1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2016-2020 Arm Limited 3 // CMN-600 Coherent Mesh Network PMU driver 4 5 #include <linux/acpi.h> 6 #include <linux/bitfield.h> 7 #include <linux/bitops.h> 8 #include <linux/debugfs.h> 9 #include <linux/interrupt.h> 10 #include <linux/io.h> 11 #include <linux/io-64-nonatomic-lo-hi.h> 12 #include <linux/kernel.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/perf_event.h> 17 #include <linux/platform_device.h> 18 #include <linux/slab.h> 19 #include <linux/sort.h> 20 21 /* Common register stuff */ 22 #define CMN_NODE_INFO 0x0000 23 #define CMN_NI_NODE_TYPE GENMASK_ULL(15, 0) 24 #define CMN_NI_NODE_ID GENMASK_ULL(31, 16) 25 #define CMN_NI_LOGICAL_ID GENMASK_ULL(47, 32) 26 27 #define CMN_CHILD_INFO 0x0080 28 #define CMN_CI_CHILD_COUNT GENMASK_ULL(15, 0) 29 #define CMN_CI_CHILD_PTR_OFFSET GENMASK_ULL(31, 16) 30 31 #define CMN_CHILD_NODE_ADDR GENMASK(29, 0) 32 #define CMN_CHILD_NODE_EXTERNAL BIT(31) 33 34 #define CMN_MAX_DIMENSION 12 35 #define CMN_MAX_XPS (CMN_MAX_DIMENSION * CMN_MAX_DIMENSION) 36 #define CMN_MAX_DTMS (CMN_MAX_XPS + (CMN_MAX_DIMENSION - 1) * 4) 37 38 /* Currently XPs are the node type we can have most of; others top out at 128 */ 39 #define CMN_MAX_NODES_PER_EVENT CMN_MAX_XPS 40 41 /* The CFG node has various info besides the discovery tree */ 42 #define CMN_CFGM_PERIPH_ID_01 0x0008 43 #define CMN_CFGM_PID0_PART_0 GENMASK_ULL(7, 0) 44 #define CMN_CFGM_PID1_PART_1 GENMASK_ULL(35, 32) 45 #define CMN_CFGM_PERIPH_ID_23 0x0010 46 #define CMN_CFGM_PID2_REVISION GENMASK_ULL(7, 4) 47 48 #define CMN_CFGM_INFO_GLOBAL 0x0900 49 #define CMN_INFO_MULTIPLE_DTM_EN BIT_ULL(63) 50 #define CMN_INFO_RSP_VC_NUM GENMASK_ULL(53, 52) 51 #define CMN_INFO_DAT_VC_NUM GENMASK_ULL(51, 50) 52 #define CMN_INFO_DEVICE_ISO_ENABLE BIT_ULL(44) 53 54 #define CMN_CFGM_INFO_GLOBAL_1 0x0908 55 #define CMN_INFO_SNP_VC_NUM GENMASK_ULL(3, 2) 56 #define CMN_INFO_REQ_VC_NUM GENMASK_ULL(1, 0) 57 58 /* XPs also have some local topology info which has uses too */ 59 #define CMN_MXP__CONNECT_INFO(p) (0x0008 + 8 * (p)) 60 #define CMN__CONNECT_INFO_DEVICE_TYPE GENMASK_ULL(5, 0) 61 62 #define CMN_MAX_PORTS 6 63 #define CI700_CONNECT_INFO_P2_5_OFFSET 0x10 64 65 /* PMU registers occupy the 3rd 4KB page of each node's region */ 66 #define CMN_PMU_OFFSET 0x2000 67 /* ...except when they don't :( */ 68 #define CMN_S3_DTM_OFFSET 0xa000 69 #define CMN_S3_PMU_OFFSET 0xd900 70 71 /* For most nodes, this is all there is */ 72 #define CMN_PMU_EVENT_SEL 0x000 73 #define CMN__PMU_CBUSY_SNTHROTTLE_SEL GENMASK_ULL(44, 42) 74 #define CMN__PMU_SN_HOME_SEL GENMASK_ULL(40, 39) 75 #define CMN__PMU_HBT_LBT_SEL GENMASK_ULL(38, 37) 76 #define CMN__PMU_CLASS_OCCUP_ID GENMASK_ULL(36, 35) 77 /* Technically this is 4 bits wide on DNs, but we only use 2 there anyway */ 78 #define CMN__PMU_OCCUP1_ID GENMASK_ULL(34, 32) 79 80 /* Some types are designed to coexist with another device in the same node */ 81 #define CMN_CCLA_PMU_EVENT_SEL 0x008 82 #define CMN_HNP_PMU_EVENT_SEL 0x008 83 84 /* DTMs live in the PMU space of XP registers */ 85 #define CMN_DTM_WPn(n) (0x1A0 + (n) * 0x18) 86 #define CMN_DTM_WPn_CONFIG(n) (CMN_DTM_WPn(n) + 0x00) 87 #define CMN_DTM_WPn_CONFIG_WP_CHN_NUM GENMASK_ULL(20, 19) 88 #define CMN_DTM_WPn_CONFIG_WP_DEV_SEL2 GENMASK_ULL(18, 17) 89 #define CMN_DTM_WPn_CONFIG_WP_COMBINE BIT(9) 90 #define CMN_DTM_WPn_CONFIG_WP_EXCLUSIVE BIT(8) 91 #define CMN600_WPn_CONFIG_WP_COMBINE BIT(6) 92 #define CMN600_WPn_CONFIG_WP_EXCLUSIVE BIT(5) 93 #define CMN_DTM_WPn_CONFIG_WP_GRP GENMASK_ULL(5, 4) 94 #define CMN_DTM_WPn_CONFIG_WP_CHN_SEL GENMASK_ULL(3, 1) 95 #define CMN_DTM_WPn_CONFIG_WP_DEV_SEL BIT(0) 96 #define CMN_DTM_WPn_VAL(n) (CMN_DTM_WPn(n) + 0x08) 97 #define CMN_DTM_WPn_MASK(n) (CMN_DTM_WPn(n) + 0x10) 98 99 #define CMN_DTM_PMU_CONFIG 0x210 100 #define CMN__PMEVCNT0_INPUT_SEL GENMASK_ULL(37, 32) 101 #define CMN__PMEVCNT0_INPUT_SEL_WP 0x00 102 #define CMN__PMEVCNT0_INPUT_SEL_XP 0x04 103 #define CMN__PMEVCNT0_INPUT_SEL_DEV 0x10 104 #define CMN__PMEVCNT0_GLOBAL_NUM GENMASK_ULL(18, 16) 105 #define CMN__PMEVCNTn_GLOBAL_NUM_SHIFT(n) ((n) * 4) 106 #define CMN__PMEVCNT_PAIRED(n) BIT(4 + (n)) 107 #define CMN__PMEVCNT23_COMBINED BIT(2) 108 #define CMN__PMEVCNT01_COMBINED BIT(1) 109 #define CMN_DTM_PMU_CONFIG_PMU_EN BIT(0) 110 111 #define CMN_DTM_PMEVCNT 0x220 112 113 #define CMN_DTM_PMEVCNTSR 0x240 114 115 #define CMN650_DTM_UNIT_INFO 0x0910 116 #define CMN_DTM_UNIT_INFO 0x0960 117 #define CMN_DTM_UNIT_INFO_DTC_DOMAIN GENMASK_ULL(1, 0) 118 119 #define CMN_DTM_NUM_COUNTERS 4 120 /* Want more local counters? Why not replicate the whole DTM! Ugh... */ 121 #define CMN_DTM_OFFSET(n) ((n) * 0x200) 122 123 /* The DTC node is where the magic happens */ 124 #define CMN_DT_DTC_CTL 0x0a00 125 #define CMN_DT_DTC_CTL_DT_EN BIT(0) 126 #define CMN_DT_DTC_CTL_CG_DISABLE BIT(10) 127 128 /* DTC counters are paired in 64-bit registers on a 16-byte stride. Yuck */ 129 #define _CMN_DT_CNT_REG(n) ((((n) / 2) * 4 + (n) % 2) * 4) 130 #define CMN_DT_PMEVCNT(dtc, n) ((dtc)->pmu_base + _CMN_DT_CNT_REG(n)) 131 #define CMN_DT_PMCCNTR(dtc) ((dtc)->pmu_base + 0x40) 132 133 #define CMN_DT_PMEVCNTSR(dtc, n) ((dtc)->pmu_base + 0x50 + _CMN_DT_CNT_REG(n)) 134 #define CMN_DT_PMCCNTRSR(dtc) ((dtc)->pmu_base + 0x90) 135 136 #define CMN_DT_PMCR(dtc) ((dtc)->pmu_base + 0x100) 137 #define CMN_DT_PMCR_PMU_EN BIT(0) 138 #define CMN_DT_PMCR_CNTR_RST BIT(5) 139 #define CMN_DT_PMCR_OVFL_INTR_EN BIT(6) 140 141 #define CMN_DT_PMOVSR(dtc) ((dtc)->pmu_base + 0x118) 142 #define CMN_DT_PMOVSR_CLR(dtc) ((dtc)->pmu_base + 0x120) 143 144 #define CMN_DT_PMSSR(dtc) ((dtc)->pmu_base + 0x128) 145 #define CMN_DT_PMSSR_SS_STATUS(n) BIT(n) 146 147 #define CMN_DT_PMSRR(dtc) ((dtc)->pmu_base + 0x130) 148 #define CMN_DT_PMSRR_SS_REQ BIT(0) 149 150 #define CMN_DT_NUM_COUNTERS 8 151 #define CMN_MAX_DTCS 4 152 153 /* 154 * Even in the worst case a DTC counter can't wrap in fewer than 2^42 cycles, 155 * so throwing away one bit to make overflow handling easy is no big deal. 156 */ 157 #define CMN_COUNTER_INIT 0x80000000 158 /* Similarly for the 40-bit cycle counter */ 159 #define CMN_CC_INIT 0x8000000000ULL 160 161 162 /* Event attributes */ 163 #define CMN_CONFIG_TYPE GENMASK_ULL(15, 0) 164 #define CMN_CONFIG_EVENTID GENMASK_ULL(26, 16) 165 #define CMN_CONFIG_OCCUPID GENMASK_ULL(30, 27) 166 #define CMN_CONFIG_BYNODEID BIT_ULL(31) 167 #define CMN_CONFIG_NODEID GENMASK_ULL(47, 32) 168 169 #define CMN_EVENT_TYPE(event) FIELD_GET(CMN_CONFIG_TYPE, (event)->attr.config) 170 #define CMN_EVENT_EVENTID(event) FIELD_GET(CMN_CONFIG_EVENTID, (event)->attr.config) 171 #define CMN_EVENT_OCCUPID(event) FIELD_GET(CMN_CONFIG_OCCUPID, (event)->attr.config) 172 #define CMN_EVENT_BYNODEID(event) FIELD_GET(CMN_CONFIG_BYNODEID, (event)->attr.config) 173 #define CMN_EVENT_NODEID(event) FIELD_GET(CMN_CONFIG_NODEID, (event)->attr.config) 174 175 #define CMN_CONFIG_WP_COMBINE GENMASK_ULL(30, 27) 176 #define CMN_CONFIG_WP_DEV_SEL GENMASK_ULL(50, 48) 177 #define CMN_CONFIG_WP_CHN_SEL GENMASK_ULL(55, 51) 178 #define CMN_CONFIG_WP_GRP GENMASK_ULL(57, 56) 179 #define CMN_CONFIG_WP_EXCLUSIVE BIT_ULL(58) 180 #define CMN_CONFIG1_WP_VAL GENMASK_ULL(63, 0) 181 #define CMN_CONFIG2_WP_MASK GENMASK_ULL(63, 0) 182 183 #define CMN_EVENT_WP_COMBINE(event) FIELD_GET(CMN_CONFIG_WP_COMBINE, (event)->attr.config) 184 #define CMN_EVENT_WP_DEV_SEL(event) FIELD_GET(CMN_CONFIG_WP_DEV_SEL, (event)->attr.config) 185 #define CMN_EVENT_WP_CHN_SEL(event) FIELD_GET(CMN_CONFIG_WP_CHN_SEL, (event)->attr.config) 186 #define CMN_EVENT_WP_GRP(event) FIELD_GET(CMN_CONFIG_WP_GRP, (event)->attr.config) 187 #define CMN_EVENT_WP_EXCLUSIVE(event) FIELD_GET(CMN_CONFIG_WP_EXCLUSIVE, (event)->attr.config) 188 #define CMN_EVENT_WP_VAL(event) FIELD_GET(CMN_CONFIG1_WP_VAL, (event)->attr.config1) 189 #define CMN_EVENT_WP_MASK(event) FIELD_GET(CMN_CONFIG2_WP_MASK, (event)->attr.config2) 190 191 /* Made-up event IDs for watchpoint direction */ 192 #define CMN_WP_UP 0 193 #define CMN_WP_DOWN 2 194 195 196 /* Internal values for encoding event support */ 197 enum cmn_model { 198 CMN600 = 1, 199 CMN650 = 2, 200 CMN700 = 4, 201 CI700 = 8, 202 CMNS3 = 16, 203 /* ...and then we can use bitmap tricks for commonality */ 204 CMN_ANY = -1, 205 NOT_CMN600 = -2, 206 CMN_650ON = CMN650 | CMN700 | CMNS3, 207 }; 208 209 /* Actual part numbers and revision IDs defined by the hardware */ 210 enum cmn_part { 211 PART_CMN600 = 0x434, 212 PART_CMN650 = 0x436, 213 PART_CMN700 = 0x43c, 214 PART_CI700 = 0x43a, 215 PART_CMN_S3 = 0x43e, 216 }; 217 218 /* CMN-600 r0px shouldn't exist in silicon, thankfully */ 219 enum cmn_revision { 220 REV_CMN600_R1P0, 221 REV_CMN600_R1P1, 222 REV_CMN600_R1P2, 223 REV_CMN600_R1P3, 224 REV_CMN600_R2P0, 225 REV_CMN600_R3P0, 226 REV_CMN600_R3P1, 227 REV_CMN650_R0P0 = 0, 228 REV_CMN650_R1P0, 229 REV_CMN650_R1P1, 230 REV_CMN650_R2P0, 231 REV_CMN650_R1P2, 232 REV_CMN700_R0P0 = 0, 233 REV_CMN700_R1P0, 234 REV_CMN700_R2P0, 235 REV_CMN700_R3P0, 236 REV_CI700_R0P0 = 0, 237 REV_CI700_R1P0, 238 REV_CI700_R2P0, 239 }; 240 241 enum cmn_node_type { 242 CMN_TYPE_INVALID, 243 CMN_TYPE_DVM, 244 CMN_TYPE_CFG, 245 CMN_TYPE_DTC, 246 CMN_TYPE_HNI, 247 CMN_TYPE_HNF, 248 CMN_TYPE_XP, 249 CMN_TYPE_SBSX, 250 CMN_TYPE_MPAM_S, 251 CMN_TYPE_MPAM_NS, 252 CMN_TYPE_RNI, 253 CMN_TYPE_RND = 0xd, 254 CMN_TYPE_RNSAM = 0xf, 255 CMN_TYPE_MTSX, 256 CMN_TYPE_HNP, 257 CMN_TYPE_CXRA = 0x100, 258 CMN_TYPE_CXHA, 259 CMN_TYPE_CXLA, 260 CMN_TYPE_CCRA, 261 CMN_TYPE_CCHA, 262 CMN_TYPE_CCLA, 263 CMN_TYPE_CCLA_RNI, 264 CMN_TYPE_HNS = 0x200, 265 CMN_TYPE_HNS_MPAM_S, 266 CMN_TYPE_HNS_MPAM_NS, 267 CMN_TYPE_APB = 0x1000, 268 /* Not a real node type */ 269 CMN_TYPE_WP = 0x7770 270 }; 271 272 enum cmn_filter_select { 273 SEL_NONE = -1, 274 SEL_OCCUP1ID, 275 SEL_CLASS_OCCUP_ID, 276 SEL_CBUSY_SNTHROTTLE_SEL, 277 SEL_HBT_LBT_SEL, 278 SEL_SN_HOME_SEL, 279 SEL_MAX 280 }; 281 282 struct arm_cmn_node { 283 void __iomem *pmu_base; 284 u16 id, logid; 285 enum cmn_node_type type; 286 287 /* XP properties really, but replicated to children for convenience */ 288 u8 dtm; 289 s8 dtc; 290 u8 portid_bits:4; 291 u8 deviceid_bits:4; 292 /* DN/HN-F/CXHA */ 293 struct { 294 u8 val : 4; 295 u8 count : 4; 296 } occupid[SEL_MAX]; 297 union { 298 u8 event[4]; 299 __le32 event_sel; 300 u16 event_w[4]; 301 __le64 event_sel_w; 302 }; 303 }; 304 305 struct arm_cmn_dtm { 306 void __iomem *base; 307 u32 pmu_config_low; 308 union { 309 u8 input_sel[4]; 310 __le32 pmu_config_high; 311 }; 312 s8 wp_event[4]; 313 }; 314 315 struct arm_cmn_dtc { 316 void __iomem *base; 317 void __iomem *pmu_base; 318 int irq; 319 s8 irq_friend; 320 bool cc_active; 321 322 struct perf_event *counters[CMN_DT_NUM_COUNTERS]; 323 struct perf_event *cycles; 324 }; 325 326 #define CMN_STATE_DISABLED BIT(0) 327 #define CMN_STATE_TXN BIT(1) 328 329 struct arm_cmn { 330 struct device *dev; 331 void __iomem *base; 332 unsigned int state; 333 334 enum cmn_revision rev; 335 enum cmn_part part; 336 u8 mesh_x; 337 u8 mesh_y; 338 u16 num_xps; 339 u16 num_dns; 340 bool multi_dtm; 341 u8 ports_used; 342 struct { 343 unsigned int rsp_vc_num : 2; 344 unsigned int dat_vc_num : 2; 345 unsigned int snp_vc_num : 2; 346 unsigned int req_vc_num : 2; 347 }; 348 349 struct arm_cmn_node *xps; 350 struct arm_cmn_node *dns; 351 352 struct arm_cmn_dtm *dtms; 353 struct arm_cmn_dtc *dtc; 354 unsigned int num_dtcs; 355 356 int cpu; 357 struct hlist_node cpuhp_node; 358 359 struct pmu pmu; 360 struct dentry *debug; 361 }; 362 363 #define to_cmn(p) container_of(p, struct arm_cmn, pmu) 364 365 static int arm_cmn_hp_state; 366 367 struct arm_cmn_nodeid { 368 u8 port; 369 u8 dev; 370 }; 371 372 static int arm_cmn_xyidbits(const struct arm_cmn *cmn) 373 { 374 return fls((cmn->mesh_x - 1) | (cmn->mesh_y - 1)); 375 } 376 377 static struct arm_cmn_nodeid arm_cmn_nid(const struct arm_cmn_node *dn) 378 { 379 struct arm_cmn_nodeid nid; 380 381 nid.dev = dn->id & ((1U << dn->deviceid_bits) - 1); 382 nid.port = (dn->id >> dn->deviceid_bits) & ((1U << dn->portid_bits) - 1); 383 return nid; 384 } 385 386 static struct arm_cmn_node *arm_cmn_node_to_xp(const struct arm_cmn *cmn, 387 const struct arm_cmn_node *dn) 388 { 389 int id = dn->id >> (dn->portid_bits + dn->deviceid_bits); 390 int bits = arm_cmn_xyidbits(cmn); 391 int x = id >> bits; 392 int y = id & ((1U << bits) - 1); 393 394 return cmn->xps + cmn->mesh_x * y + x; 395 } 396 static struct arm_cmn_node *arm_cmn_node(const struct arm_cmn *cmn, 397 enum cmn_node_type type) 398 { 399 struct arm_cmn_node *dn; 400 401 for (dn = cmn->dns; dn->type; dn++) 402 if (dn->type == type) 403 return dn; 404 return NULL; 405 } 406 407 static enum cmn_model arm_cmn_model(const struct arm_cmn *cmn) 408 { 409 switch (cmn->part) { 410 case PART_CMN600: 411 return CMN600; 412 case PART_CMN650: 413 return CMN650; 414 case PART_CMN700: 415 return CMN700; 416 case PART_CI700: 417 return CI700; 418 case PART_CMN_S3: 419 return CMNS3; 420 default: 421 return 0; 422 }; 423 } 424 425 static int arm_cmn_pmu_offset(const struct arm_cmn *cmn, const struct arm_cmn_node *dn) 426 { 427 if (cmn->part == PART_CMN_S3) { 428 if (dn->type == CMN_TYPE_XP) 429 return CMN_S3_DTM_OFFSET; 430 return CMN_S3_PMU_OFFSET; 431 } 432 return CMN_PMU_OFFSET; 433 } 434 435 static u32 arm_cmn_device_connect_info(const struct arm_cmn *cmn, 436 const struct arm_cmn_node *xp, int port) 437 { 438 int offset = CMN_MXP__CONNECT_INFO(port) - arm_cmn_pmu_offset(cmn, xp); 439 440 if (port >= 2) { 441 if (cmn->part == PART_CMN600 || cmn->part == PART_CMN650) 442 return 0; 443 /* 444 * CI-700 may have extra ports, but still has the 445 * mesh_port_connect_info registers in the way. 446 */ 447 if (cmn->part == PART_CI700) 448 offset += CI700_CONNECT_INFO_P2_5_OFFSET; 449 } 450 451 return readl_relaxed(xp->pmu_base + offset); 452 } 453 454 static struct dentry *arm_cmn_debugfs; 455 456 #ifdef CONFIG_DEBUG_FS 457 static const char *arm_cmn_device_type(u8 type) 458 { 459 switch(FIELD_GET(CMN__CONNECT_INFO_DEVICE_TYPE, type)) { 460 case 0x00: return " |"; 461 case 0x01: return " RN-I |"; 462 case 0x02: return " RN-D |"; 463 case 0x04: return " RN-F_B |"; 464 case 0x05: return "RN-F_B_E|"; 465 case 0x06: return " RN-F_A |"; 466 case 0x07: return "RN-F_A_E|"; 467 case 0x08: return " HN-T |"; 468 case 0x09: return " HN-I |"; 469 case 0x0a: return " HN-D |"; 470 case 0x0b: return " HN-P |"; 471 case 0x0c: return " SN-F |"; 472 case 0x0d: return " SBSX |"; 473 case 0x0e: return " HN-F |"; 474 case 0x0f: return " SN-F_E |"; 475 case 0x10: return " SN-F_D |"; 476 case 0x11: return " CXHA |"; 477 case 0x12: return " CXRA |"; 478 case 0x13: return " CXRH |"; 479 case 0x14: return " RN-F_D |"; 480 case 0x15: return "RN-F_D_E|"; 481 case 0x16: return " RN-F_C |"; 482 case 0x17: return "RN-F_C_E|"; 483 case 0x18: return " RN-F_E |"; 484 case 0x19: return "RN-F_E_E|"; 485 case 0x1a: return " HN-S |"; 486 case 0x1b: return " LCN |"; 487 case 0x1c: return " MTSX |"; 488 case 0x1d: return " HN-V |"; 489 case 0x1e: return " CCG |"; 490 case 0x20: return " RN-F_F |"; 491 case 0x21: return "RN-F_F_E|"; 492 case 0x22: return " SN-F_F |"; 493 default: return " ???? |"; 494 } 495 } 496 497 static void arm_cmn_show_logid(struct seq_file *s, const struct arm_cmn_node *xp, int p, int d) 498 { 499 struct arm_cmn *cmn = s->private; 500 struct arm_cmn_node *dn; 501 u16 id = xp->id | d | (p << xp->deviceid_bits); 502 503 for (dn = cmn->dns; dn->type; dn++) { 504 int pad = dn->logid < 10; 505 506 if (dn->type == CMN_TYPE_XP) 507 continue; 508 /* Ignore the extra components that will overlap on some ports */ 509 if (dn->type < CMN_TYPE_HNI) 510 continue; 511 512 if (dn->id != id) 513 continue; 514 515 seq_printf(s, " %*c#%-*d |", pad + 1, ' ', 3 - pad, dn->logid); 516 return; 517 } 518 seq_puts(s, " |"); 519 } 520 521 static int arm_cmn_map_show(struct seq_file *s, void *data) 522 { 523 struct arm_cmn *cmn = s->private; 524 int x, y, p, pmax = fls(cmn->ports_used); 525 526 seq_puts(s, " X"); 527 for (x = 0; x < cmn->mesh_x; x++) 528 seq_printf(s, " %-2d ", x); 529 seq_puts(s, "\nY P D+"); 530 y = cmn->mesh_y; 531 while (y--) { 532 int xp_base = cmn->mesh_x * y; 533 struct arm_cmn_node *xp = cmn->xps + xp_base; 534 u8 port[CMN_MAX_PORTS][CMN_MAX_DIMENSION]; 535 536 for (x = 0; x < cmn->mesh_x; x++) 537 seq_puts(s, "--------+"); 538 539 seq_printf(s, "\n%-2d |", y); 540 for (x = 0; x < cmn->mesh_x; x++) { 541 for (p = 0; p < CMN_MAX_PORTS; p++) 542 port[p][x] = arm_cmn_device_connect_info(cmn, xp + x, p); 543 seq_printf(s, " XP #%-3d|", xp_base + x); 544 } 545 546 seq_puts(s, "\n |"); 547 for (x = 0; x < cmn->mesh_x; x++) { 548 s8 dtc = xp[x].dtc; 549 550 if (dtc < 0) 551 seq_puts(s, " DTC ?? |"); 552 else 553 seq_printf(s, " DTC %d |", dtc); 554 } 555 seq_puts(s, "\n |"); 556 for (x = 0; x < cmn->mesh_x; x++) 557 seq_puts(s, "........|"); 558 559 for (p = 0; p < pmax; p++) { 560 seq_printf(s, "\n %d |", p); 561 for (x = 0; x < cmn->mesh_x; x++) 562 seq_puts(s, arm_cmn_device_type(port[p][x])); 563 seq_puts(s, "\n 0|"); 564 for (x = 0; x < cmn->mesh_x; x++) 565 arm_cmn_show_logid(s, xp + x, p, 0); 566 seq_puts(s, "\n 1|"); 567 for (x = 0; x < cmn->mesh_x; x++) 568 arm_cmn_show_logid(s, xp + x, p, 1); 569 } 570 seq_puts(s, "\n-----+"); 571 } 572 for (x = 0; x < cmn->mesh_x; x++) 573 seq_puts(s, "--------+"); 574 seq_puts(s, "\n"); 575 return 0; 576 } 577 DEFINE_SHOW_ATTRIBUTE(arm_cmn_map); 578 579 static void arm_cmn_debugfs_init(struct arm_cmn *cmn, int id) 580 { 581 const char *name = "map"; 582 583 if (id > 0) 584 name = devm_kasprintf(cmn->dev, GFP_KERNEL, "map_%d", id); 585 if (!name) 586 return; 587 588 cmn->debug = debugfs_create_file(name, 0444, arm_cmn_debugfs, cmn, &arm_cmn_map_fops); 589 } 590 #else 591 static void arm_cmn_debugfs_init(struct arm_cmn *cmn, int id) {} 592 #endif 593 594 struct arm_cmn_hw_event { 595 struct arm_cmn_node *dn; 596 u64 dtm_idx[DIV_ROUND_UP(CMN_MAX_NODES_PER_EVENT * 2, 64)]; 597 s8 dtc_idx[CMN_MAX_DTCS]; 598 u8 num_dns; 599 u8 dtm_offset; 600 601 /* 602 * WP config registers are divided to UP and DOWN events. We need to 603 * keep to track only one of them. 604 */ 605 DECLARE_BITMAP(wp_idx, CMN_MAX_XPS); 606 607 bool wide_sel; 608 enum cmn_filter_select filter_sel; 609 }; 610 static_assert(sizeof(struct arm_cmn_hw_event) <= offsetof(struct hw_perf_event, target)); 611 612 #define for_each_hw_dn(hw, dn, i) \ 613 for (i = 0, dn = hw->dn; i < hw->num_dns; i++, dn++) 614 615 /* @i is the DTC number, @idx is the counter index on that DTC */ 616 #define for_each_hw_dtc_idx(hw, i, idx) \ 617 for (int i = 0, idx; i < CMN_MAX_DTCS; i++) if ((idx = hw->dtc_idx[i]) >= 0) 618 619 static struct arm_cmn_hw_event *to_cmn_hw(struct perf_event *event) 620 { 621 return (struct arm_cmn_hw_event *)&event->hw; 622 } 623 624 static void arm_cmn_set_index(u64 x[], unsigned int pos, unsigned int val) 625 { 626 x[pos / 32] |= (u64)val << ((pos % 32) * 2); 627 } 628 629 static unsigned int arm_cmn_get_index(u64 x[], unsigned int pos) 630 { 631 return (x[pos / 32] >> ((pos % 32) * 2)) & 3; 632 } 633 634 static void arm_cmn_set_wp_idx(unsigned long *wp_idx, unsigned int pos, bool val) 635 { 636 if (val) 637 set_bit(pos, wp_idx); 638 } 639 640 static unsigned int arm_cmn_get_wp_idx(unsigned long *wp_idx, unsigned int pos) 641 { 642 return test_bit(pos, wp_idx); 643 } 644 645 struct arm_cmn_event_attr { 646 struct device_attribute attr; 647 enum cmn_model model; 648 enum cmn_node_type type; 649 enum cmn_filter_select fsel; 650 u16 eventid; 651 u8 occupid; 652 }; 653 654 struct arm_cmn_format_attr { 655 struct device_attribute attr; 656 u64 field; 657 int config; 658 }; 659 660 #define _CMN_EVENT_ATTR(_model, _name, _type, _eventid, _occupid, _fsel)\ 661 (&((struct arm_cmn_event_attr[]) {{ \ 662 .attr = __ATTR(_name, 0444, arm_cmn_event_show, NULL), \ 663 .model = _model, \ 664 .type = _type, \ 665 .eventid = _eventid, \ 666 .occupid = _occupid, \ 667 .fsel = _fsel, \ 668 }})[0].attr.attr) 669 #define CMN_EVENT_ATTR(_model, _name, _type, _eventid) \ 670 _CMN_EVENT_ATTR(_model, _name, _type, _eventid, 0, SEL_NONE) 671 672 static ssize_t arm_cmn_event_show(struct device *dev, 673 struct device_attribute *attr, char *buf) 674 { 675 struct arm_cmn_event_attr *eattr; 676 677 eattr = container_of(attr, typeof(*eattr), attr); 678 679 if (eattr->type == CMN_TYPE_DTC) 680 return sysfs_emit(buf, "type=0x%x\n", eattr->type); 681 682 if (eattr->type == CMN_TYPE_WP) 683 return sysfs_emit(buf, 684 "type=0x%x,eventid=0x%x,wp_dev_sel=?,wp_chn_sel=?,wp_grp=?,wp_val=?,wp_mask=?\n", 685 eattr->type, eattr->eventid); 686 687 if (eattr->fsel > SEL_NONE) 688 return sysfs_emit(buf, "type=0x%x,eventid=0x%x,occupid=0x%x\n", 689 eattr->type, eattr->eventid, eattr->occupid); 690 691 return sysfs_emit(buf, "type=0x%x,eventid=0x%x\n", eattr->type, 692 eattr->eventid); 693 } 694 695 static umode_t arm_cmn_event_attr_is_visible(struct kobject *kobj, 696 struct attribute *attr, 697 int unused) 698 { 699 struct device *dev = kobj_to_dev(kobj); 700 struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev)); 701 struct arm_cmn_event_attr *eattr; 702 enum cmn_node_type type; 703 u16 eventid; 704 705 eattr = container_of(attr, typeof(*eattr), attr.attr); 706 707 if (!(eattr->model & arm_cmn_model(cmn))) 708 return 0; 709 710 type = eattr->type; 711 eventid = eattr->eventid; 712 713 /* Watchpoints aren't nodes, so avoid confusion */ 714 if (type == CMN_TYPE_WP) 715 return attr->mode; 716 717 /* Hide XP events for unused interfaces/channels */ 718 if (type == CMN_TYPE_XP) { 719 unsigned int intf = (eventid >> 2) & 7; 720 unsigned int chan = eventid >> 5; 721 722 if ((intf & 4) && !(cmn->ports_used & BIT(intf & 3))) 723 return 0; 724 725 if (chan == 4 && cmn->part == PART_CMN600) 726 return 0; 727 728 if ((chan == 5 && cmn->rsp_vc_num < 2) || 729 (chan == 6 && cmn->dat_vc_num < 2) || 730 (chan == 7 && cmn->snp_vc_num < 2) || 731 (chan == 8 && cmn->req_vc_num < 2)) 732 return 0; 733 } 734 735 /* Revision-specific differences */ 736 if (cmn->part == PART_CMN600) { 737 if (cmn->rev < REV_CMN600_R1P3) { 738 if (type == CMN_TYPE_CXRA && eventid > 0x10) 739 return 0; 740 } 741 if (cmn->rev < REV_CMN600_R1P2) { 742 if (type == CMN_TYPE_HNF && eventid == 0x1b) 743 return 0; 744 if (type == CMN_TYPE_CXRA || type == CMN_TYPE_CXHA) 745 return 0; 746 } 747 } else if (cmn->part == PART_CMN650) { 748 if (cmn->rev < REV_CMN650_R2P0 || cmn->rev == REV_CMN650_R1P2) { 749 if (type == CMN_TYPE_HNF && eventid > 0x22) 750 return 0; 751 if (type == CMN_TYPE_SBSX && eventid == 0x17) 752 return 0; 753 if (type == CMN_TYPE_RNI && eventid > 0x10) 754 return 0; 755 } 756 } else if (cmn->part == PART_CMN700) { 757 if (cmn->rev < REV_CMN700_R2P0) { 758 if (type == CMN_TYPE_HNF && eventid > 0x2c) 759 return 0; 760 if (type == CMN_TYPE_CCHA && eventid > 0x74) 761 return 0; 762 if (type == CMN_TYPE_CCLA && eventid > 0x27) 763 return 0; 764 } 765 if (cmn->rev < REV_CMN700_R1P0) { 766 if (type == CMN_TYPE_HNF && eventid > 0x2b) 767 return 0; 768 } 769 } 770 771 if (!arm_cmn_node(cmn, type)) 772 return 0; 773 774 return attr->mode; 775 } 776 777 #define _CMN_EVENT_DVM(_model, _name, _event, _occup, _fsel) \ 778 _CMN_EVENT_ATTR(_model, dn_##_name, CMN_TYPE_DVM, _event, _occup, _fsel) 779 #define CMN_EVENT_DTC(_name) \ 780 CMN_EVENT_ATTR(CMN_ANY, dtc_##_name, CMN_TYPE_DTC, 0) 781 #define CMN_EVENT_HNF(_model, _name, _event) \ 782 CMN_EVENT_ATTR(_model, hnf_##_name, CMN_TYPE_HNF, _event) 783 #define CMN_EVENT_HNI(_name, _event) \ 784 CMN_EVENT_ATTR(CMN_ANY, hni_##_name, CMN_TYPE_HNI, _event) 785 #define CMN_EVENT_HNP(_name, _event) \ 786 CMN_EVENT_ATTR(CMN_ANY, hnp_##_name, CMN_TYPE_HNP, _event) 787 #define __CMN_EVENT_XP(_name, _event) \ 788 CMN_EVENT_ATTR(CMN_ANY, mxp_##_name, CMN_TYPE_XP, _event) 789 #define CMN_EVENT_SBSX(_model, _name, _event) \ 790 CMN_EVENT_ATTR(_model, sbsx_##_name, CMN_TYPE_SBSX, _event) 791 #define CMN_EVENT_RNID(_model, _name, _event) \ 792 CMN_EVENT_ATTR(_model, rnid_##_name, CMN_TYPE_RNI, _event) 793 #define CMN_EVENT_MTSX(_name, _event) \ 794 CMN_EVENT_ATTR(CMN_ANY, mtsx_##_name, CMN_TYPE_MTSX, _event) 795 #define CMN_EVENT_CXRA(_model, _name, _event) \ 796 CMN_EVENT_ATTR(_model, cxra_##_name, CMN_TYPE_CXRA, _event) 797 #define CMN_EVENT_CXHA(_name, _event) \ 798 CMN_EVENT_ATTR(CMN_ANY, cxha_##_name, CMN_TYPE_CXHA, _event) 799 #define CMN_EVENT_CCRA(_name, _event) \ 800 CMN_EVENT_ATTR(CMN_ANY, ccra_##_name, CMN_TYPE_CCRA, _event) 801 #define CMN_EVENT_CCHA(_model, _name, _event) \ 802 CMN_EVENT_ATTR(_model, ccha_##_name, CMN_TYPE_CCHA, _event) 803 #define CMN_EVENT_CCLA(_name, _event) \ 804 CMN_EVENT_ATTR(CMN_ANY, ccla_##_name, CMN_TYPE_CCLA, _event) 805 #define CMN_EVENT_CCLA_RNI(_name, _event) \ 806 CMN_EVENT_ATTR(CMN_ANY, ccla_rni_##_name, CMN_TYPE_CCLA_RNI, _event) 807 #define CMN_EVENT_HNS(_name, _event) \ 808 CMN_EVENT_ATTR(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event) 809 810 #define CMN_EVENT_DVM(_model, _name, _event) \ 811 _CMN_EVENT_DVM(_model, _name, _event, 0, SEL_NONE) 812 #define CMN_EVENT_DVM_OCC(_model, _name, _event) \ 813 _CMN_EVENT_DVM(_model, _name##_all, _event, 0, SEL_OCCUP1ID), \ 814 _CMN_EVENT_DVM(_model, _name##_dvmop, _event, 1, SEL_OCCUP1ID), \ 815 _CMN_EVENT_DVM(_model, _name##_dvmsync, _event, 2, SEL_OCCUP1ID) 816 817 #define CMN_EVENT_HN_OCC(_model, _name, _type, _event) \ 818 _CMN_EVENT_ATTR(_model, _name##_all, _type, _event, 0, SEL_OCCUP1ID), \ 819 _CMN_EVENT_ATTR(_model, _name##_read, _type, _event, 1, SEL_OCCUP1ID), \ 820 _CMN_EVENT_ATTR(_model, _name##_write, _type, _event, 2, SEL_OCCUP1ID), \ 821 _CMN_EVENT_ATTR(_model, _name##_atomic, _type, _event, 3, SEL_OCCUP1ID), \ 822 _CMN_EVENT_ATTR(_model, _name##_stash, _type, _event, 4, SEL_OCCUP1ID) 823 #define CMN_EVENT_HN_CLS(_model, _name, _type, _event) \ 824 _CMN_EVENT_ATTR(_model, _name##_class0, _type, _event, 0, SEL_CLASS_OCCUP_ID), \ 825 _CMN_EVENT_ATTR(_model, _name##_class1, _type, _event, 1, SEL_CLASS_OCCUP_ID), \ 826 _CMN_EVENT_ATTR(_model, _name##_class2, _type, _event, 2, SEL_CLASS_OCCUP_ID), \ 827 _CMN_EVENT_ATTR(_model, _name##_class3, _type, _event, 3, SEL_CLASS_OCCUP_ID) 828 #define CMN_EVENT_HN_SNT(_model, _name, _type, _event) \ 829 _CMN_EVENT_ATTR(_model, _name##_all, _type, _event, 0, SEL_CBUSY_SNTHROTTLE_SEL), \ 830 _CMN_EVENT_ATTR(_model, _name##_group0_read, _type, _event, 1, SEL_CBUSY_SNTHROTTLE_SEL), \ 831 _CMN_EVENT_ATTR(_model, _name##_group0_write, _type, _event, 2, SEL_CBUSY_SNTHROTTLE_SEL), \ 832 _CMN_EVENT_ATTR(_model, _name##_group1_read, _type, _event, 3, SEL_CBUSY_SNTHROTTLE_SEL), \ 833 _CMN_EVENT_ATTR(_model, _name##_group1_write, _type, _event, 4, SEL_CBUSY_SNTHROTTLE_SEL), \ 834 _CMN_EVENT_ATTR(_model, _name##_read, _type, _event, 5, SEL_CBUSY_SNTHROTTLE_SEL), \ 835 _CMN_EVENT_ATTR(_model, _name##_write, _type, _event, 6, SEL_CBUSY_SNTHROTTLE_SEL) 836 837 #define CMN_EVENT_HNF_OCC(_model, _name, _event) \ 838 CMN_EVENT_HN_OCC(_model, hnf_##_name, CMN_TYPE_HNF, _event) 839 #define CMN_EVENT_HNF_CLS(_model, _name, _event) \ 840 CMN_EVENT_HN_CLS(_model, hnf_##_name, CMN_TYPE_HNF, _event) 841 #define CMN_EVENT_HNF_SNT(_model, _name, _event) \ 842 CMN_EVENT_HN_SNT(_model, hnf_##_name, CMN_TYPE_HNF, _event) 843 844 #define CMN_EVENT_HNS_OCC(_name, _event) \ 845 CMN_EVENT_HN_OCC(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event), \ 846 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_rxsnp, CMN_TYPE_HNS, _event, 5, SEL_OCCUP1ID), \ 847 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_lbt, CMN_TYPE_HNS, _event, 6, SEL_OCCUP1ID), \ 848 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_hbt, CMN_TYPE_HNS, _event, 7, SEL_OCCUP1ID) 849 #define CMN_EVENT_HNS_CLS( _name, _event) \ 850 CMN_EVENT_HN_CLS(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event) 851 #define CMN_EVENT_HNS_SNT(_name, _event) \ 852 CMN_EVENT_HN_SNT(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event) 853 #define CMN_EVENT_HNS_HBT(_name, _event) \ 854 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_all, CMN_TYPE_HNS, _event, 0, SEL_HBT_LBT_SEL), \ 855 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_hbt, CMN_TYPE_HNS, _event, 1, SEL_HBT_LBT_SEL), \ 856 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_lbt, CMN_TYPE_HNS, _event, 2, SEL_HBT_LBT_SEL) 857 #define CMN_EVENT_HNS_SNH(_name, _event) \ 858 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_all, CMN_TYPE_HNS, _event, 0, SEL_SN_HOME_SEL), \ 859 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_sn, CMN_TYPE_HNS, _event, 1, SEL_SN_HOME_SEL), \ 860 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_home, CMN_TYPE_HNS, _event, 2, SEL_SN_HOME_SEL) 861 862 #define _CMN_EVENT_XP_MESH(_name, _event) \ 863 __CMN_EVENT_XP(e_##_name, (_event) | (0 << 2)), \ 864 __CMN_EVENT_XP(w_##_name, (_event) | (1 << 2)), \ 865 __CMN_EVENT_XP(n_##_name, (_event) | (2 << 2)), \ 866 __CMN_EVENT_XP(s_##_name, (_event) | (3 << 2)) 867 868 #define _CMN_EVENT_XP_PORT(_name, _event) \ 869 __CMN_EVENT_XP(p0_##_name, (_event) | (4 << 2)), \ 870 __CMN_EVENT_XP(p1_##_name, (_event) | (5 << 2)), \ 871 __CMN_EVENT_XP(p2_##_name, (_event) | (6 << 2)), \ 872 __CMN_EVENT_XP(p3_##_name, (_event) | (7 << 2)) 873 874 #define _CMN_EVENT_XP(_name, _event) \ 875 _CMN_EVENT_XP_MESH(_name, _event), \ 876 _CMN_EVENT_XP_PORT(_name, _event) 877 878 /* Good thing there are only 3 fundamental XP events... */ 879 #define CMN_EVENT_XP(_name, _event) \ 880 _CMN_EVENT_XP(req_##_name, (_event) | (0 << 5)), \ 881 _CMN_EVENT_XP(rsp_##_name, (_event) | (1 << 5)), \ 882 _CMN_EVENT_XP(snp_##_name, (_event) | (2 << 5)), \ 883 _CMN_EVENT_XP(dat_##_name, (_event) | (3 << 5)), \ 884 _CMN_EVENT_XP(pub_##_name, (_event) | (4 << 5)), \ 885 _CMN_EVENT_XP(rsp2_##_name, (_event) | (5 << 5)), \ 886 _CMN_EVENT_XP(dat2_##_name, (_event) | (6 << 5)), \ 887 _CMN_EVENT_XP(snp2_##_name, (_event) | (7 << 5)), \ 888 _CMN_EVENT_XP(req2_##_name, (_event) | (8 << 5)) 889 890 #define CMN_EVENT_XP_DAT(_name, _event) \ 891 _CMN_EVENT_XP_PORT(dat_##_name, (_event) | (3 << 5)), \ 892 _CMN_EVENT_XP_PORT(dat2_##_name, (_event) | (6 << 5)) 893 894 895 static struct attribute *arm_cmn_event_attrs[] = { 896 CMN_EVENT_DTC(cycles), 897 898 /* 899 * DVM node events conflict with HN-I events in the equivalent PMU 900 * slot, but our lazy short-cut of using the DTM counter index for 901 * the PMU index as well happens to avoid that by construction. 902 */ 903 CMN_EVENT_DVM(CMN600, rxreq_dvmop, 0x01), 904 CMN_EVENT_DVM(CMN600, rxreq_dvmsync, 0x02), 905 CMN_EVENT_DVM(CMN600, rxreq_dvmop_vmid_filtered, 0x03), 906 CMN_EVENT_DVM(CMN600, rxreq_retried, 0x04), 907 CMN_EVENT_DVM_OCC(CMN600, rxreq_trk_occupancy, 0x05), 908 CMN_EVENT_DVM(NOT_CMN600, dvmop_tlbi, 0x01), 909 CMN_EVENT_DVM(NOT_CMN600, dvmop_bpi, 0x02), 910 CMN_EVENT_DVM(NOT_CMN600, dvmop_pici, 0x03), 911 CMN_EVENT_DVM(NOT_CMN600, dvmop_vici, 0x04), 912 CMN_EVENT_DVM(NOT_CMN600, dvmsync, 0x05), 913 CMN_EVENT_DVM(NOT_CMN600, vmid_filtered, 0x06), 914 CMN_EVENT_DVM(NOT_CMN600, rndop_filtered, 0x07), 915 CMN_EVENT_DVM(NOT_CMN600, retry, 0x08), 916 CMN_EVENT_DVM(NOT_CMN600, txsnp_flitv, 0x09), 917 CMN_EVENT_DVM(NOT_CMN600, txsnp_stall, 0x0a), 918 CMN_EVENT_DVM(NOT_CMN600, trkfull, 0x0b), 919 CMN_EVENT_DVM_OCC(NOT_CMN600, trk_occupancy, 0x0c), 920 CMN_EVENT_DVM_OCC(CMN700, trk_occupancy_cxha, 0x0d), 921 CMN_EVENT_DVM_OCC(CMN700, trk_occupancy_pdn, 0x0e), 922 CMN_EVENT_DVM(CMN700, trk_alloc, 0x0f), 923 CMN_EVENT_DVM(CMN700, trk_cxha_alloc, 0x10), 924 CMN_EVENT_DVM(CMN700, trk_pdn_alloc, 0x11), 925 CMN_EVENT_DVM(CMN700, txsnp_stall_limit, 0x12), 926 CMN_EVENT_DVM(CMN700, rxsnp_stall_starv, 0x13), 927 CMN_EVENT_DVM(CMN700, txsnp_sync_stall_op, 0x14), 928 929 CMN_EVENT_HNF(CMN_ANY, cache_miss, 0x01), 930 CMN_EVENT_HNF(CMN_ANY, slc_sf_cache_access, 0x02), 931 CMN_EVENT_HNF(CMN_ANY, cache_fill, 0x03), 932 CMN_EVENT_HNF(CMN_ANY, pocq_retry, 0x04), 933 CMN_EVENT_HNF(CMN_ANY, pocq_reqs_recvd, 0x05), 934 CMN_EVENT_HNF(CMN_ANY, sf_hit, 0x06), 935 CMN_EVENT_HNF(CMN_ANY, sf_evictions, 0x07), 936 CMN_EVENT_HNF(CMN_ANY, dir_snoops_sent, 0x08), 937 CMN_EVENT_HNF(CMN_ANY, brd_snoops_sent, 0x09), 938 CMN_EVENT_HNF(CMN_ANY, slc_eviction, 0x0a), 939 CMN_EVENT_HNF(CMN_ANY, slc_fill_invalid_way, 0x0b), 940 CMN_EVENT_HNF(CMN_ANY, mc_retries, 0x0c), 941 CMN_EVENT_HNF(CMN_ANY, mc_reqs, 0x0d), 942 CMN_EVENT_HNF(CMN_ANY, qos_hh_retry, 0x0e), 943 CMN_EVENT_HNF_OCC(CMN_ANY, qos_pocq_occupancy, 0x0f), 944 CMN_EVENT_HNF(CMN_ANY, pocq_addrhaz, 0x10), 945 CMN_EVENT_HNF(CMN_ANY, pocq_atomic_addrhaz, 0x11), 946 CMN_EVENT_HNF(CMN_ANY, ld_st_swp_adq_full, 0x12), 947 CMN_EVENT_HNF(CMN_ANY, cmp_adq_full, 0x13), 948 CMN_EVENT_HNF(CMN_ANY, txdat_stall, 0x14), 949 CMN_EVENT_HNF(CMN_ANY, txrsp_stall, 0x15), 950 CMN_EVENT_HNF(CMN_ANY, seq_full, 0x16), 951 CMN_EVENT_HNF(CMN_ANY, seq_hit, 0x17), 952 CMN_EVENT_HNF(CMN_ANY, snp_sent, 0x18), 953 CMN_EVENT_HNF(CMN_ANY, sfbi_dir_snp_sent, 0x19), 954 CMN_EVENT_HNF(CMN_ANY, sfbi_brd_snp_sent, 0x1a), 955 CMN_EVENT_HNF(CMN_ANY, snp_sent_untrk, 0x1b), 956 CMN_EVENT_HNF(CMN_ANY, intv_dirty, 0x1c), 957 CMN_EVENT_HNF(CMN_ANY, stash_snp_sent, 0x1d), 958 CMN_EVENT_HNF(CMN_ANY, stash_data_pull, 0x1e), 959 CMN_EVENT_HNF(CMN_ANY, snp_fwded, 0x1f), 960 CMN_EVENT_HNF(NOT_CMN600, atomic_fwd, 0x20), 961 CMN_EVENT_HNF(NOT_CMN600, mpam_hardlim, 0x21), 962 CMN_EVENT_HNF(NOT_CMN600, mpam_softlim, 0x22), 963 CMN_EVENT_HNF(CMN_650ON, snp_sent_cluster, 0x23), 964 CMN_EVENT_HNF(CMN_650ON, sf_imprecise_evict, 0x24), 965 CMN_EVENT_HNF(CMN_650ON, sf_evict_shared_line, 0x25), 966 CMN_EVENT_HNF_CLS(CMN700, pocq_class_occup, 0x26), 967 CMN_EVENT_HNF_CLS(CMN700, pocq_class_retry, 0x27), 968 CMN_EVENT_HNF_CLS(CMN700, class_mc_reqs, 0x28), 969 CMN_EVENT_HNF_CLS(CMN700, class_cgnt_cmin, 0x29), 970 CMN_EVENT_HNF_SNT(CMN700, sn_throttle, 0x2a), 971 CMN_EVENT_HNF_SNT(CMN700, sn_throttle_min, 0x2b), 972 CMN_EVENT_HNF(CMN700, sf_precise_to_imprecise, 0x2c), 973 CMN_EVENT_HNF(CMN700, snp_intv_cln, 0x2d), 974 CMN_EVENT_HNF(CMN700, nc_excl, 0x2e), 975 CMN_EVENT_HNF(CMN700, excl_mon_ovfl, 0x2f), 976 977 CMN_EVENT_HNI(rrt_rd_occ_cnt_ovfl, 0x20), 978 CMN_EVENT_HNI(rrt_wr_occ_cnt_ovfl, 0x21), 979 CMN_EVENT_HNI(rdt_rd_occ_cnt_ovfl, 0x22), 980 CMN_EVENT_HNI(rdt_wr_occ_cnt_ovfl, 0x23), 981 CMN_EVENT_HNI(wdb_occ_cnt_ovfl, 0x24), 982 CMN_EVENT_HNI(rrt_rd_alloc, 0x25), 983 CMN_EVENT_HNI(rrt_wr_alloc, 0x26), 984 CMN_EVENT_HNI(rdt_rd_alloc, 0x27), 985 CMN_EVENT_HNI(rdt_wr_alloc, 0x28), 986 CMN_EVENT_HNI(wdb_alloc, 0x29), 987 CMN_EVENT_HNI(txrsp_retryack, 0x2a), 988 CMN_EVENT_HNI(arvalid_no_arready, 0x2b), 989 CMN_EVENT_HNI(arready_no_arvalid, 0x2c), 990 CMN_EVENT_HNI(awvalid_no_awready, 0x2d), 991 CMN_EVENT_HNI(awready_no_awvalid, 0x2e), 992 CMN_EVENT_HNI(wvalid_no_wready, 0x2f), 993 CMN_EVENT_HNI(txdat_stall, 0x30), 994 CMN_EVENT_HNI(nonpcie_serialization, 0x31), 995 CMN_EVENT_HNI(pcie_serialization, 0x32), 996 997 /* 998 * HN-P events squat on top of the HN-I similarly to DVM events, except 999 * for being crammed into the same physical node as well. And of course 1000 * where would the fun be if the same events were in the same order... 1001 */ 1002 CMN_EVENT_HNP(rrt_wr_occ_cnt_ovfl, 0x01), 1003 CMN_EVENT_HNP(rdt_wr_occ_cnt_ovfl, 0x02), 1004 CMN_EVENT_HNP(wdb_occ_cnt_ovfl, 0x03), 1005 CMN_EVENT_HNP(rrt_wr_alloc, 0x04), 1006 CMN_EVENT_HNP(rdt_wr_alloc, 0x05), 1007 CMN_EVENT_HNP(wdb_alloc, 0x06), 1008 CMN_EVENT_HNP(awvalid_no_awready, 0x07), 1009 CMN_EVENT_HNP(awready_no_awvalid, 0x08), 1010 CMN_EVENT_HNP(wvalid_no_wready, 0x09), 1011 CMN_EVENT_HNP(rrt_rd_occ_cnt_ovfl, 0x11), 1012 CMN_EVENT_HNP(rdt_rd_occ_cnt_ovfl, 0x12), 1013 CMN_EVENT_HNP(rrt_rd_alloc, 0x13), 1014 CMN_EVENT_HNP(rdt_rd_alloc, 0x14), 1015 CMN_EVENT_HNP(arvalid_no_arready, 0x15), 1016 CMN_EVENT_HNP(arready_no_arvalid, 0x16), 1017 1018 CMN_EVENT_XP(txflit_valid, 0x01), 1019 CMN_EVENT_XP(txflit_stall, 0x02), 1020 CMN_EVENT_XP_DAT(partial_dat_flit, 0x03), 1021 /* We treat watchpoints as a special made-up class of XP events */ 1022 CMN_EVENT_ATTR(CMN_ANY, watchpoint_up, CMN_TYPE_WP, CMN_WP_UP), 1023 CMN_EVENT_ATTR(CMN_ANY, watchpoint_down, CMN_TYPE_WP, CMN_WP_DOWN), 1024 1025 CMN_EVENT_SBSX(CMN_ANY, rd_req, 0x01), 1026 CMN_EVENT_SBSX(CMN_ANY, wr_req, 0x02), 1027 CMN_EVENT_SBSX(CMN_ANY, cmo_req, 0x03), 1028 CMN_EVENT_SBSX(CMN_ANY, txrsp_retryack, 0x04), 1029 CMN_EVENT_SBSX(CMN_ANY, txdat_flitv, 0x05), 1030 CMN_EVENT_SBSX(CMN_ANY, txrsp_flitv, 0x06), 1031 CMN_EVENT_SBSX(CMN_ANY, rd_req_trkr_occ_cnt_ovfl, 0x11), 1032 CMN_EVENT_SBSX(CMN_ANY, wr_req_trkr_occ_cnt_ovfl, 0x12), 1033 CMN_EVENT_SBSX(CMN_ANY, cmo_req_trkr_occ_cnt_ovfl, 0x13), 1034 CMN_EVENT_SBSX(CMN_ANY, wdb_occ_cnt_ovfl, 0x14), 1035 CMN_EVENT_SBSX(CMN_ANY, rd_axi_trkr_occ_cnt_ovfl, 0x15), 1036 CMN_EVENT_SBSX(CMN_ANY, cmo_axi_trkr_occ_cnt_ovfl, 0x16), 1037 CMN_EVENT_SBSX(NOT_CMN600, rdb_occ_cnt_ovfl, 0x17), 1038 CMN_EVENT_SBSX(CMN_ANY, arvalid_no_arready, 0x21), 1039 CMN_EVENT_SBSX(CMN_ANY, awvalid_no_awready, 0x22), 1040 CMN_EVENT_SBSX(CMN_ANY, wvalid_no_wready, 0x23), 1041 CMN_EVENT_SBSX(CMN_ANY, txdat_stall, 0x24), 1042 CMN_EVENT_SBSX(CMN_ANY, txrsp_stall, 0x25), 1043 1044 CMN_EVENT_RNID(CMN_ANY, s0_rdata_beats, 0x01), 1045 CMN_EVENT_RNID(CMN_ANY, s1_rdata_beats, 0x02), 1046 CMN_EVENT_RNID(CMN_ANY, s2_rdata_beats, 0x03), 1047 CMN_EVENT_RNID(CMN_ANY, rxdat_flits, 0x04), 1048 CMN_EVENT_RNID(CMN_ANY, txdat_flits, 0x05), 1049 CMN_EVENT_RNID(CMN_ANY, txreq_flits_total, 0x06), 1050 CMN_EVENT_RNID(CMN_ANY, txreq_flits_retried, 0x07), 1051 CMN_EVENT_RNID(CMN_ANY, rrt_occ_ovfl, 0x08), 1052 CMN_EVENT_RNID(CMN_ANY, wrt_occ_ovfl, 0x09), 1053 CMN_EVENT_RNID(CMN_ANY, txreq_flits_replayed, 0x0a), 1054 CMN_EVENT_RNID(CMN_ANY, wrcancel_sent, 0x0b), 1055 CMN_EVENT_RNID(CMN_ANY, s0_wdata_beats, 0x0c), 1056 CMN_EVENT_RNID(CMN_ANY, s1_wdata_beats, 0x0d), 1057 CMN_EVENT_RNID(CMN_ANY, s2_wdata_beats, 0x0e), 1058 CMN_EVENT_RNID(CMN_ANY, rrt_alloc, 0x0f), 1059 CMN_EVENT_RNID(CMN_ANY, wrt_alloc, 0x10), 1060 CMN_EVENT_RNID(CMN600, rdb_unord, 0x11), 1061 CMN_EVENT_RNID(CMN600, rdb_replay, 0x12), 1062 CMN_EVENT_RNID(CMN600, rdb_hybrid, 0x13), 1063 CMN_EVENT_RNID(CMN600, rdb_ord, 0x14), 1064 CMN_EVENT_RNID(NOT_CMN600, padb_occ_ovfl, 0x11), 1065 CMN_EVENT_RNID(NOT_CMN600, rpdb_occ_ovfl, 0x12), 1066 CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice1, 0x13), 1067 CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice2, 0x14), 1068 CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice3, 0x15), 1069 CMN_EVENT_RNID(NOT_CMN600, wrt_throttled, 0x16), 1070 CMN_EVENT_RNID(CMN700, ldb_full, 0x17), 1071 CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice0, 0x18), 1072 CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice1, 0x19), 1073 CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice2, 0x1a), 1074 CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice3, 0x1b), 1075 CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice0, 0x1c), 1076 CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice1, 0x1d), 1077 CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice2, 0x1e), 1078 CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice3, 0x1f), 1079 CMN_EVENT_RNID(CMN700, rrt_burst_alloc, 0x20), 1080 CMN_EVENT_RNID(CMN700, awid_hash, 0x21), 1081 CMN_EVENT_RNID(CMN700, atomic_alloc, 0x22), 1082 CMN_EVENT_RNID(CMN700, atomic_occ_ovfl, 0x23), 1083 1084 CMN_EVENT_MTSX(tc_lookup, 0x01), 1085 CMN_EVENT_MTSX(tc_fill, 0x02), 1086 CMN_EVENT_MTSX(tc_miss, 0x03), 1087 CMN_EVENT_MTSX(tdb_forward, 0x04), 1088 CMN_EVENT_MTSX(tcq_hazard, 0x05), 1089 CMN_EVENT_MTSX(tcq_rd_alloc, 0x06), 1090 CMN_EVENT_MTSX(tcq_wr_alloc, 0x07), 1091 CMN_EVENT_MTSX(tcq_cmo_alloc, 0x08), 1092 CMN_EVENT_MTSX(axi_rd_req, 0x09), 1093 CMN_EVENT_MTSX(axi_wr_req, 0x0a), 1094 CMN_EVENT_MTSX(tcq_occ_cnt_ovfl, 0x0b), 1095 CMN_EVENT_MTSX(tdb_occ_cnt_ovfl, 0x0c), 1096 1097 CMN_EVENT_CXRA(CMN_ANY, rht_occ, 0x01), 1098 CMN_EVENT_CXRA(CMN_ANY, sht_occ, 0x02), 1099 CMN_EVENT_CXRA(CMN_ANY, rdb_occ, 0x03), 1100 CMN_EVENT_CXRA(CMN_ANY, wdb_occ, 0x04), 1101 CMN_EVENT_CXRA(CMN_ANY, ssb_occ, 0x05), 1102 CMN_EVENT_CXRA(CMN_ANY, snp_bcasts, 0x06), 1103 CMN_EVENT_CXRA(CMN_ANY, req_chains, 0x07), 1104 CMN_EVENT_CXRA(CMN_ANY, req_chain_avglen, 0x08), 1105 CMN_EVENT_CXRA(CMN_ANY, chirsp_stalls, 0x09), 1106 CMN_EVENT_CXRA(CMN_ANY, chidat_stalls, 0x0a), 1107 CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link0, 0x0b), 1108 CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link1, 0x0c), 1109 CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link2, 0x0d), 1110 CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link0, 0x0e), 1111 CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link1, 0x0f), 1112 CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link2, 0x10), 1113 CMN_EVENT_CXRA(CMN_ANY, external_chirsp_stalls, 0x11), 1114 CMN_EVENT_CXRA(CMN_ANY, external_chidat_stalls, 0x12), 1115 CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link0, 0x13), 1116 CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link1, 0x14), 1117 CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link2, 0x15), 1118 1119 CMN_EVENT_CXHA(rddatbyp, 0x21), 1120 CMN_EVENT_CXHA(chirsp_up_stall, 0x22), 1121 CMN_EVENT_CXHA(chidat_up_stall, 0x23), 1122 CMN_EVENT_CXHA(snppcrd_link0_stall, 0x24), 1123 CMN_EVENT_CXHA(snppcrd_link1_stall, 0x25), 1124 CMN_EVENT_CXHA(snppcrd_link2_stall, 0x26), 1125 CMN_EVENT_CXHA(reqtrk_occ, 0x27), 1126 CMN_EVENT_CXHA(rdb_occ, 0x28), 1127 CMN_EVENT_CXHA(rdbyp_occ, 0x29), 1128 CMN_EVENT_CXHA(wdb_occ, 0x2a), 1129 CMN_EVENT_CXHA(snptrk_occ, 0x2b), 1130 CMN_EVENT_CXHA(sdb_occ, 0x2c), 1131 CMN_EVENT_CXHA(snphaz_occ, 0x2d), 1132 1133 CMN_EVENT_CCRA(rht_occ, 0x41), 1134 CMN_EVENT_CCRA(sht_occ, 0x42), 1135 CMN_EVENT_CCRA(rdb_occ, 0x43), 1136 CMN_EVENT_CCRA(wdb_occ, 0x44), 1137 CMN_EVENT_CCRA(ssb_occ, 0x45), 1138 CMN_EVENT_CCRA(snp_bcasts, 0x46), 1139 CMN_EVENT_CCRA(req_chains, 0x47), 1140 CMN_EVENT_CCRA(req_chain_avglen, 0x48), 1141 CMN_EVENT_CCRA(chirsp_stalls, 0x49), 1142 CMN_EVENT_CCRA(chidat_stalls, 0x4a), 1143 CMN_EVENT_CCRA(cxreq_pcrd_stalls_link0, 0x4b), 1144 CMN_EVENT_CCRA(cxreq_pcrd_stalls_link1, 0x4c), 1145 CMN_EVENT_CCRA(cxreq_pcrd_stalls_link2, 0x4d), 1146 CMN_EVENT_CCRA(cxdat_pcrd_stalls_link0, 0x4e), 1147 CMN_EVENT_CCRA(cxdat_pcrd_stalls_link1, 0x4f), 1148 CMN_EVENT_CCRA(cxdat_pcrd_stalls_link2, 0x50), 1149 CMN_EVENT_CCRA(external_chirsp_stalls, 0x51), 1150 CMN_EVENT_CCRA(external_chidat_stalls, 0x52), 1151 CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link0, 0x53), 1152 CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link1, 0x54), 1153 CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link2, 0x55), 1154 CMN_EVENT_CCRA(rht_alloc, 0x56), 1155 CMN_EVENT_CCRA(sht_alloc, 0x57), 1156 CMN_EVENT_CCRA(rdb_alloc, 0x58), 1157 CMN_EVENT_CCRA(wdb_alloc, 0x59), 1158 CMN_EVENT_CCRA(ssb_alloc, 0x5a), 1159 1160 CMN_EVENT_CCHA(CMN_ANY, rddatbyp, 0x61), 1161 CMN_EVENT_CCHA(CMN_ANY, chirsp_up_stall, 0x62), 1162 CMN_EVENT_CCHA(CMN_ANY, chidat_up_stall, 0x63), 1163 CMN_EVENT_CCHA(CMN_ANY, snppcrd_link0_stall, 0x64), 1164 CMN_EVENT_CCHA(CMN_ANY, snppcrd_link1_stall, 0x65), 1165 CMN_EVENT_CCHA(CMN_ANY, snppcrd_link2_stall, 0x66), 1166 CMN_EVENT_CCHA(CMN_ANY, reqtrk_occ, 0x67), 1167 CMN_EVENT_CCHA(CMN_ANY, rdb_occ, 0x68), 1168 CMN_EVENT_CCHA(CMN_ANY, rdbyp_occ, 0x69), 1169 CMN_EVENT_CCHA(CMN_ANY, wdb_occ, 0x6a), 1170 CMN_EVENT_CCHA(CMN_ANY, snptrk_occ, 0x6b), 1171 CMN_EVENT_CCHA(CMN_ANY, sdb_occ, 0x6c), 1172 CMN_EVENT_CCHA(CMN_ANY, snphaz_occ, 0x6d), 1173 CMN_EVENT_CCHA(CMN_ANY, reqtrk_alloc, 0x6e), 1174 CMN_EVENT_CCHA(CMN_ANY, rdb_alloc, 0x6f), 1175 CMN_EVENT_CCHA(CMN_ANY, rdbyp_alloc, 0x70), 1176 CMN_EVENT_CCHA(CMN_ANY, wdb_alloc, 0x71), 1177 CMN_EVENT_CCHA(CMN_ANY, snptrk_alloc, 0x72), 1178 CMN_EVENT_CCHA(CMN_ANY, db_alloc, 0x73), 1179 CMN_EVENT_CCHA(CMN_ANY, snphaz_alloc, 0x74), 1180 CMN_EVENT_CCHA(CMN_ANY, pb_rhu_req_occ, 0x75), 1181 CMN_EVENT_CCHA(CMN_ANY, pb_rhu_req_alloc, 0x76), 1182 CMN_EVENT_CCHA(CMN_ANY, pb_rhu_pcie_req_occ, 0x77), 1183 CMN_EVENT_CCHA(CMN_ANY, pb_rhu_pcie_req_alloc, 0x78), 1184 CMN_EVENT_CCHA(CMN_ANY, pb_pcie_wr_req_occ, 0x79), 1185 CMN_EVENT_CCHA(CMN_ANY, pb_pcie_wr_req_alloc, 0x7a), 1186 CMN_EVENT_CCHA(CMN_ANY, pb_pcie_reg_req_occ, 0x7b), 1187 CMN_EVENT_CCHA(CMN_ANY, pb_pcie_reg_req_alloc, 0x7c), 1188 CMN_EVENT_CCHA(CMN_ANY, pb_pcie_rsvd_req_occ, 0x7d), 1189 CMN_EVENT_CCHA(CMN_ANY, pb_pcie_rsvd_req_alloc, 0x7e), 1190 CMN_EVENT_CCHA(CMN_ANY, pb_rhu_dat_occ, 0x7f), 1191 CMN_EVENT_CCHA(CMN_ANY, pb_rhu_dat_alloc, 0x80), 1192 CMN_EVENT_CCHA(CMN_ANY, pb_rhu_pcie_dat_occ, 0x81), 1193 CMN_EVENT_CCHA(CMN_ANY, pb_rhu_pcie_dat_alloc, 0x82), 1194 CMN_EVENT_CCHA(CMN_ANY, pb_pcie_wr_dat_occ, 0x83), 1195 CMN_EVENT_CCHA(CMN_ANY, pb_pcie_wr_dat_alloc, 0x84), 1196 CMN_EVENT_CCHA(CMNS3, chirsp1_up_stall, 0x85), 1197 1198 CMN_EVENT_CCLA(rx_cxs, 0x21), 1199 CMN_EVENT_CCLA(tx_cxs, 0x22), 1200 CMN_EVENT_CCLA(rx_cxs_avg_size, 0x23), 1201 CMN_EVENT_CCLA(tx_cxs_avg_size, 0x24), 1202 CMN_EVENT_CCLA(tx_cxs_lcrd_backpressure, 0x25), 1203 CMN_EVENT_CCLA(link_crdbuf_occ, 0x26), 1204 CMN_EVENT_CCLA(link_crdbuf_alloc, 0x27), 1205 CMN_EVENT_CCLA(pfwd_rcvr_cxs, 0x28), 1206 CMN_EVENT_CCLA(pfwd_sndr_num_flits, 0x29), 1207 CMN_EVENT_CCLA(pfwd_sndr_stalls_static_crd, 0x2a), 1208 CMN_EVENT_CCLA(pfwd_sndr_stalls_dynmaic_crd, 0x2b), 1209 1210 CMN_EVENT_HNS_HBT(cache_miss, 0x01), 1211 CMN_EVENT_HNS_HBT(slc_sf_cache_access, 0x02), 1212 CMN_EVENT_HNS_HBT(cache_fill, 0x03), 1213 CMN_EVENT_HNS_HBT(pocq_retry, 0x04), 1214 CMN_EVENT_HNS_HBT(pocq_reqs_recvd, 0x05), 1215 CMN_EVENT_HNS_HBT(sf_hit, 0x06), 1216 CMN_EVENT_HNS_HBT(sf_evictions, 0x07), 1217 CMN_EVENT_HNS(dir_snoops_sent, 0x08), 1218 CMN_EVENT_HNS(brd_snoops_sent, 0x09), 1219 CMN_EVENT_HNS_HBT(slc_eviction, 0x0a), 1220 CMN_EVENT_HNS_HBT(slc_fill_invalid_way, 0x0b), 1221 CMN_EVENT_HNS(mc_retries_local, 0x0c), 1222 CMN_EVENT_HNS_SNH(mc_reqs_local, 0x0d), 1223 CMN_EVENT_HNS(qos_hh_retry, 0x0e), 1224 CMN_EVENT_HNS_OCC(qos_pocq_occupancy, 0x0f), 1225 CMN_EVENT_HNS(pocq_addrhaz, 0x10), 1226 CMN_EVENT_HNS(pocq_atomic_addrhaz, 0x11), 1227 CMN_EVENT_HNS(ld_st_swp_adq_full, 0x12), 1228 CMN_EVENT_HNS(cmp_adq_full, 0x13), 1229 CMN_EVENT_HNS(txdat_stall, 0x14), 1230 CMN_EVENT_HNS(txrsp_stall, 0x15), 1231 CMN_EVENT_HNS(seq_full, 0x16), 1232 CMN_EVENT_HNS(seq_hit, 0x17), 1233 CMN_EVENT_HNS(snp_sent, 0x18), 1234 CMN_EVENT_HNS(sfbi_dir_snp_sent, 0x19), 1235 CMN_EVENT_HNS(sfbi_brd_snp_sent, 0x1a), 1236 CMN_EVENT_HNS(intv_dirty, 0x1c), 1237 CMN_EVENT_HNS(stash_snp_sent, 0x1d), 1238 CMN_EVENT_HNS(stash_data_pull, 0x1e), 1239 CMN_EVENT_HNS(snp_fwded, 0x1f), 1240 CMN_EVENT_HNS(atomic_fwd, 0x20), 1241 CMN_EVENT_HNS(mpam_hardlim, 0x21), 1242 CMN_EVENT_HNS(mpam_softlim, 0x22), 1243 CMN_EVENT_HNS(snp_sent_cluster, 0x23), 1244 CMN_EVENT_HNS(sf_imprecise_evict, 0x24), 1245 CMN_EVENT_HNS(sf_evict_shared_line, 0x25), 1246 CMN_EVENT_HNS_CLS(pocq_class_occup, 0x26), 1247 CMN_EVENT_HNS_CLS(pocq_class_retry, 0x27), 1248 CMN_EVENT_HNS_CLS(class_mc_reqs_local, 0x28), 1249 CMN_EVENT_HNS_CLS(class_cgnt_cmin, 0x29), 1250 CMN_EVENT_HNS_SNT(sn_throttle, 0x2a), 1251 CMN_EVENT_HNS_SNT(sn_throttle_min, 0x2b), 1252 CMN_EVENT_HNS(sf_precise_to_imprecise, 0x2c), 1253 CMN_EVENT_HNS(snp_intv_cln, 0x2d), 1254 CMN_EVENT_HNS(nc_excl, 0x2e), 1255 CMN_EVENT_HNS(excl_mon_ovfl, 0x2f), 1256 CMN_EVENT_HNS(snp_req_recvd, 0x30), 1257 CMN_EVENT_HNS(snp_req_byp_pocq, 0x31), 1258 CMN_EVENT_HNS(dir_ccgha_snp_sent, 0x32), 1259 CMN_EVENT_HNS(brd_ccgha_snp_sent, 0x33), 1260 CMN_EVENT_HNS(ccgha_snp_stall, 0x34), 1261 CMN_EVENT_HNS(lbt_req_hardlim, 0x35), 1262 CMN_EVENT_HNS(hbt_req_hardlim, 0x36), 1263 CMN_EVENT_HNS(sf_reupdate, 0x37), 1264 CMN_EVENT_HNS(excl_sf_imprecise, 0x38), 1265 CMN_EVENT_HNS(snp_pocq_addrhaz, 0x39), 1266 CMN_EVENT_HNS(mc_retries_remote, 0x3a), 1267 CMN_EVENT_HNS_SNH(mc_reqs_remote, 0x3b), 1268 CMN_EVENT_HNS_CLS(class_mc_reqs_remote, 0x3c), 1269 1270 NULL 1271 }; 1272 1273 static const struct attribute_group arm_cmn_event_attrs_group = { 1274 .name = "events", 1275 .attrs = arm_cmn_event_attrs, 1276 .is_visible = arm_cmn_event_attr_is_visible, 1277 }; 1278 1279 static ssize_t arm_cmn_format_show(struct device *dev, 1280 struct device_attribute *attr, char *buf) 1281 { 1282 struct arm_cmn_format_attr *fmt = container_of(attr, typeof(*fmt), attr); 1283 1284 if (!fmt->config) 1285 return sysfs_emit(buf, "config:%*pbl\n", 64, &fmt->field); 1286 1287 return sysfs_emit(buf, "config%d:%*pbl\n", fmt->config, 64, &fmt->field); 1288 } 1289 1290 #define _CMN_FORMAT_ATTR(_name, _cfg, _fld) \ 1291 (&((struct arm_cmn_format_attr[]) {{ \ 1292 .attr = __ATTR(_name, 0444, arm_cmn_format_show, NULL), \ 1293 .config = _cfg, \ 1294 .field = _fld, \ 1295 }})[0].attr.attr) 1296 #define CMN_FORMAT_ATTR(_name, _fld) _CMN_FORMAT_ATTR(_name, 0, _fld) 1297 1298 static struct attribute *arm_cmn_format_attrs[] = { 1299 CMN_FORMAT_ATTR(type, CMN_CONFIG_TYPE), 1300 CMN_FORMAT_ATTR(eventid, CMN_CONFIG_EVENTID), 1301 CMN_FORMAT_ATTR(occupid, CMN_CONFIG_OCCUPID), 1302 CMN_FORMAT_ATTR(bynodeid, CMN_CONFIG_BYNODEID), 1303 CMN_FORMAT_ATTR(nodeid, CMN_CONFIG_NODEID), 1304 1305 CMN_FORMAT_ATTR(wp_dev_sel, CMN_CONFIG_WP_DEV_SEL), 1306 CMN_FORMAT_ATTR(wp_chn_sel, CMN_CONFIG_WP_CHN_SEL), 1307 CMN_FORMAT_ATTR(wp_grp, CMN_CONFIG_WP_GRP), 1308 CMN_FORMAT_ATTR(wp_exclusive, CMN_CONFIG_WP_EXCLUSIVE), 1309 CMN_FORMAT_ATTR(wp_combine, CMN_CONFIG_WP_COMBINE), 1310 1311 _CMN_FORMAT_ATTR(wp_val, 1, CMN_CONFIG1_WP_VAL), 1312 _CMN_FORMAT_ATTR(wp_mask, 2, CMN_CONFIG2_WP_MASK), 1313 1314 NULL 1315 }; 1316 1317 static const struct attribute_group arm_cmn_format_attrs_group = { 1318 .name = "format", 1319 .attrs = arm_cmn_format_attrs, 1320 }; 1321 1322 static ssize_t arm_cmn_cpumask_show(struct device *dev, 1323 struct device_attribute *attr, char *buf) 1324 { 1325 struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev)); 1326 1327 return cpumap_print_to_pagebuf(true, buf, cpumask_of(cmn->cpu)); 1328 } 1329 1330 static struct device_attribute arm_cmn_cpumask_attr = 1331 __ATTR(cpumask, 0444, arm_cmn_cpumask_show, NULL); 1332 1333 static ssize_t arm_cmn_identifier_show(struct device *dev, 1334 struct device_attribute *attr, char *buf) 1335 { 1336 struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev)); 1337 1338 return sysfs_emit(buf, "%03x%02x\n", cmn->part, cmn->rev); 1339 } 1340 1341 static struct device_attribute arm_cmn_identifier_attr = 1342 __ATTR(identifier, 0444, arm_cmn_identifier_show, NULL); 1343 1344 static struct attribute *arm_cmn_other_attrs[] = { 1345 &arm_cmn_cpumask_attr.attr, 1346 &arm_cmn_identifier_attr.attr, 1347 NULL, 1348 }; 1349 1350 static const struct attribute_group arm_cmn_other_attrs_group = { 1351 .attrs = arm_cmn_other_attrs, 1352 }; 1353 1354 static const struct attribute_group *arm_cmn_attr_groups[] = { 1355 &arm_cmn_event_attrs_group, 1356 &arm_cmn_format_attrs_group, 1357 &arm_cmn_other_attrs_group, 1358 NULL 1359 }; 1360 1361 static int arm_cmn_find_free_wp_idx(struct arm_cmn_dtm *dtm, 1362 struct perf_event *event) 1363 { 1364 int wp_idx = CMN_EVENT_EVENTID(event); 1365 1366 if (dtm->wp_event[wp_idx] >= 0) 1367 if (dtm->wp_event[++wp_idx] >= 0) 1368 return -ENOSPC; 1369 1370 return wp_idx; 1371 } 1372 1373 static int arm_cmn_get_assigned_wp_idx(struct perf_event *event, 1374 struct arm_cmn_hw_event *hw, 1375 unsigned int pos) 1376 { 1377 return CMN_EVENT_EVENTID(event) + arm_cmn_get_wp_idx(hw->wp_idx, pos); 1378 } 1379 1380 static void arm_cmn_claim_wp_idx(struct arm_cmn_dtm *dtm, 1381 struct perf_event *event, 1382 unsigned int dtc, int wp_idx, 1383 unsigned int pos) 1384 { 1385 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1386 1387 dtm->wp_event[wp_idx] = hw->dtc_idx[dtc]; 1388 arm_cmn_set_wp_idx(hw->wp_idx, pos, wp_idx - CMN_EVENT_EVENTID(event)); 1389 } 1390 1391 static u32 arm_cmn_wp_config(struct perf_event *event, int wp_idx) 1392 { 1393 u32 config; 1394 u32 dev = CMN_EVENT_WP_DEV_SEL(event); 1395 u32 chn = CMN_EVENT_WP_CHN_SEL(event); 1396 u32 grp = CMN_EVENT_WP_GRP(event); 1397 u32 exc = CMN_EVENT_WP_EXCLUSIVE(event); 1398 u32 combine = CMN_EVENT_WP_COMBINE(event); 1399 bool is_cmn600 = to_cmn(event->pmu)->part == PART_CMN600; 1400 1401 /* CMN-600 supports only primary and secondary matching groups */ 1402 if (is_cmn600) 1403 grp &= 1; 1404 1405 config = FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_DEV_SEL, dev) | 1406 FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_CHN_SEL, chn) | 1407 FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_GRP, grp) | 1408 FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_DEV_SEL2, dev >> 1); 1409 if (exc) 1410 config |= is_cmn600 ? CMN600_WPn_CONFIG_WP_EXCLUSIVE : 1411 CMN_DTM_WPn_CONFIG_WP_EXCLUSIVE; 1412 1413 /* wp_combine is available only on WP0 and WP2 */ 1414 if (combine && !(wp_idx & 0x1)) 1415 config |= is_cmn600 ? CMN600_WPn_CONFIG_WP_COMBINE : 1416 CMN_DTM_WPn_CONFIG_WP_COMBINE; 1417 return config; 1418 } 1419 1420 static void arm_cmn_set_state(struct arm_cmn *cmn, u32 state) 1421 { 1422 if (!cmn->state) 1423 writel_relaxed(0, CMN_DT_PMCR(&cmn->dtc[0])); 1424 cmn->state |= state; 1425 } 1426 1427 static void arm_cmn_clear_state(struct arm_cmn *cmn, u32 state) 1428 { 1429 cmn->state &= ~state; 1430 if (!cmn->state) 1431 writel_relaxed(CMN_DT_PMCR_PMU_EN | CMN_DT_PMCR_OVFL_INTR_EN, 1432 CMN_DT_PMCR(&cmn->dtc[0])); 1433 } 1434 1435 static void arm_cmn_pmu_enable(struct pmu *pmu) 1436 { 1437 arm_cmn_clear_state(to_cmn(pmu), CMN_STATE_DISABLED); 1438 } 1439 1440 static void arm_cmn_pmu_disable(struct pmu *pmu) 1441 { 1442 arm_cmn_set_state(to_cmn(pmu), CMN_STATE_DISABLED); 1443 } 1444 1445 static u64 arm_cmn_read_dtm(struct arm_cmn *cmn, struct arm_cmn_hw_event *hw, 1446 bool snapshot) 1447 { 1448 struct arm_cmn_dtm *dtm = NULL; 1449 struct arm_cmn_node *dn; 1450 unsigned int i, offset, dtm_idx; 1451 u64 reg, count = 0; 1452 1453 offset = snapshot ? CMN_DTM_PMEVCNTSR : CMN_DTM_PMEVCNT; 1454 for_each_hw_dn(hw, dn, i) { 1455 if (dtm != &cmn->dtms[dn->dtm]) { 1456 dtm = &cmn->dtms[dn->dtm] + hw->dtm_offset; 1457 reg = readq_relaxed(dtm->base + offset); 1458 } 1459 dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); 1460 count += (u16)(reg >> (dtm_idx * 16)); 1461 } 1462 return count; 1463 } 1464 1465 static u64 arm_cmn_read_cc(struct arm_cmn_dtc *dtc) 1466 { 1467 void __iomem *pmccntr = CMN_DT_PMCCNTR(dtc); 1468 u64 val = readq_relaxed(pmccntr); 1469 1470 writeq_relaxed(CMN_CC_INIT, pmccntr); 1471 return (val - CMN_CC_INIT) & ((CMN_CC_INIT << 1) - 1); 1472 } 1473 1474 static u32 arm_cmn_read_counter(struct arm_cmn_dtc *dtc, int idx) 1475 { 1476 void __iomem *pmevcnt = CMN_DT_PMEVCNT(dtc, idx); 1477 u32 val = readl_relaxed(pmevcnt); 1478 1479 writel_relaxed(CMN_COUNTER_INIT, pmevcnt); 1480 return val - CMN_COUNTER_INIT; 1481 } 1482 1483 static void arm_cmn_init_counter(struct perf_event *event) 1484 { 1485 struct arm_cmn *cmn = to_cmn(event->pmu); 1486 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1487 u64 count; 1488 1489 for_each_hw_dtc_idx(hw, i, idx) { 1490 writel_relaxed(CMN_COUNTER_INIT, CMN_DT_PMEVCNT(&cmn->dtc[i], idx)); 1491 cmn->dtc[i].counters[idx] = event; 1492 } 1493 1494 count = arm_cmn_read_dtm(cmn, hw, false); 1495 local64_set(&event->hw.prev_count, count); 1496 } 1497 1498 static void arm_cmn_event_read(struct perf_event *event) 1499 { 1500 struct arm_cmn *cmn = to_cmn(event->pmu); 1501 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1502 u64 delta, new, prev; 1503 unsigned long flags; 1504 1505 if (CMN_EVENT_TYPE(event) == CMN_TYPE_DTC) { 1506 delta = arm_cmn_read_cc(cmn->dtc + hw->dtc_idx[0]); 1507 local64_add(delta, &event->count); 1508 return; 1509 } 1510 new = arm_cmn_read_dtm(cmn, hw, false); 1511 prev = local64_xchg(&event->hw.prev_count, new); 1512 1513 delta = new - prev; 1514 1515 local_irq_save(flags); 1516 for_each_hw_dtc_idx(hw, i, idx) { 1517 new = arm_cmn_read_counter(cmn->dtc + i, idx); 1518 delta += new << 16; 1519 } 1520 local_irq_restore(flags); 1521 local64_add(delta, &event->count); 1522 } 1523 1524 static int arm_cmn_set_event_sel_hi(struct arm_cmn_node *dn, 1525 enum cmn_filter_select fsel, u8 occupid) 1526 { 1527 u64 reg; 1528 1529 if (fsel == SEL_NONE) 1530 return 0; 1531 1532 if (!dn->occupid[fsel].count) { 1533 dn->occupid[fsel].val = occupid; 1534 reg = FIELD_PREP(CMN__PMU_CBUSY_SNTHROTTLE_SEL, 1535 dn->occupid[SEL_CBUSY_SNTHROTTLE_SEL].val) | 1536 FIELD_PREP(CMN__PMU_SN_HOME_SEL, 1537 dn->occupid[SEL_SN_HOME_SEL].val) | 1538 FIELD_PREP(CMN__PMU_HBT_LBT_SEL, 1539 dn->occupid[SEL_HBT_LBT_SEL].val) | 1540 FIELD_PREP(CMN__PMU_CLASS_OCCUP_ID, 1541 dn->occupid[SEL_CLASS_OCCUP_ID].val) | 1542 FIELD_PREP(CMN__PMU_OCCUP1_ID, 1543 dn->occupid[SEL_OCCUP1ID].val); 1544 writel_relaxed(reg >> 32, dn->pmu_base + CMN_PMU_EVENT_SEL + 4); 1545 } else if (dn->occupid[fsel].val != occupid) { 1546 return -EBUSY; 1547 } 1548 dn->occupid[fsel].count++; 1549 return 0; 1550 } 1551 1552 static void arm_cmn_set_event_sel_lo(struct arm_cmn_node *dn, int dtm_idx, 1553 int eventid, bool wide_sel) 1554 { 1555 if (wide_sel) { 1556 dn->event_w[dtm_idx] = eventid; 1557 writeq_relaxed(le64_to_cpu(dn->event_sel_w), dn->pmu_base + CMN_PMU_EVENT_SEL); 1558 } else { 1559 dn->event[dtm_idx] = eventid; 1560 writel_relaxed(le32_to_cpu(dn->event_sel), dn->pmu_base + CMN_PMU_EVENT_SEL); 1561 } 1562 } 1563 1564 static void arm_cmn_event_start(struct perf_event *event, int flags) 1565 { 1566 struct arm_cmn *cmn = to_cmn(event->pmu); 1567 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1568 struct arm_cmn_node *dn; 1569 enum cmn_node_type type = CMN_EVENT_TYPE(event); 1570 int i; 1571 1572 if (type == CMN_TYPE_DTC) { 1573 struct arm_cmn_dtc *dtc = cmn->dtc + hw->dtc_idx[0]; 1574 1575 writel_relaxed(CMN_DT_DTC_CTL_DT_EN | CMN_DT_DTC_CTL_CG_DISABLE, 1576 dtc->base + CMN_DT_DTC_CTL); 1577 writeq_relaxed(CMN_CC_INIT, CMN_DT_PMCCNTR(dtc)); 1578 dtc->cc_active = true; 1579 } else if (type == CMN_TYPE_WP) { 1580 u64 val = CMN_EVENT_WP_VAL(event); 1581 u64 mask = CMN_EVENT_WP_MASK(event); 1582 1583 for_each_hw_dn(hw, dn, i) { 1584 void __iomem *base = dn->pmu_base + CMN_DTM_OFFSET(hw->dtm_offset); 1585 int wp_idx = arm_cmn_get_assigned_wp_idx(event, hw, i); 1586 1587 writeq_relaxed(val, base + CMN_DTM_WPn_VAL(wp_idx)); 1588 writeq_relaxed(mask, base + CMN_DTM_WPn_MASK(wp_idx)); 1589 } 1590 } else for_each_hw_dn(hw, dn, i) { 1591 int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); 1592 1593 arm_cmn_set_event_sel_lo(dn, dtm_idx, CMN_EVENT_EVENTID(event), 1594 hw->wide_sel); 1595 } 1596 } 1597 1598 static void arm_cmn_event_stop(struct perf_event *event, int flags) 1599 { 1600 struct arm_cmn *cmn = to_cmn(event->pmu); 1601 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1602 struct arm_cmn_node *dn; 1603 enum cmn_node_type type = CMN_EVENT_TYPE(event); 1604 int i; 1605 1606 if (type == CMN_TYPE_DTC) { 1607 struct arm_cmn_dtc *dtc = cmn->dtc + hw->dtc_idx[0]; 1608 1609 dtc->cc_active = false; 1610 writel_relaxed(CMN_DT_DTC_CTL_DT_EN, dtc->base + CMN_DT_DTC_CTL); 1611 } else if (type == CMN_TYPE_WP) { 1612 for_each_hw_dn(hw, dn, i) { 1613 void __iomem *base = dn->pmu_base + CMN_DTM_OFFSET(hw->dtm_offset); 1614 int wp_idx = arm_cmn_get_assigned_wp_idx(event, hw, i); 1615 1616 writeq_relaxed(0, base + CMN_DTM_WPn_MASK(wp_idx)); 1617 writeq_relaxed(~0ULL, base + CMN_DTM_WPn_VAL(wp_idx)); 1618 } 1619 } else for_each_hw_dn(hw, dn, i) { 1620 int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); 1621 1622 arm_cmn_set_event_sel_lo(dn, dtm_idx, 0, hw->wide_sel); 1623 } 1624 1625 arm_cmn_event_read(event); 1626 } 1627 1628 struct arm_cmn_val { 1629 u8 dtm_count[CMN_MAX_DTMS]; 1630 u8 occupid[CMN_MAX_DTMS][SEL_MAX]; 1631 u8 wp[CMN_MAX_DTMS][4]; 1632 u8 wp_combine[CMN_MAX_DTMS][2]; 1633 int dtc_count[CMN_MAX_DTCS]; 1634 bool cycles; 1635 }; 1636 1637 static int arm_cmn_val_find_free_wp_config(struct perf_event *event, 1638 struct arm_cmn_val *val, int dtm) 1639 { 1640 int wp_idx = CMN_EVENT_EVENTID(event); 1641 1642 if (val->wp[dtm][wp_idx]) 1643 if (val->wp[dtm][++wp_idx]) 1644 return -ENOSPC; 1645 1646 return wp_idx; 1647 } 1648 1649 static void arm_cmn_val_add_event(struct arm_cmn *cmn, struct arm_cmn_val *val, 1650 struct perf_event *event) 1651 { 1652 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1653 struct arm_cmn_node *dn; 1654 enum cmn_node_type type; 1655 int i; 1656 1657 if (is_software_event(event)) 1658 return; 1659 1660 type = CMN_EVENT_TYPE(event); 1661 if (type == CMN_TYPE_DTC) { 1662 val->cycles = true; 1663 return; 1664 } 1665 1666 for_each_hw_dtc_idx(hw, dtc, idx) 1667 val->dtc_count[dtc]++; 1668 1669 for_each_hw_dn(hw, dn, i) { 1670 int wp_idx, dtm = dn->dtm, sel = hw->filter_sel; 1671 1672 val->dtm_count[dtm]++; 1673 1674 if (sel > SEL_NONE) 1675 val->occupid[dtm][sel] = CMN_EVENT_OCCUPID(event) + 1; 1676 1677 if (type != CMN_TYPE_WP) 1678 continue; 1679 1680 wp_idx = arm_cmn_val_find_free_wp_config(event, val, dtm); 1681 val->wp[dtm][wp_idx] = 1; 1682 val->wp_combine[dtm][wp_idx >> 1] += !!CMN_EVENT_WP_COMBINE(event); 1683 } 1684 } 1685 1686 static int arm_cmn_validate_group(struct arm_cmn *cmn, struct perf_event *event) 1687 { 1688 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1689 struct arm_cmn_node *dn; 1690 struct perf_event *sibling, *leader = event->group_leader; 1691 enum cmn_node_type type; 1692 struct arm_cmn_val *val; 1693 int i, ret = -EINVAL; 1694 1695 if (leader == event) 1696 return 0; 1697 1698 if (event->pmu != leader->pmu && !is_software_event(leader)) 1699 return -EINVAL; 1700 1701 val = kzalloc(sizeof(*val), GFP_KERNEL); 1702 if (!val) 1703 return -ENOMEM; 1704 1705 arm_cmn_val_add_event(cmn, val, leader); 1706 1707 for_each_sibling_event(sibling, leader) 1708 arm_cmn_val_add_event(cmn, val, sibling); 1709 1710 type = CMN_EVENT_TYPE(event); 1711 if (type == CMN_TYPE_DTC) { 1712 ret = val->cycles ? -EINVAL : 0; 1713 goto done; 1714 } 1715 1716 for (i = 0; i < CMN_MAX_DTCS; i++) 1717 if (val->dtc_count[i] == CMN_DT_NUM_COUNTERS) 1718 goto done; 1719 1720 for_each_hw_dn(hw, dn, i) { 1721 int wp_idx, dtm = dn->dtm, sel = hw->filter_sel; 1722 1723 if (val->dtm_count[dtm] == CMN_DTM_NUM_COUNTERS) 1724 goto done; 1725 1726 if (sel > SEL_NONE && val->occupid[dtm][sel] && 1727 val->occupid[dtm][sel] != CMN_EVENT_OCCUPID(event) + 1) 1728 goto done; 1729 1730 if (type != CMN_TYPE_WP) 1731 continue; 1732 1733 wp_idx = arm_cmn_val_find_free_wp_config(event, val, dtm); 1734 if (wp_idx < 0) 1735 goto done; 1736 1737 if (wp_idx & 1 && 1738 val->wp_combine[dtm][wp_idx >> 1] != !!CMN_EVENT_WP_COMBINE(event)) 1739 goto done; 1740 } 1741 1742 ret = 0; 1743 done: 1744 kfree(val); 1745 return ret; 1746 } 1747 1748 static enum cmn_filter_select arm_cmn_filter_sel(const struct arm_cmn *cmn, 1749 enum cmn_node_type type, 1750 unsigned int eventid) 1751 { 1752 struct arm_cmn_event_attr *e; 1753 enum cmn_model model = arm_cmn_model(cmn); 1754 1755 for (int i = 0; i < ARRAY_SIZE(arm_cmn_event_attrs) - 1; i++) { 1756 e = container_of(arm_cmn_event_attrs[i], typeof(*e), attr.attr); 1757 if (e->model & model && e->type == type && e->eventid == eventid) 1758 return e->fsel; 1759 } 1760 return SEL_NONE; 1761 } 1762 1763 1764 static int arm_cmn_event_init(struct perf_event *event) 1765 { 1766 struct arm_cmn *cmn = to_cmn(event->pmu); 1767 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1768 struct arm_cmn_node *dn; 1769 enum cmn_node_type type; 1770 bool bynodeid; 1771 u16 nodeid, eventid; 1772 1773 if (event->attr.type != event->pmu->type) 1774 return -ENOENT; 1775 1776 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) 1777 return -EINVAL; 1778 1779 event->cpu = cmn->cpu; 1780 if (event->cpu < 0) 1781 return -EINVAL; 1782 1783 type = CMN_EVENT_TYPE(event); 1784 /* DTC events (i.e. cycles) already have everything they need */ 1785 if (type == CMN_TYPE_DTC) 1786 return arm_cmn_validate_group(cmn, event); 1787 1788 eventid = CMN_EVENT_EVENTID(event); 1789 /* For watchpoints we need the actual XP node here */ 1790 if (type == CMN_TYPE_WP) { 1791 type = CMN_TYPE_XP; 1792 /* ...and we need a "real" direction */ 1793 if (eventid != CMN_WP_UP && eventid != CMN_WP_DOWN) 1794 return -EINVAL; 1795 /* ...but the DTM may depend on which port we're watching */ 1796 if (cmn->multi_dtm) 1797 hw->dtm_offset = CMN_EVENT_WP_DEV_SEL(event) / 2; 1798 } else if (type == CMN_TYPE_XP && 1799 (cmn->part == PART_CMN700 || cmn->part == PART_CMN_S3)) { 1800 hw->wide_sel = true; 1801 } 1802 1803 /* This is sufficiently annoying to recalculate, so cache it */ 1804 hw->filter_sel = arm_cmn_filter_sel(cmn, type, eventid); 1805 1806 bynodeid = CMN_EVENT_BYNODEID(event); 1807 nodeid = CMN_EVENT_NODEID(event); 1808 1809 hw->dn = arm_cmn_node(cmn, type); 1810 if (!hw->dn) 1811 return -EINVAL; 1812 1813 memset(hw->dtc_idx, -1, sizeof(hw->dtc_idx)); 1814 for (dn = hw->dn; dn->type == type; dn++) { 1815 if (bynodeid && dn->id != nodeid) { 1816 hw->dn++; 1817 continue; 1818 } 1819 hw->num_dns++; 1820 if (dn->dtc < 0) 1821 memset(hw->dtc_idx, 0, cmn->num_dtcs); 1822 else 1823 hw->dtc_idx[dn->dtc] = 0; 1824 1825 if (bynodeid) 1826 break; 1827 } 1828 1829 if (!hw->num_dns) { 1830 dev_dbg(cmn->dev, "invalid node 0x%x type 0x%x\n", nodeid, type); 1831 return -EINVAL; 1832 } 1833 1834 return arm_cmn_validate_group(cmn, event); 1835 } 1836 1837 static void arm_cmn_event_clear(struct arm_cmn *cmn, struct perf_event *event, 1838 int i) 1839 { 1840 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1841 enum cmn_node_type type = CMN_EVENT_TYPE(event); 1842 1843 while (i--) { 1844 struct arm_cmn_dtm *dtm = &cmn->dtms[hw->dn[i].dtm] + hw->dtm_offset; 1845 unsigned int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); 1846 1847 if (type == CMN_TYPE_WP) { 1848 int wp_idx = arm_cmn_get_assigned_wp_idx(event, hw, i); 1849 1850 dtm->wp_event[wp_idx] = -1; 1851 } 1852 1853 if (hw->filter_sel > SEL_NONE) 1854 hw->dn[i].occupid[hw->filter_sel].count--; 1855 1856 dtm->pmu_config_low &= ~CMN__PMEVCNT_PAIRED(dtm_idx); 1857 writel_relaxed(dtm->pmu_config_low, dtm->base + CMN_DTM_PMU_CONFIG); 1858 } 1859 memset(hw->dtm_idx, 0, sizeof(hw->dtm_idx)); 1860 memset(hw->wp_idx, 0, sizeof(hw->wp_idx)); 1861 1862 for_each_hw_dtc_idx(hw, j, idx) 1863 cmn->dtc[j].counters[idx] = NULL; 1864 } 1865 1866 static int arm_cmn_event_add(struct perf_event *event, int flags) 1867 { 1868 struct arm_cmn *cmn = to_cmn(event->pmu); 1869 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1870 struct arm_cmn_node *dn; 1871 enum cmn_node_type type = CMN_EVENT_TYPE(event); 1872 unsigned int input_sel, i = 0; 1873 1874 if (type == CMN_TYPE_DTC) { 1875 while (cmn->dtc[i].cycles) 1876 if (++i == cmn->num_dtcs) 1877 return -ENOSPC; 1878 1879 cmn->dtc[i].cycles = event; 1880 hw->dtc_idx[0] = i; 1881 1882 if (flags & PERF_EF_START) 1883 arm_cmn_event_start(event, 0); 1884 return 0; 1885 } 1886 1887 /* Grab the global counters first... */ 1888 for_each_hw_dtc_idx(hw, j, idx) { 1889 if (cmn->part == PART_CMN600 && j > 0) { 1890 idx = hw->dtc_idx[0]; 1891 } else { 1892 idx = 0; 1893 while (cmn->dtc[j].counters[idx]) 1894 if (++idx == CMN_DT_NUM_COUNTERS) 1895 return -ENOSPC; 1896 } 1897 hw->dtc_idx[j] = idx; 1898 } 1899 1900 /* ...then the local counters to feed them */ 1901 for_each_hw_dn(hw, dn, i) { 1902 struct arm_cmn_dtm *dtm = &cmn->dtms[dn->dtm] + hw->dtm_offset; 1903 unsigned int dtm_idx, shift, d = max_t(int, dn->dtc, 0); 1904 u64 reg; 1905 1906 dtm_idx = 0; 1907 while (dtm->pmu_config_low & CMN__PMEVCNT_PAIRED(dtm_idx)) 1908 if (++dtm_idx == CMN_DTM_NUM_COUNTERS) 1909 goto free_dtms; 1910 1911 if (type == CMN_TYPE_XP) { 1912 input_sel = CMN__PMEVCNT0_INPUT_SEL_XP + dtm_idx; 1913 } else if (type == CMN_TYPE_WP) { 1914 int tmp, wp_idx; 1915 u32 cfg; 1916 1917 wp_idx = arm_cmn_find_free_wp_idx(dtm, event); 1918 if (wp_idx < 0) 1919 goto free_dtms; 1920 1921 cfg = arm_cmn_wp_config(event, wp_idx); 1922 1923 tmp = dtm->wp_event[wp_idx ^ 1]; 1924 if (tmp >= 0 && CMN_EVENT_WP_COMBINE(event) != 1925 CMN_EVENT_WP_COMBINE(cmn->dtc[d].counters[tmp])) 1926 goto free_dtms; 1927 1928 input_sel = CMN__PMEVCNT0_INPUT_SEL_WP + wp_idx; 1929 1930 arm_cmn_claim_wp_idx(dtm, event, d, wp_idx, i); 1931 writel_relaxed(cfg, dtm->base + CMN_DTM_WPn_CONFIG(wp_idx)); 1932 } else { 1933 struct arm_cmn_nodeid nid = arm_cmn_nid(dn); 1934 1935 if (cmn->multi_dtm) 1936 nid.port %= 2; 1937 1938 input_sel = CMN__PMEVCNT0_INPUT_SEL_DEV + dtm_idx + 1939 (nid.port << 4) + (nid.dev << 2); 1940 1941 if (arm_cmn_set_event_sel_hi(dn, hw->filter_sel, CMN_EVENT_OCCUPID(event))) 1942 goto free_dtms; 1943 } 1944 1945 arm_cmn_set_index(hw->dtm_idx, i, dtm_idx); 1946 1947 dtm->input_sel[dtm_idx] = input_sel; 1948 shift = CMN__PMEVCNTn_GLOBAL_NUM_SHIFT(dtm_idx); 1949 dtm->pmu_config_low &= ~(CMN__PMEVCNT0_GLOBAL_NUM << shift); 1950 dtm->pmu_config_low |= FIELD_PREP(CMN__PMEVCNT0_GLOBAL_NUM, hw->dtc_idx[d]) << shift; 1951 dtm->pmu_config_low |= CMN__PMEVCNT_PAIRED(dtm_idx); 1952 reg = (u64)le32_to_cpu(dtm->pmu_config_high) << 32 | dtm->pmu_config_low; 1953 writeq_relaxed(reg, dtm->base + CMN_DTM_PMU_CONFIG); 1954 } 1955 1956 /* Go go go! */ 1957 arm_cmn_init_counter(event); 1958 1959 if (flags & PERF_EF_START) 1960 arm_cmn_event_start(event, 0); 1961 1962 return 0; 1963 1964 free_dtms: 1965 arm_cmn_event_clear(cmn, event, i); 1966 return -ENOSPC; 1967 } 1968 1969 static void arm_cmn_event_del(struct perf_event *event, int flags) 1970 { 1971 struct arm_cmn *cmn = to_cmn(event->pmu); 1972 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1973 enum cmn_node_type type = CMN_EVENT_TYPE(event); 1974 1975 arm_cmn_event_stop(event, PERF_EF_UPDATE); 1976 1977 if (type == CMN_TYPE_DTC) 1978 cmn->dtc[hw->dtc_idx[0]].cycles = NULL; 1979 else 1980 arm_cmn_event_clear(cmn, event, hw->num_dns); 1981 } 1982 1983 /* 1984 * We stop the PMU for both add and read, to avoid skew across DTM counters. 1985 * In theory we could use snapshots to read without stopping, but then it 1986 * becomes a lot trickier to deal with overlow and racing against interrupts, 1987 * plus it seems they don't work properly on some hardware anyway :( 1988 */ 1989 static void arm_cmn_start_txn(struct pmu *pmu, unsigned int flags) 1990 { 1991 arm_cmn_set_state(to_cmn(pmu), CMN_STATE_TXN); 1992 } 1993 1994 static void arm_cmn_end_txn(struct pmu *pmu) 1995 { 1996 arm_cmn_clear_state(to_cmn(pmu), CMN_STATE_TXN); 1997 } 1998 1999 static int arm_cmn_commit_txn(struct pmu *pmu) 2000 { 2001 arm_cmn_end_txn(pmu); 2002 return 0; 2003 } 2004 2005 static void arm_cmn_migrate(struct arm_cmn *cmn, unsigned int cpu) 2006 { 2007 unsigned int i; 2008 2009 perf_pmu_migrate_context(&cmn->pmu, cmn->cpu, cpu); 2010 for (i = 0; i < cmn->num_dtcs; i++) 2011 irq_set_affinity(cmn->dtc[i].irq, cpumask_of(cpu)); 2012 cmn->cpu = cpu; 2013 } 2014 2015 static int arm_cmn_pmu_online_cpu(unsigned int cpu, struct hlist_node *cpuhp_node) 2016 { 2017 struct arm_cmn *cmn; 2018 int node; 2019 2020 cmn = hlist_entry_safe(cpuhp_node, struct arm_cmn, cpuhp_node); 2021 node = dev_to_node(cmn->dev); 2022 if (cpu_to_node(cmn->cpu) != node && cpu_to_node(cpu) == node) 2023 arm_cmn_migrate(cmn, cpu); 2024 return 0; 2025 } 2026 2027 static int arm_cmn_pmu_offline_cpu(unsigned int cpu, struct hlist_node *cpuhp_node) 2028 { 2029 struct arm_cmn *cmn; 2030 unsigned int target; 2031 int node; 2032 2033 cmn = hlist_entry_safe(cpuhp_node, struct arm_cmn, cpuhp_node); 2034 if (cpu != cmn->cpu) 2035 return 0; 2036 2037 node = dev_to_node(cmn->dev); 2038 2039 target = cpumask_any_and_but(cpumask_of_node(node), cpu_online_mask, cpu); 2040 if (target >= nr_cpu_ids) 2041 target = cpumask_any_but(cpu_online_mask, cpu); 2042 2043 if (target < nr_cpu_ids) 2044 arm_cmn_migrate(cmn, target); 2045 2046 return 0; 2047 } 2048 2049 static irqreturn_t arm_cmn_handle_irq(int irq, void *dev_id) 2050 { 2051 struct arm_cmn_dtc *dtc = dev_id; 2052 irqreturn_t ret = IRQ_NONE; 2053 2054 for (;;) { 2055 u32 status = readl_relaxed(CMN_DT_PMOVSR(dtc)); 2056 u64 delta; 2057 int i; 2058 2059 for (i = 0; i < CMN_DT_NUM_COUNTERS; i++) { 2060 if (status & (1U << i)) { 2061 ret = IRQ_HANDLED; 2062 if (WARN_ON(!dtc->counters[i])) 2063 continue; 2064 delta = (u64)arm_cmn_read_counter(dtc, i) << 16; 2065 local64_add(delta, &dtc->counters[i]->count); 2066 } 2067 } 2068 2069 if (status & (1U << CMN_DT_NUM_COUNTERS)) { 2070 ret = IRQ_HANDLED; 2071 if (dtc->cc_active && !WARN_ON(!dtc->cycles)) { 2072 delta = arm_cmn_read_cc(dtc); 2073 local64_add(delta, &dtc->cycles->count); 2074 } 2075 } 2076 2077 writel_relaxed(status, CMN_DT_PMOVSR_CLR(dtc)); 2078 2079 if (!dtc->irq_friend) 2080 return ret; 2081 dtc += dtc->irq_friend; 2082 } 2083 } 2084 2085 /* We can reasonably accommodate DTCs of the same CMN sharing IRQs */ 2086 static int arm_cmn_init_irqs(struct arm_cmn *cmn) 2087 { 2088 int i, j, irq, err; 2089 2090 for (i = 0; i < cmn->num_dtcs; i++) { 2091 irq = cmn->dtc[i].irq; 2092 for (j = i; j--; ) { 2093 if (cmn->dtc[j].irq == irq) { 2094 cmn->dtc[j].irq_friend = i - j; 2095 goto next; 2096 } 2097 } 2098 err = devm_request_irq(cmn->dev, irq, arm_cmn_handle_irq, 2099 IRQF_NOBALANCING | IRQF_NO_THREAD, 2100 dev_name(cmn->dev), &cmn->dtc[i]); 2101 if (err) 2102 return err; 2103 2104 err = irq_set_affinity(irq, cpumask_of(cmn->cpu)); 2105 if (err) 2106 return err; 2107 next: 2108 ; /* isn't C great? */ 2109 } 2110 return 0; 2111 } 2112 2113 static void arm_cmn_init_dtm(struct arm_cmn_dtm *dtm, struct arm_cmn_node *xp, int idx) 2114 { 2115 int i; 2116 2117 dtm->base = xp->pmu_base + CMN_DTM_OFFSET(idx); 2118 dtm->pmu_config_low = CMN_DTM_PMU_CONFIG_PMU_EN; 2119 writeq_relaxed(dtm->pmu_config_low, dtm->base + CMN_DTM_PMU_CONFIG); 2120 for (i = 0; i < 4; i++) { 2121 dtm->wp_event[i] = -1; 2122 writeq_relaxed(0, dtm->base + CMN_DTM_WPn_MASK(i)); 2123 writeq_relaxed(~0ULL, dtm->base + CMN_DTM_WPn_VAL(i)); 2124 } 2125 } 2126 2127 static int arm_cmn_init_dtc(struct arm_cmn *cmn, struct arm_cmn_node *dn, int idx) 2128 { 2129 struct arm_cmn_dtc *dtc = cmn->dtc + idx; 2130 2131 dtc->pmu_base = dn->pmu_base; 2132 dtc->base = dtc->pmu_base - arm_cmn_pmu_offset(cmn, dn); 2133 dtc->irq = platform_get_irq(to_platform_device(cmn->dev), idx); 2134 if (dtc->irq < 0) 2135 return dtc->irq; 2136 2137 writel_relaxed(CMN_DT_DTC_CTL_DT_EN, dtc->base + CMN_DT_DTC_CTL); 2138 writel_relaxed(CMN_DT_PMCR_PMU_EN | CMN_DT_PMCR_OVFL_INTR_EN, CMN_DT_PMCR(dtc)); 2139 writeq_relaxed(0, CMN_DT_PMCCNTR(dtc)); 2140 writel_relaxed(0x1ff, CMN_DT_PMOVSR_CLR(dtc)); 2141 2142 return 0; 2143 } 2144 2145 static int arm_cmn_node_cmp(const void *a, const void *b) 2146 { 2147 const struct arm_cmn_node *dna = a, *dnb = b; 2148 int cmp; 2149 2150 cmp = dna->type - dnb->type; 2151 if (!cmp) 2152 cmp = dna->logid - dnb->logid; 2153 return cmp; 2154 } 2155 2156 static int arm_cmn_init_dtcs(struct arm_cmn *cmn) 2157 { 2158 struct arm_cmn_node *dn, *xp; 2159 int dtc_idx = 0; 2160 2161 cmn->dtc = devm_kcalloc(cmn->dev, cmn->num_dtcs, sizeof(cmn->dtc[0]), GFP_KERNEL); 2162 if (!cmn->dtc) 2163 return -ENOMEM; 2164 2165 sort(cmn->dns, cmn->num_dns, sizeof(cmn->dns[0]), arm_cmn_node_cmp, NULL); 2166 2167 cmn->xps = arm_cmn_node(cmn, CMN_TYPE_XP); 2168 2169 if (cmn->part == PART_CMN600 && cmn->num_dtcs > 1) { 2170 /* We do at least know that a DTC's XP must be in that DTC's domain */ 2171 dn = arm_cmn_node(cmn, CMN_TYPE_DTC); 2172 for (int i = 0; i < cmn->num_dtcs; i++) 2173 arm_cmn_node_to_xp(cmn, dn + i)->dtc = i; 2174 } 2175 2176 for (dn = cmn->dns; dn->type; dn++) { 2177 if (dn->type == CMN_TYPE_XP) 2178 continue; 2179 2180 xp = arm_cmn_node_to_xp(cmn, dn); 2181 dn->portid_bits = xp->portid_bits; 2182 dn->deviceid_bits = xp->deviceid_bits; 2183 dn->dtc = xp->dtc; 2184 dn->dtm = xp->dtm; 2185 if (cmn->multi_dtm) 2186 dn->dtm += arm_cmn_nid(dn).port / 2; 2187 2188 if (dn->type == CMN_TYPE_DTC) { 2189 int err = arm_cmn_init_dtc(cmn, dn, dtc_idx++); 2190 2191 if (err) 2192 return err; 2193 } 2194 2195 /* To the PMU, RN-Ds don't add anything over RN-Is, so smoosh them together */ 2196 if (dn->type == CMN_TYPE_RND) 2197 dn->type = CMN_TYPE_RNI; 2198 2199 /* We split the RN-I off already, so let the CCLA part match CCLA events */ 2200 if (dn->type == CMN_TYPE_CCLA_RNI) 2201 dn->type = CMN_TYPE_CCLA; 2202 } 2203 2204 arm_cmn_set_state(cmn, CMN_STATE_DISABLED); 2205 2206 return 0; 2207 } 2208 2209 static unsigned int arm_cmn_dtc_domain(struct arm_cmn *cmn, void __iomem *xp_region) 2210 { 2211 int offset = CMN_DTM_UNIT_INFO; 2212 2213 if (cmn->part == PART_CMN650 || cmn->part == PART_CI700) 2214 offset = CMN650_DTM_UNIT_INFO; 2215 2216 return FIELD_GET(CMN_DTM_UNIT_INFO_DTC_DOMAIN, readl_relaxed(xp_region + offset)); 2217 } 2218 2219 static void arm_cmn_init_node_info(struct arm_cmn *cmn, u32 offset, struct arm_cmn_node *node) 2220 { 2221 int level; 2222 u64 reg = readq_relaxed(cmn->base + offset + CMN_NODE_INFO); 2223 2224 node->type = FIELD_GET(CMN_NI_NODE_TYPE, reg); 2225 node->id = FIELD_GET(CMN_NI_NODE_ID, reg); 2226 node->logid = FIELD_GET(CMN_NI_LOGICAL_ID, reg); 2227 2228 node->pmu_base = cmn->base + offset + arm_cmn_pmu_offset(cmn, node); 2229 2230 if (node->type == CMN_TYPE_CFG) 2231 level = 0; 2232 else if (node->type == CMN_TYPE_XP) 2233 level = 1; 2234 else 2235 level = 2; 2236 2237 dev_dbg(cmn->dev, "node%*c%#06hx%*ctype:%-#6x id:%-4hd off:%#x\n", 2238 (level * 2) + 1, ' ', node->id, 5 - (level * 2), ' ', 2239 node->type, node->logid, offset); 2240 } 2241 2242 static enum cmn_node_type arm_cmn_subtype(enum cmn_node_type type) 2243 { 2244 switch (type) { 2245 case CMN_TYPE_HNP: 2246 return CMN_TYPE_HNI; 2247 case CMN_TYPE_CCLA_RNI: 2248 return CMN_TYPE_RNI; 2249 default: 2250 return CMN_TYPE_INVALID; 2251 } 2252 } 2253 2254 static int arm_cmn_discover(struct arm_cmn *cmn, unsigned int rgn_offset) 2255 { 2256 void __iomem *cfg_region; 2257 struct arm_cmn_node cfg, *dn; 2258 struct arm_cmn_dtm *dtm; 2259 enum cmn_part part; 2260 u16 child_count, child_poff; 2261 u32 xp_offset[CMN_MAX_XPS]; 2262 u64 reg; 2263 int i, j; 2264 size_t sz; 2265 2266 arm_cmn_init_node_info(cmn, rgn_offset, &cfg); 2267 if (cfg.type != CMN_TYPE_CFG) 2268 return -ENODEV; 2269 2270 cfg_region = cmn->base + rgn_offset; 2271 2272 reg = readq_relaxed(cfg_region + CMN_CFGM_PERIPH_ID_01); 2273 part = FIELD_GET(CMN_CFGM_PID0_PART_0, reg); 2274 part |= FIELD_GET(CMN_CFGM_PID1_PART_1, reg) << 8; 2275 if (cmn->part && cmn->part != part) 2276 dev_warn(cmn->dev, 2277 "Firmware binding mismatch: expected part number 0x%x, found 0x%x\n", 2278 cmn->part, part); 2279 cmn->part = part; 2280 if (!arm_cmn_model(cmn)) 2281 dev_warn(cmn->dev, "Unknown part number: 0x%x\n", part); 2282 2283 reg = readl_relaxed(cfg_region + CMN_CFGM_PERIPH_ID_23); 2284 cmn->rev = FIELD_GET(CMN_CFGM_PID2_REVISION, reg); 2285 2286 /* 2287 * With the device isolation feature, if firmware has neglected to enable 2288 * an XP port then we risk locking up if we try to access anything behind 2289 * it; however we also have no way to tell from Non-Secure whether any 2290 * given port is disabled or not, so the only way to win is not to play... 2291 */ 2292 reg = readq_relaxed(cfg_region + CMN_CFGM_INFO_GLOBAL); 2293 if (reg & CMN_INFO_DEVICE_ISO_ENABLE) { 2294 dev_err(cmn->dev, "Device isolation enabled, not continuing due to risk of lockup\n"); 2295 return -ENODEV; 2296 } 2297 cmn->multi_dtm = reg & CMN_INFO_MULTIPLE_DTM_EN; 2298 cmn->rsp_vc_num = FIELD_GET(CMN_INFO_RSP_VC_NUM, reg); 2299 cmn->dat_vc_num = FIELD_GET(CMN_INFO_DAT_VC_NUM, reg); 2300 2301 reg = readq_relaxed(cfg_region + CMN_CFGM_INFO_GLOBAL_1); 2302 cmn->snp_vc_num = FIELD_GET(CMN_INFO_SNP_VC_NUM, reg); 2303 cmn->req_vc_num = FIELD_GET(CMN_INFO_REQ_VC_NUM, reg); 2304 2305 reg = readq_relaxed(cfg_region + CMN_CHILD_INFO); 2306 child_count = FIELD_GET(CMN_CI_CHILD_COUNT, reg); 2307 child_poff = FIELD_GET(CMN_CI_CHILD_PTR_OFFSET, reg); 2308 2309 cmn->num_xps = child_count; 2310 cmn->num_dns = cmn->num_xps; 2311 2312 /* Pass 1: visit the XPs, enumerate their children */ 2313 for (i = 0; i < cmn->num_xps; i++) { 2314 reg = readq_relaxed(cfg_region + child_poff + i * 8); 2315 xp_offset[i] = reg & CMN_CHILD_NODE_ADDR; 2316 2317 reg = readq_relaxed(cmn->base + xp_offset[i] + CMN_CHILD_INFO); 2318 cmn->num_dns += FIELD_GET(CMN_CI_CHILD_COUNT, reg); 2319 } 2320 2321 /* 2322 * Some nodes effectively have two separate types, which we'll handle 2323 * by creating one of each internally. For a (very) safe initial upper 2324 * bound, account for double the number of non-XP nodes. 2325 */ 2326 dn = devm_kcalloc(cmn->dev, cmn->num_dns * 2 - cmn->num_xps, 2327 sizeof(*dn), GFP_KERNEL); 2328 if (!dn) 2329 return -ENOMEM; 2330 2331 /* Initial safe upper bound on DTMs for any possible mesh layout */ 2332 i = cmn->num_xps; 2333 if (cmn->multi_dtm) 2334 i += cmn->num_xps + 1; 2335 dtm = devm_kcalloc(cmn->dev, i, sizeof(*dtm), GFP_KERNEL); 2336 if (!dtm) 2337 return -ENOMEM; 2338 2339 /* Pass 2: now we can actually populate the nodes */ 2340 cmn->dns = dn; 2341 cmn->dtms = dtm; 2342 for (i = 0; i < cmn->num_xps; i++) { 2343 void __iomem *xp_region = cmn->base + xp_offset[i]; 2344 struct arm_cmn_node *xp = dn++; 2345 unsigned int xp_ports = 0; 2346 2347 arm_cmn_init_node_info(cmn, xp_offset[i], xp); 2348 /* 2349 * Thanks to the order in which XP logical IDs seem to be 2350 * assigned, we can handily infer the mesh X dimension by 2351 * looking out for the XP at (0,1) without needing to know 2352 * the exact node ID format, which we can later derive. 2353 */ 2354 if (xp->id == (1 << 3)) 2355 cmn->mesh_x = xp->logid; 2356 2357 if (cmn->part == PART_CMN600) 2358 xp->dtc = -1; 2359 else 2360 xp->dtc = arm_cmn_dtc_domain(cmn, xp_region); 2361 2362 xp->dtm = dtm - cmn->dtms; 2363 arm_cmn_init_dtm(dtm++, xp, 0); 2364 /* 2365 * Keeping track of connected ports will let us filter out 2366 * unnecessary XP events easily, and also infer the per-XP 2367 * part of the node ID format. 2368 */ 2369 for (int p = 0; p < CMN_MAX_PORTS; p++) 2370 if (arm_cmn_device_connect_info(cmn, xp, p)) 2371 xp_ports |= BIT(p); 2372 2373 if (cmn->num_xps == 1) { 2374 xp->portid_bits = 3; 2375 xp->deviceid_bits = 2; 2376 } else if (xp_ports > 0x3) { 2377 xp->portid_bits = 2; 2378 xp->deviceid_bits = 1; 2379 } else { 2380 xp->portid_bits = 1; 2381 xp->deviceid_bits = 2; 2382 } 2383 2384 if (cmn->multi_dtm && (xp_ports > 0x3)) 2385 arm_cmn_init_dtm(dtm++, xp, 1); 2386 if (cmn->multi_dtm && (xp_ports > 0xf)) 2387 arm_cmn_init_dtm(dtm++, xp, 2); 2388 2389 cmn->ports_used |= xp_ports; 2390 2391 reg = readq_relaxed(xp_region + CMN_CHILD_INFO); 2392 child_count = FIELD_GET(CMN_CI_CHILD_COUNT, reg); 2393 child_poff = FIELD_GET(CMN_CI_CHILD_PTR_OFFSET, reg); 2394 2395 for (j = 0; j < child_count; j++) { 2396 reg = readq_relaxed(xp_region + child_poff + j * 8); 2397 /* 2398 * Don't even try to touch anything external, since in general 2399 * we haven't a clue how to power up arbitrary CHI requesters. 2400 * As of CMN-600r1 these could only be RN-SAMs or CXLAs, 2401 * neither of which have any PMU events anyway. 2402 * (Actually, CXLAs do seem to have grown some events in r1p2, 2403 * but they don't go to regular XP DTMs, and they depend on 2404 * secure configuration which we can't easily deal with) 2405 */ 2406 if (reg & CMN_CHILD_NODE_EXTERNAL) { 2407 dev_dbg(cmn->dev, "ignoring external node %llx\n", reg); 2408 continue; 2409 } 2410 /* 2411 * AmpereOneX erratum AC04_MESH_1 makes some XPs report a bogus 2412 * child count larger than the number of valid child pointers. 2413 * A child offset of 0 can only occur on CMN-600; otherwise it 2414 * would imply the root node being its own grandchild, which 2415 * we can safely dismiss in general. 2416 */ 2417 if (reg == 0 && cmn->part != PART_CMN600) { 2418 dev_dbg(cmn->dev, "bogus child pointer?\n"); 2419 continue; 2420 } 2421 2422 arm_cmn_init_node_info(cmn, reg & CMN_CHILD_NODE_ADDR, dn); 2423 2424 switch (dn->type) { 2425 case CMN_TYPE_DTC: 2426 cmn->num_dtcs++; 2427 dn++; 2428 break; 2429 /* These guys have PMU events */ 2430 case CMN_TYPE_DVM: 2431 case CMN_TYPE_HNI: 2432 case CMN_TYPE_HNF: 2433 case CMN_TYPE_SBSX: 2434 case CMN_TYPE_RNI: 2435 case CMN_TYPE_RND: 2436 case CMN_TYPE_MTSX: 2437 case CMN_TYPE_CXRA: 2438 case CMN_TYPE_CXHA: 2439 case CMN_TYPE_CCRA: 2440 case CMN_TYPE_CCHA: 2441 case CMN_TYPE_HNS: 2442 dn++; 2443 break; 2444 case CMN_TYPE_CCLA: 2445 dn->pmu_base += CMN_CCLA_PMU_EVENT_SEL; 2446 dn++; 2447 break; 2448 /* Nothing to see here */ 2449 case CMN_TYPE_MPAM_S: 2450 case CMN_TYPE_MPAM_NS: 2451 case CMN_TYPE_RNSAM: 2452 case CMN_TYPE_CXLA: 2453 case CMN_TYPE_HNS_MPAM_S: 2454 case CMN_TYPE_HNS_MPAM_NS: 2455 case CMN_TYPE_APB: 2456 break; 2457 /* 2458 * Split "optimised" combination nodes into separate 2459 * types for the different event sets. Offsetting the 2460 * base address lets us handle the second pmu_event_sel 2461 * register via the normal mechanism later. 2462 */ 2463 case CMN_TYPE_HNP: 2464 case CMN_TYPE_CCLA_RNI: 2465 dn[1] = dn[0]; 2466 dn[0].pmu_base += CMN_CCLA_PMU_EVENT_SEL; 2467 dn[1].type = arm_cmn_subtype(dn->type); 2468 dn += 2; 2469 break; 2470 /* Something has gone horribly wrong */ 2471 default: 2472 dev_err(cmn->dev, "invalid device node type: 0x%x\n", dn->type); 2473 return -ENODEV; 2474 } 2475 } 2476 } 2477 2478 /* Correct for any nodes we added or skipped */ 2479 cmn->num_dns = dn - cmn->dns; 2480 2481 /* Cheeky +1 to help terminate pointer-based iteration later */ 2482 sz = (void *)(dn + 1) - (void *)cmn->dns; 2483 dn = devm_krealloc(cmn->dev, cmn->dns, sz, GFP_KERNEL); 2484 if (dn) 2485 cmn->dns = dn; 2486 2487 sz = (void *)dtm - (void *)cmn->dtms; 2488 dtm = devm_krealloc(cmn->dev, cmn->dtms, sz, GFP_KERNEL); 2489 if (dtm) 2490 cmn->dtms = dtm; 2491 2492 /* 2493 * If mesh_x wasn't set during discovery then we never saw 2494 * an XP at (0,1), thus we must have an Nx1 configuration. 2495 */ 2496 if (!cmn->mesh_x) 2497 cmn->mesh_x = cmn->num_xps; 2498 cmn->mesh_y = cmn->num_xps / cmn->mesh_x; 2499 2500 /* 1x1 config plays havoc with XP event encodings */ 2501 if (cmn->num_xps == 1) 2502 dev_warn(cmn->dev, "1x1 config not fully supported, translate XP events manually\n"); 2503 2504 dev_dbg(cmn->dev, "periph_id part 0x%03x revision %d\n", cmn->part, cmn->rev); 2505 reg = cmn->ports_used; 2506 dev_dbg(cmn->dev, "mesh %dx%d, ID width %d, ports %6pbl%s\n", 2507 cmn->mesh_x, cmn->mesh_y, arm_cmn_xyidbits(cmn), ®, 2508 cmn->multi_dtm ? ", multi-DTM" : ""); 2509 2510 return 0; 2511 } 2512 2513 static int arm_cmn600_acpi_probe(struct platform_device *pdev, struct arm_cmn *cmn) 2514 { 2515 struct resource *cfg, *root; 2516 2517 cfg = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2518 if (!cfg) 2519 return -EINVAL; 2520 2521 root = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2522 if (!root) 2523 return -EINVAL; 2524 2525 if (!resource_contains(cfg, root)) 2526 swap(cfg, root); 2527 /* 2528 * Note that devm_ioremap_resource() is dumb and won't let the platform 2529 * device claim cfg when the ACPI companion device has already claimed 2530 * root within it. But since they *are* already both claimed in the 2531 * appropriate name, we don't really need to do it again here anyway. 2532 */ 2533 cmn->base = devm_ioremap(cmn->dev, cfg->start, resource_size(cfg)); 2534 if (!cmn->base) 2535 return -ENOMEM; 2536 2537 return root->start - cfg->start; 2538 } 2539 2540 static int arm_cmn600_of_probe(struct device_node *np) 2541 { 2542 u32 rootnode; 2543 2544 return of_property_read_u32(np, "arm,root-node", &rootnode) ?: rootnode; 2545 } 2546 2547 static int arm_cmn_probe(struct platform_device *pdev) 2548 { 2549 struct arm_cmn *cmn; 2550 const char *name; 2551 static atomic_t id; 2552 int err, rootnode, this_id; 2553 2554 cmn = devm_kzalloc(&pdev->dev, sizeof(*cmn), GFP_KERNEL); 2555 if (!cmn) 2556 return -ENOMEM; 2557 2558 cmn->dev = &pdev->dev; 2559 cmn->part = (unsigned long)device_get_match_data(cmn->dev); 2560 platform_set_drvdata(pdev, cmn); 2561 2562 if (cmn->part == PART_CMN600 && has_acpi_companion(cmn->dev)) { 2563 rootnode = arm_cmn600_acpi_probe(pdev, cmn); 2564 } else { 2565 rootnode = 0; 2566 cmn->base = devm_platform_ioremap_resource(pdev, 0); 2567 if (IS_ERR(cmn->base)) 2568 return PTR_ERR(cmn->base); 2569 if (cmn->part == PART_CMN600) 2570 rootnode = arm_cmn600_of_probe(pdev->dev.of_node); 2571 } 2572 if (rootnode < 0) 2573 return rootnode; 2574 2575 err = arm_cmn_discover(cmn, rootnode); 2576 if (err) 2577 return err; 2578 2579 err = arm_cmn_init_dtcs(cmn); 2580 if (err) 2581 return err; 2582 2583 err = arm_cmn_init_irqs(cmn); 2584 if (err) 2585 return err; 2586 2587 cmn->cpu = cpumask_local_spread(0, dev_to_node(cmn->dev)); 2588 cmn->pmu = (struct pmu) { 2589 .module = THIS_MODULE, 2590 .parent = cmn->dev, 2591 .attr_groups = arm_cmn_attr_groups, 2592 .capabilities = PERF_PMU_CAP_NO_EXCLUDE, 2593 .task_ctx_nr = perf_invalid_context, 2594 .pmu_enable = arm_cmn_pmu_enable, 2595 .pmu_disable = arm_cmn_pmu_disable, 2596 .event_init = arm_cmn_event_init, 2597 .add = arm_cmn_event_add, 2598 .del = arm_cmn_event_del, 2599 .start = arm_cmn_event_start, 2600 .stop = arm_cmn_event_stop, 2601 .read = arm_cmn_event_read, 2602 .start_txn = arm_cmn_start_txn, 2603 .commit_txn = arm_cmn_commit_txn, 2604 .cancel_txn = arm_cmn_end_txn, 2605 }; 2606 2607 this_id = atomic_fetch_inc(&id); 2608 name = devm_kasprintf(cmn->dev, GFP_KERNEL, "arm_cmn_%d", this_id); 2609 if (!name) 2610 return -ENOMEM; 2611 2612 err = cpuhp_state_add_instance(arm_cmn_hp_state, &cmn->cpuhp_node); 2613 if (err) 2614 return err; 2615 2616 err = perf_pmu_register(&cmn->pmu, name, -1); 2617 if (err) 2618 cpuhp_state_remove_instance_nocalls(arm_cmn_hp_state, &cmn->cpuhp_node); 2619 else 2620 arm_cmn_debugfs_init(cmn, this_id); 2621 2622 return err; 2623 } 2624 2625 static void arm_cmn_remove(struct platform_device *pdev) 2626 { 2627 struct arm_cmn *cmn = platform_get_drvdata(pdev); 2628 2629 writel_relaxed(0, cmn->dtc[0].base + CMN_DT_DTC_CTL); 2630 2631 perf_pmu_unregister(&cmn->pmu); 2632 cpuhp_state_remove_instance_nocalls(arm_cmn_hp_state, &cmn->cpuhp_node); 2633 debugfs_remove(cmn->debug); 2634 } 2635 2636 #ifdef CONFIG_OF 2637 static const struct of_device_id arm_cmn_of_match[] = { 2638 { .compatible = "arm,cmn-600", .data = (void *)PART_CMN600 }, 2639 { .compatible = "arm,cmn-650" }, 2640 { .compatible = "arm,cmn-700" }, 2641 { .compatible = "arm,cmn-s3" }, 2642 { .compatible = "arm,ci-700" }, 2643 {} 2644 }; 2645 MODULE_DEVICE_TABLE(of, arm_cmn_of_match); 2646 #endif 2647 2648 #ifdef CONFIG_ACPI 2649 static const struct acpi_device_id arm_cmn_acpi_match[] = { 2650 { "ARMHC600", PART_CMN600 }, 2651 { "ARMHC650" }, 2652 { "ARMHC700" }, 2653 {} 2654 }; 2655 MODULE_DEVICE_TABLE(acpi, arm_cmn_acpi_match); 2656 #endif 2657 2658 static struct platform_driver arm_cmn_driver = { 2659 .driver = { 2660 .name = "arm-cmn", 2661 .of_match_table = of_match_ptr(arm_cmn_of_match), 2662 .acpi_match_table = ACPI_PTR(arm_cmn_acpi_match), 2663 }, 2664 .probe = arm_cmn_probe, 2665 .remove = arm_cmn_remove, 2666 }; 2667 2668 static int __init arm_cmn_init(void) 2669 { 2670 int ret; 2671 2672 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 2673 "perf/arm/cmn:online", 2674 arm_cmn_pmu_online_cpu, 2675 arm_cmn_pmu_offline_cpu); 2676 if (ret < 0) 2677 return ret; 2678 2679 arm_cmn_hp_state = ret; 2680 arm_cmn_debugfs = debugfs_create_dir("arm-cmn", NULL); 2681 2682 ret = platform_driver_register(&arm_cmn_driver); 2683 if (ret) { 2684 cpuhp_remove_multi_state(arm_cmn_hp_state); 2685 debugfs_remove(arm_cmn_debugfs); 2686 } 2687 return ret; 2688 } 2689 2690 static void __exit arm_cmn_exit(void) 2691 { 2692 platform_driver_unregister(&arm_cmn_driver); 2693 cpuhp_remove_multi_state(arm_cmn_hp_state); 2694 debugfs_remove(arm_cmn_debugfs); 2695 } 2696 2697 module_init(arm_cmn_init); 2698 module_exit(arm_cmn_exit); 2699 2700 MODULE_AUTHOR("Robin Murphy <robin.murphy@arm.com>"); 2701 MODULE_DESCRIPTION("Arm CMN-600 PMU driver"); 2702 MODULE_LICENSE("GPL v2"); 2703