continue;
1153 
1154 			cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1155 		}
1156 	}
1157 
1158 	if (cpumask_empty(&cspmu->associated_cpus)) {
1159 		dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
1160 		return -ENODEV;
1161 	}
1162 
1163 	return 0;
1164 }
1165 #else
1166 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1167 {
1168 	return -ENODEV;
1169 }
1170 #endif
1171 
1172 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1173 {
1174 	return arm_cspmu_acpi_get_cpus(cspmu);
1175 }
1176 
1177 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1178 {
1179 	int ret, capabilities;
1180 	struct attribute_group **attr_groups;
1181 
1182 	attr_groups = arm_cspmu_alloc_attr_group(cspmu);
1183 	if (!attr_groups)
1184 		return -ENOMEM;
1185 
1186 	ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1187 				       &cspmu->cpuhp_node);
1188 	if (ret)
1189 		return ret;
1190 
1191 	capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1192 	if (cspmu->irq == 0)
1193 		capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1194 
1195 	cspmu->pmu = (struct pmu){
1196 		.task_ctx_nr	= perf_invalid_context,
1197 		.module		= cspmu->impl.module,
1198 		.pmu_enable	= arm_cspmu_enable,
1199 		.pmu_disable	= arm_cspmu_disable,
1200 		.event_init	= arm_cspmu_event_init,
1201 		.add		= arm_cspmu_add,
1202 		.del		= arm_cspmu_del,
1203 		.start		= arm_cspmu_start,
1204 		.stop		= arm_cspmu_stop,
1205 		.read		= arm_cspmu_read,
1206 		.attr_groups	= (const struct attribute_group **)attr_groups,
1207 		.capabilities	= capabilities,
1208 	};
1209 
1210 	/* Hardware counter init */
1211 	arm_cspmu_stop_counters(cspmu);
1212 	arm_cspmu_reset_counters(cspmu);
1213 
1214 	ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1215 	if (ret) {
1216 		cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1217 					    &cspmu->cpuhp_node);
1218 	}
1219 
1220 	return ret;
1221 }
1222 
1223 static int arm_cspmu_device_probe(struct platform_device *pdev)
1224 {
1225 	int ret;
1226 	struct arm_cspmu *cspmu;
1227 
1228 	cspmu = arm_cspmu_alloc(pdev);
1229 	if (!cspmu)
1230 		return -ENOMEM;
1231 
1232 	ret = arm_cspmu_init_mmio(cspmu);
1233 	if (ret)
1234 		return ret;
1235 
1236 	ret = arm_cspmu_request_irq(cspmu);
1237 	if (ret)
1238 		return ret;
1239 
1240 	ret = arm_cspmu_get_cpus(cspmu);
1241 	if (ret)
1242 		return ret;
1243 
1244 	ret = arm_cspmu_init_impl_ops(cspmu);
1245 	if (ret)
1246 		return ret;
1247 
1248 	ret = arm_cspmu_register_pmu(cspmu);
1249 
1250 	/* Matches arm_cspmu_init_impl_ops() above. */
1251 	if (cspmu->impl.module != THIS_MODULE)
1252 		module_put(cspmu->impl.module);
1253 
1254 	return ret;
1255 }
1256 
1257 static int arm_cspmu_device_remove(struct platform_device *pdev)
1258 {
1259 	struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1260 
1261 	perf_pmu_unregister(&cspmu->pmu);
1262 	cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1263 
1264 	return 0;
1265 }
1266 
1267 static const struct platform_device_id arm_cspmu_id[] = {
1268 	{DRVNAME, 0},
1269 	{ },
1270 };
1271 MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
1272 
1273 static struct platform_driver arm_cspmu_driver = {
1274 	.driver = {
1275 			.name = DRVNAME,
1276 			.suppress_bind_attrs = true,
1277 		},
1278 	.probe = arm_cspmu_device_probe,
1279 	.remove = arm_cspmu_device_remove,
1280 	.id_table = arm_cspmu_id,
1281 };
1282 
1283 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1284 {
1285 	cpumask_set_cpu(cpu, &cspmu->active_cpu);
1286 	if (cspmu->irq)
1287 		WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1288 }
1289 
1290 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1291 {
1292 	struct arm_cspmu *cspmu =
1293 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1294 
1295 	if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1296 		return 0;
1297 
1298 	/* If the PMU is already managed, there is nothing to do */
1299 	if (!cpumask_empty(&cspmu->active_cpu))
1300 		return 0;
1301 
1302 	/* Use this CPU for event counting */
1303 	arm_cspmu_set_active_cpu(cpu, cspmu);
1304 
1305 	return 0;
1306 }
1307 
1308 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1309 {
1310 	int dst;
1311 	struct cpumask online_supported;
1312 
1313 	struct arm_cspmu *cspmu =
1314 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1315 
1316 	/* Nothing to do if this CPU doesn't own the PMU */
1317 	if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1318 		return 0;
1319 
1320 	/* Choose a new CPU to migrate ownership of the PMU to */
1321 	cpumask_and(&online_supported, &cspmu->associated_cpus,
1322 		    cpu_online_mask);
1323 	dst = cpumask_any_but(&online_supported, cpu);
1324 	if (dst >= nr_cpu_ids)
1325 		return 0;
1326 
1327 	/* Use this CPU for event counting */
1328 	perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1329 	arm_cspmu_set_active_cpu(dst, cspmu);
1330 
1331 	return 0;
1332 }
1333 
1334 static int __init arm_cspmu_init(void)
1335 {
1336 	int ret;
1337 
1338 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1339 					"perf/arm/cspmu:online",
1340 					arm_cspmu_cpu_online,
1341 					arm_cspmu_cpu_teardown);
1342 	if (ret < 0)
1343 		return ret;
1344 	arm_cspmu_cpuhp_state = ret;
1345 	return platform_driver_register(&arm_cspmu_driver);
1346 }
1347 
1348 static void __exit arm_cspmu_exit(void)
1349 {
1350 	platform_driver_unregister(&arm_cspmu_driver);
1351 	cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1352 }
1353 
1354 int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
1355 {
1356 	struct arm_cspmu_impl_match *match;
1357 	int ret = 0;
1358 
1359 	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1360 
1361 	if (match) {
1362 		mutex_lock(&arm_cspmu_lock);
1363 
1364 		if (!match->impl_init_ops) {
1365 			match->module = impl_match->module;
1366 			match->impl_init_ops = impl_match->impl_init_ops;
1367 		} else {
1368 			/* Broken match table may contain non-unique entries */
1369 			WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
1370 				match->module_name,
1371 				match->pmiidr_val,
1372 				match->pmiidr_mask);
1373 
1374 			ret = -EINVAL;
1375 		}
1376 
1377 		mutex_unlock(&arm_cspmu_lock);
1378 
1379 		if (!ret)
1380 			ret = driver_attach(&arm_cspmu_driver.driver);
1381 	} else {
1382 		pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
1383 			impl_match->pmiidr_val);
1384 
1385 		ret = -EINVAL;
1386 	}
1387 
1388 	return ret;
1389 }
1390 EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
1391 
1392 static int arm_cspmu_match_device(struct device *dev, const void *match)
1393 {
1394 	struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
1395 
1396 	return (cspmu && cspmu->impl.match == match) ? 1 : 0;
1397 }
1398 
1399 void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
1400 {
1401 	struct device *dev;
1402 	struct arm_cspmu_impl_match *match;
1403 
1404 	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1405 
1406 	if (WARN_ON(!match))
1407 		return;
1408 
1409 	/* Unbind the driver from all matching backend devices. */
1410 	while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
1411 			match, arm_cspmu_match_device)))
1412 		device_release_driver(dev);
1413 
1414 	mutex_lock(&arm_cspmu_lock);
1415 
1416 	match->module = NULL;
1417 	match->impl_init_ops = NULL;
1418 
1419 	mutex_unlock(&arm_cspmu_lock);
1420 }
1421 EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
1422 
1423 module_init(arm_cspmu_init);
1424 module_exit(arm_cspmu_exit);
1425 
1426 MODULE_LICENSE("GPL v2");
1427