xref: /linux/drivers/perf/arm_cspmu/arm_cspmu.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARM CoreSight Architecture PMU driver.
4  *
5  * This driver adds support for uncore PMU based on ARM CoreSight Performance
6  * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
7  * like other uncore PMUs, it does not support process specific events and
8  * cannot be used in sampling mode.
9  *
10  * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
11  * generic implementation to operate the PMU according to CoreSight PMU
12  * architecture and ACPI ARM PMU table (APMT) documents below:
13  *   - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
14  *   - APMT document number: ARM DEN0117.
15  *
16  * The user should refer to the vendor technical documentation to get details
17  * about the supported events.
18  *
19  * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
20  *
21  */
22 
23 #include <linux/acpi.h>
24 #include <linux/cacheinfo.h>
25 #include <linux/ctype.h>
26 #include <linux/interrupt.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/module.h>
29 #include <linux/mutex.h>
30 #include <linux/of.h>
31 #include <linux/perf_event.h>
32 #include <linux/platform_device.h>
33 
34 #include "arm_cspmu.h"
35 
36 #define PMUNAME "arm_cspmu"
37 #define DRVNAME "arm-cs-arch-pmu"
38 
39 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config)			\
40 	ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show,	\
41 				(unsigned long)_config)
42 
43 /* Each SET/CLR register supports up to 32 counters. */
44 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT		5
45 #define ARM_CSPMU_SET_CLR_COUNTER_NUM		\
46 	(1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
47 
48 /* Convert counter idx into SET/CLR register number. */
49 #define COUNTER_TO_SET_CLR_ID(idx)			\
50 	(idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
51 
52 /* Convert counter idx into SET/CLR register bit. */
53 #define COUNTER_TO_SET_CLR_BIT(idx)			\
54 	(idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
55 
56 #define ARM_CSPMU_ACTIVE_CPU_MASK		0x0
57 #define ARM_CSPMU_ASSOCIATED_CPU_MASK		0x1
58 
59 /*
60  * Maximum poll count for reading counter value using high-low-high sequence.
61  */
62 #define HILOHI_MAX_POLL	1000
63 
64 static unsigned long arm_cspmu_cpuhp_state;
65 
66 static DEFINE_MUTEX(arm_cspmu_lock);
67 
68 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
69 				    const struct perf_event *event);
70 static void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu,
71 				    const struct perf_event *event);
72 
73 static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
74 {
75 	struct acpi_apmt_node **ptr = dev_get_platdata(dev);
76 
77 	return ptr ? *ptr : NULL;
78 }
79 
80 /*
81  * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
82  * counter register. The counter register can be implemented as 32-bit or 64-bit
83  * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
84  * single-copy 64-bit atomic support is implementation defined. APMT node flag
85  * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
86  * single copy atomic is not supported, the driver treats the register as a pair
87  * of 32-bit register.
88  */
89 
90 /*
91  * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
92  */
93 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
94 {
95 	u32 val_lo, val_hi;
96 	u64 val;
97 
98 	/* Use high-low-high sequence to avoid tearing */
99 	do {
100 		if (max_poll_count-- == 0) {
101 			pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
102 			return 0;
103 		}
104 
105 		val_hi = readl(addr + 4);
106 		val_lo = readl(addr);
107 	} while (val_hi != readl(addr + 4));
108 
109 	val = (((u64)val_hi << 32) | val_lo);
110 
111 	return val;
112 }
113 
114 /* Check if cycle counter is supported. */
115 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
116 {
117 	return (cspmu->pmcfgr & PMCFGR_CC);
118 }
119 
120 /* Get counter size, which is (PMCFGR_SIZE + 1). */
121 static inline u32 counter_size(const struct arm_cspmu *cspmu)
122 {
123 	return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
124 }
125 
126 /* Get counter mask. */
127 static inline u64 counter_mask(const struct arm_cspmu *cspmu)
128 {
129 	return GENMASK_ULL(counter_size(cspmu) - 1, 0);
130 }
131 
132 /* Check if counter is implemented as 64-bit register. */
133 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
134 {
135 	return (counter_size(cspmu) > 32);
136 }
137 
138 ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
139 				struct device_attribute *attr, char *buf)
140 {
141 	struct perf_pmu_events_attr *pmu_attr;
142 
143 	pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
144 	return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
145 }
146 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
147 
148 /* Default event list. */
149 static struct attribute *arm_cspmu_event_attrs[] = {
150 	ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
151 	NULL,
152 };
153 
154 static struct attribute **
155 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
156 {
157 	struct attribute **attrs;
158 
159 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
160 		sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
161 
162 	return attrs;
163 }
164 
165 static umode_t
166 arm_cspmu_event_attr_is_visible(struct kobject *kobj,
167 				struct attribute *attr, int unused)
168 {
169 	struct device *dev = kobj_to_dev(kobj);
170 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
171 	struct perf_pmu_events_attr *eattr;
172 
173 	eattr = container_of(attr, typeof(*eattr), attr.attr);
174 
175 	/* Hide cycle event if not supported */
176 	if (!supports_cycle_counter(cspmu) &&
177 	    eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
178 		return 0;
179 
180 	return attr->mode;
181 }
182 
183 static struct attribute *arm_cspmu_format_attrs[] = {
184 	ARM_CSPMU_FORMAT_EVENT_ATTR,
185 	ARM_CSPMU_FORMAT_FILTER_ATTR,
186 	ARM_CSPMU_FORMAT_FILTER2_ATTR,
187 	NULL,
188 };
189 
190 static struct attribute **
191 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
192 {
193 	struct attribute **attrs;
194 
195 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
196 		sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
197 
198 	return attrs;
199 }
200 
201 static u32 arm_cspmu_event_type(const struct perf_event *event)
202 {
203 	return event->attr.config & ARM_CSPMU_EVENT_MASK;
204 }
205 
206 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
207 {
208 	return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
209 }
210 
211 static ssize_t arm_cspmu_identifier_show(struct device *dev,
212 					 struct device_attribute *attr,
213 					 char *page)
214 {
215 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
216 
217 	return sysfs_emit(page, "%s\n", cspmu->identifier);
218 }
219 
220 static struct device_attribute arm_cspmu_identifier_attr =
221 	__ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
222 
223 static struct attribute *arm_cspmu_identifier_attrs[] = {
224 	&arm_cspmu_identifier_attr.attr,
225 	NULL,
226 };
227 
228 static struct attribute_group arm_cspmu_identifier_attr_group = {
229 	.attrs = arm_cspmu_identifier_attrs,
230 };
231 
232 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
233 {
234 	const char *identifier =
235 		devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
236 			       cspmu->impl.pmiidr);
237 	return identifier;
238 }
239 
240 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
241 	"mc",
242 	"smmu",
243 	"pcie",
244 	"acpi",
245 	"cache",
246 };
247 
248 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
249 {
250 	struct device *dev;
251 	struct acpi_apmt_node *apmt_node;
252 	u8 pmu_type;
253 	char *name;
254 	char acpi_hid_string[ACPI_ID_LEN] = { 0 };
255 	static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
256 
257 	dev = cspmu->dev;
258 	apmt_node = arm_cspmu_apmt_node(dev);
259 	if (!apmt_node)
260 		return devm_kasprintf(dev, GFP_KERNEL, PMUNAME "_%u",
261 				      atomic_fetch_inc(&pmu_idx[0]));
262 
263 	pmu_type = apmt_node->type;
264 
265 	if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
266 		dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
267 		return NULL;
268 	}
269 
270 	if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
271 		memcpy(acpi_hid_string,
272 			&apmt_node->inst_primary,
273 			sizeof(apmt_node->inst_primary));
274 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
275 				      arm_cspmu_type_str[pmu_type],
276 				      acpi_hid_string,
277 				      apmt_node->inst_secondary);
278 	} else {
279 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
280 				      arm_cspmu_type_str[pmu_type],
281 				      atomic_fetch_inc(&pmu_idx[pmu_type]));
282 	}
283 
284 	return name;
285 }
286 
287 static ssize_t arm_cspmu_cpumask_show(struct device *dev,
288 				      struct device_attribute *attr,
289 				      char *buf)
290 {
291 	struct pmu *pmu = dev_get_drvdata(dev);
292 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
293 	struct dev_ext_attribute *eattr =
294 		container_of(attr, struct dev_ext_attribute, attr);
295 	unsigned long mask_id = (unsigned long)eattr->var;
296 	const cpumask_t *cpumask;
297 
298 	switch (mask_id) {
299 	case ARM_CSPMU_ACTIVE_CPU_MASK:
300 		cpumask = &cspmu->active_cpu;
301 		break;
302 	case ARM_CSPMU_ASSOCIATED_CPU_MASK:
303 		cpumask = &cspmu->associated_cpus;
304 		break;
305 	default:
306 		return 0;
307 	}
308 	return cpumap_print_to_pagebuf(true, buf, cpumask);
309 }
310 
311 static struct attribute *arm_cspmu_cpumask_attrs[] = {
312 	ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
313 	ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
314 	NULL,
315 };
316 
317 static struct attribute_group arm_cspmu_cpumask_attr_group = {
318 	.attrs = arm_cspmu_cpumask_attrs,
319 };
320 
321 static struct arm_cspmu_impl_match impl_match[] = {
322 	{
323 		.module_name	= "nvidia_cspmu",
324 		.pmiidr_val	= ARM_CSPMU_IMPL_ID_NVIDIA,
325 		.pmiidr_mask	= PMIIDR_IMPLEMENTER,
326 		.module		= NULL,
327 		.impl_init_ops	= NULL,
328 	},
329 	{
330 		.module_name	= "ampere_cspmu",
331 		.pmiidr_val	= ARM_CSPMU_IMPL_ID_AMPERE,
332 		.pmiidr_mask	= PMIIDR_IMPLEMENTER,
333 		.module		= NULL,
334 		.impl_init_ops	= NULL,
335 	},
336 
337 	{0}
338 };
339 
340 static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
341 {
342 	struct arm_cspmu_impl_match *match = impl_match;
343 
344 	for (; match->pmiidr_val; match++) {
345 		u32 mask = match->pmiidr_mask;
346 
347 		if ((match->pmiidr_val & mask) == (pmiidr & mask))
348 			return match;
349 	}
350 
351 	return NULL;
352 }
353 
354 static u32 arm_cspmu_get_pmiidr(struct arm_cspmu *cspmu)
355 {
356 	u32 pmiidr, pmpidr;
357 
358 	pmiidr = readl(cspmu->base0 + PMIIDR);
359 
360 	if (pmiidr != 0)
361 		return pmiidr;
362 
363 	/* Construct PMIIDR value from PMPIDRs. */
364 
365 	pmpidr = readl(cspmu->base0 + PMPIDR0);
366 	pmiidr |= FIELD_PREP(PMIIDR_PRODUCTID_PART_0,
367 				FIELD_GET(PMPIDR0_PART_0, pmpidr));
368 
369 	pmpidr = readl(cspmu->base0 + PMPIDR1);
370 	pmiidr |= FIELD_PREP(PMIIDR_PRODUCTID_PART_1,
371 				FIELD_GET(PMPIDR1_PART_1, pmpidr));
372 	pmiidr |= FIELD_PREP(PMIIDR_IMPLEMENTER_DES_0,
373 				FIELD_GET(PMPIDR1_DES_0, pmpidr));
374 
375 	pmpidr = readl(cspmu->base0 + PMPIDR2);
376 	pmiidr |= FIELD_PREP(PMIIDR_VARIANT,
377 				FIELD_GET(PMPIDR2_REVISION, pmpidr));
378 	pmiidr |= FIELD_PREP(PMIIDR_IMPLEMENTER_DES_1,
379 				FIELD_GET(PMPIDR2_DES_1, pmpidr));
380 
381 	pmpidr = readl(cspmu->base0 + PMPIDR3);
382 	pmiidr |= FIELD_PREP(PMIIDR_REVISION,
383 				FIELD_GET(PMPIDR3_REVAND, pmpidr));
384 
385 	pmpidr = readl(cspmu->base0 + PMPIDR4);
386 	pmiidr |= FIELD_PREP(PMIIDR_IMPLEMENTER_DES_2,
387 				FIELD_GET(PMPIDR4_DES_2, pmpidr));
388 
389 	return pmiidr;
390 }
391 
392 #define DEFAULT_IMPL_OP(name)	.name = arm_cspmu_##name
393 
394 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
395 {
396 	int ret = 0;
397 	struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
398 	struct arm_cspmu_impl_match *match;
399 
400 	/* Start with a default PMU implementation */
401 	cspmu->impl.module = THIS_MODULE;
402 	cspmu->impl.pmiidr = arm_cspmu_get_pmiidr(cspmu);
403 	cspmu->impl.ops = (struct arm_cspmu_impl_ops) {
404 		DEFAULT_IMPL_OP(get_event_attrs),
405 		DEFAULT_IMPL_OP(get_format_attrs),
406 		DEFAULT_IMPL_OP(get_identifier),
407 		DEFAULT_IMPL_OP(get_name),
408 		DEFAULT_IMPL_OP(is_cycle_counter_event),
409 		DEFAULT_IMPL_OP(event_type),
410 		DEFAULT_IMPL_OP(set_cc_filter),
411 		DEFAULT_IMPL_OP(set_ev_filter),
412 		DEFAULT_IMPL_OP(event_attr_is_visible),
413 	};
414 
415 	/* Firmware may override implementer/product ID from PMIIDR */
416 	if (apmt_node && apmt_node->impl_id)
417 		cspmu->impl.pmiidr = apmt_node->impl_id;
418 
419 	/* Find implementer specific attribute ops. */
420 	match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
421 
422 	/* Load implementer module and initialize the callbacks. */
423 	if (match) {
424 		mutex_lock(&arm_cspmu_lock);
425 
426 		if (match->impl_init_ops) {
427 			/* Prevent unload until PMU registration is done. */
428 			if (try_module_get(match->module)) {
429 				cspmu->impl.module = match->module;
430 				cspmu->impl.match = match;
431 				ret = match->impl_init_ops(cspmu);
432 				if (ret)
433 					module_put(match->module);
434 			} else {
435 				WARN(1, "arm_cspmu failed to get module: %s\n",
436 					match->module_name);
437 				ret = -EINVAL;
438 			}
439 		} else {
440 			request_module_nowait(match->module_name);
441 			ret = -EPROBE_DEFER;
442 		}
443 
444 		mutex_unlock(&arm_cspmu_lock);
445 	}
446 
447 	return ret;
448 }
449 
450 static struct attribute_group *
451 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
452 {
453 	struct attribute_group *event_group;
454 	struct device *dev = cspmu->dev;
455 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
456 
457 	event_group =
458 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
459 	if (!event_group)
460 		return NULL;
461 
462 	event_group->name = "events";
463 	event_group->is_visible = impl_ops->event_attr_is_visible;
464 	event_group->attrs = impl_ops->get_event_attrs(cspmu);
465 
466 	if (!event_group->attrs)
467 		return NULL;
468 
469 	return event_group;
470 }
471 
472 static struct attribute_group *
473 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
474 {
475 	struct attribute_group *format_group;
476 	struct device *dev = cspmu->dev;
477 
478 	format_group =
479 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
480 	if (!format_group)
481 		return NULL;
482 
483 	format_group->name = "format";
484 	format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
485 
486 	if (!format_group->attrs)
487 		return NULL;
488 
489 	return format_group;
490 }
491 
492 static int arm_cspmu_alloc_attr_groups(struct arm_cspmu *cspmu)
493 {
494 	const struct attribute_group **attr_groups = cspmu->attr_groups;
495 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
496 
497 	cspmu->identifier = impl_ops->get_identifier(cspmu);
498 	cspmu->name = impl_ops->get_name(cspmu);
499 
500 	if (!cspmu->identifier || !cspmu->name)
501 		return -ENOMEM;
502 
503 	attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
504 	attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
505 	attr_groups[2] = &arm_cspmu_identifier_attr_group;
506 	attr_groups[3] = &arm_cspmu_cpumask_attr_group;
507 
508 	if (!attr_groups[0] || !attr_groups[1])
509 		return -ENOMEM;
510 
511 	return 0;
512 }
513 
514 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
515 {
516 	writel(PMCR_C | PMCR_P, cspmu->base0 + PMCR);
517 }
518 
519 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
520 {
521 	writel(PMCR_E, cspmu->base0 + PMCR);
522 }
523 
524 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
525 {
526 	writel(0, cspmu->base0 + PMCR);
527 }
528 
529 static void arm_cspmu_enable(struct pmu *pmu)
530 {
531 	bool disabled;
532 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
533 
534 	disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
535 				cspmu->num_logical_ctrs);
536 
537 	if (disabled)
538 		return;
539 
540 	arm_cspmu_start_counters(cspmu);
541 }
542 
543 static void arm_cspmu_disable(struct pmu *pmu)
544 {
545 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
546 
547 	arm_cspmu_stop_counters(cspmu);
548 }
549 
550 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
551 				struct perf_event *event)
552 {
553 	int idx, ret;
554 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
555 
556 	if (supports_cycle_counter(cspmu)) {
557 		if (cspmu->impl.ops.is_cycle_counter_event(event)) {
558 			/* Search for available cycle counter. */
559 			if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
560 					     hw_events->used_ctrs))
561 				return -EAGAIN;
562 
563 			return cspmu->cycle_counter_logical_idx;
564 		}
565 
566 		/*
567 		 * Search a regular counter from the used counter bitmap.
568 		 * The cycle counter divides the bitmap into two parts. Search
569 		 * the first then second half to exclude the cycle counter bit.
570 		 */
571 		idx = find_first_zero_bit(hw_events->used_ctrs,
572 					  cspmu->cycle_counter_logical_idx);
573 		if (idx >= cspmu->cycle_counter_logical_idx) {
574 			idx = find_next_zero_bit(
575 				hw_events->used_ctrs,
576 				cspmu->num_logical_ctrs,
577 				cspmu->cycle_counter_logical_idx + 1);
578 		}
579 	} else {
580 		idx = find_first_zero_bit(hw_events->used_ctrs,
581 					  cspmu->num_logical_ctrs);
582 	}
583 
584 	if (idx >= cspmu->num_logical_ctrs)
585 		return -EAGAIN;
586 
587 	if (cspmu->impl.ops.validate_event) {
588 		ret = cspmu->impl.ops.validate_event(cspmu, event);
589 		if (ret)
590 			return ret;
591 	}
592 
593 	set_bit(idx, hw_events->used_ctrs);
594 
595 	return idx;
596 }
597 
598 static bool arm_cspmu_validate_event(struct pmu *pmu,
599 				 struct arm_cspmu_hw_events *hw_events,
600 				 struct perf_event *event)
601 {
602 	if (is_software_event(event))
603 		return true;
604 
605 	/* Reject groups spanning multiple HW PMUs. */
606 	if (event->pmu != pmu)
607 		return false;
608 
609 	return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
610 }
611 
612 /*
613  * Make sure the group of events can be scheduled at once
614  * on the PMU.
615  */
616 static bool arm_cspmu_validate_group(struct perf_event *event)
617 {
618 	struct perf_event *sibling, *leader = event->group_leader;
619 	struct arm_cspmu_hw_events fake_hw_events;
620 
621 	if (event->group_leader == event)
622 		return true;
623 
624 	memset(&fake_hw_events, 0, sizeof(fake_hw_events));
625 
626 	if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
627 		return false;
628 
629 	for_each_sibling_event(sibling, leader) {
630 		if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
631 						  sibling))
632 			return false;
633 	}
634 
635 	return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
636 }
637 
638 static int arm_cspmu_event_init(struct perf_event *event)
639 {
640 	struct arm_cspmu *cspmu;
641 	struct hw_perf_event *hwc = &event->hw;
642 
643 	cspmu = to_arm_cspmu(event->pmu);
644 
645 	if (event->attr.type != event->pmu->type)
646 		return -ENOENT;
647 
648 	/*
649 	 * Following other "uncore" PMUs, we do not support sampling mode or
650 	 * attach to a task (per-process mode).
651 	 */
652 	if (is_sampling_event(event)) {
653 		dev_dbg(cspmu->pmu.dev,
654 			"Can't support sampling events\n");
655 		return -EOPNOTSUPP;
656 	}
657 
658 	if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
659 		dev_dbg(cspmu->pmu.dev,
660 			"Can't support per-task counters\n");
661 		return -EINVAL;
662 	}
663 
664 	/*
665 	 * Make sure the CPU assignment is on one of the CPUs associated with
666 	 * this PMU.
667 	 */
668 	if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
669 		dev_dbg(cspmu->pmu.dev,
670 			"Requested cpu is not associated with the PMU\n");
671 		return -EINVAL;
672 	}
673 
674 	/* Enforce the current active CPU to handle the events in this PMU. */
675 	event->cpu = cpumask_first(&cspmu->active_cpu);
676 	if (event->cpu >= nr_cpu_ids)
677 		return -EINVAL;
678 
679 	if (!arm_cspmu_validate_group(event))
680 		return -EINVAL;
681 
682 	/*
683 	 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
684 	 * The physical counter id is tracked with hw_perf_event.idx.
685 	 * We don't assign an index until we actually place the event onto
686 	 * hardware. Use -1 to signify that we haven't decided where to put it
687 	 * yet.
688 	 */
689 	hwc->idx = -1;
690 	hwc->extra_reg.idx = -1;
691 	hwc->config = cspmu->impl.ops.event_type(event);
692 
693 	return 0;
694 }
695 
696 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
697 {
698 	return (PMEVCNTR_LO + (reg_sz * ctr_idx));
699 }
700 
701 static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
702 {
703 	u32 offset;
704 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
705 
706 	if (use_64b_counter_reg(cspmu)) {
707 		offset = counter_offset(sizeof(u64), event->hw.idx);
708 
709 		if (cspmu->has_atomic_dword)
710 			writeq(val, cspmu->base1 + offset);
711 		else
712 			lo_hi_writeq(val, cspmu->base1 + offset);
713 	} else {
714 		offset = counter_offset(sizeof(u32), event->hw.idx);
715 
716 		writel(lower_32_bits(val), cspmu->base1 + offset);
717 	}
718 }
719 
720 static u64 arm_cspmu_read_counter(struct perf_event *event)
721 {
722 	u32 offset;
723 	const void __iomem *counter_addr;
724 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
725 
726 	if (use_64b_counter_reg(cspmu)) {
727 		offset = counter_offset(sizeof(u64), event->hw.idx);
728 		counter_addr = cspmu->base1 + offset;
729 
730 		return cspmu->has_atomic_dword ?
731 			       readq(counter_addr) :
732 			       read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
733 	}
734 
735 	offset = counter_offset(sizeof(u32), event->hw.idx);
736 	return readl(cspmu->base1 + offset);
737 }
738 
739 /*
740  * arm_cspmu_set_event_period: Set the period for the counter.
741  *
742  * To handle cases of extreme interrupt latency, we program
743  * the counter with half of the max count for the counters.
744  */
745 static void arm_cspmu_set_event_period(struct perf_event *event)
746 {
747 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
748 	u64 val = counter_mask(cspmu) >> 1ULL;
749 
750 	local64_set(&event->hw.prev_count, val);
751 	arm_cspmu_write_counter(event, val);
752 }
753 
754 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
755 {
756 	u32 reg_id, reg_bit, inten_off, cnten_off;
757 
758 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
759 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
760 
761 	inten_off = PMINTENSET + (4 * reg_id);
762 	cnten_off = PMCNTENSET + (4 * reg_id);
763 
764 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
765 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
766 }
767 
768 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
769 {
770 	u32 reg_id, reg_bit, inten_off, cnten_off;
771 
772 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
773 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
774 
775 	inten_off = PMINTENCLR + (4 * reg_id);
776 	cnten_off = PMCNTENCLR + (4 * reg_id);
777 
778 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
779 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
780 }
781 
782 static void arm_cspmu_event_update(struct perf_event *event)
783 {
784 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
785 	struct hw_perf_event *hwc = &event->hw;
786 	u64 delta, prev, now;
787 
788 	do {
789 		prev = local64_read(&hwc->prev_count);
790 		now = arm_cspmu_read_counter(event);
791 	} while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
792 
793 	delta = (now - prev) & counter_mask(cspmu);
794 	local64_add(delta, &event->count);
795 }
796 
797 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
798 					struct hw_perf_event *hwc)
799 {
800 	u32 offset = PMEVTYPER + (4 * hwc->idx);
801 
802 	writel(hwc->config, cspmu->base0 + offset);
803 }
804 
805 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
806 				    const struct perf_event *event)
807 {
808 	u32 filter = event->attr.config1 & ARM_CSPMU_FILTER_MASK;
809 	u32 filter2 = event->attr.config2 & ARM_CSPMU_FILTER_MASK;
810 	u32 offset = 4 * event->hw.idx;
811 
812 	writel(filter, cspmu->base0 + PMEVFILTR + offset);
813 	writel(filter2, cspmu->base0 + PMEVFILT2R + offset);
814 }
815 
816 static void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu,
817 				    const struct perf_event *event)
818 {
819 	u32 filter = event->attr.config1 & ARM_CSPMU_FILTER_MASK;
820 
821 	writel(filter, cspmu->base0 + PMCCFILTR);
822 }
823 
824 static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
825 {
826 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
827 	struct hw_perf_event *hwc = &event->hw;
828 
829 	/* We always reprogram the counter */
830 	if (pmu_flags & PERF_EF_RELOAD)
831 		WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
832 
833 	arm_cspmu_set_event_period(event);
834 
835 	if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
836 		cspmu->impl.ops.set_cc_filter(cspmu, event);
837 	} else {
838 		arm_cspmu_set_event(cspmu, hwc);
839 		cspmu->impl.ops.set_ev_filter(cspmu, event);
840 	}
841 
842 	hwc->state = 0;
843 
844 	arm_cspmu_enable_counter(cspmu, hwc->idx);
845 }
846 
847 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
848 {
849 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
850 	struct hw_perf_event *hwc = &event->hw;
851 
852 	if (hwc->state & PERF_HES_STOPPED)
853 		return;
854 
855 	arm_cspmu_disable_counter(cspmu, hwc->idx);
856 
857 	if (cspmu->impl.ops.reset_ev_filter)
858 		cspmu->impl.ops.reset_ev_filter(cspmu, event);
859 
860 	arm_cspmu_event_update(event);
861 
862 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
863 }
864 
865 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
866 {
867 	return (idx == cspmu->cycle_counter_logical_idx) ?
868 		ARM_CSPMU_CYCLE_CNTR_IDX : idx;
869 }
870 
871 static int arm_cspmu_add(struct perf_event *event, int flags)
872 {
873 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
874 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
875 	struct hw_perf_event *hwc = &event->hw;
876 	int idx;
877 
878 	if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
879 					   &cspmu->associated_cpus)))
880 		return -ENOENT;
881 
882 	idx = arm_cspmu_get_event_idx(hw_events, event);
883 	if (idx < 0)
884 		return idx;
885 
886 	hw_events->events[idx] = event;
887 	hwc->idx = to_phys_idx(cspmu, idx);
888 	hwc->extra_reg.idx = idx;
889 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
890 
891 	if (flags & PERF_EF_START)
892 		arm_cspmu_start(event, PERF_EF_RELOAD);
893 
894 	/* Propagate changes to the userspace mapping. */
895 	perf_event_update_userpage(event);
896 
897 	return 0;
898 }
899 
900 static void arm_cspmu_del(struct perf_event *event, int flags)
901 {
902 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
903 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
904 	struct hw_perf_event *hwc = &event->hw;
905 	int idx = hwc->extra_reg.idx;
906 
907 	arm_cspmu_stop(event, PERF_EF_UPDATE);
908 
909 	hw_events->events[idx] = NULL;
910 
911 	clear_bit(idx, hw_events->used_ctrs);
912 
913 	perf_event_update_userpage(event);
914 }
915 
916 static void arm_cspmu_read(struct perf_event *event)
917 {
918 	arm_cspmu_event_update(event);
919 }
920 
921 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
922 {
923 	struct acpi_apmt_node *apmt_node;
924 	struct arm_cspmu *cspmu;
925 	struct device *dev = &pdev->dev;
926 
927 	cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
928 	if (!cspmu)
929 		return NULL;
930 
931 	cspmu->dev = dev;
932 	platform_set_drvdata(pdev, cspmu);
933 
934 	apmt_node = arm_cspmu_apmt_node(dev);
935 	if (apmt_node) {
936 		cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
937 	} else {
938 		u32 width = 0;
939 
940 		device_property_read_u32(dev, "reg-io-width", &width);
941 		cspmu->has_atomic_dword = (width == 8);
942 	}
943 
944 	return cspmu;
945 }
946 
947 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
948 {
949 	struct device *dev;
950 	struct platform_device *pdev;
951 
952 	dev = cspmu->dev;
953 	pdev = to_platform_device(dev);
954 
955 	/* Base address for page 0. */
956 	cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
957 	if (IS_ERR(cspmu->base0)) {
958 		dev_err(dev, "ioremap failed for page-0 resource\n");
959 		return PTR_ERR(cspmu->base0);
960 	}
961 
962 	/* Base address for page 1 if supported. Otherwise point to page 0. */
963 	cspmu->base1 = cspmu->base0;
964 	if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
965 		cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
966 		if (IS_ERR(cspmu->base1)) {
967 			dev_err(dev, "ioremap failed for page-1 resource\n");
968 			return PTR_ERR(cspmu->base1);
969 		}
970 	}
971 
972 	cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
973 
974 	cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
975 
976 	cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
977 
978 	if (supports_cycle_counter(cspmu)) {
979 		/*
980 		 * The last logical counter is mapped to cycle counter if
981 		 * there is a gap between regular and cycle counter. Otherwise,
982 		 * logical and physical have 1-to-1 mapping.
983 		 */
984 		cspmu->cycle_counter_logical_idx =
985 			(cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
986 				cspmu->num_logical_ctrs - 1 :
987 				ARM_CSPMU_CYCLE_CNTR_IDX;
988 	}
989 
990 	cspmu->num_set_clr_reg =
991 		DIV_ROUND_UP(cspmu->num_logical_ctrs,
992 				ARM_CSPMU_SET_CLR_COUNTER_NUM);
993 
994 	cspmu->hw_events.events =
995 		devm_kcalloc(dev, cspmu->num_logical_ctrs,
996 			     sizeof(*cspmu->hw_events.events), GFP_KERNEL);
997 
998 	if (!cspmu->hw_events.events)
999 		return -ENOMEM;
1000 
1001 	return 0;
1002 }
1003 
1004 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
1005 					       u32 *pmovs)
1006 {
1007 	int i;
1008 	u32 pmovclr_offset = PMOVSCLR;
1009 	u32 has_overflowed = 0;
1010 
1011 	for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
1012 		pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
1013 		has_overflowed |= pmovs[i];
1014 		writel(pmovs[i], cspmu->base1 + pmovclr_offset);
1015 		pmovclr_offset += sizeof(u32);
1016 	}
1017 
1018 	return has_overflowed != 0;
1019 }
1020 
1021 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
1022 {
1023 	int idx, has_overflowed;
1024 	struct perf_event *event;
1025 	struct arm_cspmu *cspmu = dev;
1026 	DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
1027 	bool handled = false;
1028 
1029 	arm_cspmu_stop_counters(cspmu);
1030 
1031 	has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
1032 	if (!has_overflowed)
1033 		goto done;
1034 
1035 	for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
1036 			cspmu->num_logical_ctrs) {
1037 		event = cspmu->hw_events.events[idx];
1038 
1039 		if (!event)
1040 			continue;
1041 
1042 		if (!test_bit(event->hw.idx, pmovs))
1043 			continue;
1044 
1045 		arm_cspmu_event_update(event);
1046 		arm_cspmu_set_event_period(event);
1047 
1048 		handled = true;
1049 	}
1050 
1051 done:
1052 	arm_cspmu_start_counters(cspmu);
1053 	return IRQ_RETVAL(handled);
1054 }
1055 
1056 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1057 {
1058 	int irq, ret;
1059 	struct device *dev;
1060 	struct platform_device *pdev;
1061 
1062 	dev = cspmu->dev;
1063 	pdev = to_platform_device(dev);
1064 
1065 	/* Skip IRQ request if the PMU does not support overflow interrupt. */
1066 	irq = platform_get_irq_optional(pdev, 0);
1067 	if (irq < 0)
1068 		return irq == -ENXIO ? 0 : irq;
1069 
1070 	ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1071 			       IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1072 			       cspmu);
1073 	if (ret) {
1074 		dev_err(dev, "Could not request IRQ %d\n", irq);
1075 		return ret;
1076 	}
1077 
1078 	cspmu->irq = irq;
1079 
1080 	return 0;
1081 }
1082 
1083 #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
1084 #include <acpi/processor.h>
1085 
1086 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1087 {
1088 	struct device *cpu_dev;
1089 	struct acpi_device *acpi_dev;
1090 
1091 	cpu_dev = get_cpu_device(cpu);
1092 	if (!cpu_dev)
1093 		return -ENODEV;
1094 
1095 	acpi_dev = ACPI_COMPANION(cpu_dev);
1096 	while (acpi_dev) {
1097 		if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid))
1098 			return 0;
1099 
1100 		acpi_dev = acpi_dev_parent(acpi_dev);
1101 	}
1102 
1103 	return -ENODEV;
1104 }
1105 
1106 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1107 {
1108 	struct acpi_apmt_node *apmt_node;
1109 	int affinity_flag;
1110 	int cpu;
1111 
1112 	apmt_node = arm_cspmu_apmt_node(cspmu->dev);
1113 	affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1114 
1115 	if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1116 		for_each_possible_cpu(cpu) {
1117 			if (apmt_node->proc_affinity ==
1118 			    get_acpi_id_for_cpu(cpu)) {
1119 				cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1120 				break;
1121 			}
1122 		}
1123 	} else {
1124 		for_each_possible_cpu(cpu) {
1125 			if (arm_cspmu_find_cpu_container(
1126 				    cpu, apmt_node->proc_affinity))
1127 				continue;
1128 
1129 			cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1130 		}
1131 	}
1132 
1133 	return 0;
1134 }
1135 #else
1136 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1137 {
1138 	return -ENODEV;
1139 }
1140 #endif
1141 
1142 static int arm_cspmu_of_get_cpus(struct arm_cspmu *cspmu)
1143 {
1144 	struct of_phandle_iterator it;
1145 	int ret, cpu;
1146 
1147 	of_for_each_phandle(&it, ret, dev_of_node(cspmu->dev), "cpus", NULL, 0) {
1148 		cpu = of_cpu_node_to_id(it.node);
1149 		if (cpu < 0)
1150 			continue;
1151 		cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1152 	}
1153 	return ret == -ENOENT ? 0 : ret;
1154 }
1155 
1156 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1157 {
1158 	int ret = 0;
1159 
1160 	if (arm_cspmu_apmt_node(cspmu->dev))
1161 		ret = arm_cspmu_acpi_get_cpus(cspmu);
1162 	else if (device_property_present(cspmu->dev, "cpus"))
1163 		ret = arm_cspmu_of_get_cpus(cspmu);
1164 	else
1165 		cpumask_copy(&cspmu->associated_cpus, cpu_possible_mask);
1166 
1167 	if (!ret && cpumask_empty(&cspmu->associated_cpus)) {
1168 		dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
1169 		ret = -ENODEV;
1170 	}
1171 	return ret;
1172 }
1173 
1174 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1175 {
1176 	int ret, capabilities;
1177 
1178 	ret = arm_cspmu_alloc_attr_groups(cspmu);
1179 	if (ret)
1180 		return ret;
1181 
1182 	ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1183 				       &cspmu->cpuhp_node);
1184 	if (ret)
1185 		return ret;
1186 
1187 	capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1188 	if (cspmu->irq == 0)
1189 		capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1190 
1191 	cspmu->pmu = (struct pmu){
1192 		.task_ctx_nr	= perf_invalid_context,
1193 		.module		= cspmu->impl.module,
1194 		.parent		= cspmu->dev,
1195 		.pmu_enable	= arm_cspmu_enable,
1196 		.pmu_disable	= arm_cspmu_disable,
1197 		.event_init	= arm_cspmu_event_init,
1198 		.add		= arm_cspmu_add,
1199 		.del		= arm_cspmu_del,
1200 		.start		= arm_cspmu_start,
1201 		.stop		= arm_cspmu_stop,
1202 		.read		= arm_cspmu_read,
1203 		.attr_groups	= cspmu->attr_groups,
1204 		.capabilities	= capabilities,
1205 	};
1206 
1207 	/* Hardware counter init */
1208 	arm_cspmu_reset_counters(cspmu);
1209 
1210 	ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1211 	if (ret) {
1212 		cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1213 					    &cspmu->cpuhp_node);
1214 	}
1215 
1216 	return ret;
1217 }
1218 
1219 static int arm_cspmu_device_probe(struct platform_device *pdev)
1220 {
1221 	int ret;
1222 	struct arm_cspmu *cspmu;
1223 
1224 	cspmu = arm_cspmu_alloc(pdev);
1225 	if (!cspmu)
1226 		return -ENOMEM;
1227 
1228 	ret = arm_cspmu_init_mmio(cspmu);
1229 	if (ret)
1230 		return ret;
1231 
1232 	ret = arm_cspmu_request_irq(cspmu);
1233 	if (ret)
1234 		return ret;
1235 
1236 	ret = arm_cspmu_get_cpus(cspmu);
1237 	if (ret)
1238 		return ret;
1239 
1240 	ret = arm_cspmu_init_impl_ops(cspmu);
1241 	if (ret)
1242 		return ret;
1243 
1244 	ret = arm_cspmu_register_pmu(cspmu);
1245 
1246 	/* Matches arm_cspmu_init_impl_ops() above. */
1247 	if (cspmu->impl.module != THIS_MODULE)
1248 		module_put(cspmu->impl.module);
1249 
1250 	return ret;
1251 }
1252 
1253 static void arm_cspmu_device_remove(struct platform_device *pdev)
1254 {
1255 	struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1256 
1257 	perf_pmu_unregister(&cspmu->pmu);
1258 	cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1259 }
1260 
1261 static const struct platform_device_id arm_cspmu_id[] = {
1262 	{DRVNAME, 0},
1263 	{ },
1264 };
1265 MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
1266 
1267 static const struct of_device_id arm_cspmu_of_match[] = {
1268 	{ .compatible = "arm,coresight-pmu" },
1269 	{}
1270 };
1271 MODULE_DEVICE_TABLE(of, arm_cspmu_of_match);
1272 
1273 static struct platform_driver arm_cspmu_driver = {
1274 	.driver = {
1275 		.name = DRVNAME,
1276 		.of_match_table = arm_cspmu_of_match,
1277 		.suppress_bind_attrs = true,
1278 	},
1279 	.probe = arm_cspmu_device_probe,
1280 	.remove = arm_cspmu_device_remove,
1281 	.id_table = arm_cspmu_id,
1282 };
1283 
1284 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1285 {
1286 	cpumask_set_cpu(cpu, &cspmu->active_cpu);
1287 	if (cspmu->irq)
1288 		WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1289 }
1290 
1291 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1292 {
1293 	struct arm_cspmu *cspmu =
1294 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1295 
1296 	if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1297 		return 0;
1298 
1299 	/* If the PMU is already managed, there is nothing to do */
1300 	if (!cpumask_empty(&cspmu->active_cpu))
1301 		return 0;
1302 
1303 	/* Use this CPU for event counting */
1304 	arm_cspmu_set_active_cpu(cpu, cspmu);
1305 
1306 	return 0;
1307 }
1308 
1309 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1310 {
1311 	unsigned int dst;
1312 
1313 	struct arm_cspmu *cspmu =
1314 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1315 
1316 	/* Nothing to do if this CPU doesn't own the PMU */
1317 	if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1318 		return 0;
1319 
1320 	/* Choose a new CPU to migrate ownership of the PMU to */
1321 	dst = cpumask_any_and_but(&cspmu->associated_cpus,
1322 				  cpu_online_mask, cpu);
1323 	if (dst >= nr_cpu_ids)
1324 		return 0;
1325 
1326 	/* Use this CPU for event counting */
1327 	perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1328 	arm_cspmu_set_active_cpu(dst, cspmu);
1329 
1330 	return 0;
1331 }
1332 
1333 static int __init arm_cspmu_init(void)
1334 {
1335 	int ret;
1336 
1337 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1338 					"perf/arm/cspmu:online",
1339 					arm_cspmu_cpu_online,
1340 					arm_cspmu_cpu_teardown);
1341 	if (ret < 0)
1342 		return ret;
1343 	arm_cspmu_cpuhp_state = ret;
1344 	return platform_driver_register(&arm_cspmu_driver);
1345 }
1346 
1347 static void __exit arm_cspmu_exit(void)
1348 {
1349 	platform_driver_unregister(&arm_cspmu_driver);
1350 	cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1351 }
1352 
1353 int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
1354 {
1355 	struct arm_cspmu_impl_match *match;
1356 	int ret = 0;
1357 
1358 	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1359 
1360 	if (match) {
1361 		mutex_lock(&arm_cspmu_lock);
1362 
1363 		if (!match->impl_init_ops) {
1364 			match->module = impl_match->module;
1365 			match->impl_init_ops = impl_match->impl_init_ops;
1366 		} else {
1367 			/* Broken match table may contain non-unique entries */
1368 			WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
1369 				match->module_name,
1370 				match->pmiidr_val,
1371 				match->pmiidr_mask);
1372 
1373 			ret = -EINVAL;
1374 		}
1375 
1376 		mutex_unlock(&arm_cspmu_lock);
1377 
1378 		if (!ret)
1379 			ret = driver_attach(&arm_cspmu_driver.driver);
1380 	} else {
1381 		pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
1382 			impl_match->pmiidr_val);
1383 
1384 		ret = -EINVAL;
1385 	}
1386 
1387 	return ret;
1388 }
1389 EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
1390 
1391 static int arm_cspmu_match_device(struct device *dev, const void *match)
1392 {
1393 	struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
1394 
1395 	return (cspmu && cspmu->impl.match == match) ? 1 : 0;
1396 }
1397 
1398 void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
1399 {
1400 	struct device *dev;
1401 	struct arm_cspmu_impl_match *match;
1402 
1403 	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1404 
1405 	if (WARN_ON(!match))
1406 		return;
1407 
1408 	/* Unbind the driver from all matching backend devices. */
1409 	while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
1410 			match, arm_cspmu_match_device))) {
1411 		device_release_driver(dev);
1412 		put_device(dev);
1413 	}
1414 
1415 	mutex_lock(&arm_cspmu_lock);
1416 
1417 	match->module = NULL;
1418 	match->impl_init_ops = NULL;
1419 
1420 	mutex_unlock(&arm_cspmu_lock);
1421 }
1422 EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
1423 
1424 module_init(arm_cspmu_init);
1425 module_exit(arm_cspmu_exit);
1426 
1427 MODULE_DESCRIPTION("ARM CoreSight Architecture Performance Monitor Driver");
1428 MODULE_LICENSE("GPL v2");
1429