1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * ARM CoreSight Architecture PMU driver. 4 * 5 * This driver adds support for uncore PMU based on ARM CoreSight Performance 6 * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and 7 * like other uncore PMUs, it does not support process specific events and 8 * cannot be used in sampling mode. 9 * 10 * This code is based on other uncore PMUs like ARM DSU PMU. It provides a 11 * generic implementation to operate the PMU according to CoreSight PMU 12 * architecture and ACPI ARM PMU table (APMT) documents below: 13 * - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0. 14 * - APMT document number: ARM DEN0117. 15 * 16 * The user should refer to the vendor technical documentation to get details 17 * about the supported events. 18 * 19 * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. 20 * 21 */ 22 23 #include <linux/acpi.h> 24 #include <linux/cacheinfo.h> 25 #include <linux/ctype.h> 26 #include <linux/interrupt.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/module.h> 29 #include <linux/mutex.h> 30 #include <linux/of.h> 31 #include <linux/perf_event.h> 32 #include <linux/platform_device.h> 33 34 #include "arm_cspmu.h" 35 36 #define PMUNAME "arm_cspmu" 37 #define DRVNAME "arm-cs-arch-pmu" 38 39 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config) \ 40 ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show, \ 41 (unsigned long)_config) 42 43 /* 44 * CoreSight PMU Arch register offsets. 45 */ 46 #define PMEVCNTR_LO 0x0 47 #define PMEVCNTR_HI 0x4 48 #define PMEVTYPER 0x400 49 #define PMCCFILTR 0x47C 50 #define PMEVFILTR 0xA00 51 #define PMCNTENSET 0xC00 52 #define PMCNTENCLR 0xC20 53 #define PMINTENSET 0xC40 54 #define PMINTENCLR 0xC60 55 #define PMOVSCLR 0xC80 56 #define PMOVSSET 0xCC0 57 #define PMCFGR 0xE00 58 #define PMCR 0xE04 59 #define PMIIDR 0xE08 60 61 /* PMCFGR register field */ 62 #define PMCFGR_NCG GENMASK(31, 28) 63 #define PMCFGR_HDBG BIT(24) 64 #define PMCFGR_TRO BIT(23) 65 #define PMCFGR_SS BIT(22) 66 #define PMCFGR_FZO BIT(21) 67 #define PMCFGR_MSI BIT(20) 68 #define PMCFGR_UEN BIT(19) 69 #define PMCFGR_NA BIT(17) 70 #define PMCFGR_EX BIT(16) 71 #define PMCFGR_CCD BIT(15) 72 #define PMCFGR_CC BIT(14) 73 #define PMCFGR_SIZE GENMASK(13, 8) 74 #define PMCFGR_N GENMASK(7, 0) 75 76 /* PMCR register field */ 77 #define PMCR_TRO BIT(11) 78 #define PMCR_HDBG BIT(10) 79 #define PMCR_FZO BIT(9) 80 #define PMCR_NA BIT(8) 81 #define PMCR_DP BIT(5) 82 #define PMCR_X BIT(4) 83 #define PMCR_D BIT(3) 84 #define PMCR_C BIT(2) 85 #define PMCR_P BIT(1) 86 #define PMCR_E BIT(0) 87 88 /* Each SET/CLR register supports up to 32 counters. */ 89 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT 5 90 #define ARM_CSPMU_SET_CLR_COUNTER_NUM \ 91 (1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT) 92 93 /* Convert counter idx into SET/CLR register number. */ 94 #define COUNTER_TO_SET_CLR_ID(idx) \ 95 (idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT) 96 97 /* Convert counter idx into SET/CLR register bit. */ 98 #define COUNTER_TO_SET_CLR_BIT(idx) \ 99 (idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1)) 100 101 #define ARM_CSPMU_ACTIVE_CPU_MASK 0x0 102 #define ARM_CSPMU_ASSOCIATED_CPU_MASK 0x1 103 104 /* 105 * Maximum poll count for reading counter value using high-low-high sequence. 106 */ 107 #define HILOHI_MAX_POLL 1000 108 109 static unsigned long arm_cspmu_cpuhp_state; 110 111 static DEFINE_MUTEX(arm_cspmu_lock); 112 113 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu, 114 struct hw_perf_event *hwc, u32 filter); 115 116 static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev) 117 { 118 struct acpi_apmt_node **ptr = dev_get_platdata(dev); 119 120 return ptr ? *ptr : NULL; 121 } 122 123 /* 124 * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except 125 * counter register. The counter register can be implemented as 32-bit or 64-bit 126 * register depending on the value of PMCFGR.SIZE field. For 64-bit access, 127 * single-copy 64-bit atomic support is implementation defined. APMT node flag 128 * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit 129 * single copy atomic is not supported, the driver treats the register as a pair 130 * of 32-bit register. 131 */ 132 133 /* 134 * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence. 135 */ 136 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count) 137 { 138 u32 val_lo, val_hi; 139 u64 val; 140 141 /* Use high-low-high sequence to avoid tearing */ 142 do { 143 if (max_poll_count-- == 0) { 144 pr_err("ARM CSPMU: timeout hi-low-high sequence\n"); 145 return 0; 146 } 147 148 val_hi = readl(addr + 4); 149 val_lo = readl(addr); 150 } while (val_hi != readl(addr + 4)); 151 152 val = (((u64)val_hi << 32) | val_lo); 153 154 return val; 155 } 156 157 /* Check if cycle counter is supported. */ 158 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu) 159 { 160 return (cspmu->pmcfgr & PMCFGR_CC); 161 } 162 163 /* Get counter size, which is (PMCFGR_SIZE + 1). */ 164 static inline u32 counter_size(const struct arm_cspmu *cspmu) 165 { 166 return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1; 167 } 168 169 /* Get counter mask. */ 170 static inline u64 counter_mask(const struct arm_cspmu *cspmu) 171 { 172 return GENMASK_ULL(counter_size(cspmu) - 1, 0); 173 } 174 175 /* Check if counter is implemented as 64-bit register. */ 176 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu) 177 { 178 return (counter_size(cspmu) > 32); 179 } 180 181 ssize_t arm_cspmu_sysfs_event_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct perf_pmu_events_attr *pmu_attr; 185 186 pmu_attr = container_of(attr, typeof(*pmu_attr), attr); 187 return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id); 188 } 189 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show); 190 191 /* Default event list. */ 192 static struct attribute *arm_cspmu_event_attrs[] = { 193 ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT), 194 NULL, 195 }; 196 197 static struct attribute ** 198 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu) 199 { 200 struct attribute **attrs; 201 202 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs, 203 sizeof(arm_cspmu_event_attrs), GFP_KERNEL); 204 205 return attrs; 206 } 207 208 static umode_t 209 arm_cspmu_event_attr_is_visible(struct kobject *kobj, 210 struct attribute *attr, int unused) 211 { 212 struct device *dev = kobj_to_dev(kobj); 213 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev)); 214 struct perf_pmu_events_attr *eattr; 215 216 eattr = container_of(attr, typeof(*eattr), attr.attr); 217 218 /* Hide cycle event if not supported */ 219 if (!supports_cycle_counter(cspmu) && 220 eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT) 221 return 0; 222 223 return attr->mode; 224 } 225 226 static struct attribute *arm_cspmu_format_attrs[] = { 227 ARM_CSPMU_FORMAT_EVENT_ATTR, 228 ARM_CSPMU_FORMAT_FILTER_ATTR, 229 NULL, 230 }; 231 232 static struct attribute ** 233 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu) 234 { 235 struct attribute **attrs; 236 237 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs, 238 sizeof(arm_cspmu_format_attrs), GFP_KERNEL); 239 240 return attrs; 241 } 242 243 static u32 arm_cspmu_event_type(const struct perf_event *event) 244 { 245 return event->attr.config & ARM_CSPMU_EVENT_MASK; 246 } 247 248 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event) 249 { 250 return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT); 251 } 252 253 static u32 arm_cspmu_event_filter(const struct perf_event *event) 254 { 255 return event->attr.config1 & ARM_CSPMU_FILTER_MASK; 256 } 257 258 static ssize_t arm_cspmu_identifier_show(struct device *dev, 259 struct device_attribute *attr, 260 char *page) 261 { 262 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev)); 263 264 return sysfs_emit(page, "%s\n", cspmu->identifier); 265 } 266 267 static struct device_attribute arm_cspmu_identifier_attr = 268 __ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL); 269 270 static struct attribute *arm_cspmu_identifier_attrs[] = { 271 &arm_cspmu_identifier_attr.attr, 272 NULL, 273 }; 274 275 static struct attribute_group arm_cspmu_identifier_attr_group = { 276 .attrs = arm_cspmu_identifier_attrs, 277 }; 278 279 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu) 280 { 281 const char *identifier = 282 devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x", 283 cspmu->impl.pmiidr); 284 return identifier; 285 } 286 287 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = { 288 "mc", 289 "smmu", 290 "pcie", 291 "acpi", 292 "cache", 293 }; 294 295 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu) 296 { 297 struct device *dev; 298 struct acpi_apmt_node *apmt_node; 299 u8 pmu_type; 300 char *name; 301 char acpi_hid_string[ACPI_ID_LEN] = { 0 }; 302 static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 }; 303 304 dev = cspmu->dev; 305 apmt_node = arm_cspmu_apmt_node(dev); 306 if (!apmt_node) 307 return devm_kasprintf(dev, GFP_KERNEL, PMUNAME "_%u", 308 atomic_fetch_inc(&pmu_idx[0])); 309 310 pmu_type = apmt_node->type; 311 312 if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) { 313 dev_err(dev, "unsupported PMU type-%u\n", pmu_type); 314 return NULL; 315 } 316 317 if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) { 318 memcpy(acpi_hid_string, 319 &apmt_node->inst_primary, 320 sizeof(apmt_node->inst_primary)); 321 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME, 322 arm_cspmu_type_str[pmu_type], 323 acpi_hid_string, 324 apmt_node->inst_secondary); 325 } else { 326 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME, 327 arm_cspmu_type_str[pmu_type], 328 atomic_fetch_inc(&pmu_idx[pmu_type])); 329 } 330 331 return name; 332 } 333 334 static ssize_t arm_cspmu_cpumask_show(struct device *dev, 335 struct device_attribute *attr, 336 char *buf) 337 { 338 struct pmu *pmu = dev_get_drvdata(dev); 339 struct arm_cspmu *cspmu = to_arm_cspmu(pmu); 340 struct dev_ext_attribute *eattr = 341 container_of(attr, struct dev_ext_attribute, attr); 342 unsigned long mask_id = (unsigned long)eattr->var; 343 const cpumask_t *cpumask; 344 345 switch (mask_id) { 346 case ARM_CSPMU_ACTIVE_CPU_MASK: 347 cpumask = &cspmu->active_cpu; 348 break; 349 case ARM_CSPMU_ASSOCIATED_CPU_MASK: 350 cpumask = &cspmu->associated_cpus; 351 break; 352 default: 353 return 0; 354 } 355 return cpumap_print_to_pagebuf(true, buf, cpumask); 356 } 357 358 static struct attribute *arm_cspmu_cpumask_attrs[] = { 359 ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK), 360 ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK), 361 NULL, 362 }; 363 364 static struct attribute_group arm_cspmu_cpumask_attr_group = { 365 .attrs = arm_cspmu_cpumask_attrs, 366 }; 367 368 static struct arm_cspmu_impl_match impl_match[] = { 369 { 370 .module_name = "nvidia_cspmu", 371 .pmiidr_val = ARM_CSPMU_IMPL_ID_NVIDIA, 372 .pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER, 373 .module = NULL, 374 .impl_init_ops = NULL, 375 }, 376 { 377 .module_name = "ampere_cspmu", 378 .pmiidr_val = ARM_CSPMU_IMPL_ID_AMPERE, 379 .pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER, 380 .module = NULL, 381 .impl_init_ops = NULL, 382 }, 383 384 {0} 385 }; 386 387 static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr) 388 { 389 struct arm_cspmu_impl_match *match = impl_match; 390 391 for (; match->pmiidr_val; match++) { 392 u32 mask = match->pmiidr_mask; 393 394 if ((match->pmiidr_val & mask) == (pmiidr & mask)) 395 return match; 396 } 397 398 return NULL; 399 } 400 401 #define DEFAULT_IMPL_OP(name) .name = arm_cspmu_##name 402 403 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu) 404 { 405 int ret = 0; 406 struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev); 407 struct arm_cspmu_impl_match *match; 408 409 /* Start with a default PMU implementation */ 410 cspmu->impl.module = THIS_MODULE; 411 cspmu->impl.pmiidr = readl(cspmu->base0 + PMIIDR); 412 cspmu->impl.ops = (struct arm_cspmu_impl_ops) { 413 DEFAULT_IMPL_OP(get_event_attrs), 414 DEFAULT_IMPL_OP(get_format_attrs), 415 DEFAULT_IMPL_OP(get_identifier), 416 DEFAULT_IMPL_OP(get_name), 417 DEFAULT_IMPL_OP(is_cycle_counter_event), 418 DEFAULT_IMPL_OP(event_type), 419 DEFAULT_IMPL_OP(event_filter), 420 DEFAULT_IMPL_OP(set_ev_filter), 421 DEFAULT_IMPL_OP(event_attr_is_visible), 422 }; 423 424 /* Firmware may override implementer/product ID from PMIIDR */ 425 if (apmt_node && apmt_node->impl_id) 426 cspmu->impl.pmiidr = apmt_node->impl_id; 427 428 /* Find implementer specific attribute ops. */ 429 match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr); 430 431 /* Load implementer module and initialize the callbacks. */ 432 if (match) { 433 mutex_lock(&arm_cspmu_lock); 434 435 if (match->impl_init_ops) { 436 /* Prevent unload until PMU registration is done. */ 437 if (try_module_get(match->module)) { 438 cspmu->impl.module = match->module; 439 cspmu->impl.match = match; 440 ret = match->impl_init_ops(cspmu); 441 if (ret) 442 module_put(match->module); 443 } else { 444 WARN(1, "arm_cspmu failed to get module: %s\n", 445 match->module_name); 446 ret = -EINVAL; 447 } 448 } else { 449 request_module_nowait(match->module_name); 450 ret = -EPROBE_DEFER; 451 } 452 453 mutex_unlock(&arm_cspmu_lock); 454 } 455 456 return ret; 457 } 458 459 static struct attribute_group * 460 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu) 461 { 462 struct attribute_group *event_group; 463 struct device *dev = cspmu->dev; 464 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; 465 466 event_group = 467 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); 468 if (!event_group) 469 return NULL; 470 471 event_group->name = "events"; 472 event_group->is_visible = impl_ops->event_attr_is_visible; 473 event_group->attrs = impl_ops->get_event_attrs(cspmu); 474 475 if (!event_group->attrs) 476 return NULL; 477 478 return event_group; 479 } 480 481 static struct attribute_group * 482 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu) 483 { 484 struct attribute_group *format_group; 485 struct device *dev = cspmu->dev; 486 487 format_group = 488 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); 489 if (!format_group) 490 return NULL; 491 492 format_group->name = "format"; 493 format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu); 494 495 if (!format_group->attrs) 496 return NULL; 497 498 return format_group; 499 } 500 501 static int arm_cspmu_alloc_attr_groups(struct arm_cspmu *cspmu) 502 { 503 const struct attribute_group **attr_groups = cspmu->attr_groups; 504 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; 505 506 cspmu->identifier = impl_ops->get_identifier(cspmu); 507 cspmu->name = impl_ops->get_name(cspmu); 508 509 if (!cspmu->identifier || !cspmu->name) 510 return -ENOMEM; 511 512 attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu); 513 attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu); 514 attr_groups[2] = &arm_cspmu_identifier_attr_group; 515 attr_groups[3] = &arm_cspmu_cpumask_attr_group; 516 517 if (!attr_groups[0] || !attr_groups[1]) 518 return -ENOMEM; 519 520 return 0; 521 } 522 523 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu) 524 { 525 writel(PMCR_C | PMCR_P, cspmu->base0 + PMCR); 526 } 527 528 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu) 529 { 530 writel(PMCR_E, cspmu->base0 + PMCR); 531 } 532 533 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu) 534 { 535 writel(0, cspmu->base0 + PMCR); 536 } 537 538 static void arm_cspmu_enable(struct pmu *pmu) 539 { 540 bool disabled; 541 struct arm_cspmu *cspmu = to_arm_cspmu(pmu); 542 543 disabled = bitmap_empty(cspmu->hw_events.used_ctrs, 544 cspmu->num_logical_ctrs); 545 546 if (disabled) 547 return; 548 549 arm_cspmu_start_counters(cspmu); 550 } 551 552 static void arm_cspmu_disable(struct pmu *pmu) 553 { 554 struct arm_cspmu *cspmu = to_arm_cspmu(pmu); 555 556 arm_cspmu_stop_counters(cspmu); 557 } 558 559 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events, 560 struct perf_event *event) 561 { 562 int idx, ret; 563 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 564 565 if (supports_cycle_counter(cspmu)) { 566 if (cspmu->impl.ops.is_cycle_counter_event(event)) { 567 /* Search for available cycle counter. */ 568 if (test_and_set_bit(cspmu->cycle_counter_logical_idx, 569 hw_events->used_ctrs)) 570 return -EAGAIN; 571 572 return cspmu->cycle_counter_logical_idx; 573 } 574 575 /* 576 * Search a regular counter from the used counter bitmap. 577 * The cycle counter divides the bitmap into two parts. Search 578 * the first then second half to exclude the cycle counter bit. 579 */ 580 idx = find_first_zero_bit(hw_events->used_ctrs, 581 cspmu->cycle_counter_logical_idx); 582 if (idx >= cspmu->cycle_counter_logical_idx) { 583 idx = find_next_zero_bit( 584 hw_events->used_ctrs, 585 cspmu->num_logical_ctrs, 586 cspmu->cycle_counter_logical_idx + 1); 587 } 588 } else { 589 idx = find_first_zero_bit(hw_events->used_ctrs, 590 cspmu->num_logical_ctrs); 591 } 592 593 if (idx >= cspmu->num_logical_ctrs) 594 return -EAGAIN; 595 596 if (cspmu->impl.ops.validate_event) { 597 ret = cspmu->impl.ops.validate_event(cspmu, event); 598 if (ret) 599 return ret; 600 } 601 602 set_bit(idx, hw_events->used_ctrs); 603 604 return idx; 605 } 606 607 static bool arm_cspmu_validate_event(struct pmu *pmu, 608 struct arm_cspmu_hw_events *hw_events, 609 struct perf_event *event) 610 { 611 if (is_software_event(event)) 612 return true; 613 614 /* Reject groups spanning multiple HW PMUs. */ 615 if (event->pmu != pmu) 616 return false; 617 618 return (arm_cspmu_get_event_idx(hw_events, event) >= 0); 619 } 620 621 /* 622 * Make sure the group of events can be scheduled at once 623 * on the PMU. 624 */ 625 static bool arm_cspmu_validate_group(struct perf_event *event) 626 { 627 struct perf_event *sibling, *leader = event->group_leader; 628 struct arm_cspmu_hw_events fake_hw_events; 629 630 if (event->group_leader == event) 631 return true; 632 633 memset(&fake_hw_events, 0, sizeof(fake_hw_events)); 634 635 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader)) 636 return false; 637 638 for_each_sibling_event(sibling, leader) { 639 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, 640 sibling)) 641 return false; 642 } 643 644 return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event); 645 } 646 647 static int arm_cspmu_event_init(struct perf_event *event) 648 { 649 struct arm_cspmu *cspmu; 650 struct hw_perf_event *hwc = &event->hw; 651 652 cspmu = to_arm_cspmu(event->pmu); 653 654 if (event->attr.type != event->pmu->type) 655 return -ENOENT; 656 657 /* 658 * Following other "uncore" PMUs, we do not support sampling mode or 659 * attach to a task (per-process mode). 660 */ 661 if (is_sampling_event(event)) { 662 dev_dbg(cspmu->pmu.dev, 663 "Can't support sampling events\n"); 664 return -EOPNOTSUPP; 665 } 666 667 if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) { 668 dev_dbg(cspmu->pmu.dev, 669 "Can't support per-task counters\n"); 670 return -EINVAL; 671 } 672 673 /* 674 * Make sure the CPU assignment is on one of the CPUs associated with 675 * this PMU. 676 */ 677 if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) { 678 dev_dbg(cspmu->pmu.dev, 679 "Requested cpu is not associated with the PMU\n"); 680 return -EINVAL; 681 } 682 683 /* Enforce the current active CPU to handle the events in this PMU. */ 684 event->cpu = cpumask_first(&cspmu->active_cpu); 685 if (event->cpu >= nr_cpu_ids) 686 return -EINVAL; 687 688 if (!arm_cspmu_validate_group(event)) 689 return -EINVAL; 690 691 /* 692 * The logical counter id is tracked with hw_perf_event.extra_reg.idx. 693 * The physical counter id is tracked with hw_perf_event.idx. 694 * We don't assign an index until we actually place the event onto 695 * hardware. Use -1 to signify that we haven't decided where to put it 696 * yet. 697 */ 698 hwc->idx = -1; 699 hwc->extra_reg.idx = -1; 700 hwc->config = cspmu->impl.ops.event_type(event); 701 702 return 0; 703 } 704 705 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx) 706 { 707 return (PMEVCNTR_LO + (reg_sz * ctr_idx)); 708 } 709 710 static void arm_cspmu_write_counter(struct perf_event *event, u64 val) 711 { 712 u32 offset; 713 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 714 715 if (use_64b_counter_reg(cspmu)) { 716 offset = counter_offset(sizeof(u64), event->hw.idx); 717 718 if (cspmu->has_atomic_dword) 719 writeq(val, cspmu->base1 + offset); 720 else 721 lo_hi_writeq(val, cspmu->base1 + offset); 722 } else { 723 offset = counter_offset(sizeof(u32), event->hw.idx); 724 725 writel(lower_32_bits(val), cspmu->base1 + offset); 726 } 727 } 728 729 static u64 arm_cspmu_read_counter(struct perf_event *event) 730 { 731 u32 offset; 732 const void __iomem *counter_addr; 733 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 734 735 if (use_64b_counter_reg(cspmu)) { 736 offset = counter_offset(sizeof(u64), event->hw.idx); 737 counter_addr = cspmu->base1 + offset; 738 739 return cspmu->has_atomic_dword ? 740 readq(counter_addr) : 741 read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL); 742 } 743 744 offset = counter_offset(sizeof(u32), event->hw.idx); 745 return readl(cspmu->base1 + offset); 746 } 747 748 /* 749 * arm_cspmu_set_event_period: Set the period for the counter. 750 * 751 * To handle cases of extreme interrupt latency, we program 752 * the counter with half of the max count for the counters. 753 */ 754 static void arm_cspmu_set_event_period(struct perf_event *event) 755 { 756 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 757 u64 val = counter_mask(cspmu) >> 1ULL; 758 759 local64_set(&event->hw.prev_count, val); 760 arm_cspmu_write_counter(event, val); 761 } 762 763 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx) 764 { 765 u32 reg_id, reg_bit, inten_off, cnten_off; 766 767 reg_id = COUNTER_TO_SET_CLR_ID(idx); 768 reg_bit = COUNTER_TO_SET_CLR_BIT(idx); 769 770 inten_off = PMINTENSET + (4 * reg_id); 771 cnten_off = PMCNTENSET + (4 * reg_id); 772 773 writel(BIT(reg_bit), cspmu->base0 + inten_off); 774 writel(BIT(reg_bit), cspmu->base0 + cnten_off); 775 } 776 777 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx) 778 { 779 u32 reg_id, reg_bit, inten_off, cnten_off; 780 781 reg_id = COUNTER_TO_SET_CLR_ID(idx); 782 reg_bit = COUNTER_TO_SET_CLR_BIT(idx); 783 784 inten_off = PMINTENCLR + (4 * reg_id); 785 cnten_off = PMCNTENCLR + (4 * reg_id); 786 787 writel(BIT(reg_bit), cspmu->base0 + cnten_off); 788 writel(BIT(reg_bit), cspmu->base0 + inten_off); 789 } 790 791 static void arm_cspmu_event_update(struct perf_event *event) 792 { 793 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 794 struct hw_perf_event *hwc = &event->hw; 795 u64 delta, prev, now; 796 797 do { 798 prev = local64_read(&hwc->prev_count); 799 now = arm_cspmu_read_counter(event); 800 } while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev); 801 802 delta = (now - prev) & counter_mask(cspmu); 803 local64_add(delta, &event->count); 804 } 805 806 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu, 807 struct hw_perf_event *hwc) 808 { 809 u32 offset = PMEVTYPER + (4 * hwc->idx); 810 811 writel(hwc->config, cspmu->base0 + offset); 812 } 813 814 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu, 815 struct hw_perf_event *hwc, 816 u32 filter) 817 { 818 u32 offset = PMEVFILTR + (4 * hwc->idx); 819 820 writel(filter, cspmu->base0 + offset); 821 } 822 823 static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter) 824 { 825 u32 offset = PMCCFILTR; 826 827 writel(filter, cspmu->base0 + offset); 828 } 829 830 static void arm_cspmu_start(struct perf_event *event, int pmu_flags) 831 { 832 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 833 struct hw_perf_event *hwc = &event->hw; 834 u32 filter; 835 836 /* We always reprogram the counter */ 837 if (pmu_flags & PERF_EF_RELOAD) 838 WARN_ON(!(hwc->state & PERF_HES_UPTODATE)); 839 840 arm_cspmu_set_event_period(event); 841 842 filter = cspmu->impl.ops.event_filter(event); 843 844 if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) { 845 arm_cspmu_set_cc_filter(cspmu, filter); 846 } else { 847 arm_cspmu_set_event(cspmu, hwc); 848 cspmu->impl.ops.set_ev_filter(cspmu, hwc, filter); 849 } 850 851 hwc->state = 0; 852 853 arm_cspmu_enable_counter(cspmu, hwc->idx); 854 } 855 856 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags) 857 { 858 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 859 struct hw_perf_event *hwc = &event->hw; 860 861 if (hwc->state & PERF_HES_STOPPED) 862 return; 863 864 arm_cspmu_disable_counter(cspmu, hwc->idx); 865 arm_cspmu_event_update(event); 866 867 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 868 } 869 870 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx) 871 { 872 return (idx == cspmu->cycle_counter_logical_idx) ? 873 ARM_CSPMU_CYCLE_CNTR_IDX : idx; 874 } 875 876 static int arm_cspmu_add(struct perf_event *event, int flags) 877 { 878 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 879 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events; 880 struct hw_perf_event *hwc = &event->hw; 881 int idx; 882 883 if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), 884 &cspmu->associated_cpus))) 885 return -ENOENT; 886 887 idx = arm_cspmu_get_event_idx(hw_events, event); 888 if (idx < 0) 889 return idx; 890 891 hw_events->events[idx] = event; 892 hwc->idx = to_phys_idx(cspmu, idx); 893 hwc->extra_reg.idx = idx; 894 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 895 896 if (flags & PERF_EF_START) 897 arm_cspmu_start(event, PERF_EF_RELOAD); 898 899 /* Propagate changes to the userspace mapping. */ 900 perf_event_update_userpage(event); 901 902 return 0; 903 } 904 905 static void arm_cspmu_del(struct perf_event *event, int flags) 906 { 907 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 908 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events; 909 struct hw_perf_event *hwc = &event->hw; 910 int idx = hwc->extra_reg.idx; 911 912 arm_cspmu_stop(event, PERF_EF_UPDATE); 913 914 hw_events->events[idx] = NULL; 915 916 clear_bit(idx, hw_events->used_ctrs); 917 918 perf_event_update_userpage(event); 919 } 920 921 static void arm_cspmu_read(struct perf_event *event) 922 { 923 arm_cspmu_event_update(event); 924 } 925 926 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev) 927 { 928 struct acpi_apmt_node *apmt_node; 929 struct arm_cspmu *cspmu; 930 struct device *dev = &pdev->dev; 931 932 cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL); 933 if (!cspmu) 934 return NULL; 935 936 cspmu->dev = dev; 937 platform_set_drvdata(pdev, cspmu); 938 939 apmt_node = arm_cspmu_apmt_node(dev); 940 if (apmt_node) { 941 cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC; 942 } else { 943 u32 width = 0; 944 945 device_property_read_u32(dev, "reg-io-width", &width); 946 cspmu->has_atomic_dword = (width == 8); 947 } 948 949 return cspmu; 950 } 951 952 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu) 953 { 954 struct device *dev; 955 struct platform_device *pdev; 956 957 dev = cspmu->dev; 958 pdev = to_platform_device(dev); 959 960 /* Base address for page 0. */ 961 cspmu->base0 = devm_platform_ioremap_resource(pdev, 0); 962 if (IS_ERR(cspmu->base0)) { 963 dev_err(dev, "ioremap failed for page-0 resource\n"); 964 return PTR_ERR(cspmu->base0); 965 } 966 967 /* Base address for page 1 if supported. Otherwise point to page 0. */ 968 cspmu->base1 = cspmu->base0; 969 if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) { 970 cspmu->base1 = devm_platform_ioremap_resource(pdev, 1); 971 if (IS_ERR(cspmu->base1)) { 972 dev_err(dev, "ioremap failed for page-1 resource\n"); 973 return PTR_ERR(cspmu->base1); 974 } 975 } 976 977 cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR); 978 979 cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1; 980 981 cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS; 982 983 if (supports_cycle_counter(cspmu)) { 984 /* 985 * The last logical counter is mapped to cycle counter if 986 * there is a gap between regular and cycle counter. Otherwise, 987 * logical and physical have 1-to-1 mapping. 988 */ 989 cspmu->cycle_counter_logical_idx = 990 (cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ? 991 cspmu->num_logical_ctrs - 1 : 992 ARM_CSPMU_CYCLE_CNTR_IDX; 993 } 994 995 cspmu->num_set_clr_reg = 996 DIV_ROUND_UP(cspmu->num_logical_ctrs, 997 ARM_CSPMU_SET_CLR_COUNTER_NUM); 998 999 cspmu->hw_events.events = 1000 devm_kcalloc(dev, cspmu->num_logical_ctrs, 1001 sizeof(*cspmu->hw_events.events), GFP_KERNEL); 1002 1003 if (!cspmu->hw_events.events) 1004 return -ENOMEM; 1005 1006 return 0; 1007 } 1008 1009 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu, 1010 u32 *pmovs) 1011 { 1012 int i; 1013 u32 pmovclr_offset = PMOVSCLR; 1014 u32 has_overflowed = 0; 1015 1016 for (i = 0; i < cspmu->num_set_clr_reg; ++i) { 1017 pmovs[i] = readl(cspmu->base1 + pmovclr_offset); 1018 has_overflowed |= pmovs[i]; 1019 writel(pmovs[i], cspmu->base1 + pmovclr_offset); 1020 pmovclr_offset += sizeof(u32); 1021 } 1022 1023 return has_overflowed != 0; 1024 } 1025 1026 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev) 1027 { 1028 int idx, has_overflowed; 1029 struct perf_event *event; 1030 struct arm_cspmu *cspmu = dev; 1031 DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS); 1032 bool handled = false; 1033 1034 arm_cspmu_stop_counters(cspmu); 1035 1036 has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs); 1037 if (!has_overflowed) 1038 goto done; 1039 1040 for_each_set_bit(idx, cspmu->hw_events.used_ctrs, 1041 cspmu->num_logical_ctrs) { 1042 event = cspmu->hw_events.events[idx]; 1043 1044 if (!event) 1045 continue; 1046 1047 if (!test_bit(event->hw.idx, pmovs)) 1048 continue; 1049 1050 arm_cspmu_event_update(event); 1051 arm_cspmu_set_event_period(event); 1052 1053 handled = true; 1054 } 1055 1056 done: 1057 arm_cspmu_start_counters(cspmu); 1058 return IRQ_RETVAL(handled); 1059 } 1060 1061 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu) 1062 { 1063 int irq, ret; 1064 struct device *dev; 1065 struct platform_device *pdev; 1066 1067 dev = cspmu->dev; 1068 pdev = to_platform_device(dev); 1069 1070 /* Skip IRQ request if the PMU does not support overflow interrupt. */ 1071 irq = platform_get_irq_optional(pdev, 0); 1072 if (irq < 0) 1073 return irq == -ENXIO ? 0 : irq; 1074 1075 ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq, 1076 IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev), 1077 cspmu); 1078 if (ret) { 1079 dev_err(dev, "Could not request IRQ %d\n", irq); 1080 return ret; 1081 } 1082 1083 cspmu->irq = irq; 1084 1085 return 0; 1086 } 1087 1088 #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64) 1089 #include <acpi/processor.h> 1090 1091 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid) 1092 { 1093 struct device *cpu_dev; 1094 struct acpi_device *acpi_dev; 1095 1096 cpu_dev = get_cpu_device(cpu); 1097 if (!cpu_dev) 1098 return -ENODEV; 1099 1100 acpi_dev = ACPI_COMPANION(cpu_dev); 1101 while (acpi_dev) { 1102 if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid)) 1103 return 0; 1104 1105 acpi_dev = acpi_dev_parent(acpi_dev); 1106 } 1107 1108 return -ENODEV; 1109 } 1110 1111 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu) 1112 { 1113 struct acpi_apmt_node *apmt_node; 1114 int affinity_flag; 1115 int cpu; 1116 1117 apmt_node = arm_cspmu_apmt_node(cspmu->dev); 1118 affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY; 1119 1120 if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) { 1121 for_each_possible_cpu(cpu) { 1122 if (apmt_node->proc_affinity == 1123 get_acpi_id_for_cpu(cpu)) { 1124 cpumask_set_cpu(cpu, &cspmu->associated_cpus); 1125 break; 1126 } 1127 } 1128 } else { 1129 for_each_possible_cpu(cpu) { 1130 if (arm_cspmu_find_cpu_container( 1131 cpu, apmt_node->proc_affinity)) 1132 continue; 1133 1134 cpumask_set_cpu(cpu, &cspmu->associated_cpus); 1135 } 1136 } 1137 1138 return 0; 1139 } 1140 #else 1141 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu) 1142 { 1143 return -ENODEV; 1144 } 1145 #endif 1146 1147 static int arm_cspmu_of_get_cpus(struct arm_cspmu *cspmu) 1148 { 1149 struct of_phandle_iterator it; 1150 int ret, cpu; 1151 1152 of_for_each_phandle(&it, ret, dev_of_node(cspmu->dev), "cpus", NULL, 0) { 1153 cpu = of_cpu_node_to_id(it.node); 1154 if (cpu < 0) 1155 continue; 1156 cpumask_set_cpu(cpu, &cspmu->associated_cpus); 1157 } 1158 return ret == -ENOENT ? 0 : ret; 1159 } 1160 1161 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu) 1162 { 1163 int ret = 0; 1164 1165 if (arm_cspmu_apmt_node(cspmu->dev)) 1166 ret = arm_cspmu_acpi_get_cpus(cspmu); 1167 else if (device_property_present(cspmu->dev, "cpus")) 1168 ret = arm_cspmu_of_get_cpus(cspmu); 1169 else 1170 cpumask_copy(&cspmu->associated_cpus, cpu_possible_mask); 1171 1172 if (!ret && cpumask_empty(&cspmu->associated_cpus)) { 1173 dev_dbg(cspmu->dev, "No cpu associated with the PMU\n"); 1174 ret = -ENODEV; 1175 } 1176 return ret; 1177 } 1178 1179 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu) 1180 { 1181 int ret, capabilities; 1182 1183 ret = arm_cspmu_alloc_attr_groups(cspmu); 1184 if (ret) 1185 return ret; 1186 1187 ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state, 1188 &cspmu->cpuhp_node); 1189 if (ret) 1190 return ret; 1191 1192 capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1193 if (cspmu->irq == 0) 1194 capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1195 1196 cspmu->pmu = (struct pmu){ 1197 .task_ctx_nr = perf_invalid_context, 1198 .module = cspmu->impl.module, 1199 .parent = cspmu->dev, 1200 .pmu_enable = arm_cspmu_enable, 1201 .pmu_disable = arm_cspmu_disable, 1202 .event_init = arm_cspmu_event_init, 1203 .add = arm_cspmu_add, 1204 .del = arm_cspmu_del, 1205 .start = arm_cspmu_start, 1206 .stop = arm_cspmu_stop, 1207 .read = arm_cspmu_read, 1208 .attr_groups = cspmu->attr_groups, 1209 .capabilities = capabilities, 1210 }; 1211 1212 /* Hardware counter init */ 1213 arm_cspmu_reset_counters(cspmu); 1214 1215 ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1); 1216 if (ret) { 1217 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, 1218 &cspmu->cpuhp_node); 1219 } 1220 1221 return ret; 1222 } 1223 1224 static int arm_cspmu_device_probe(struct platform_device *pdev) 1225 { 1226 int ret; 1227 struct arm_cspmu *cspmu; 1228 1229 cspmu = arm_cspmu_alloc(pdev); 1230 if (!cspmu) 1231 return -ENOMEM; 1232 1233 ret = arm_cspmu_init_mmio(cspmu); 1234 if (ret) 1235 return ret; 1236 1237 ret = arm_cspmu_request_irq(cspmu); 1238 if (ret) 1239 return ret; 1240 1241 ret = arm_cspmu_get_cpus(cspmu); 1242 if (ret) 1243 return ret; 1244 1245 ret = arm_cspmu_init_impl_ops(cspmu); 1246 if (ret) 1247 return ret; 1248 1249 ret = arm_cspmu_register_pmu(cspmu); 1250 1251 /* Matches arm_cspmu_init_impl_ops() above. */ 1252 if (cspmu->impl.module != THIS_MODULE) 1253 module_put(cspmu->impl.module); 1254 1255 return ret; 1256 } 1257 1258 static void arm_cspmu_device_remove(struct platform_device *pdev) 1259 { 1260 struct arm_cspmu *cspmu = platform_get_drvdata(pdev); 1261 1262 perf_pmu_unregister(&cspmu->pmu); 1263 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node); 1264 } 1265 1266 static const struct platform_device_id arm_cspmu_id[] = { 1267 {DRVNAME, 0}, 1268 { }, 1269 }; 1270 MODULE_DEVICE_TABLE(platform, arm_cspmu_id); 1271 1272 static const struct of_device_id arm_cspmu_of_match[] = { 1273 { .compatible = "arm,coresight-pmu" }, 1274 {} 1275 }; 1276 MODULE_DEVICE_TABLE(of, arm_cspmu_of_match); 1277 1278 static struct platform_driver arm_cspmu_driver = { 1279 .driver = { 1280 .name = DRVNAME, 1281 .of_match_table = arm_cspmu_of_match, 1282 .suppress_bind_attrs = true, 1283 }, 1284 .probe = arm_cspmu_device_probe, 1285 .remove_new = arm_cspmu_device_remove, 1286 .id_table = arm_cspmu_id, 1287 }; 1288 1289 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu) 1290 { 1291 cpumask_set_cpu(cpu, &cspmu->active_cpu); 1292 if (cspmu->irq) 1293 WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu)); 1294 } 1295 1296 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node) 1297 { 1298 struct arm_cspmu *cspmu = 1299 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node); 1300 1301 if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus)) 1302 return 0; 1303 1304 /* If the PMU is already managed, there is nothing to do */ 1305 if (!cpumask_empty(&cspmu->active_cpu)) 1306 return 0; 1307 1308 /* Use this CPU for event counting */ 1309 arm_cspmu_set_active_cpu(cpu, cspmu); 1310 1311 return 0; 1312 } 1313 1314 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1315 { 1316 unsigned int dst; 1317 1318 struct arm_cspmu *cspmu = 1319 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node); 1320 1321 /* Nothing to do if this CPU doesn't own the PMU */ 1322 if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu)) 1323 return 0; 1324 1325 /* Choose a new CPU to migrate ownership of the PMU to */ 1326 dst = cpumask_any_and_but(&cspmu->associated_cpus, 1327 cpu_online_mask, cpu); 1328 if (dst >= nr_cpu_ids) 1329 return 0; 1330 1331 /* Use this CPU for event counting */ 1332 perf_pmu_migrate_context(&cspmu->pmu, cpu, dst); 1333 arm_cspmu_set_active_cpu(dst, cspmu); 1334 1335 return 0; 1336 } 1337 1338 static int __init arm_cspmu_init(void) 1339 { 1340 int ret; 1341 1342 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 1343 "perf/arm/cspmu:online", 1344 arm_cspmu_cpu_online, 1345 arm_cspmu_cpu_teardown); 1346 if (ret < 0) 1347 return ret; 1348 arm_cspmu_cpuhp_state = ret; 1349 return platform_driver_register(&arm_cspmu_driver); 1350 } 1351 1352 static void __exit arm_cspmu_exit(void) 1353 { 1354 platform_driver_unregister(&arm_cspmu_driver); 1355 cpuhp_remove_multi_state(arm_cspmu_cpuhp_state); 1356 } 1357 1358 int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match) 1359 { 1360 struct arm_cspmu_impl_match *match; 1361 int ret = 0; 1362 1363 match = arm_cspmu_impl_match_get(impl_match->pmiidr_val); 1364 1365 if (match) { 1366 mutex_lock(&arm_cspmu_lock); 1367 1368 if (!match->impl_init_ops) { 1369 match->module = impl_match->module; 1370 match->impl_init_ops = impl_match->impl_init_ops; 1371 } else { 1372 /* Broken match table may contain non-unique entries */ 1373 WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n", 1374 match->module_name, 1375 match->pmiidr_val, 1376 match->pmiidr_mask); 1377 1378 ret = -EINVAL; 1379 } 1380 1381 mutex_unlock(&arm_cspmu_lock); 1382 1383 if (!ret) 1384 ret = driver_attach(&arm_cspmu_driver.driver); 1385 } else { 1386 pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n", 1387 impl_match->pmiidr_val); 1388 1389 ret = -EINVAL; 1390 } 1391 1392 return ret; 1393 } 1394 EXPORT_SYMBOL_GPL(arm_cspmu_impl_register); 1395 1396 static int arm_cspmu_match_device(struct device *dev, const void *match) 1397 { 1398 struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev)); 1399 1400 return (cspmu && cspmu->impl.match == match) ? 1 : 0; 1401 } 1402 1403 void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match) 1404 { 1405 struct device *dev; 1406 struct arm_cspmu_impl_match *match; 1407 1408 match = arm_cspmu_impl_match_get(impl_match->pmiidr_val); 1409 1410 if (WARN_ON(!match)) 1411 return; 1412 1413 /* Unbind the driver from all matching backend devices. */ 1414 while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL, 1415 match, arm_cspmu_match_device))) 1416 device_release_driver(dev); 1417 1418 mutex_lock(&arm_cspmu_lock); 1419 1420 match->module = NULL; 1421 match->impl_init_ops = NULL; 1422 1423 mutex_unlock(&arm_cspmu_lock); 1424 } 1425 EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister); 1426 1427 module_init(arm_cspmu_init); 1428 module_exit(arm_cspmu_exit); 1429 1430 MODULE_LICENSE("GPL v2"); 1431