1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * ARM CoreSight Architecture PMU driver. 4 * 5 * This driver adds support for uncore PMU based on ARM CoreSight Performance 6 * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and 7 * like other uncore PMUs, it does not support process specific events and 8 * cannot be used in sampling mode. 9 * 10 * This code is based on other uncore PMUs like ARM DSU PMU. It provides a 11 * generic implementation to operate the PMU according to CoreSight PMU 12 * architecture and ACPI ARM PMU table (APMT) documents below: 13 * - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0. 14 * - APMT document number: ARM DEN0117. 15 * 16 * The user should refer to the vendor technical documentation to get details 17 * about the supported events. 18 * 19 * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. 20 * 21 */ 22 23 #include <linux/acpi.h> 24 #include <linux/cacheinfo.h> 25 #include <linux/ctype.h> 26 #include <linux/interrupt.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/module.h> 29 #include <linux/mutex.h> 30 #include <linux/of.h> 31 #include <linux/perf_event.h> 32 #include <linux/platform_device.h> 33 34 #include "arm_cspmu.h" 35 36 #define PMUNAME "arm_cspmu" 37 #define DRVNAME "arm-cs-arch-pmu" 38 39 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config) \ 40 ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show, \ 41 (unsigned long)_config) 42 43 /* Each SET/CLR register supports up to 32 counters. */ 44 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT 5 45 #define ARM_CSPMU_SET_CLR_COUNTER_NUM \ 46 (1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT) 47 48 /* Convert counter idx into SET/CLR register number. */ 49 #define COUNTER_TO_SET_CLR_ID(idx) \ 50 (idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT) 51 52 /* Convert counter idx into SET/CLR register bit. */ 53 #define COUNTER_TO_SET_CLR_BIT(idx) \ 54 (idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1)) 55 56 #define ARM_CSPMU_ACTIVE_CPU_MASK 0x0 57 #define ARM_CSPMU_ASSOCIATED_CPU_MASK 0x1 58 59 /* 60 * Maximum poll count for reading counter value using high-low-high sequence. 61 */ 62 #define HILOHI_MAX_POLL 1000 63 64 static unsigned long arm_cspmu_cpuhp_state; 65 66 static DEFINE_MUTEX(arm_cspmu_lock); 67 68 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu, 69 const struct perf_event *event); 70 static void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, 71 const struct perf_event *event); 72 73 static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev) 74 { 75 struct acpi_apmt_node **ptr = dev_get_platdata(dev); 76 77 return ptr ? *ptr : NULL; 78 } 79 80 /* 81 * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except 82 * counter register. The counter register can be implemented as 32-bit or 64-bit 83 * register depending on the value of PMCFGR.SIZE field. For 64-bit access, 84 * single-copy 64-bit atomic support is implementation defined. APMT node flag 85 * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit 86 * single copy atomic is not supported, the driver treats the register as a pair 87 * of 32-bit register. 88 */ 89 90 /* 91 * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence. 92 */ 93 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count) 94 { 95 u32 val_lo, val_hi; 96 u64 val; 97 98 /* Use high-low-high sequence to avoid tearing */ 99 do { 100 if (max_poll_count-- == 0) { 101 pr_err("ARM CSPMU: timeout hi-low-high sequence\n"); 102 return 0; 103 } 104 105 val_hi = readl(addr + 4); 106 val_lo = readl(addr); 107 } while (val_hi != readl(addr + 4)); 108 109 val = (((u64)val_hi << 32) | val_lo); 110 111 return val; 112 } 113 114 /* Check if cycle counter is supported. */ 115 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu) 116 { 117 return (cspmu->pmcfgr & PMCFGR_CC); 118 } 119 120 /* Get counter size, which is (PMCFGR_SIZE + 1). */ 121 static inline u32 counter_size(const struct arm_cspmu *cspmu) 122 { 123 return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1; 124 } 125 126 /* Get counter mask. */ 127 static inline u64 counter_mask(const struct arm_cspmu *cspmu) 128 { 129 return GENMASK_ULL(counter_size(cspmu) - 1, 0); 130 } 131 132 /* Check if counter is implemented as 64-bit register. */ 133 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu) 134 { 135 return (counter_size(cspmu) > 32); 136 } 137 138 ssize_t arm_cspmu_sysfs_event_show(struct device *dev, 139 struct device_attribute *attr, char *buf) 140 { 141 struct perf_pmu_events_attr *pmu_attr; 142 143 pmu_attr = container_of(attr, typeof(*pmu_attr), attr); 144 return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id); 145 } 146 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show); 147 148 /* Default event list. */ 149 static struct attribute *arm_cspmu_event_attrs[] = { 150 ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT), 151 NULL, 152 }; 153 154 static struct attribute ** 155 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu) 156 { 157 struct attribute **attrs; 158 159 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs, 160 sizeof(arm_cspmu_event_attrs), GFP_KERNEL); 161 162 return attrs; 163 } 164 165 static umode_t 166 arm_cspmu_event_attr_is_visible(struct kobject *kobj, 167 struct attribute *attr, int unused) 168 { 169 struct device *dev = kobj_to_dev(kobj); 170 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev)); 171 struct perf_pmu_events_attr *eattr; 172 173 eattr = container_of(attr, typeof(*eattr), attr.attr); 174 175 /* Hide cycle event if not supported */ 176 if (!supports_cycle_counter(cspmu) && 177 eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT) 178 return 0; 179 180 return attr->mode; 181 } 182 183 static struct attribute *arm_cspmu_format_attrs[] = { 184 ARM_CSPMU_FORMAT_EVENT_ATTR, 185 ARM_CSPMU_FORMAT_FILTER_ATTR, 186 ARM_CSPMU_FORMAT_FILTER2_ATTR, 187 NULL, 188 }; 189 190 static struct attribute ** 191 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu) 192 { 193 struct attribute **attrs; 194 195 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs, 196 sizeof(arm_cspmu_format_attrs), GFP_KERNEL); 197 198 return attrs; 199 } 200 201 static u32 arm_cspmu_event_type(const struct perf_event *event) 202 { 203 return event->attr.config & ARM_CSPMU_EVENT_MASK; 204 } 205 206 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event) 207 { 208 return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT); 209 } 210 211 static ssize_t arm_cspmu_identifier_show(struct device *dev, 212 struct device_attribute *attr, 213 char *page) 214 { 215 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev)); 216 217 return sysfs_emit(page, "%s\n", cspmu->identifier); 218 } 219 220 static struct device_attribute arm_cspmu_identifier_attr = 221 __ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL); 222 223 static struct attribute *arm_cspmu_identifier_attrs[] = { 224 &arm_cspmu_identifier_attr.attr, 225 NULL, 226 }; 227 228 static struct attribute_group arm_cspmu_identifier_attr_group = { 229 .attrs = arm_cspmu_identifier_attrs, 230 }; 231 232 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu) 233 { 234 const char *identifier = 235 devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x", 236 cspmu->impl.pmiidr); 237 return identifier; 238 } 239 240 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = { 241 "mc", 242 "smmu", 243 "pcie", 244 "acpi", 245 "cache", 246 }; 247 248 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu) 249 { 250 struct device *dev; 251 struct acpi_apmt_node *apmt_node; 252 u8 pmu_type; 253 char *name; 254 char acpi_hid_string[ACPI_ID_LEN] = { 0 }; 255 static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 }; 256 257 dev = cspmu->dev; 258 apmt_node = arm_cspmu_apmt_node(dev); 259 if (!apmt_node) 260 return devm_kasprintf(dev, GFP_KERNEL, PMUNAME "_%u", 261 atomic_fetch_inc(&pmu_idx[0])); 262 263 pmu_type = apmt_node->type; 264 265 if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) { 266 dev_err(dev, "unsupported PMU type-%u\n", pmu_type); 267 return NULL; 268 } 269 270 if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) { 271 memcpy(acpi_hid_string, 272 &apmt_node->inst_primary, 273 sizeof(apmt_node->inst_primary)); 274 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME, 275 arm_cspmu_type_str[pmu_type], 276 acpi_hid_string, 277 apmt_node->inst_secondary); 278 } else { 279 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME, 280 arm_cspmu_type_str[pmu_type], 281 atomic_fetch_inc(&pmu_idx[pmu_type])); 282 } 283 284 return name; 285 } 286 287 static ssize_t arm_cspmu_cpumask_show(struct device *dev, 288 struct device_attribute *attr, 289 char *buf) 290 { 291 struct pmu *pmu = dev_get_drvdata(dev); 292 struct arm_cspmu *cspmu = to_arm_cspmu(pmu); 293 struct dev_ext_attribute *eattr = 294 container_of(attr, struct dev_ext_attribute, attr); 295 unsigned long mask_id = (unsigned long)eattr->var; 296 const cpumask_t *cpumask; 297 298 switch (mask_id) { 299 case ARM_CSPMU_ACTIVE_CPU_MASK: 300 cpumask = &cspmu->active_cpu; 301 break; 302 case ARM_CSPMU_ASSOCIATED_CPU_MASK: 303 cpumask = &cspmu->associated_cpus; 304 break; 305 default: 306 return 0; 307 } 308 return cpumap_print_to_pagebuf(true, buf, cpumask); 309 } 310 311 static struct attribute *arm_cspmu_cpumask_attrs[] = { 312 ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK), 313 ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK), 314 NULL, 315 }; 316 317 static struct attribute_group arm_cspmu_cpumask_attr_group = { 318 .attrs = arm_cspmu_cpumask_attrs, 319 }; 320 321 static struct arm_cspmu_impl_match impl_match[] = { 322 { 323 .module_name = "nvidia_cspmu", 324 .pmiidr_val = ARM_CSPMU_IMPL_ID_NVIDIA, 325 .pmiidr_mask = PMIIDR_IMPLEMENTER, 326 .module = NULL, 327 .impl_init_ops = NULL, 328 }, 329 { 330 .module_name = "ampere_cspmu", 331 .pmiidr_val = ARM_CSPMU_IMPL_ID_AMPERE, 332 .pmiidr_mask = PMIIDR_IMPLEMENTER, 333 .module = NULL, 334 .impl_init_ops = NULL, 335 }, 336 337 {0} 338 }; 339 340 static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr) 341 { 342 struct arm_cspmu_impl_match *match = impl_match; 343 344 for (; match->pmiidr_val; match++) { 345 u32 mask = match->pmiidr_mask; 346 347 if ((match->pmiidr_val & mask) == (pmiidr & mask)) 348 return match; 349 } 350 351 return NULL; 352 } 353 354 static u32 arm_cspmu_get_pmiidr(struct arm_cspmu *cspmu) 355 { 356 u32 pmiidr, pmpidr; 357 358 pmiidr = readl(cspmu->base0 + PMIIDR); 359 360 if (pmiidr != 0) 361 return pmiidr; 362 363 /* Construct PMIIDR value from PMPIDRs. */ 364 365 pmpidr = readl(cspmu->base0 + PMPIDR0); 366 pmiidr |= FIELD_PREP(PMIIDR_PRODUCTID_PART_0, 367 FIELD_GET(PMPIDR0_PART_0, pmpidr)); 368 369 pmpidr = readl(cspmu->base0 + PMPIDR1); 370 pmiidr |= FIELD_PREP(PMIIDR_PRODUCTID_PART_1, 371 FIELD_GET(PMPIDR1_PART_1, pmpidr)); 372 pmiidr |= FIELD_PREP(PMIIDR_IMPLEMENTER_DES_0, 373 FIELD_GET(PMPIDR1_DES_0, pmpidr)); 374 375 pmpidr = readl(cspmu->base0 + PMPIDR2); 376 pmiidr |= FIELD_PREP(PMIIDR_VARIANT, 377 FIELD_GET(PMPIDR2_REVISION, pmpidr)); 378 pmiidr |= FIELD_PREP(PMIIDR_IMPLEMENTER_DES_1, 379 FIELD_GET(PMPIDR2_DES_1, pmpidr)); 380 381 pmpidr = readl(cspmu->base0 + PMPIDR3); 382 pmiidr |= FIELD_PREP(PMIIDR_REVISION, 383 FIELD_GET(PMPIDR3_REVAND, pmpidr)); 384 385 pmpidr = readl(cspmu->base0 + PMPIDR4); 386 pmiidr |= FIELD_PREP(PMIIDR_IMPLEMENTER_DES_2, 387 FIELD_GET(PMPIDR4_DES_2, pmpidr)); 388 389 return pmiidr; 390 } 391 392 #define DEFAULT_IMPL_OP(name) .name = arm_cspmu_##name 393 394 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu) 395 { 396 int ret = 0; 397 struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev); 398 struct arm_cspmu_impl_match *match; 399 400 /* Start with a default PMU implementation */ 401 cspmu->impl.module = THIS_MODULE; 402 cspmu->impl.pmiidr = arm_cspmu_get_pmiidr(cspmu); 403 cspmu->impl.ops = (struct arm_cspmu_impl_ops) { 404 DEFAULT_IMPL_OP(get_event_attrs), 405 DEFAULT_IMPL_OP(get_format_attrs), 406 DEFAULT_IMPL_OP(get_identifier), 407 DEFAULT_IMPL_OP(get_name), 408 DEFAULT_IMPL_OP(is_cycle_counter_event), 409 DEFAULT_IMPL_OP(event_type), 410 DEFAULT_IMPL_OP(set_cc_filter), 411 DEFAULT_IMPL_OP(set_ev_filter), 412 DEFAULT_IMPL_OP(event_attr_is_visible), 413 }; 414 415 /* Firmware may override implementer/product ID from PMIIDR */ 416 if (apmt_node && apmt_node->impl_id) 417 cspmu->impl.pmiidr = apmt_node->impl_id; 418 419 /* Find implementer specific attribute ops. */ 420 match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr); 421 422 /* Load implementer module and initialize the callbacks. */ 423 if (match) { 424 mutex_lock(&arm_cspmu_lock); 425 426 if (match->impl_init_ops) { 427 /* Prevent unload until PMU registration is done. */ 428 if (try_module_get(match->module)) { 429 cspmu->impl.module = match->module; 430 cspmu->impl.match = match; 431 ret = match->impl_init_ops(cspmu); 432 if (ret) 433 module_put(match->module); 434 } else { 435 WARN(1, "arm_cspmu failed to get module: %s\n", 436 match->module_name); 437 ret = -EINVAL; 438 } 439 } else { 440 request_module_nowait(match->module_name); 441 ret = -EPROBE_DEFER; 442 } 443 444 mutex_unlock(&arm_cspmu_lock); 445 } 446 447 return ret; 448 } 449 450 static struct attribute_group * 451 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu) 452 { 453 struct attribute_group *event_group; 454 struct device *dev = cspmu->dev; 455 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; 456 457 event_group = 458 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); 459 if (!event_group) 460 return NULL; 461 462 event_group->name = "events"; 463 event_group->is_visible = impl_ops->event_attr_is_visible; 464 event_group->attrs = impl_ops->get_event_attrs(cspmu); 465 466 if (!event_group->attrs) 467 return NULL; 468 469 return event_group; 470 } 471 472 static struct attribute_group * 473 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu) 474 { 475 struct attribute_group *format_group; 476 struct device *dev = cspmu->dev; 477 478 format_group = 479 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); 480 if (!format_group) 481 return NULL; 482 483 format_group->name = "format"; 484 format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu); 485 486 if (!format_group->attrs) 487 return NULL; 488 489 return format_group; 490 } 491 492 static int arm_cspmu_alloc_attr_groups(struct arm_cspmu *cspmu) 493 { 494 const struct attribute_group **attr_groups = cspmu->attr_groups; 495 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; 496 497 cspmu->identifier = impl_ops->get_identifier(cspmu); 498 cspmu->name = impl_ops->get_name(cspmu); 499 500 if (!cspmu->identifier || !cspmu->name) 501 return -ENOMEM; 502 503 attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu); 504 attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu); 505 attr_groups[2] = &arm_cspmu_identifier_attr_group; 506 attr_groups[3] = &arm_cspmu_cpumask_attr_group; 507 508 if (!attr_groups[0] || !attr_groups[1]) 509 return -ENOMEM; 510 511 return 0; 512 } 513 514 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu) 515 { 516 writel(PMCR_C | PMCR_P, cspmu->base0 + PMCR); 517 } 518 519 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu) 520 { 521 writel(PMCR_E, cspmu->base0 + PMCR); 522 } 523 524 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu) 525 { 526 writel(0, cspmu->base0 + PMCR); 527 } 528 529 static void arm_cspmu_enable(struct pmu *pmu) 530 { 531 bool disabled; 532 struct arm_cspmu *cspmu = to_arm_cspmu(pmu); 533 534 disabled = bitmap_empty(cspmu->hw_events.used_ctrs, 535 cspmu->num_logical_ctrs); 536 537 if (disabled) 538 return; 539 540 arm_cspmu_start_counters(cspmu); 541 } 542 543 static void arm_cspmu_disable(struct pmu *pmu) 544 { 545 struct arm_cspmu *cspmu = to_arm_cspmu(pmu); 546 547 arm_cspmu_stop_counters(cspmu); 548 } 549 550 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events, 551 struct perf_event *event) 552 { 553 int idx, ret; 554 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 555 556 if (supports_cycle_counter(cspmu)) { 557 if (cspmu->impl.ops.is_cycle_counter_event(event)) { 558 /* Search for available cycle counter. */ 559 if (test_and_set_bit(cspmu->cycle_counter_logical_idx, 560 hw_events->used_ctrs)) 561 return -EAGAIN; 562 563 return cspmu->cycle_counter_logical_idx; 564 } 565 566 /* 567 * Search a regular counter from the used counter bitmap. 568 * The cycle counter divides the bitmap into two parts. Search 569 * the first then second half to exclude the cycle counter bit. 570 */ 571 idx = find_first_zero_bit(hw_events->used_ctrs, 572 cspmu->cycle_counter_logical_idx); 573 if (idx >= cspmu->cycle_counter_logical_idx) { 574 idx = find_next_zero_bit( 575 hw_events->used_ctrs, 576 cspmu->num_logical_ctrs, 577 cspmu->cycle_counter_logical_idx + 1); 578 } 579 } else { 580 idx = find_first_zero_bit(hw_events->used_ctrs, 581 cspmu->num_logical_ctrs); 582 } 583 584 if (idx >= cspmu->num_logical_ctrs) 585 return -EAGAIN; 586 587 if (cspmu->impl.ops.validate_event) { 588 ret = cspmu->impl.ops.validate_event(cspmu, event); 589 if (ret) 590 return ret; 591 } 592 593 set_bit(idx, hw_events->used_ctrs); 594 595 return idx; 596 } 597 598 static bool arm_cspmu_validate_event(struct pmu *pmu, 599 struct arm_cspmu_hw_events *hw_events, 600 struct perf_event *event) 601 { 602 if (is_software_event(event)) 603 return true; 604 605 /* Reject groups spanning multiple HW PMUs. */ 606 if (event->pmu != pmu) 607 return false; 608 609 return (arm_cspmu_get_event_idx(hw_events, event) >= 0); 610 } 611 612 /* 613 * Make sure the group of events can be scheduled at once 614 * on the PMU. 615 */ 616 static bool arm_cspmu_validate_group(struct perf_event *event) 617 { 618 struct perf_event *sibling, *leader = event->group_leader; 619 struct arm_cspmu_hw_events fake_hw_events; 620 621 if (event->group_leader == event) 622 return true; 623 624 memset(&fake_hw_events, 0, sizeof(fake_hw_events)); 625 626 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader)) 627 return false; 628 629 for_each_sibling_event(sibling, leader) { 630 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, 631 sibling)) 632 return false; 633 } 634 635 return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event); 636 } 637 638 static int arm_cspmu_event_init(struct perf_event *event) 639 { 640 struct arm_cspmu *cspmu; 641 struct hw_perf_event *hwc = &event->hw; 642 643 cspmu = to_arm_cspmu(event->pmu); 644 645 if (event->attr.type != event->pmu->type) 646 return -ENOENT; 647 648 /* 649 * Following other "uncore" PMUs, we do not support sampling mode or 650 * attach to a task (per-process mode). 651 */ 652 if (is_sampling_event(event)) { 653 dev_dbg(cspmu->pmu.dev, 654 "Can't support sampling events\n"); 655 return -EOPNOTSUPP; 656 } 657 658 if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) { 659 dev_dbg(cspmu->pmu.dev, 660 "Can't support per-task counters\n"); 661 return -EINVAL; 662 } 663 664 /* 665 * Make sure the CPU assignment is on one of the CPUs associated with 666 * this PMU. 667 */ 668 if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) { 669 dev_dbg(cspmu->pmu.dev, 670 "Requested cpu is not associated with the PMU\n"); 671 return -EINVAL; 672 } 673 674 /* Enforce the current active CPU to handle the events in this PMU. */ 675 event->cpu = cpumask_first(&cspmu->active_cpu); 676 if (event->cpu >= nr_cpu_ids) 677 return -EINVAL; 678 679 if (!arm_cspmu_validate_group(event)) 680 return -EINVAL; 681 682 /* 683 * The logical counter id is tracked with hw_perf_event.extra_reg.idx. 684 * The physical counter id is tracked with hw_perf_event.idx. 685 * We don't assign an index until we actually place the event onto 686 * hardware. Use -1 to signify that we haven't decided where to put it 687 * yet. 688 */ 689 hwc->idx = -1; 690 hwc->extra_reg.idx = -1; 691 hwc->config = cspmu->impl.ops.event_type(event); 692 693 return 0; 694 } 695 696 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx) 697 { 698 return (PMEVCNTR_LO + (reg_sz * ctr_idx)); 699 } 700 701 static void arm_cspmu_write_counter(struct perf_event *event, u64 val) 702 { 703 u32 offset; 704 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 705 706 if (use_64b_counter_reg(cspmu)) { 707 offset = counter_offset(sizeof(u64), event->hw.idx); 708 709 if (cspmu->has_atomic_dword) 710 writeq(val, cspmu->base1 + offset); 711 else 712 lo_hi_writeq(val, cspmu->base1 + offset); 713 } else { 714 offset = counter_offset(sizeof(u32), event->hw.idx); 715 716 writel(lower_32_bits(val), cspmu->base1 + offset); 717 } 718 } 719 720 static u64 arm_cspmu_read_counter(struct perf_event *event) 721 { 722 u32 offset; 723 const void __iomem *counter_addr; 724 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 725 726 if (use_64b_counter_reg(cspmu)) { 727 offset = counter_offset(sizeof(u64), event->hw.idx); 728 counter_addr = cspmu->base1 + offset; 729 730 return cspmu->has_atomic_dword ? 731 readq(counter_addr) : 732 read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL); 733 } 734 735 offset = counter_offset(sizeof(u32), event->hw.idx); 736 return readl(cspmu->base1 + offset); 737 } 738 739 /* 740 * arm_cspmu_set_event_period: Set the period for the counter. 741 * 742 * To handle cases of extreme interrupt latency, we program 743 * the counter with half of the max count for the counters. 744 */ 745 static void arm_cspmu_set_event_period(struct perf_event *event) 746 { 747 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 748 u64 val = counter_mask(cspmu) >> 1ULL; 749 750 local64_set(&event->hw.prev_count, val); 751 arm_cspmu_write_counter(event, val); 752 } 753 754 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx) 755 { 756 u32 reg_id, reg_bit, inten_off, cnten_off; 757 758 reg_id = COUNTER_TO_SET_CLR_ID(idx); 759 reg_bit = COUNTER_TO_SET_CLR_BIT(idx); 760 761 inten_off = PMINTENSET + (4 * reg_id); 762 cnten_off = PMCNTENSET + (4 * reg_id); 763 764 writel(BIT(reg_bit), cspmu->base0 + inten_off); 765 writel(BIT(reg_bit), cspmu->base0 + cnten_off); 766 } 767 768 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx) 769 { 770 u32 reg_id, reg_bit, inten_off, cnten_off; 771 772 reg_id = COUNTER_TO_SET_CLR_ID(idx); 773 reg_bit = COUNTER_TO_SET_CLR_BIT(idx); 774 775 inten_off = PMINTENCLR + (4 * reg_id); 776 cnten_off = PMCNTENCLR + (4 * reg_id); 777 778 writel(BIT(reg_bit), cspmu->base0 + cnten_off); 779 writel(BIT(reg_bit), cspmu->base0 + inten_off); 780 } 781 782 static void arm_cspmu_event_update(struct perf_event *event) 783 { 784 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 785 struct hw_perf_event *hwc = &event->hw; 786 u64 delta, prev, now; 787 788 do { 789 prev = local64_read(&hwc->prev_count); 790 now = arm_cspmu_read_counter(event); 791 } while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev); 792 793 delta = (now - prev) & counter_mask(cspmu); 794 local64_add(delta, &event->count); 795 } 796 797 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu, 798 struct hw_perf_event *hwc) 799 { 800 u32 offset = PMEVTYPER + (4 * hwc->idx); 801 802 writel(hwc->config, cspmu->base0 + offset); 803 } 804 805 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu, 806 const struct perf_event *event) 807 { 808 u32 filter = event->attr.config1 & ARM_CSPMU_FILTER_MASK; 809 u32 filter2 = event->attr.config2 & ARM_CSPMU_FILTER_MASK; 810 u32 offset = 4 * event->hw.idx; 811 812 writel(filter, cspmu->base0 + PMEVFILTR + offset); 813 writel(filter2, cspmu->base0 + PMEVFILT2R + offset); 814 } 815 816 static void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, 817 const struct perf_event *event) 818 { 819 u32 filter = event->attr.config1 & ARM_CSPMU_FILTER_MASK; 820 821 writel(filter, cspmu->base0 + PMCCFILTR); 822 } 823 824 static void arm_cspmu_start(struct perf_event *event, int pmu_flags) 825 { 826 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 827 struct hw_perf_event *hwc = &event->hw; 828 829 /* We always reprogram the counter */ 830 if (pmu_flags & PERF_EF_RELOAD) 831 WARN_ON(!(hwc->state & PERF_HES_UPTODATE)); 832 833 arm_cspmu_set_event_period(event); 834 835 if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) { 836 cspmu->impl.ops.set_cc_filter(cspmu, event); 837 } else { 838 arm_cspmu_set_event(cspmu, hwc); 839 cspmu->impl.ops.set_ev_filter(cspmu, event); 840 } 841 842 hwc->state = 0; 843 844 arm_cspmu_enable_counter(cspmu, hwc->idx); 845 } 846 847 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags) 848 { 849 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 850 struct hw_perf_event *hwc = &event->hw; 851 852 if (hwc->state & PERF_HES_STOPPED) 853 return; 854 855 arm_cspmu_disable_counter(cspmu, hwc->idx); 856 857 if (cspmu->impl.ops.reset_ev_filter) 858 cspmu->impl.ops.reset_ev_filter(cspmu, event); 859 860 arm_cspmu_event_update(event); 861 862 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 863 } 864 865 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx) 866 { 867 return (idx == cspmu->cycle_counter_logical_idx) ? 868 ARM_CSPMU_CYCLE_CNTR_IDX : idx; 869 } 870 871 static int arm_cspmu_add(struct perf_event *event, int flags) 872 { 873 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 874 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events; 875 struct hw_perf_event *hwc = &event->hw; 876 int idx; 877 878 if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), 879 &cspmu->associated_cpus))) 880 return -ENOENT; 881 882 idx = arm_cspmu_get_event_idx(hw_events, event); 883 if (idx < 0) 884 return idx; 885 886 hw_events->events[idx] = event; 887 hwc->idx = to_phys_idx(cspmu, idx); 888 hwc->extra_reg.idx = idx; 889 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 890 891 if (flags & PERF_EF_START) 892 arm_cspmu_start(event, PERF_EF_RELOAD); 893 894 /* Propagate changes to the userspace mapping. */ 895 perf_event_update_userpage(event); 896 897 return 0; 898 } 899 900 static void arm_cspmu_del(struct perf_event *event, int flags) 901 { 902 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 903 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events; 904 struct hw_perf_event *hwc = &event->hw; 905 int idx = hwc->extra_reg.idx; 906 907 arm_cspmu_stop(event, PERF_EF_UPDATE); 908 909 hw_events->events[idx] = NULL; 910 911 clear_bit(idx, hw_events->used_ctrs); 912 913 perf_event_update_userpage(event); 914 } 915 916 static void arm_cspmu_read(struct perf_event *event) 917 { 918 arm_cspmu_event_update(event); 919 } 920 921 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev) 922 { 923 struct acpi_apmt_node *apmt_node; 924 struct arm_cspmu *cspmu; 925 struct device *dev = &pdev->dev; 926 927 cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL); 928 if (!cspmu) 929 return NULL; 930 931 cspmu->dev = dev; 932 platform_set_drvdata(pdev, cspmu); 933 934 apmt_node = arm_cspmu_apmt_node(dev); 935 if (apmt_node) { 936 cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC; 937 } else { 938 u32 width = 0; 939 940 device_property_read_u32(dev, "reg-io-width", &width); 941 cspmu->has_atomic_dword = (width == 8); 942 } 943 944 return cspmu; 945 } 946 947 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu) 948 { 949 struct device *dev; 950 struct platform_device *pdev; 951 952 dev = cspmu->dev; 953 pdev = to_platform_device(dev); 954 955 /* Base address for page 0. */ 956 cspmu->base0 = devm_platform_ioremap_resource(pdev, 0); 957 if (IS_ERR(cspmu->base0)) { 958 dev_err(dev, "ioremap failed for page-0 resource\n"); 959 return PTR_ERR(cspmu->base0); 960 } 961 962 /* Base address for page 1 if supported. Otherwise point to page 0. */ 963 cspmu->base1 = cspmu->base0; 964 if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) { 965 cspmu->base1 = devm_platform_ioremap_resource(pdev, 1); 966 if (IS_ERR(cspmu->base1)) { 967 dev_err(dev, "ioremap failed for page-1 resource\n"); 968 return PTR_ERR(cspmu->base1); 969 } 970 } 971 972 cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR); 973 974 cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1; 975 976 cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS; 977 978 if (supports_cycle_counter(cspmu)) { 979 /* 980 * The last logical counter is mapped to cycle counter if 981 * there is a gap between regular and cycle counter. Otherwise, 982 * logical and physical have 1-to-1 mapping. 983 */ 984 cspmu->cycle_counter_logical_idx = 985 (cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ? 986 cspmu->num_logical_ctrs - 1 : 987 ARM_CSPMU_CYCLE_CNTR_IDX; 988 } 989 990 cspmu->num_set_clr_reg = 991 DIV_ROUND_UP(cspmu->num_logical_ctrs, 992 ARM_CSPMU_SET_CLR_COUNTER_NUM); 993 994 cspmu->hw_events.events = 995 devm_kcalloc(dev, cspmu->num_logical_ctrs, 996 sizeof(*cspmu->hw_events.events), GFP_KERNEL); 997 998 if (!cspmu->hw_events.events) 999 return -ENOMEM; 1000 1001 return 0; 1002 } 1003 1004 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu, 1005 u32 *pmovs) 1006 { 1007 int i; 1008 u32 pmovclr_offset = PMOVSCLR; 1009 u32 has_overflowed = 0; 1010 1011 for (i = 0; i < cspmu->num_set_clr_reg; ++i) { 1012 pmovs[i] = readl(cspmu->base1 + pmovclr_offset); 1013 has_overflowed |= pmovs[i]; 1014 writel(pmovs[i], cspmu->base1 + pmovclr_offset); 1015 pmovclr_offset += sizeof(u32); 1016 } 1017 1018 return has_overflowed != 0; 1019 } 1020 1021 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev) 1022 { 1023 int idx, has_overflowed; 1024 struct perf_event *event; 1025 struct arm_cspmu *cspmu = dev; 1026 DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS); 1027 bool handled = false; 1028 1029 arm_cspmu_stop_counters(cspmu); 1030 1031 has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs); 1032 if (!has_overflowed) 1033 goto done; 1034 1035 for_each_set_bit(idx, cspmu->hw_events.used_ctrs, 1036 cspmu->num_logical_ctrs) { 1037 event = cspmu->hw_events.events[idx]; 1038 1039 if (!event) 1040 continue; 1041 1042 if (!test_bit(event->hw.idx, pmovs)) 1043 continue; 1044 1045 arm_cspmu_event_update(event); 1046 arm_cspmu_set_event_period(event); 1047 1048 handled = true; 1049 } 1050 1051 done: 1052 arm_cspmu_start_counters(cspmu); 1053 return IRQ_RETVAL(handled); 1054 } 1055 1056 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu) 1057 { 1058 int irq, ret; 1059 struct device *dev; 1060 struct platform_device *pdev; 1061 1062 dev = cspmu->dev; 1063 pdev = to_platform_device(dev); 1064 1065 /* Skip IRQ request if the PMU does not support overflow interrupt. */ 1066 irq = platform_get_irq_optional(pdev, 0); 1067 if (irq < 0) 1068 return irq == -ENXIO ? 0 : irq; 1069 1070 ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq, 1071 IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev), 1072 cspmu); 1073 if (ret) { 1074 dev_err(dev, "Could not request IRQ %d\n", irq); 1075 return ret; 1076 } 1077 1078 cspmu->irq = irq; 1079 1080 return 0; 1081 } 1082 1083 #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64) 1084 #include <acpi/processor.h> 1085 1086 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid) 1087 { 1088 struct device *cpu_dev; 1089 struct acpi_device *acpi_dev; 1090 1091 cpu_dev = get_cpu_device(cpu); 1092 if (!cpu_dev) 1093 return -ENODEV; 1094 1095 acpi_dev = ACPI_COMPANION(cpu_dev); 1096 while (acpi_dev) { 1097 if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid)) 1098 return 0; 1099 1100 acpi_dev = acpi_dev_parent(acpi_dev); 1101 } 1102 1103 return -ENODEV; 1104 } 1105 1106 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu) 1107 { 1108 struct acpi_apmt_node *apmt_node; 1109 int affinity_flag; 1110 int cpu; 1111 1112 apmt_node = arm_cspmu_apmt_node(cspmu->dev); 1113 affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY; 1114 1115 if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) { 1116 for_each_possible_cpu(cpu) { 1117 if (apmt_node->proc_affinity == 1118 get_acpi_id_for_cpu(cpu)) { 1119 cpumask_set_cpu(cpu, &cspmu->associated_cpus); 1120 break; 1121 } 1122 } 1123 } else { 1124 for_each_possible_cpu(cpu) { 1125 if (arm_cspmu_find_cpu_container( 1126 cpu, apmt_node->proc_affinity)) 1127 continue; 1128 1129 cpumask_set_cpu(cpu, &cspmu->associated_cpus); 1130 } 1131 } 1132 1133 return 0; 1134 } 1135 #else 1136 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu) 1137 { 1138 return -ENODEV; 1139 } 1140 #endif 1141 1142 static int arm_cspmu_of_get_cpus(struct arm_cspmu *cspmu) 1143 { 1144 struct of_phandle_iterator it; 1145 int ret, cpu; 1146 1147 of_for_each_phandle(&it, ret, dev_of_node(cspmu->dev), "cpus", NULL, 0) { 1148 cpu = of_cpu_node_to_id(it.node); 1149 if (cpu < 0) 1150 continue; 1151 cpumask_set_cpu(cpu, &cspmu->associated_cpus); 1152 } 1153 return ret == -ENOENT ? 0 : ret; 1154 } 1155 1156 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu) 1157 { 1158 int ret = 0; 1159 1160 if (arm_cspmu_apmt_node(cspmu->dev)) 1161 ret = arm_cspmu_acpi_get_cpus(cspmu); 1162 else if (device_property_present(cspmu->dev, "cpus")) 1163 ret = arm_cspmu_of_get_cpus(cspmu); 1164 else 1165 cpumask_copy(&cspmu->associated_cpus, cpu_possible_mask); 1166 1167 if (!ret && cpumask_empty(&cspmu->associated_cpus)) { 1168 dev_dbg(cspmu->dev, "No cpu associated with the PMU\n"); 1169 ret = -ENODEV; 1170 } 1171 return ret; 1172 } 1173 1174 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu) 1175 { 1176 int ret, capabilities; 1177 1178 ret = arm_cspmu_alloc_attr_groups(cspmu); 1179 if (ret) 1180 return ret; 1181 1182 ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state, 1183 &cspmu->cpuhp_node); 1184 if (ret) 1185 return ret; 1186 1187 capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1188 if (cspmu->irq == 0) 1189 capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1190 1191 cspmu->pmu = (struct pmu){ 1192 .task_ctx_nr = perf_invalid_context, 1193 .module = cspmu->impl.module, 1194 .parent = cspmu->dev, 1195 .pmu_enable = arm_cspmu_enable, 1196 .pmu_disable = arm_cspmu_disable, 1197 .event_init = arm_cspmu_event_init, 1198 .add = arm_cspmu_add, 1199 .del = arm_cspmu_del, 1200 .start = arm_cspmu_start, 1201 .stop = arm_cspmu_stop, 1202 .read = arm_cspmu_read, 1203 .attr_groups = cspmu->attr_groups, 1204 .capabilities = capabilities, 1205 }; 1206 1207 /* Hardware counter init */ 1208 arm_cspmu_reset_counters(cspmu); 1209 1210 ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1); 1211 if (ret) { 1212 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, 1213 &cspmu->cpuhp_node); 1214 } 1215 1216 return ret; 1217 } 1218 1219 static int arm_cspmu_device_probe(struct platform_device *pdev) 1220 { 1221 int ret; 1222 struct arm_cspmu *cspmu; 1223 1224 cspmu = arm_cspmu_alloc(pdev); 1225 if (!cspmu) 1226 return -ENOMEM; 1227 1228 ret = arm_cspmu_init_mmio(cspmu); 1229 if (ret) 1230 return ret; 1231 1232 ret = arm_cspmu_request_irq(cspmu); 1233 if (ret) 1234 return ret; 1235 1236 ret = arm_cspmu_get_cpus(cspmu); 1237 if (ret) 1238 return ret; 1239 1240 ret = arm_cspmu_init_impl_ops(cspmu); 1241 if (ret) 1242 return ret; 1243 1244 ret = arm_cspmu_register_pmu(cspmu); 1245 1246 /* Matches arm_cspmu_init_impl_ops() above. */ 1247 if (cspmu->impl.module != THIS_MODULE) 1248 module_put(cspmu->impl.module); 1249 1250 return ret; 1251 } 1252 1253 static void arm_cspmu_device_remove(struct platform_device *pdev) 1254 { 1255 struct arm_cspmu *cspmu = platform_get_drvdata(pdev); 1256 1257 perf_pmu_unregister(&cspmu->pmu); 1258 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node); 1259 } 1260 1261 static const struct platform_device_id arm_cspmu_id[] = { 1262 {DRVNAME, 0}, 1263 { }, 1264 }; 1265 MODULE_DEVICE_TABLE(platform, arm_cspmu_id); 1266 1267 static const struct of_device_id arm_cspmu_of_match[] = { 1268 { .compatible = "arm,coresight-pmu" }, 1269 {} 1270 }; 1271 MODULE_DEVICE_TABLE(of, arm_cspmu_of_match); 1272 1273 static struct platform_driver arm_cspmu_driver = { 1274 .driver = { 1275 .name = DRVNAME, 1276 .of_match_table = arm_cspmu_of_match, 1277 .suppress_bind_attrs = true, 1278 }, 1279 .probe = arm_cspmu_device_probe, 1280 .remove = arm_cspmu_device_remove, 1281 .id_table = arm_cspmu_id, 1282 }; 1283 1284 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu) 1285 { 1286 cpumask_set_cpu(cpu, &cspmu->active_cpu); 1287 if (cspmu->irq) 1288 WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu)); 1289 } 1290 1291 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node) 1292 { 1293 struct arm_cspmu *cspmu = 1294 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node); 1295 1296 if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus)) 1297 return 0; 1298 1299 /* If the PMU is already managed, there is nothing to do */ 1300 if (!cpumask_empty(&cspmu->active_cpu)) 1301 return 0; 1302 1303 /* Use this CPU for event counting */ 1304 arm_cspmu_set_active_cpu(cpu, cspmu); 1305 1306 return 0; 1307 } 1308 1309 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1310 { 1311 unsigned int dst; 1312 1313 struct arm_cspmu *cspmu = 1314 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node); 1315 1316 /* Nothing to do if this CPU doesn't own the PMU */ 1317 if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu)) 1318 return 0; 1319 1320 /* Choose a new CPU to migrate ownership of the PMU to */ 1321 dst = cpumask_any_and_but(&cspmu->associated_cpus, 1322 cpu_online_mask, cpu); 1323 if (dst >= nr_cpu_ids) 1324 return 0; 1325 1326 /* Use this CPU for event counting */ 1327 perf_pmu_migrate_context(&cspmu->pmu, cpu, dst); 1328 arm_cspmu_set_active_cpu(dst, cspmu); 1329 1330 return 0; 1331 } 1332 1333 static int __init arm_cspmu_init(void) 1334 { 1335 int ret; 1336 1337 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 1338 "perf/arm/cspmu:online", 1339 arm_cspmu_cpu_online, 1340 arm_cspmu_cpu_teardown); 1341 if (ret < 0) 1342 return ret; 1343 arm_cspmu_cpuhp_state = ret; 1344 return platform_driver_register(&arm_cspmu_driver); 1345 } 1346 1347 static void __exit arm_cspmu_exit(void) 1348 { 1349 platform_driver_unregister(&arm_cspmu_driver); 1350 cpuhp_remove_multi_state(arm_cspmu_cpuhp_state); 1351 } 1352 1353 int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match) 1354 { 1355 struct arm_cspmu_impl_match *match; 1356 int ret = 0; 1357 1358 match = arm_cspmu_impl_match_get(impl_match->pmiidr_val); 1359 1360 if (match) { 1361 mutex_lock(&arm_cspmu_lock); 1362 1363 if (!match->impl_init_ops) { 1364 match->module = impl_match->module; 1365 match->impl_init_ops = impl_match->impl_init_ops; 1366 } else { 1367 /* Broken match table may contain non-unique entries */ 1368 WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n", 1369 match->module_name, 1370 match->pmiidr_val, 1371 match->pmiidr_mask); 1372 1373 ret = -EINVAL; 1374 } 1375 1376 mutex_unlock(&arm_cspmu_lock); 1377 1378 if (!ret) 1379 ret = driver_attach(&arm_cspmu_driver.driver); 1380 } else { 1381 pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n", 1382 impl_match->pmiidr_val); 1383 1384 ret = -EINVAL; 1385 } 1386 1387 return ret; 1388 } 1389 EXPORT_SYMBOL_GPL(arm_cspmu_impl_register); 1390 1391 static int arm_cspmu_match_device(struct device *dev, const void *match) 1392 { 1393 struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev)); 1394 1395 return (cspmu && cspmu->impl.match == match) ? 1 : 0; 1396 } 1397 1398 void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match) 1399 { 1400 struct device *dev; 1401 struct arm_cspmu_impl_match *match; 1402 1403 match = arm_cspmu_impl_match_get(impl_match->pmiidr_val); 1404 1405 if (WARN_ON(!match)) 1406 return; 1407 1408 /* Unbind the driver from all matching backend devices. */ 1409 while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL, 1410 match, arm_cspmu_match_device))) { 1411 device_release_driver(dev); 1412 put_device(dev); 1413 } 1414 1415 mutex_lock(&arm_cspmu_lock); 1416 1417 match->module = NULL; 1418 match->impl_init_ops = NULL; 1419 1420 mutex_unlock(&arm_cspmu_lock); 1421 } 1422 EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister); 1423 1424 module_init(arm_cspmu_init); 1425 module_exit(arm_cspmu_exit); 1426 1427 MODULE_DESCRIPTION("ARM CoreSight Architecture Performance Monitor Driver"); 1428 MODULE_LICENSE("GPL v2"); 1429