xref: /linux/drivers/perf/arm_cspmu/arm_cspmu.c (revision a19ce320c379e0519b68178c596e43d1d5dda03b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARM CoreSight Architecture PMU driver.
4  *
5  * This driver adds support for uncore PMU based on ARM CoreSight Performance
6  * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
7  * like other uncore PMUs, it does not support process specific events and
8  * cannot be used in sampling mode.
9  *
10  * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
11  * generic implementation to operate the PMU according to CoreSight PMU
12  * architecture and ACPI ARM PMU table (APMT) documents below:
13  *   - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
14  *   - APMT document number: ARM DEN0117.
15  *
16  * The user should refer to the vendor technical documentation to get details
17  * about the supported events.
18  *
19  * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
20  *
21  */
22 
23 #include <linux/acpi.h>
24 #include <linux/cacheinfo.h>
25 #include <linux/ctype.h>
26 #include <linux/interrupt.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/module.h>
29 #include <linux/mutex.h>
30 #include <linux/of.h>
31 #include <linux/perf_event.h>
32 #include <linux/platform_device.h>
33 
34 #include "arm_cspmu.h"
35 
36 #define PMUNAME "arm_cspmu"
37 #define DRVNAME "arm-cs-arch-pmu"
38 
39 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config)			\
40 	ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show,	\
41 				(unsigned long)_config)
42 
43 /*
44  * CoreSight PMU Arch register offsets.
45  */
46 #define PMEVCNTR_LO					0x0
47 #define PMEVCNTR_HI					0x4
48 #define PMEVTYPER					0x400
49 #define PMCCFILTR					0x47C
50 #define PMEVFILTR					0xA00
51 #define PMCNTENSET					0xC00
52 #define PMCNTENCLR					0xC20
53 #define PMINTENSET					0xC40
54 #define PMINTENCLR					0xC60
55 #define PMOVSCLR					0xC80
56 #define PMOVSSET					0xCC0
57 #define PMCFGR						0xE00
58 #define PMCR						0xE04
59 #define PMIIDR						0xE08
60 
61 /* PMCFGR register field */
62 #define PMCFGR_NCG					GENMASK(31, 28)
63 #define PMCFGR_HDBG					BIT(24)
64 #define PMCFGR_TRO					BIT(23)
65 #define PMCFGR_SS					BIT(22)
66 #define PMCFGR_FZO					BIT(21)
67 #define PMCFGR_MSI					BIT(20)
68 #define PMCFGR_UEN					BIT(19)
69 #define PMCFGR_NA					BIT(17)
70 #define PMCFGR_EX					BIT(16)
71 #define PMCFGR_CCD					BIT(15)
72 #define PMCFGR_CC					BIT(14)
73 #define PMCFGR_SIZE					GENMASK(13, 8)
74 #define PMCFGR_N					GENMASK(7, 0)
75 
76 /* PMCR register field */
77 #define PMCR_TRO					BIT(11)
78 #define PMCR_HDBG					BIT(10)
79 #define PMCR_FZO					BIT(9)
80 #define PMCR_NA						BIT(8)
81 #define PMCR_DP						BIT(5)
82 #define PMCR_X						BIT(4)
83 #define PMCR_D						BIT(3)
84 #define PMCR_C						BIT(2)
85 #define PMCR_P						BIT(1)
86 #define PMCR_E						BIT(0)
87 
88 /* Each SET/CLR register supports up to 32 counters. */
89 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT		5
90 #define ARM_CSPMU_SET_CLR_COUNTER_NUM		\
91 	(1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
92 
93 /* Convert counter idx into SET/CLR register number. */
94 #define COUNTER_TO_SET_CLR_ID(idx)			\
95 	(idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
96 
97 /* Convert counter idx into SET/CLR register bit. */
98 #define COUNTER_TO_SET_CLR_BIT(idx)			\
99 	(idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
100 
101 #define ARM_CSPMU_ACTIVE_CPU_MASK		0x0
102 #define ARM_CSPMU_ASSOCIATED_CPU_MASK		0x1
103 
104 /*
105  * Maximum poll count for reading counter value using high-low-high sequence.
106  */
107 #define HILOHI_MAX_POLL	1000
108 
109 static unsigned long arm_cspmu_cpuhp_state;
110 
111 static DEFINE_MUTEX(arm_cspmu_lock);
112 
113 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
114 				    struct hw_perf_event *hwc, u32 filter);
115 
116 static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
117 {
118 	struct acpi_apmt_node **ptr = dev_get_platdata(dev);
119 
120 	return ptr ? *ptr : NULL;
121 }
122 
123 /*
124  * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
125  * counter register. The counter register can be implemented as 32-bit or 64-bit
126  * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
127  * single-copy 64-bit atomic support is implementation defined. APMT node flag
128  * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
129  * single copy atomic is not supported, the driver treats the register as a pair
130  * of 32-bit register.
131  */
132 
133 /*
134  * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
135  */
136 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
137 {
138 	u32 val_lo, val_hi;
139 	u64 val;
140 
141 	/* Use high-low-high sequence to avoid tearing */
142 	do {
143 		if (max_poll_count-- == 0) {
144 			pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
145 			return 0;
146 		}
147 
148 		val_hi = readl(addr + 4);
149 		val_lo = readl(addr);
150 	} while (val_hi != readl(addr + 4));
151 
152 	val = (((u64)val_hi << 32) | val_lo);
153 
154 	return val;
155 }
156 
157 /* Check if cycle counter is supported. */
158 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
159 {
160 	return (cspmu->pmcfgr & PMCFGR_CC);
161 }
162 
163 /* Get counter size, which is (PMCFGR_SIZE + 1). */
164 static inline u32 counter_size(const struct arm_cspmu *cspmu)
165 {
166 	return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
167 }
168 
169 /* Get counter mask. */
170 static inline u64 counter_mask(const struct arm_cspmu *cspmu)
171 {
172 	return GENMASK_ULL(counter_size(cspmu) - 1, 0);
173 }
174 
175 /* Check if counter is implemented as 64-bit register. */
176 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
177 {
178 	return (counter_size(cspmu) > 32);
179 }
180 
181 ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
182 				struct device_attribute *attr, char *buf)
183 {
184 	struct perf_pmu_events_attr *pmu_attr;
185 
186 	pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
187 	return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
188 }
189 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
190 
191 /* Default event list. */
192 static struct attribute *arm_cspmu_event_attrs[] = {
193 	ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
194 	NULL,
195 };
196 
197 static struct attribute **
198 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
199 {
200 	struct attribute **attrs;
201 
202 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
203 		sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
204 
205 	return attrs;
206 }
207 
208 static umode_t
209 arm_cspmu_event_attr_is_visible(struct kobject *kobj,
210 				struct attribute *attr, int unused)
211 {
212 	struct device *dev = kobj_to_dev(kobj);
213 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
214 	struct perf_pmu_events_attr *eattr;
215 
216 	eattr = container_of(attr, typeof(*eattr), attr.attr);
217 
218 	/* Hide cycle event if not supported */
219 	if (!supports_cycle_counter(cspmu) &&
220 	    eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
221 		return 0;
222 
223 	return attr->mode;
224 }
225 
226 static struct attribute *arm_cspmu_format_attrs[] = {
227 	ARM_CSPMU_FORMAT_EVENT_ATTR,
228 	ARM_CSPMU_FORMAT_FILTER_ATTR,
229 	NULL,
230 };
231 
232 static struct attribute **
233 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
234 {
235 	struct attribute **attrs;
236 
237 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
238 		sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
239 
240 	return attrs;
241 }
242 
243 static u32 arm_cspmu_event_type(const struct perf_event *event)
244 {
245 	return event->attr.config & ARM_CSPMU_EVENT_MASK;
246 }
247 
248 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
249 {
250 	return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
251 }
252 
253 static u32 arm_cspmu_event_filter(const struct perf_event *event)
254 {
255 	return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
256 }
257 
258 static ssize_t arm_cspmu_identifier_show(struct device *dev,
259 					 struct device_attribute *attr,
260 					 char *page)
261 {
262 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
263 
264 	return sysfs_emit(page, "%s\n", cspmu->identifier);
265 }
266 
267 static struct device_attribute arm_cspmu_identifier_attr =
268 	__ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
269 
270 static struct attribute *arm_cspmu_identifier_attrs[] = {
271 	&arm_cspmu_identifier_attr.attr,
272 	NULL,
273 };
274 
275 static struct attribute_group arm_cspmu_identifier_attr_group = {
276 	.attrs = arm_cspmu_identifier_attrs,
277 };
278 
279 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
280 {
281 	const char *identifier =
282 		devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
283 			       cspmu->impl.pmiidr);
284 	return identifier;
285 }
286 
287 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
288 	"mc",
289 	"smmu",
290 	"pcie",
291 	"acpi",
292 	"cache",
293 };
294 
295 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
296 {
297 	struct device *dev;
298 	struct acpi_apmt_node *apmt_node;
299 	u8 pmu_type;
300 	char *name;
301 	char acpi_hid_string[ACPI_ID_LEN] = { 0 };
302 	static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
303 
304 	dev = cspmu->dev;
305 	apmt_node = arm_cspmu_apmt_node(dev);
306 	if (!apmt_node)
307 		return devm_kasprintf(dev, GFP_KERNEL, PMUNAME "_%u",
308 				      atomic_fetch_inc(&pmu_idx[0]));
309 
310 	pmu_type = apmt_node->type;
311 
312 	if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
313 		dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
314 		return NULL;
315 	}
316 
317 	if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
318 		memcpy(acpi_hid_string,
319 			&apmt_node->inst_primary,
320 			sizeof(apmt_node->inst_primary));
321 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
322 				      arm_cspmu_type_str[pmu_type],
323 				      acpi_hid_string,
324 				      apmt_node->inst_secondary);
325 	} else {
326 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
327 				      arm_cspmu_type_str[pmu_type],
328 				      atomic_fetch_inc(&pmu_idx[pmu_type]));
329 	}
330 
331 	return name;
332 }
333 
334 static ssize_t arm_cspmu_cpumask_show(struct device *dev,
335 				      struct device_attribute *attr,
336 				      char *buf)
337 {
338 	struct pmu *pmu = dev_get_drvdata(dev);
339 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
340 	struct dev_ext_attribute *eattr =
341 		container_of(attr, struct dev_ext_attribute, attr);
342 	unsigned long mask_id = (unsigned long)eattr->var;
343 	const cpumask_t *cpumask;
344 
345 	switch (mask_id) {
346 	case ARM_CSPMU_ACTIVE_CPU_MASK:
347 		cpumask = &cspmu->active_cpu;
348 		break;
349 	case ARM_CSPMU_ASSOCIATED_CPU_MASK:
350 		cpumask = &cspmu->associated_cpus;
351 		break;
352 	default:
353 		return 0;
354 	}
355 	return cpumap_print_to_pagebuf(true, buf, cpumask);
356 }
357 
358 static struct attribute *arm_cspmu_cpumask_attrs[] = {
359 	ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
360 	ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
361 	NULL,
362 };
363 
364 static struct attribute_group arm_cspmu_cpumask_attr_group = {
365 	.attrs = arm_cspmu_cpumask_attrs,
366 };
367 
368 static struct arm_cspmu_impl_match impl_match[] = {
369 	{
370 		.module_name	= "nvidia_cspmu",
371 		.pmiidr_val	= ARM_CSPMU_IMPL_ID_NVIDIA,
372 		.pmiidr_mask	= ARM_CSPMU_PMIIDR_IMPLEMENTER,
373 		.module		= NULL,
374 		.impl_init_ops	= NULL,
375 	},
376 	{
377 		.module_name	= "ampere_cspmu",
378 		.pmiidr_val	= ARM_CSPMU_IMPL_ID_AMPERE,
379 		.pmiidr_mask	= ARM_CSPMU_PMIIDR_IMPLEMENTER,
380 		.module		= NULL,
381 		.impl_init_ops	= NULL,
382 	},
383 
384 	{0}
385 };
386 
387 static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
388 {
389 	struct arm_cspmu_impl_match *match = impl_match;
390 
391 	for (; match->pmiidr_val; match++) {
392 		u32 mask = match->pmiidr_mask;
393 
394 		if ((match->pmiidr_val & mask) == (pmiidr & mask))
395 			return match;
396 	}
397 
398 	return NULL;
399 }
400 
401 #define DEFAULT_IMPL_OP(name)	.name = arm_cspmu_##name
402 
403 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
404 {
405 	int ret = 0;
406 	struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
407 	struct arm_cspmu_impl_match *match;
408 
409 	/* Start with a default PMU implementation */
410 	cspmu->impl.module = THIS_MODULE;
411 	cspmu->impl.pmiidr = readl(cspmu->base0 + PMIIDR);
412 	cspmu->impl.ops = (struct arm_cspmu_impl_ops) {
413 		DEFAULT_IMPL_OP(get_event_attrs),
414 		DEFAULT_IMPL_OP(get_format_attrs),
415 		DEFAULT_IMPL_OP(get_identifier),
416 		DEFAULT_IMPL_OP(get_name),
417 		DEFAULT_IMPL_OP(is_cycle_counter_event),
418 		DEFAULT_IMPL_OP(event_type),
419 		DEFAULT_IMPL_OP(event_filter),
420 		DEFAULT_IMPL_OP(set_ev_filter),
421 		DEFAULT_IMPL_OP(event_attr_is_visible),
422 	};
423 
424 	/* Firmware may override implementer/product ID from PMIIDR */
425 	if (apmt_node && apmt_node->impl_id)
426 		cspmu->impl.pmiidr = apmt_node->impl_id;
427 
428 	/* Find implementer specific attribute ops. */
429 	match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
430 
431 	/* Load implementer module and initialize the callbacks. */
432 	if (match) {
433 		mutex_lock(&arm_cspmu_lock);
434 
435 		if (match->impl_init_ops) {
436 			/* Prevent unload until PMU registration is done. */
437 			if (try_module_get(match->module)) {
438 				cspmu->impl.module = match->module;
439 				cspmu->impl.match = match;
440 				ret = match->impl_init_ops(cspmu);
441 				if (ret)
442 					module_put(match->module);
443 			} else {
444 				WARN(1, "arm_cspmu failed to get module: %s\n",
445 					match->module_name);
446 				ret = -EINVAL;
447 			}
448 		} else {
449 			request_module_nowait(match->module_name);
450 			ret = -EPROBE_DEFER;
451 		}
452 
453 		mutex_unlock(&arm_cspmu_lock);
454 	}
455 
456 	return ret;
457 }
458 
459 static struct attribute_group *
460 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
461 {
462 	struct attribute_group *event_group;
463 	struct device *dev = cspmu->dev;
464 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
465 
466 	event_group =
467 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
468 	if (!event_group)
469 		return NULL;
470 
471 	event_group->name = "events";
472 	event_group->is_visible = impl_ops->event_attr_is_visible;
473 	event_group->attrs = impl_ops->get_event_attrs(cspmu);
474 
475 	if (!event_group->attrs)
476 		return NULL;
477 
478 	return event_group;
479 }
480 
481 static struct attribute_group *
482 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
483 {
484 	struct attribute_group *format_group;
485 	struct device *dev = cspmu->dev;
486 
487 	format_group =
488 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
489 	if (!format_group)
490 		return NULL;
491 
492 	format_group->name = "format";
493 	format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
494 
495 	if (!format_group->attrs)
496 		return NULL;
497 
498 	return format_group;
499 }
500 
501 static int arm_cspmu_alloc_attr_groups(struct arm_cspmu *cspmu)
502 {
503 	const struct attribute_group **attr_groups = cspmu->attr_groups;
504 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
505 
506 	cspmu->identifier = impl_ops->get_identifier(cspmu);
507 	cspmu->name = impl_ops->get_name(cspmu);
508 
509 	if (!cspmu->identifier || !cspmu->name)
510 		return -ENOMEM;
511 
512 	attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
513 	attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
514 	attr_groups[2] = &arm_cspmu_identifier_attr_group;
515 	attr_groups[3] = &arm_cspmu_cpumask_attr_group;
516 
517 	if (!attr_groups[0] || !attr_groups[1])
518 		return -ENOMEM;
519 
520 	return 0;
521 }
522 
523 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
524 {
525 	writel(PMCR_C | PMCR_P, cspmu->base0 + PMCR);
526 }
527 
528 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
529 {
530 	writel(PMCR_E, cspmu->base0 + PMCR);
531 }
532 
533 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
534 {
535 	writel(0, cspmu->base0 + PMCR);
536 }
537 
538 static void arm_cspmu_enable(struct pmu *pmu)
539 {
540 	bool disabled;
541 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
542 
543 	disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
544 				cspmu->num_logical_ctrs);
545 
546 	if (disabled)
547 		return;
548 
549 	arm_cspmu_start_counters(cspmu);
550 }
551 
552 static void arm_cspmu_disable(struct pmu *pmu)
553 {
554 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
555 
556 	arm_cspmu_stop_counters(cspmu);
557 }
558 
559 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
560 				struct perf_event *event)
561 {
562 	int idx, ret;
563 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
564 
565 	if (supports_cycle_counter(cspmu)) {
566 		if (cspmu->impl.ops.is_cycle_counter_event(event)) {
567 			/* Search for available cycle counter. */
568 			if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
569 					     hw_events->used_ctrs))
570 				return -EAGAIN;
571 
572 			return cspmu->cycle_counter_logical_idx;
573 		}
574 
575 		/*
576 		 * Search a regular counter from the used counter bitmap.
577 		 * The cycle counter divides the bitmap into two parts. Search
578 		 * the first then second half to exclude the cycle counter bit.
579 		 */
580 		idx = find_first_zero_bit(hw_events->used_ctrs,
581 					  cspmu->cycle_counter_logical_idx);
582 		if (idx >= cspmu->cycle_counter_logical_idx) {
583 			idx = find_next_zero_bit(
584 				hw_events->used_ctrs,
585 				cspmu->num_logical_ctrs,
586 				cspmu->cycle_counter_logical_idx + 1);
587 		}
588 	} else {
589 		idx = find_first_zero_bit(hw_events->used_ctrs,
590 					  cspmu->num_logical_ctrs);
591 	}
592 
593 	if (idx >= cspmu->num_logical_ctrs)
594 		return -EAGAIN;
595 
596 	if (cspmu->impl.ops.validate_event) {
597 		ret = cspmu->impl.ops.validate_event(cspmu, event);
598 		if (ret)
599 			return ret;
600 	}
601 
602 	set_bit(idx, hw_events->used_ctrs);
603 
604 	return idx;
605 }
606 
607 static bool arm_cspmu_validate_event(struct pmu *pmu,
608 				 struct arm_cspmu_hw_events *hw_events,
609 				 struct perf_event *event)
610 {
611 	if (is_software_event(event))
612 		return true;
613 
614 	/* Reject groups spanning multiple HW PMUs. */
615 	if (event->pmu != pmu)
616 		return false;
617 
618 	return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
619 }
620 
621 /*
622  * Make sure the group of events can be scheduled at once
623  * on the PMU.
624  */
625 static bool arm_cspmu_validate_group(struct perf_event *event)
626 {
627 	struct perf_event *sibling, *leader = event->group_leader;
628 	struct arm_cspmu_hw_events fake_hw_events;
629 
630 	if (event->group_leader == event)
631 		return true;
632 
633 	memset(&fake_hw_events, 0, sizeof(fake_hw_events));
634 
635 	if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
636 		return false;
637 
638 	for_each_sibling_event(sibling, leader) {
639 		if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
640 						  sibling))
641 			return false;
642 	}
643 
644 	return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
645 }
646 
647 static int arm_cspmu_event_init(struct perf_event *event)
648 {
649 	struct arm_cspmu *cspmu;
650 	struct hw_perf_event *hwc = &event->hw;
651 
652 	cspmu = to_arm_cspmu(event->pmu);
653 
654 	if (event->attr.type != event->pmu->type)
655 		return -ENOENT;
656 
657 	/*
658 	 * Following other "uncore" PMUs, we do not support sampling mode or
659 	 * attach to a task (per-process mode).
660 	 */
661 	if (is_sampling_event(event)) {
662 		dev_dbg(cspmu->pmu.dev,
663 			"Can't support sampling events\n");
664 		return -EOPNOTSUPP;
665 	}
666 
667 	if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
668 		dev_dbg(cspmu->pmu.dev,
669 			"Can't support per-task counters\n");
670 		return -EINVAL;
671 	}
672 
673 	/*
674 	 * Make sure the CPU assignment is on one of the CPUs associated with
675 	 * this PMU.
676 	 */
677 	if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
678 		dev_dbg(cspmu->pmu.dev,
679 			"Requested cpu is not associated with the PMU\n");
680 		return -EINVAL;
681 	}
682 
683 	/* Enforce the current active CPU to handle the events in this PMU. */
684 	event->cpu = cpumask_first(&cspmu->active_cpu);
685 	if (event->cpu >= nr_cpu_ids)
686 		return -EINVAL;
687 
688 	if (!arm_cspmu_validate_group(event))
689 		return -EINVAL;
690 
691 	/*
692 	 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
693 	 * The physical counter id is tracked with hw_perf_event.idx.
694 	 * We don't assign an index until we actually place the event onto
695 	 * hardware. Use -1 to signify that we haven't decided where to put it
696 	 * yet.
697 	 */
698 	hwc->idx = -1;
699 	hwc->extra_reg.idx = -1;
700 	hwc->config = cspmu->impl.ops.event_type(event);
701 
702 	return 0;
703 }
704 
705 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
706 {
707 	return (PMEVCNTR_LO + (reg_sz * ctr_idx));
708 }
709 
710 static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
711 {
712 	u32 offset;
713 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
714 
715 	if (use_64b_counter_reg(cspmu)) {
716 		offset = counter_offset(sizeof(u64), event->hw.idx);
717 
718 		if (cspmu->has_atomic_dword)
719 			writeq(val, cspmu->base1 + offset);
720 		else
721 			lo_hi_writeq(val, cspmu->base1 + offset);
722 	} else {
723 		offset = counter_offset(sizeof(u32), event->hw.idx);
724 
725 		writel(lower_32_bits(val), cspmu->base1 + offset);
726 	}
727 }
728 
729 static u64 arm_cspmu_read_counter(struct perf_event *event)
730 {
731 	u32 offset;
732 	const void __iomem *counter_addr;
733 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
734 
735 	if (use_64b_counter_reg(cspmu)) {
736 		offset = counter_offset(sizeof(u64), event->hw.idx);
737 		counter_addr = cspmu->base1 + offset;
738 
739 		return cspmu->has_atomic_dword ?
740 			       readq(counter_addr) :
741 			       read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
742 	}
743 
744 	offset = counter_offset(sizeof(u32), event->hw.idx);
745 	return readl(cspmu->base1 + offset);
746 }
747 
748 /*
749  * arm_cspmu_set_event_period: Set the period for the counter.
750  *
751  * To handle cases of extreme interrupt latency, we program
752  * the counter with half of the max count for the counters.
753  */
754 static void arm_cspmu_set_event_period(struct perf_event *event)
755 {
756 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
757 	u64 val = counter_mask(cspmu) >> 1ULL;
758 
759 	local64_set(&event->hw.prev_count, val);
760 	arm_cspmu_write_counter(event, val);
761 }
762 
763 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
764 {
765 	u32 reg_id, reg_bit, inten_off, cnten_off;
766 
767 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
768 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
769 
770 	inten_off = PMINTENSET + (4 * reg_id);
771 	cnten_off = PMCNTENSET + (4 * reg_id);
772 
773 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
774 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
775 }
776 
777 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
778 {
779 	u32 reg_id, reg_bit, inten_off, cnten_off;
780 
781 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
782 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
783 
784 	inten_off = PMINTENCLR + (4 * reg_id);
785 	cnten_off = PMCNTENCLR + (4 * reg_id);
786 
787 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
788 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
789 }
790 
791 static void arm_cspmu_event_update(struct perf_event *event)
792 {
793 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
794 	struct hw_perf_event *hwc = &event->hw;
795 	u64 delta, prev, now;
796 
797 	do {
798 		prev = local64_read(&hwc->prev_count);
799 		now = arm_cspmu_read_counter(event);
800 	} while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
801 
802 	delta = (now - prev) & counter_mask(cspmu);
803 	local64_add(delta, &event->count);
804 }
805 
806 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
807 					struct hw_perf_event *hwc)
808 {
809 	u32 offset = PMEVTYPER + (4 * hwc->idx);
810 
811 	writel(hwc->config, cspmu->base0 + offset);
812 }
813 
814 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
815 					struct hw_perf_event *hwc,
816 					u32 filter)
817 {
818 	u32 offset = PMEVFILTR + (4 * hwc->idx);
819 
820 	writel(filter, cspmu->base0 + offset);
821 }
822 
823 static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
824 {
825 	u32 offset = PMCCFILTR;
826 
827 	writel(filter, cspmu->base0 + offset);
828 }
829 
830 static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
831 {
832 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
833 	struct hw_perf_event *hwc = &event->hw;
834 	u32 filter;
835 
836 	/* We always reprogram the counter */
837 	if (pmu_flags & PERF_EF_RELOAD)
838 		WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
839 
840 	arm_cspmu_set_event_period(event);
841 
842 	filter = cspmu->impl.ops.event_filter(event);
843 
844 	if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
845 		arm_cspmu_set_cc_filter(cspmu, filter);
846 	} else {
847 		arm_cspmu_set_event(cspmu, hwc);
848 		cspmu->impl.ops.set_ev_filter(cspmu, hwc, filter);
849 	}
850 
851 	hwc->state = 0;
852 
853 	arm_cspmu_enable_counter(cspmu, hwc->idx);
854 }
855 
856 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
857 {
858 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
859 	struct hw_perf_event *hwc = &event->hw;
860 
861 	if (hwc->state & PERF_HES_STOPPED)
862 		return;
863 
864 	arm_cspmu_disable_counter(cspmu, hwc->idx);
865 	arm_cspmu_event_update(event);
866 
867 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
868 }
869 
870 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
871 {
872 	return (idx == cspmu->cycle_counter_logical_idx) ?
873 		ARM_CSPMU_CYCLE_CNTR_IDX : idx;
874 }
875 
876 static int arm_cspmu_add(struct perf_event *event, int flags)
877 {
878 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
879 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
880 	struct hw_perf_event *hwc = &event->hw;
881 	int idx;
882 
883 	if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
884 					   &cspmu->associated_cpus)))
885 		return -ENOENT;
886 
887 	idx = arm_cspmu_get_event_idx(hw_events, event);
888 	if (idx < 0)
889 		return idx;
890 
891 	hw_events->events[idx] = event;
892 	hwc->idx = to_phys_idx(cspmu, idx);
893 	hwc->extra_reg.idx = idx;
894 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
895 
896 	if (flags & PERF_EF_START)
897 		arm_cspmu_start(event, PERF_EF_RELOAD);
898 
899 	/* Propagate changes to the userspace mapping. */
900 	perf_event_update_userpage(event);
901 
902 	return 0;
903 }
904 
905 static void arm_cspmu_del(struct perf_event *event, int flags)
906 {
907 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
908 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
909 	struct hw_perf_event *hwc = &event->hw;
910 	int idx = hwc->extra_reg.idx;
911 
912 	arm_cspmu_stop(event, PERF_EF_UPDATE);
913 
914 	hw_events->events[idx] = NULL;
915 
916 	clear_bit(idx, hw_events->used_ctrs);
917 
918 	perf_event_update_userpage(event);
919 }
920 
921 static void arm_cspmu_read(struct perf_event *event)
922 {
923 	arm_cspmu_event_update(event);
924 }
925 
926 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
927 {
928 	struct acpi_apmt_node *apmt_node;
929 	struct arm_cspmu *cspmu;
930 	struct device *dev = &pdev->dev;
931 
932 	cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
933 	if (!cspmu)
934 		return NULL;
935 
936 	cspmu->dev = dev;
937 	platform_set_drvdata(pdev, cspmu);
938 
939 	apmt_node = arm_cspmu_apmt_node(dev);
940 	if (apmt_node) {
941 		cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
942 	} else {
943 		u32 width = 0;
944 
945 		device_property_read_u32(dev, "reg-io-width", &width);
946 		cspmu->has_atomic_dword = (width == 8);
947 	}
948 
949 	return cspmu;
950 }
951 
952 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
953 {
954 	struct device *dev;
955 	struct platform_device *pdev;
956 
957 	dev = cspmu->dev;
958 	pdev = to_platform_device(dev);
959 
960 	/* Base address for page 0. */
961 	cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
962 	if (IS_ERR(cspmu->base0)) {
963 		dev_err(dev, "ioremap failed for page-0 resource\n");
964 		return PTR_ERR(cspmu->base0);
965 	}
966 
967 	/* Base address for page 1 if supported. Otherwise point to page 0. */
968 	cspmu->base1 = cspmu->base0;
969 	if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
970 		cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
971 		if (IS_ERR(cspmu->base1)) {
972 			dev_err(dev, "ioremap failed for page-1 resource\n");
973 			return PTR_ERR(cspmu->base1);
974 		}
975 	}
976 
977 	cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
978 
979 	cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
980 
981 	cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
982 
983 	if (supports_cycle_counter(cspmu)) {
984 		/*
985 		 * The last logical counter is mapped to cycle counter if
986 		 * there is a gap between regular and cycle counter. Otherwise,
987 		 * logical and physical have 1-to-1 mapping.
988 		 */
989 		cspmu->cycle_counter_logical_idx =
990 			(cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
991 				cspmu->num_logical_ctrs - 1 :
992 				ARM_CSPMU_CYCLE_CNTR_IDX;
993 	}
994 
995 	cspmu->num_set_clr_reg =
996 		DIV_ROUND_UP(cspmu->num_logical_ctrs,
997 				ARM_CSPMU_SET_CLR_COUNTER_NUM);
998 
999 	cspmu->hw_events.events =
1000 		devm_kcalloc(dev, cspmu->num_logical_ctrs,
1001 			     sizeof(*cspmu->hw_events.events), GFP_KERNEL);
1002 
1003 	if (!cspmu->hw_events.events)
1004 		return -ENOMEM;
1005 
1006 	return 0;
1007 }
1008 
1009 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
1010 					       u32 *pmovs)
1011 {
1012 	int i;
1013 	u32 pmovclr_offset = PMOVSCLR;
1014 	u32 has_overflowed = 0;
1015 
1016 	for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
1017 		pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
1018 		has_overflowed |= pmovs[i];
1019 		writel(pmovs[i], cspmu->base1 + pmovclr_offset);
1020 		pmovclr_offset += sizeof(u32);
1021 	}
1022 
1023 	return has_overflowed != 0;
1024 }
1025 
1026 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
1027 {
1028 	int idx, has_overflowed;
1029 	struct perf_event *event;
1030 	struct arm_cspmu *cspmu = dev;
1031 	DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
1032 	bool handled = false;
1033 
1034 	arm_cspmu_stop_counters(cspmu);
1035 
1036 	has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
1037 	if (!has_overflowed)
1038 		goto done;
1039 
1040 	for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
1041 			cspmu->num_logical_ctrs) {
1042 		event = cspmu->hw_events.events[idx];
1043 
1044 		if (!event)
1045 			continue;
1046 
1047 		if (!test_bit(event->hw.idx, pmovs))
1048 			continue;
1049 
1050 		arm_cspmu_event_update(event);
1051 		arm_cspmu_set_event_period(event);
1052 
1053 		handled = true;
1054 	}
1055 
1056 done:
1057 	arm_cspmu_start_counters(cspmu);
1058 	return IRQ_RETVAL(handled);
1059 }
1060 
1061 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1062 {
1063 	int irq, ret;
1064 	struct device *dev;
1065 	struct platform_device *pdev;
1066 
1067 	dev = cspmu->dev;
1068 	pdev = to_platform_device(dev);
1069 
1070 	/* Skip IRQ request if the PMU does not support overflow interrupt. */
1071 	irq = platform_get_irq_optional(pdev, 0);
1072 	if (irq < 0)
1073 		return irq == -ENXIO ? 0 : irq;
1074 
1075 	ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1076 			       IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1077 			       cspmu);
1078 	if (ret) {
1079 		dev_err(dev, "Could not request IRQ %d\n", irq);
1080 		return ret;
1081 	}
1082 
1083 	cspmu->irq = irq;
1084 
1085 	return 0;
1086 }
1087 
1088 #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
1089 #include <acpi/processor.h>
1090 
1091 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1092 {
1093 	struct device *cpu_dev;
1094 	struct acpi_device *acpi_dev;
1095 
1096 	cpu_dev = get_cpu_device(cpu);
1097 	if (!cpu_dev)
1098 		return -ENODEV;
1099 
1100 	acpi_dev = ACPI_COMPANION(cpu_dev);
1101 	while (acpi_dev) {
1102 		if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid))
1103 			return 0;
1104 
1105 		acpi_dev = acpi_dev_parent(acpi_dev);
1106 	}
1107 
1108 	return -ENODEV;
1109 }
1110 
1111 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1112 {
1113 	struct acpi_apmt_node *apmt_node;
1114 	int affinity_flag;
1115 	int cpu;
1116 
1117 	apmt_node = arm_cspmu_apmt_node(cspmu->dev);
1118 	affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1119 
1120 	if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1121 		for_each_possible_cpu(cpu) {
1122 			if (apmt_node->proc_affinity ==
1123 			    get_acpi_id_for_cpu(cpu)) {
1124 				cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1125 				break;
1126 			}
1127 		}
1128 	} else {
1129 		for_each_possible_cpu(cpu) {
1130 			if (arm_cspmu_find_cpu_container(
1131 				    cpu, apmt_node->proc_affinity))
1132 				continue;
1133 
1134 			cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1135 		}
1136 	}
1137 
1138 	return 0;
1139 }
1140 #else
1141 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1142 {
1143 	return -ENODEV;
1144 }
1145 #endif
1146 
1147 static int arm_cspmu_of_get_cpus(struct arm_cspmu *cspmu)
1148 {
1149 	struct of_phandle_iterator it;
1150 	int ret, cpu;
1151 
1152 	of_for_each_phandle(&it, ret, dev_of_node(cspmu->dev), "cpus", NULL, 0) {
1153 		cpu = of_cpu_node_to_id(it.node);
1154 		if (cpu < 0)
1155 			continue;
1156 		cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1157 	}
1158 	return ret == -ENOENT ? 0 : ret;
1159 }
1160 
1161 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1162 {
1163 	int ret = 0;
1164 
1165 	if (arm_cspmu_apmt_node(cspmu->dev))
1166 		ret = arm_cspmu_acpi_get_cpus(cspmu);
1167 	else if (device_property_present(cspmu->dev, "cpus"))
1168 		ret = arm_cspmu_of_get_cpus(cspmu);
1169 	else
1170 		cpumask_copy(&cspmu->associated_cpus, cpu_possible_mask);
1171 
1172 	if (!ret && cpumask_empty(&cspmu->associated_cpus)) {
1173 		dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
1174 		ret = -ENODEV;
1175 	}
1176 	return ret;
1177 }
1178 
1179 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1180 {
1181 	int ret, capabilities;
1182 
1183 	ret = arm_cspmu_alloc_attr_groups(cspmu);
1184 	if (ret)
1185 		return ret;
1186 
1187 	ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1188 				       &cspmu->cpuhp_node);
1189 	if (ret)
1190 		return ret;
1191 
1192 	capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1193 	if (cspmu->irq == 0)
1194 		capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1195 
1196 	cspmu->pmu = (struct pmu){
1197 		.task_ctx_nr	= perf_invalid_context,
1198 		.module		= cspmu->impl.module,
1199 		.parent		= cspmu->dev,
1200 		.pmu_enable	= arm_cspmu_enable,
1201 		.pmu_disable	= arm_cspmu_disable,
1202 		.event_init	= arm_cspmu_event_init,
1203 		.add		= arm_cspmu_add,
1204 		.del		= arm_cspmu_del,
1205 		.start		= arm_cspmu_start,
1206 		.stop		= arm_cspmu_stop,
1207 		.read		= arm_cspmu_read,
1208 		.attr_groups	= cspmu->attr_groups,
1209 		.capabilities	= capabilities,
1210 	};
1211 
1212 	/* Hardware counter init */
1213 	arm_cspmu_reset_counters(cspmu);
1214 
1215 	ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1216 	if (ret) {
1217 		cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1218 					    &cspmu->cpuhp_node);
1219 	}
1220 
1221 	return ret;
1222 }
1223 
1224 static int arm_cspmu_device_probe(struct platform_device *pdev)
1225 {
1226 	int ret;
1227 	struct arm_cspmu *cspmu;
1228 
1229 	cspmu = arm_cspmu_alloc(pdev);
1230 	if (!cspmu)
1231 		return -ENOMEM;
1232 
1233 	ret = arm_cspmu_init_mmio(cspmu);
1234 	if (ret)
1235 		return ret;
1236 
1237 	ret = arm_cspmu_request_irq(cspmu);
1238 	if (ret)
1239 		return ret;
1240 
1241 	ret = arm_cspmu_get_cpus(cspmu);
1242 	if (ret)
1243 		return ret;
1244 
1245 	ret = arm_cspmu_init_impl_ops(cspmu);
1246 	if (ret)
1247 		return ret;
1248 
1249 	ret = arm_cspmu_register_pmu(cspmu);
1250 
1251 	/* Matches arm_cspmu_init_impl_ops() above. */
1252 	if (cspmu->impl.module != THIS_MODULE)
1253 		module_put(cspmu->impl.module);
1254 
1255 	return ret;
1256 }
1257 
1258 static void arm_cspmu_device_remove(struct platform_device *pdev)
1259 {
1260 	struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1261 
1262 	perf_pmu_unregister(&cspmu->pmu);
1263 	cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1264 }
1265 
1266 static const struct platform_device_id arm_cspmu_id[] = {
1267 	{DRVNAME, 0},
1268 	{ },
1269 };
1270 MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
1271 
1272 static const struct of_device_id arm_cspmu_of_match[] = {
1273 	{ .compatible = "arm,coresight-pmu" },
1274 	{}
1275 };
1276 MODULE_DEVICE_TABLE(of, arm_cspmu_of_match);
1277 
1278 static struct platform_driver arm_cspmu_driver = {
1279 	.driver = {
1280 		.name = DRVNAME,
1281 		.of_match_table = arm_cspmu_of_match,
1282 		.suppress_bind_attrs = true,
1283 	},
1284 	.probe = arm_cspmu_device_probe,
1285 	.remove_new = arm_cspmu_device_remove,
1286 	.id_table = arm_cspmu_id,
1287 };
1288 
1289 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1290 {
1291 	cpumask_set_cpu(cpu, &cspmu->active_cpu);
1292 	if (cspmu->irq)
1293 		WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1294 }
1295 
1296 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1297 {
1298 	struct arm_cspmu *cspmu =
1299 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1300 
1301 	if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1302 		return 0;
1303 
1304 	/* If the PMU is already managed, there is nothing to do */
1305 	if (!cpumask_empty(&cspmu->active_cpu))
1306 		return 0;
1307 
1308 	/* Use this CPU for event counting */
1309 	arm_cspmu_set_active_cpu(cpu, cspmu);
1310 
1311 	return 0;
1312 }
1313 
1314 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1315 {
1316 	unsigned int dst;
1317 
1318 	struct arm_cspmu *cspmu =
1319 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1320 
1321 	/* Nothing to do if this CPU doesn't own the PMU */
1322 	if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1323 		return 0;
1324 
1325 	/* Choose a new CPU to migrate ownership of the PMU to */
1326 	dst = cpumask_any_and_but(&cspmu->associated_cpus,
1327 				  cpu_online_mask, cpu);
1328 	if (dst >= nr_cpu_ids)
1329 		return 0;
1330 
1331 	/* Use this CPU for event counting */
1332 	perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1333 	arm_cspmu_set_active_cpu(dst, cspmu);
1334 
1335 	return 0;
1336 }
1337 
1338 static int __init arm_cspmu_init(void)
1339 {
1340 	int ret;
1341 
1342 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1343 					"perf/arm/cspmu:online",
1344 					arm_cspmu_cpu_online,
1345 					arm_cspmu_cpu_teardown);
1346 	if (ret < 0)
1347 		return ret;
1348 	arm_cspmu_cpuhp_state = ret;
1349 	return platform_driver_register(&arm_cspmu_driver);
1350 }
1351 
1352 static void __exit arm_cspmu_exit(void)
1353 {
1354 	platform_driver_unregister(&arm_cspmu_driver);
1355 	cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1356 }
1357 
1358 int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
1359 {
1360 	struct arm_cspmu_impl_match *match;
1361 	int ret = 0;
1362 
1363 	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1364 
1365 	if (match) {
1366 		mutex_lock(&arm_cspmu_lock);
1367 
1368 		if (!match->impl_init_ops) {
1369 			match->module = impl_match->module;
1370 			match->impl_init_ops = impl_match->impl_init_ops;
1371 		} else {
1372 			/* Broken match table may contain non-unique entries */
1373 			WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
1374 				match->module_name,
1375 				match->pmiidr_val,
1376 				match->pmiidr_mask);
1377 
1378 			ret = -EINVAL;
1379 		}
1380 
1381 		mutex_unlock(&arm_cspmu_lock);
1382 
1383 		if (!ret)
1384 			ret = driver_attach(&arm_cspmu_driver.driver);
1385 	} else {
1386 		pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
1387 			impl_match->pmiidr_val);
1388 
1389 		ret = -EINVAL;
1390 	}
1391 
1392 	return ret;
1393 }
1394 EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
1395 
1396 static int arm_cspmu_match_device(struct device *dev, const void *match)
1397 {
1398 	struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
1399 
1400 	return (cspmu && cspmu->impl.match == match) ? 1 : 0;
1401 }
1402 
1403 void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
1404 {
1405 	struct device *dev;
1406 	struct arm_cspmu_impl_match *match;
1407 
1408 	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1409 
1410 	if (WARN_ON(!match))
1411 		return;
1412 
1413 	/* Unbind the driver from all matching backend devices. */
1414 	while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
1415 			match, arm_cspmu_match_device)))
1416 		device_release_driver(dev);
1417 
1418 	mutex_lock(&arm_cspmu_lock);
1419 
1420 	match->module = NULL;
1421 	match->impl_init_ops = NULL;
1422 
1423 	mutex_unlock(&arm_cspmu_lock);
1424 }
1425 EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
1426 
1427 module_init(arm_cspmu_init);
1428 module_exit(arm_cspmu_exit);
1429 
1430 MODULE_DESCRIPTION("ARM CoreSight Architecture Performance Monitor Driver");
1431 MODULE_LICENSE("GPL v2");
1432