xref: /linux/drivers/perf/arm-cci.c (revision 8e1bb4a41aa78d6105e59186af3dcd545fc66e70)
1 // SPDX-License-Identifier: GPL-2.0
2 // CCI Cache Coherent Interconnect PMU driver
3 // Copyright (C) 2013-2018 Arm Ltd.
4 // Author: Punit Agrawal <punit.agrawal@arm.com>, Suzuki Poulose <suzuki.poulose@arm.com>
5 
6 #include <linux/arm-cci.h>
7 #include <linux/io.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/perf_event.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 #include <linux/spinlock.h>
15 
16 #define DRIVER_NAME		"ARM-CCI PMU"
17 
18 #define CCI_PMCR		0x0100
19 #define CCI_PID2		0x0fe8
20 
21 #define CCI_PMCR_CEN		0x00000001
22 #define CCI_PMCR_NCNT_MASK	0x0000f800
23 #define CCI_PMCR_NCNT_SHIFT	11
24 
25 #define CCI_PID2_REV_MASK	0xf0
26 #define CCI_PID2_REV_SHIFT	4
27 
28 #define CCI_PMU_EVT_SEL		0x000
29 #define CCI_PMU_CNTR		0x004
30 #define CCI_PMU_CNTR_CTRL	0x008
31 #define CCI_PMU_OVRFLW		0x00c
32 
33 #define CCI_PMU_OVRFLW_FLAG	1
34 
35 #define CCI_PMU_CNTR_SIZE(model)	((model)->cntr_size)
36 #define CCI_PMU_CNTR_BASE(model, idx)	((idx) * CCI_PMU_CNTR_SIZE(model))
37 #define CCI_PMU_CNTR_MASK		((1ULL << 32) - 1)
38 #define CCI_PMU_CNTR_LAST(cci_pmu)	(cci_pmu->num_cntrs - 1)
39 
40 #define CCI_PMU_MAX_HW_CNTRS(model) \
41 	((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
42 
43 /* Types of interfaces that can generate events */
44 enum {
45 	CCI_IF_SLAVE,
46 	CCI_IF_MASTER,
47 #ifdef CONFIG_ARM_CCI5xx_PMU
48 	CCI_IF_GLOBAL,
49 #endif
50 	CCI_IF_MAX,
51 };
52 
53 #define NUM_HW_CNTRS_CII_4XX	4
54 #define NUM_HW_CNTRS_CII_5XX	8
55 #define NUM_HW_CNTRS_MAX	NUM_HW_CNTRS_CII_5XX
56 
57 #define FIXED_HW_CNTRS_CII_4XX	1
58 #define FIXED_HW_CNTRS_CII_5XX	0
59 #define FIXED_HW_CNTRS_MAX	FIXED_HW_CNTRS_CII_4XX
60 
61 #define HW_CNTRS_MAX		(NUM_HW_CNTRS_MAX + FIXED_HW_CNTRS_MAX)
62 
63 struct event_range {
64 	u32 min;
65 	u32 max;
66 };
67 
68 struct cci_pmu_hw_events {
69 	struct perf_event **events;
70 	unsigned long *used_mask;
71 	raw_spinlock_t pmu_lock;
72 };
73 
74 struct cci_pmu;
75 /*
76  * struct cci_pmu_model:
77  * @fixed_hw_cntrs - Number of fixed event counters
78  * @num_hw_cntrs - Maximum number of programmable event counters
79  * @cntr_size - Size of an event counter mapping
80  */
81 struct cci_pmu_model {
82 	char *name;
83 	u32 fixed_hw_cntrs;
84 	u32 num_hw_cntrs;
85 	u32 cntr_size;
86 	struct attribute **format_attrs;
87 	struct attribute **event_attrs;
88 	struct event_range event_ranges[CCI_IF_MAX];
89 	int (*validate_hw_event)(struct cci_pmu *, unsigned long);
90 	int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
91 	void (*write_counters)(struct cci_pmu *, unsigned long *);
92 };
93 
94 static struct cci_pmu_model cci_pmu_models[];
95 
96 struct cci_pmu {
97 	void __iomem *base;
98 	void __iomem *ctrl_base;
99 	struct pmu pmu;
100 	int cpu;
101 	int nr_irqs;
102 	int *irqs;
103 	unsigned long active_irqs;
104 	const struct cci_pmu_model *model;
105 	struct cci_pmu_hw_events hw_events;
106 	struct platform_device *plat_device;
107 	int num_cntrs;
108 	atomic_t active_events;
109 	struct mutex reserve_mutex;
110 };
111 
112 #define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))
113 
114 static struct cci_pmu *g_cci_pmu;
115 
116 enum cci_models {
117 #ifdef CONFIG_ARM_CCI400_PMU
118 	CCI400_R0,
119 	CCI400_R1,
120 #endif
121 #ifdef CONFIG_ARM_CCI5xx_PMU
122 	CCI500_R0,
123 	CCI550_R0,
124 #endif
125 	CCI_MODEL_MAX
126 };
127 
128 static void pmu_write_counters(struct cci_pmu *cci_pmu,
129 				 unsigned long *mask);
130 static ssize_t __maybe_unused cci_pmu_event_show(struct device *dev,
131 			struct device_attribute *attr, char *buf);
132 
133 #define CCI_EXT_ATTR_ENTRY(_name, _func, _config) 				\
134 	&((struct dev_ext_attribute[]) {					\
135 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }	\
136 	})[0].attr.attr
137 
138 #define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
139 	CCI_EXT_ATTR_ENTRY(_name, device_show_string, _config)
140 #define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
141 	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
142 
143 /* CCI400 PMU Specific definitions */
144 
145 #ifdef CONFIG_ARM_CCI400_PMU
146 
147 /* Port ids */
148 #define CCI400_PORT_S0		0
149 #define CCI400_PORT_S1		1
150 #define CCI400_PORT_S2		2
151 #define CCI400_PORT_S3		3
152 #define CCI400_PORT_S4		4
153 #define CCI400_PORT_M0		5
154 #define CCI400_PORT_M1		6
155 #define CCI400_PORT_M2		7
156 
157 #define CCI400_R1_PX		5
158 
159 /*
160  * Instead of an event id to monitor CCI cycles, a dedicated counter is
161  * provided. Use 0xff to represent CCI cycles and hope that no future revisions
162  * make use of this event in hardware.
163  */
164 enum cci400_perf_events {
165 	CCI400_PMU_CYCLES = 0xff
166 };
167 
168 #define CCI400_PMU_CYCLE_CNTR_IDX	0
169 #define CCI400_PMU_CNTR0_IDX		1
170 
171 /*
172  * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
173  * ports and bits 4:0 are event codes. There are different event codes
174  * associated with each port type.
175  *
176  * Additionally, the range of events associated with the port types changed
177  * between Rev0 and Rev1.
178  *
179  * The constants below define the range of valid codes for each port type for
180  * the different revisions and are used to validate the event to be monitored.
181  */
182 
183 #define CCI400_PMU_EVENT_MASK		0xffUL
184 #define CCI400_PMU_EVENT_SOURCE_SHIFT	5
185 #define CCI400_PMU_EVENT_SOURCE_MASK	0x7
186 #define CCI400_PMU_EVENT_CODE_SHIFT	0
187 #define CCI400_PMU_EVENT_CODE_MASK	0x1f
188 #define CCI400_PMU_EVENT_SOURCE(event) \
189 	((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
190 			CCI400_PMU_EVENT_SOURCE_MASK)
191 #define CCI400_PMU_EVENT_CODE(event) \
192 	((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
193 
194 #define CCI400_R0_SLAVE_PORT_MIN_EV	0x00
195 #define CCI400_R0_SLAVE_PORT_MAX_EV	0x13
196 #define CCI400_R0_MASTER_PORT_MIN_EV	0x14
197 #define CCI400_R0_MASTER_PORT_MAX_EV	0x1a
198 
199 #define CCI400_R1_SLAVE_PORT_MIN_EV	0x00
200 #define CCI400_R1_SLAVE_PORT_MAX_EV	0x14
201 #define CCI400_R1_MASTER_PORT_MIN_EV	0x00
202 #define CCI400_R1_MASTER_PORT_MAX_EV	0x11
203 
204 #define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
205 	CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
206 					(unsigned long)_config)
207 
208 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
209 			struct device_attribute *attr, char *buf);
210 
211 static struct attribute *cci400_pmu_format_attrs[] = {
212 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
213 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
214 	NULL
215 };
216 
217 static struct attribute *cci400_r0_pmu_event_attrs[] = {
218 	/* Slave events */
219 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
220 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
221 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
222 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
223 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
224 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
225 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
226 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
227 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
228 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
229 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
230 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
231 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
232 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
233 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
234 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
235 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
236 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
237 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
238 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
239 	/* Master events */
240 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
241 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
242 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
243 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
244 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
245 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
246 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
247 	/* Special event for cycles counter */
248 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
249 	NULL
250 };
251 
252 static struct attribute *cci400_r1_pmu_event_attrs[] = {
253 	/* Slave events */
254 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
255 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
256 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
257 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
258 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
259 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
260 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
261 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
262 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
263 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
264 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
265 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
266 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
267 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
268 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
269 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
270 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
271 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
272 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
273 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
274 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
275 	/* Master events */
276 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
277 	CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
278 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
279 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
280 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
281 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
282 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
283 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
284 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
285 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
286 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
287 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
288 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
289 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
290 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
291 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
292 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
293 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
294 	/* Special event for cycles counter */
295 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
296 	NULL
297 };
298 
299 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
300 			struct device_attribute *attr, char *buf)
301 {
302 	struct dev_ext_attribute *eattr = container_of(attr,
303 				struct dev_ext_attribute, attr);
304 	return sysfs_emit(buf, "config=0x%lx\n", (unsigned long)eattr->var);
305 }
306 
307 static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
308 				struct cci_pmu_hw_events *hw,
309 				unsigned long cci_event)
310 {
311 	int idx;
312 
313 	/* cycles event idx is fixed */
314 	if (cci_event == CCI400_PMU_CYCLES) {
315 		if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
316 			return -EAGAIN;
317 
318 		return CCI400_PMU_CYCLE_CNTR_IDX;
319 	}
320 
321 	for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
322 		if (!test_and_set_bit(idx, hw->used_mask))
323 			return idx;
324 
325 	/* No counters available */
326 	return -EAGAIN;
327 }
328 
329 static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
330 {
331 	u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
332 	u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
333 	int if_type;
334 
335 	if (hw_event & ~CCI400_PMU_EVENT_MASK)
336 		return -ENOENT;
337 
338 	if (hw_event == CCI400_PMU_CYCLES)
339 		return hw_event;
340 
341 	switch (ev_source) {
342 	case CCI400_PORT_S0:
343 	case CCI400_PORT_S1:
344 	case CCI400_PORT_S2:
345 	case CCI400_PORT_S3:
346 	case CCI400_PORT_S4:
347 		/* Slave Interface */
348 		if_type = CCI_IF_SLAVE;
349 		break;
350 	case CCI400_PORT_M0:
351 	case CCI400_PORT_M1:
352 	case CCI400_PORT_M2:
353 		/* Master Interface */
354 		if_type = CCI_IF_MASTER;
355 		break;
356 	default:
357 		return -ENOENT;
358 	}
359 
360 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
361 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
362 		return hw_event;
363 
364 	return -ENOENT;
365 }
366 
367 static int probe_cci400_revision(struct cci_pmu *cci_pmu)
368 {
369 	int rev;
370 	rev = readl_relaxed(cci_pmu->ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
371 	rev >>= CCI_PID2_REV_SHIFT;
372 
373 	if (rev < CCI400_R1_PX)
374 		return CCI400_R0;
375 	else
376 		return CCI400_R1;
377 }
378 
379 static const struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
380 {
381 	if (platform_has_secure_cci_access())
382 		return &cci_pmu_models[probe_cci400_revision(cci_pmu)];
383 	return NULL;
384 }
385 #else	/* !CONFIG_ARM_CCI400_PMU */
386 static inline struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
387 {
388 	return NULL;
389 }
390 #endif	/* CONFIG_ARM_CCI400_PMU */
391 
392 #ifdef CONFIG_ARM_CCI5xx_PMU
393 
394 /*
395  * CCI5xx PMU event id is an 9-bit value made of two parts.
396  *	 bits [8:5] - Source for the event
397  *	 bits [4:0] - Event code (specific to type of interface)
398  *
399  *
400  */
401 
402 /* Port ids */
403 #define CCI5xx_PORT_S0			0x0
404 #define CCI5xx_PORT_S1			0x1
405 #define CCI5xx_PORT_S2			0x2
406 #define CCI5xx_PORT_S3			0x3
407 #define CCI5xx_PORT_S4			0x4
408 #define CCI5xx_PORT_S5			0x5
409 #define CCI5xx_PORT_S6			0x6
410 
411 #define CCI5xx_PORT_M0			0x8
412 #define CCI5xx_PORT_M1			0x9
413 #define CCI5xx_PORT_M2			0xa
414 #define CCI5xx_PORT_M3			0xb
415 #define CCI5xx_PORT_M4			0xc
416 #define CCI5xx_PORT_M5			0xd
417 #define CCI5xx_PORT_M6			0xe
418 
419 #define CCI5xx_PORT_GLOBAL		0xf
420 
421 #define CCI5xx_PMU_EVENT_MASK		0x1ffUL
422 #define CCI5xx_PMU_EVENT_SOURCE_SHIFT	0x5
423 #define CCI5xx_PMU_EVENT_SOURCE_MASK	0xf
424 #define CCI5xx_PMU_EVENT_CODE_SHIFT	0x0
425 #define CCI5xx_PMU_EVENT_CODE_MASK	0x1f
426 
427 #define CCI5xx_PMU_EVENT_SOURCE(event)	\
428 	((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK)
429 #define CCI5xx_PMU_EVENT_CODE(event)	\
430 	((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK)
431 
432 #define CCI5xx_SLAVE_PORT_MIN_EV	0x00
433 #define CCI5xx_SLAVE_PORT_MAX_EV	0x1f
434 #define CCI5xx_MASTER_PORT_MIN_EV	0x00
435 #define CCI5xx_MASTER_PORT_MAX_EV	0x06
436 #define CCI5xx_GLOBAL_PORT_MIN_EV	0x00
437 #define CCI5xx_GLOBAL_PORT_MAX_EV	0x0f
438 
439 
440 #define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
441 	CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \
442 					(unsigned long) _config)
443 
444 static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
445 				struct device_attribute *attr, char *buf);
446 
447 static struct attribute *cci5xx_pmu_format_attrs[] = {
448 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
449 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
450 	NULL,
451 };
452 
453 static struct attribute *cci5xx_pmu_event_attrs[] = {
454 	/* Slave events */
455 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
456 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
457 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
458 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
459 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
460 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
461 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
462 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
463 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
464 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
465 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
466 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
467 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
468 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
469 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
470 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
471 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
472 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
473 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
474 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
475 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
476 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
477 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
478 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
479 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
480 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
481 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
482 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
483 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
484 	CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
485 	CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
486 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
487 
488 	/* Master events */
489 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
490 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
491 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
492 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
493 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
494 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
495 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
496 
497 	/* Global events */
498 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
499 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
500 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
501 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
502 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
503 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
504 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
505 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
506 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
507 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
508 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
509 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
510 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
511 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
512 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_stall_tt_full, 0xE),
513 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
514 	NULL
515 };
516 
517 static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
518 				struct device_attribute *attr, char *buf)
519 {
520 	struct dev_ext_attribute *eattr = container_of(attr,
521 					struct dev_ext_attribute, attr);
522 	/* Global events have single fixed source code */
523 	return sysfs_emit(buf, "event=0x%lx,source=0x%x\n",
524 			  (unsigned long)eattr->var, CCI5xx_PORT_GLOBAL);
525 }
526 
527 /*
528  * CCI500 provides 8 independent event counters that can count
529  * any of the events available.
530  * CCI500 PMU event source ids
531  *	0x0-0x6 - Slave interfaces
532  *	0x8-0xD - Master interfaces
533  *	0xf     - Global Events
534  *	0x7,0xe - Reserved
535  */
536 static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
537 					unsigned long hw_event)
538 {
539 	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
540 	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
541 	int if_type;
542 
543 	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
544 		return -ENOENT;
545 
546 	switch (ev_source) {
547 	case CCI5xx_PORT_S0:
548 	case CCI5xx_PORT_S1:
549 	case CCI5xx_PORT_S2:
550 	case CCI5xx_PORT_S3:
551 	case CCI5xx_PORT_S4:
552 	case CCI5xx_PORT_S5:
553 	case CCI5xx_PORT_S6:
554 		if_type = CCI_IF_SLAVE;
555 		break;
556 	case CCI5xx_PORT_M0:
557 	case CCI5xx_PORT_M1:
558 	case CCI5xx_PORT_M2:
559 	case CCI5xx_PORT_M3:
560 	case CCI5xx_PORT_M4:
561 	case CCI5xx_PORT_M5:
562 		if_type = CCI_IF_MASTER;
563 		break;
564 	case CCI5xx_PORT_GLOBAL:
565 		if_type = CCI_IF_GLOBAL;
566 		break;
567 	default:
568 		return -ENOENT;
569 	}
570 
571 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
572 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
573 		return hw_event;
574 
575 	return -ENOENT;
576 }
577 
578 /*
579  * CCI550 provides 8 independent event counters that can count
580  * any of the events available.
581  * CCI550 PMU event source ids
582  *	0x0-0x6 - Slave interfaces
583  *	0x8-0xe - Master interfaces
584  *	0xf     - Global Events
585  *	0x7	- Reserved
586  */
587 static int cci550_validate_hw_event(struct cci_pmu *cci_pmu,
588 					unsigned long hw_event)
589 {
590 	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
591 	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
592 	int if_type;
593 
594 	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
595 		return -ENOENT;
596 
597 	switch (ev_source) {
598 	case CCI5xx_PORT_S0:
599 	case CCI5xx_PORT_S1:
600 	case CCI5xx_PORT_S2:
601 	case CCI5xx_PORT_S3:
602 	case CCI5xx_PORT_S4:
603 	case CCI5xx_PORT_S5:
604 	case CCI5xx_PORT_S6:
605 		if_type = CCI_IF_SLAVE;
606 		break;
607 	case CCI5xx_PORT_M0:
608 	case CCI5xx_PORT_M1:
609 	case CCI5xx_PORT_M2:
610 	case CCI5xx_PORT_M3:
611 	case CCI5xx_PORT_M4:
612 	case CCI5xx_PORT_M5:
613 	case CCI5xx_PORT_M6:
614 		if_type = CCI_IF_MASTER;
615 		break;
616 	case CCI5xx_PORT_GLOBAL:
617 		if_type = CCI_IF_GLOBAL;
618 		break;
619 	default:
620 		return -ENOENT;
621 	}
622 
623 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
624 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
625 		return hw_event;
626 
627 	return -ENOENT;
628 }
629 
630 #endif	/* CONFIG_ARM_CCI5xx_PMU */
631 
632 /*
633  * Program the CCI PMU counters which have PERF_HES_ARCH set
634  * with the event period and mark them ready before we enable
635  * PMU.
636  */
637 static void cci_pmu_sync_counters(struct cci_pmu *cci_pmu)
638 {
639 	int i;
640 	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
641 	DECLARE_BITMAP(mask, HW_CNTRS_MAX);
642 
643 	bitmap_zero(mask, HW_CNTRS_MAX);
644 	for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) {
645 		struct perf_event *event = cci_hw->events[i];
646 
647 		if (WARN_ON(!event))
648 			continue;
649 
650 		/* Leave the events which are not counting */
651 		if (event->hw.state & PERF_HES_STOPPED)
652 			continue;
653 		if (event->hw.state & PERF_HES_ARCH) {
654 			__set_bit(i, mask);
655 			event->hw.state &= ~PERF_HES_ARCH;
656 		}
657 	}
658 
659 	pmu_write_counters(cci_pmu, mask);
660 }
661 
662 /* Should be called with cci_pmu->hw_events->pmu_lock held */
663 static void __cci_pmu_enable_nosync(struct cci_pmu *cci_pmu)
664 {
665 	u32 val;
666 
667 	/* Enable all the PMU counters. */
668 	val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
669 	writel(val, cci_pmu->ctrl_base + CCI_PMCR);
670 }
671 
672 /* Should be called with cci_pmu->hw_events->pmu_lock held */
673 static void __cci_pmu_enable_sync(struct cci_pmu *cci_pmu)
674 {
675 	cci_pmu_sync_counters(cci_pmu);
676 	__cci_pmu_enable_nosync(cci_pmu);
677 }
678 
679 /* Should be called with cci_pmu->hw_events->pmu_lock held */
680 static void __cci_pmu_disable(struct cci_pmu *cci_pmu)
681 {
682 	u32 val;
683 
684 	/* Disable all the PMU counters. */
685 	val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
686 	writel(val, cci_pmu->ctrl_base + CCI_PMCR);
687 }
688 
689 static ssize_t cci_pmu_event_show(struct device *dev,
690 			struct device_attribute *attr, char *buf)
691 {
692 	struct dev_ext_attribute *eattr = container_of(attr,
693 				struct dev_ext_attribute, attr);
694 	/* source parameter is mandatory for normal PMU events */
695 	return sysfs_emit(buf, "source=?,event=0x%lx\n",
696 			  (unsigned long)eattr->var);
697 }
698 
699 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
700 {
701 	return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
702 }
703 
704 static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
705 {
706 	return readl_relaxed(cci_pmu->base +
707 			     CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
708 }
709 
710 static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
711 			       int idx, unsigned int offset)
712 {
713 	writel_relaxed(value, cci_pmu->base +
714 		       CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
715 }
716 
717 static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
718 {
719 	pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
720 }
721 
722 static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
723 {
724 	pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
725 }
726 
727 static bool __maybe_unused
728 pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx)
729 {
730 	return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0;
731 }
732 
733 static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
734 {
735 	pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
736 }
737 
738 /*
739  * For all counters on the CCI-PMU, disable any 'enabled' counters,
740  * saving the changed counters in the mask, so that we can restore
741  * it later using pmu_restore_counters. The mask is private to the
742  * caller. We cannot rely on the used_mask maintained by the CCI_PMU
743  * as it only tells us if the counter is assigned to perf_event or not.
744  * The state of the perf_event cannot be locked by the PMU layer, hence
745  * we check the individual counter status (which can be locked by
746  * cci_pm->hw_events->pmu_lock).
747  *
748  * @mask should be initialised to empty by the caller.
749  */
750 static void __maybe_unused
751 pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
752 {
753 	int i;
754 
755 	for (i = 0; i < cci_pmu->num_cntrs; i++) {
756 		if (pmu_counter_is_enabled(cci_pmu, i)) {
757 			set_bit(i, mask);
758 			pmu_disable_counter(cci_pmu, i);
759 		}
760 	}
761 }
762 
763 /*
764  * Restore the status of the counters. Reversal of the pmu_save_counters().
765  * For each counter set in the mask, enable the counter back.
766  */
767 static void __maybe_unused
768 pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
769 {
770 	int i;
771 
772 	for_each_set_bit(i, mask, cci_pmu->num_cntrs)
773 		pmu_enable_counter(cci_pmu, i);
774 }
775 
776 /*
777  * Returns the number of programmable counters actually implemented
778  * by the cci
779  */
780 static u32 pmu_get_max_counters(struct cci_pmu *cci_pmu)
781 {
782 	return (readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) &
783 		CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
784 }
785 
786 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
787 {
788 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
789 	unsigned long cci_event = event->hw.config_base;
790 	int idx;
791 
792 	if (cci_pmu->model->get_event_idx)
793 		return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
794 
795 	/* Generic code to find an unused idx from the mask */
796 	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
797 		if (!test_and_set_bit(idx, hw->used_mask))
798 			return idx;
799 
800 	/* No counters available */
801 	return -EAGAIN;
802 }
803 
804 static int pmu_map_event(struct perf_event *event)
805 {
806 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
807 
808 	if (event->attr.type < PERF_TYPE_MAX ||
809 			!cci_pmu->model->validate_hw_event)
810 		return -ENOENT;
811 
812 	return	cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
813 }
814 
815 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
816 {
817 	int i;
818 	struct platform_device *pmu_device = cci_pmu->plat_device;
819 
820 	if (unlikely(!pmu_device))
821 		return -ENODEV;
822 
823 	if (cci_pmu->nr_irqs < 1) {
824 		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
825 		return -ENODEV;
826 	}
827 
828 	/*
829 	 * Register all available CCI PMU interrupts. In the interrupt handler
830 	 * we iterate over the counters checking for interrupt source (the
831 	 * overflowing counter) and clear it.
832 	 *
833 	 * This should allow handling of non-unique interrupt for the counters.
834 	 */
835 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
836 		int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
837 				"arm-cci-pmu", cci_pmu);
838 		if (err) {
839 			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
840 				cci_pmu->irqs[i]);
841 			return err;
842 		}
843 
844 		set_bit(i, &cci_pmu->active_irqs);
845 	}
846 
847 	return 0;
848 }
849 
850 static void pmu_free_irq(struct cci_pmu *cci_pmu)
851 {
852 	int i;
853 
854 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
855 		if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
856 			continue;
857 
858 		free_irq(cci_pmu->irqs[i], cci_pmu);
859 	}
860 }
861 
862 static u32 pmu_read_counter(struct perf_event *event)
863 {
864 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
865 	struct hw_perf_event *hw_counter = &event->hw;
866 	int idx = hw_counter->idx;
867 	u32 value;
868 
869 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
870 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
871 		return 0;
872 	}
873 	value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
874 
875 	return value;
876 }
877 
878 static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx)
879 {
880 	pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
881 }
882 
883 static void __pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
884 {
885 	int i;
886 	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
887 
888 	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
889 		struct perf_event *event = cci_hw->events[i];
890 
891 		if (WARN_ON(!event))
892 			continue;
893 		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
894 	}
895 }
896 
897 static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
898 {
899 	if (cci_pmu->model->write_counters)
900 		cci_pmu->model->write_counters(cci_pmu, mask);
901 	else
902 		__pmu_write_counters(cci_pmu, mask);
903 }
904 
905 #ifdef CONFIG_ARM_CCI5xx_PMU
906 
907 /*
908  * CCI-500/CCI-550 has advanced power saving policies, which could gate the
909  * clocks to the PMU counters, which makes the writes to them ineffective.
910  * The only way to write to those counters is when the global counters
911  * are enabled and the particular counter is enabled.
912  *
913  * So we do the following :
914  *
915  * 1) Disable all the PMU counters, saving their current state
916  * 2) Enable the global PMU profiling, now that all counters are
917  *    disabled.
918  *
919  * For each counter to be programmed, repeat steps 3-7:
920  *
921  * 3) Write an invalid event code to the event control register for the
922       counter, so that the counters are not modified.
923  * 4) Enable the counter control for the counter.
924  * 5) Set the counter value
925  * 6) Disable the counter
926  * 7) Restore the event in the target counter
927  *
928  * 8) Disable the global PMU.
929  * 9) Restore the status of the rest of the counters.
930  *
931  * We choose an event which for CCI-5xx is guaranteed not to count.
932  * We use the highest possible event code (0x1f) for the master interface 0.
933  */
934 #define CCI5xx_INVALID_EVENT	((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \
935 				 (CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT))
936 static void cci5xx_pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
937 {
938 	int i;
939 	DECLARE_BITMAP(saved_mask, HW_CNTRS_MAX);
940 
941 	bitmap_zero(saved_mask, cci_pmu->num_cntrs);
942 	pmu_save_counters(cci_pmu, saved_mask);
943 
944 	/*
945 	 * Now that all the counters are disabled, we can safely turn the PMU on,
946 	 * without syncing the status of the counters
947 	 */
948 	__cci_pmu_enable_nosync(cci_pmu);
949 
950 	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
951 		struct perf_event *event = cci_pmu->hw_events.events[i];
952 
953 		if (WARN_ON(!event))
954 			continue;
955 
956 		pmu_set_event(cci_pmu, i, CCI5xx_INVALID_EVENT);
957 		pmu_enable_counter(cci_pmu, i);
958 		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
959 		pmu_disable_counter(cci_pmu, i);
960 		pmu_set_event(cci_pmu, i, event->hw.config_base);
961 	}
962 
963 	__cci_pmu_disable(cci_pmu);
964 
965 	pmu_restore_counters(cci_pmu, saved_mask);
966 }
967 
968 #endif	/* CONFIG_ARM_CCI5xx_PMU */
969 
970 static u64 pmu_event_update(struct perf_event *event)
971 {
972 	struct hw_perf_event *hwc = &event->hw;
973 	u64 delta, prev_raw_count, new_raw_count;
974 
975 	do {
976 		prev_raw_count = local64_read(&hwc->prev_count);
977 		new_raw_count = pmu_read_counter(event);
978 	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
979 		 new_raw_count) != prev_raw_count);
980 
981 	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
982 
983 	local64_add(delta, &event->count);
984 
985 	return new_raw_count;
986 }
987 
988 static void pmu_read(struct perf_event *event)
989 {
990 	pmu_event_update(event);
991 }
992 
993 static void pmu_event_set_period(struct perf_event *event)
994 {
995 	struct hw_perf_event *hwc = &event->hw;
996 	/*
997 	 * The CCI PMU counters have a period of 2^32. To account for the
998 	 * possiblity of extreme interrupt latency we program for a period of
999 	 * half that. Hopefully we can handle the interrupt before another 2^31
1000 	 * events occur and the counter overtakes its previous value.
1001 	 */
1002 	u64 val = 1ULL << 31;
1003 	local64_set(&hwc->prev_count, val);
1004 
1005 	/*
1006 	 * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
1007 	 * values needs to be sync-ed with the s/w state before the PMU is
1008 	 * enabled.
1009 	 * Mark this counter for sync.
1010 	 */
1011 	hwc->state |= PERF_HES_ARCH;
1012 }
1013 
1014 static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
1015 {
1016 	struct cci_pmu *cci_pmu = dev;
1017 	struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
1018 	int idx, handled = IRQ_NONE;
1019 
1020 	raw_spin_lock(&events->pmu_lock);
1021 
1022 	/* Disable the PMU while we walk through the counters */
1023 	__cci_pmu_disable(cci_pmu);
1024 	/*
1025 	 * Iterate over counters and update the corresponding perf events.
1026 	 * This should work regardless of whether we have per-counter overflow
1027 	 * interrupt or a combined overflow interrupt.
1028 	 */
1029 	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
1030 		struct perf_event *event = events->events[idx];
1031 
1032 		if (!event)
1033 			continue;
1034 
1035 		/* Did this counter overflow? */
1036 		if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
1037 		      CCI_PMU_OVRFLW_FLAG))
1038 			continue;
1039 
1040 		pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
1041 							CCI_PMU_OVRFLW);
1042 
1043 		pmu_event_update(event);
1044 		pmu_event_set_period(event);
1045 		handled = IRQ_HANDLED;
1046 	}
1047 
1048 	/* Enable the PMU and sync possibly overflowed counters */
1049 	__cci_pmu_enable_sync(cci_pmu);
1050 	raw_spin_unlock(&events->pmu_lock);
1051 
1052 	return IRQ_RETVAL(handled);
1053 }
1054 
1055 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
1056 {
1057 	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
1058 	if (ret) {
1059 		pmu_free_irq(cci_pmu);
1060 		return ret;
1061 	}
1062 	return 0;
1063 }
1064 
1065 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
1066 {
1067 	pmu_free_irq(cci_pmu);
1068 }
1069 
1070 static void hw_perf_event_destroy(struct perf_event *event)
1071 {
1072 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1073 	atomic_t *active_events = &cci_pmu->active_events;
1074 	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
1075 
1076 	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
1077 		cci_pmu_put_hw(cci_pmu);
1078 		mutex_unlock(reserve_mutex);
1079 	}
1080 }
1081 
1082 static void cci_pmu_enable(struct pmu *pmu)
1083 {
1084 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1085 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1086 	bool enabled = !bitmap_empty(hw_events->used_mask, cci_pmu->num_cntrs);
1087 	unsigned long flags;
1088 
1089 	if (!enabled)
1090 		return;
1091 
1092 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1093 	__cci_pmu_enable_sync(cci_pmu);
1094 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1095 
1096 }
1097 
1098 static void cci_pmu_disable(struct pmu *pmu)
1099 {
1100 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1101 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1102 	unsigned long flags;
1103 
1104 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1105 	__cci_pmu_disable(cci_pmu);
1106 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1107 }
1108 
1109 /*
1110  * Check if the idx represents a non-programmable counter.
1111  * All the fixed event counters are mapped before the programmable
1112  * counters.
1113  */
1114 static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
1115 {
1116 	return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
1117 }
1118 
1119 static void cci_pmu_start(struct perf_event *event, int pmu_flags)
1120 {
1121 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1122 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1123 	struct hw_perf_event *hwc = &event->hw;
1124 	int idx = hwc->idx;
1125 	unsigned long flags;
1126 
1127 	/*
1128 	 * To handle interrupt latency, we always reprogram the period
1129 	 * regardless of PERF_EF_RELOAD.
1130 	 */
1131 	if (pmu_flags & PERF_EF_RELOAD)
1132 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
1133 
1134 	hwc->state = 0;
1135 
1136 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1137 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1138 		return;
1139 	}
1140 
1141 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1142 
1143 	/* Configure the counter unless you are counting a fixed event */
1144 	if (!pmu_fixed_hw_idx(cci_pmu, idx))
1145 		pmu_set_event(cci_pmu, idx, hwc->config_base);
1146 
1147 	pmu_event_set_period(event);
1148 	pmu_enable_counter(cci_pmu, idx);
1149 
1150 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1151 }
1152 
1153 static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
1154 {
1155 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1156 	struct hw_perf_event *hwc = &event->hw;
1157 	int idx = hwc->idx;
1158 
1159 	if (hwc->state & PERF_HES_STOPPED)
1160 		return;
1161 
1162 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1163 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1164 		return;
1165 	}
1166 
1167 	/*
1168 	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
1169 	 * cci_pmu_start()
1170 	 */
1171 	pmu_disable_counter(cci_pmu, idx);
1172 	pmu_event_update(event);
1173 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1174 }
1175 
1176 static int cci_pmu_add(struct perf_event *event, int flags)
1177 {
1178 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1179 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1180 	struct hw_perf_event *hwc = &event->hw;
1181 	int idx;
1182 
1183 	/* If we don't have a space for the counter then finish early. */
1184 	idx = pmu_get_event_idx(hw_events, event);
1185 	if (idx < 0)
1186 		return idx;
1187 
1188 	event->hw.idx = idx;
1189 	hw_events->events[idx] = event;
1190 
1191 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1192 	if (flags & PERF_EF_START)
1193 		cci_pmu_start(event, PERF_EF_RELOAD);
1194 
1195 	/* Propagate our changes to the userspace mapping. */
1196 	perf_event_update_userpage(event);
1197 
1198 	return 0;
1199 }
1200 
1201 static void cci_pmu_del(struct perf_event *event, int flags)
1202 {
1203 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1204 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1205 	struct hw_perf_event *hwc = &event->hw;
1206 	int idx = hwc->idx;
1207 
1208 	cci_pmu_stop(event, PERF_EF_UPDATE);
1209 	hw_events->events[idx] = NULL;
1210 	clear_bit(idx, hw_events->used_mask);
1211 
1212 	perf_event_update_userpage(event);
1213 }
1214 
1215 static int validate_event(struct pmu *cci_pmu,
1216 			  struct cci_pmu_hw_events *hw_events,
1217 			  struct perf_event *event)
1218 {
1219 	if (is_software_event(event))
1220 		return 1;
1221 
1222 	/*
1223 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1224 	 * core perf code won't check that the pmu->ctx == leader->ctx
1225 	 * until after pmu->event_init(event).
1226 	 */
1227 	if (event->pmu != cci_pmu)
1228 		return 0;
1229 
1230 	if (event->state < PERF_EVENT_STATE_OFF)
1231 		return 1;
1232 
1233 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1234 		return 1;
1235 
1236 	return pmu_get_event_idx(hw_events, event) >= 0;
1237 }
1238 
1239 static int validate_group(struct perf_event *event)
1240 {
1241 	struct perf_event *sibling, *leader = event->group_leader;
1242 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1243 	unsigned long mask[BITS_TO_LONGS(HW_CNTRS_MAX)];
1244 	struct cci_pmu_hw_events fake_pmu = {
1245 		/*
1246 		 * Initialise the fake PMU. We only need to populate the
1247 		 * used_mask for the purposes of validation.
1248 		 */
1249 		.used_mask = mask,
1250 	};
1251 	bitmap_zero(mask, cci_pmu->num_cntrs);
1252 
1253 	if (!validate_event(event->pmu, &fake_pmu, leader))
1254 		return -EINVAL;
1255 
1256 	for_each_sibling_event(sibling, leader) {
1257 		if (!validate_event(event->pmu, &fake_pmu, sibling))
1258 			return -EINVAL;
1259 	}
1260 
1261 	if (!validate_event(event->pmu, &fake_pmu, event))
1262 		return -EINVAL;
1263 
1264 	return 0;
1265 }
1266 
1267 static int __hw_perf_event_init(struct perf_event *event)
1268 {
1269 	struct hw_perf_event *hwc = &event->hw;
1270 	int mapping;
1271 
1272 	mapping = pmu_map_event(event);
1273 
1274 	if (mapping < 0) {
1275 		pr_debug("event %x:%llx not supported\n", event->attr.type,
1276 			 event->attr.config);
1277 		return mapping;
1278 	}
1279 
1280 	/*
1281 	 * We don't assign an index until we actually place the event onto
1282 	 * hardware. Use -1 to signify that we haven't decided where to put it
1283 	 * yet.
1284 	 */
1285 	hwc->idx		= -1;
1286 	hwc->config_base	= 0;
1287 	hwc->config		= 0;
1288 	hwc->event_base		= 0;
1289 
1290 	/*
1291 	 * Store the event encoding into the config_base field.
1292 	 */
1293 	hwc->config_base	    |= (unsigned long)mapping;
1294 
1295 	if (event->group_leader != event) {
1296 		if (validate_group(event) != 0)
1297 			return -EINVAL;
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 static int cci_pmu_event_init(struct perf_event *event)
1304 {
1305 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1306 	atomic_t *active_events = &cci_pmu->active_events;
1307 	int err = 0;
1308 
1309 	if (event->attr.type != event->pmu->type)
1310 		return -ENOENT;
1311 
1312 	/* Shared by all CPUs, no meaningful state to sample */
1313 	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1314 		return -EOPNOTSUPP;
1315 
1316 	/*
1317 	 * Following the example set by other "uncore" PMUs, we accept any CPU
1318 	 * and rewrite its affinity dynamically rather than having perf core
1319 	 * handle cpu == -1 and pid == -1 for this case.
1320 	 *
1321 	 * The perf core will pin online CPUs for the duration of this call and
1322 	 * the event being installed into its context, so the PMU's CPU can't
1323 	 * change under our feet.
1324 	 */
1325 	if (event->cpu < 0)
1326 		return -EINVAL;
1327 	event->cpu = cci_pmu->cpu;
1328 
1329 	event->destroy = hw_perf_event_destroy;
1330 	if (!atomic_inc_not_zero(active_events)) {
1331 		mutex_lock(&cci_pmu->reserve_mutex);
1332 		if (atomic_read(active_events) == 0)
1333 			err = cci_pmu_get_hw(cci_pmu);
1334 		if (!err)
1335 			atomic_inc(active_events);
1336 		mutex_unlock(&cci_pmu->reserve_mutex);
1337 	}
1338 	if (err)
1339 		return err;
1340 
1341 	err = __hw_perf_event_init(event);
1342 	if (err)
1343 		hw_perf_event_destroy(event);
1344 
1345 	return err;
1346 }
1347 
1348 static ssize_t pmu_cpumask_attr_show(struct device *dev,
1349 				     struct device_attribute *attr, char *buf)
1350 {
1351 	struct pmu *pmu = dev_get_drvdata(dev);
1352 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1353 
1354 	return cpumap_print_to_pagebuf(true, buf, cpumask_of(cci_pmu->cpu));
1355 }
1356 
1357 static struct device_attribute pmu_cpumask_attr =
1358 	__ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL);
1359 
1360 static struct attribute *pmu_attrs[] = {
1361 	&pmu_cpumask_attr.attr,
1362 	NULL,
1363 };
1364 
1365 static const struct attribute_group pmu_attr_group = {
1366 	.attrs = pmu_attrs,
1367 };
1368 
1369 static struct attribute_group pmu_format_attr_group = {
1370 	.name = "format",
1371 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1372 };
1373 
1374 static struct attribute_group pmu_event_attr_group = {
1375 	.name = "events",
1376 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1377 };
1378 
1379 static const struct attribute_group *pmu_attr_groups[] = {
1380 	&pmu_attr_group,
1381 	&pmu_format_attr_group,
1382 	&pmu_event_attr_group,
1383 	NULL
1384 };
1385 
1386 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1387 {
1388 	const struct cci_pmu_model *model = cci_pmu->model;
1389 	char *name = model->name;
1390 	u32 num_cntrs;
1391 
1392 	if (WARN_ON(model->num_hw_cntrs > NUM_HW_CNTRS_MAX))
1393 		return -EINVAL;
1394 	if (WARN_ON(model->fixed_hw_cntrs > FIXED_HW_CNTRS_MAX))
1395 		return -EINVAL;
1396 
1397 	pmu_event_attr_group.attrs = model->event_attrs;
1398 	pmu_format_attr_group.attrs = model->format_attrs;
1399 
1400 	cci_pmu->pmu = (struct pmu) {
1401 		.module		= THIS_MODULE,
1402 		.parent		= &pdev->dev,
1403 		.name		= cci_pmu->model->name,
1404 		.task_ctx_nr	= perf_invalid_context,
1405 		.pmu_enable	= cci_pmu_enable,
1406 		.pmu_disable	= cci_pmu_disable,
1407 		.event_init	= cci_pmu_event_init,
1408 		.add		= cci_pmu_add,
1409 		.del		= cci_pmu_del,
1410 		.start		= cci_pmu_start,
1411 		.stop		= cci_pmu_stop,
1412 		.read		= pmu_read,
1413 		.attr_groups	= pmu_attr_groups,
1414 		.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
1415 	};
1416 
1417 	cci_pmu->plat_device = pdev;
1418 	num_cntrs = pmu_get_max_counters(cci_pmu);
1419 	if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1420 		dev_warn(&pdev->dev,
1421 			"PMU implements more counters(%d) than supported by"
1422 			" the model(%d), truncated.",
1423 			num_cntrs, cci_pmu->model->num_hw_cntrs);
1424 		num_cntrs = cci_pmu->model->num_hw_cntrs;
1425 	}
1426 	cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
1427 
1428 	return perf_pmu_register(&cci_pmu->pmu, name, -1);
1429 }
1430 
1431 static int cci_pmu_offline_cpu(unsigned int cpu)
1432 {
1433 	int target;
1434 
1435 	if (!g_cci_pmu || cpu != g_cci_pmu->cpu)
1436 		return 0;
1437 
1438 	target = cpumask_any_but(cpu_online_mask, cpu);
1439 	if (target >= nr_cpu_ids)
1440 		return 0;
1441 
1442 	perf_pmu_migrate_context(&g_cci_pmu->pmu, cpu, target);
1443 	g_cci_pmu->cpu = target;
1444 	return 0;
1445 }
1446 
1447 static __maybe_unused struct cci_pmu_model cci_pmu_models[] = {
1448 #ifdef CONFIG_ARM_CCI400_PMU
1449 	[CCI400_R0] = {
1450 		.name = "CCI_400",
1451 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
1452 		.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
1453 		.cntr_size = SZ_4K,
1454 		.format_attrs = cci400_pmu_format_attrs,
1455 		.event_attrs = cci400_r0_pmu_event_attrs,
1456 		.event_ranges = {
1457 			[CCI_IF_SLAVE] = {
1458 				CCI400_R0_SLAVE_PORT_MIN_EV,
1459 				CCI400_R0_SLAVE_PORT_MAX_EV,
1460 			},
1461 			[CCI_IF_MASTER] = {
1462 				CCI400_R0_MASTER_PORT_MIN_EV,
1463 				CCI400_R0_MASTER_PORT_MAX_EV,
1464 			},
1465 		},
1466 		.validate_hw_event = cci400_validate_hw_event,
1467 		.get_event_idx = cci400_get_event_idx,
1468 	},
1469 	[CCI400_R1] = {
1470 		.name = "CCI_400_r1",
1471 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
1472 		.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
1473 		.cntr_size = SZ_4K,
1474 		.format_attrs = cci400_pmu_format_attrs,
1475 		.event_attrs = cci400_r1_pmu_event_attrs,
1476 		.event_ranges = {
1477 			[CCI_IF_SLAVE] = {
1478 				CCI400_R1_SLAVE_PORT_MIN_EV,
1479 				CCI400_R1_SLAVE_PORT_MAX_EV,
1480 			},
1481 			[CCI_IF_MASTER] = {
1482 				CCI400_R1_MASTER_PORT_MIN_EV,
1483 				CCI400_R1_MASTER_PORT_MAX_EV,
1484 			},
1485 		},
1486 		.validate_hw_event = cci400_validate_hw_event,
1487 		.get_event_idx = cci400_get_event_idx,
1488 	},
1489 #endif
1490 #ifdef CONFIG_ARM_CCI5xx_PMU
1491 	[CCI500_R0] = {
1492 		.name = "CCI_500",
1493 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
1494 		.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
1495 		.cntr_size = SZ_64K,
1496 		.format_attrs = cci5xx_pmu_format_attrs,
1497 		.event_attrs = cci5xx_pmu_event_attrs,
1498 		.event_ranges = {
1499 			[CCI_IF_SLAVE] = {
1500 				CCI5xx_SLAVE_PORT_MIN_EV,
1501 				CCI5xx_SLAVE_PORT_MAX_EV,
1502 			},
1503 			[CCI_IF_MASTER] = {
1504 				CCI5xx_MASTER_PORT_MIN_EV,
1505 				CCI5xx_MASTER_PORT_MAX_EV,
1506 			},
1507 			[CCI_IF_GLOBAL] = {
1508 				CCI5xx_GLOBAL_PORT_MIN_EV,
1509 				CCI5xx_GLOBAL_PORT_MAX_EV,
1510 			},
1511 		},
1512 		.validate_hw_event = cci500_validate_hw_event,
1513 		.write_counters	= cci5xx_pmu_write_counters,
1514 	},
1515 	[CCI550_R0] = {
1516 		.name = "CCI_550",
1517 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
1518 		.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
1519 		.cntr_size = SZ_64K,
1520 		.format_attrs = cci5xx_pmu_format_attrs,
1521 		.event_attrs = cci5xx_pmu_event_attrs,
1522 		.event_ranges = {
1523 			[CCI_IF_SLAVE] = {
1524 				CCI5xx_SLAVE_PORT_MIN_EV,
1525 				CCI5xx_SLAVE_PORT_MAX_EV,
1526 			},
1527 			[CCI_IF_MASTER] = {
1528 				CCI5xx_MASTER_PORT_MIN_EV,
1529 				CCI5xx_MASTER_PORT_MAX_EV,
1530 			},
1531 			[CCI_IF_GLOBAL] = {
1532 				CCI5xx_GLOBAL_PORT_MIN_EV,
1533 				CCI5xx_GLOBAL_PORT_MAX_EV,
1534 			},
1535 		},
1536 		.validate_hw_event = cci550_validate_hw_event,
1537 		.write_counters	= cci5xx_pmu_write_counters,
1538 	},
1539 #endif
1540 };
1541 
1542 static const struct of_device_id arm_cci_pmu_matches[] = {
1543 #ifdef CONFIG_ARM_CCI400_PMU
1544 	{
1545 		.compatible = "arm,cci-400-pmu",
1546 		.data	= NULL,
1547 	},
1548 	{
1549 		.compatible = "arm,cci-400-pmu,r0",
1550 		.data	= &cci_pmu_models[CCI400_R0],
1551 	},
1552 	{
1553 		.compatible = "arm,cci-400-pmu,r1",
1554 		.data	= &cci_pmu_models[CCI400_R1],
1555 	},
1556 #endif
1557 #ifdef CONFIG_ARM_CCI5xx_PMU
1558 	{
1559 		.compatible = "arm,cci-500-pmu,r0",
1560 		.data = &cci_pmu_models[CCI500_R0],
1561 	},
1562 	{
1563 		.compatible = "arm,cci-550-pmu,r0",
1564 		.data = &cci_pmu_models[CCI550_R0],
1565 	},
1566 #endif
1567 	{},
1568 };
1569 MODULE_DEVICE_TABLE(of, arm_cci_pmu_matches);
1570 
1571 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1572 {
1573 	int i;
1574 
1575 	for (i = 0; i < nr_irqs; i++)
1576 		if (irq == irqs[i])
1577 			return true;
1578 
1579 	return false;
1580 }
1581 
1582 static struct cci_pmu *cci_pmu_alloc(struct device *dev)
1583 {
1584 	struct cci_pmu *cci_pmu;
1585 	const struct cci_pmu_model *model;
1586 
1587 	/*
1588 	 * All allocations are devm_* hence we don't have to free
1589 	 * them explicitly on an error, as it would end up in driver
1590 	 * detach.
1591 	 */
1592 	cci_pmu = devm_kzalloc(dev, sizeof(*cci_pmu), GFP_KERNEL);
1593 	if (!cci_pmu)
1594 		return ERR_PTR(-ENOMEM);
1595 
1596 	cci_pmu->ctrl_base = *(void __iomem **)dev->platform_data;
1597 
1598 	model = of_device_get_match_data(dev);
1599 	if (!model) {
1600 		dev_warn(dev,
1601 			 "DEPRECATED compatible property, requires secure access to CCI registers");
1602 		model = probe_cci_model(cci_pmu);
1603 	}
1604 	if (!model) {
1605 		dev_warn(dev, "CCI PMU version not supported\n");
1606 		return ERR_PTR(-ENODEV);
1607 	}
1608 
1609 	cci_pmu->model = model;
1610 	cci_pmu->irqs = devm_kcalloc(dev, CCI_PMU_MAX_HW_CNTRS(model),
1611 					sizeof(*cci_pmu->irqs), GFP_KERNEL);
1612 	if (!cci_pmu->irqs)
1613 		return ERR_PTR(-ENOMEM);
1614 	cci_pmu->hw_events.events = devm_kcalloc(dev,
1615 					     CCI_PMU_MAX_HW_CNTRS(model),
1616 					     sizeof(*cci_pmu->hw_events.events),
1617 					     GFP_KERNEL);
1618 	if (!cci_pmu->hw_events.events)
1619 		return ERR_PTR(-ENOMEM);
1620 	cci_pmu->hw_events.used_mask = devm_bitmap_zalloc(dev,
1621 							  CCI_PMU_MAX_HW_CNTRS(model),
1622 							  GFP_KERNEL);
1623 	if (!cci_pmu->hw_events.used_mask)
1624 		return ERR_PTR(-ENOMEM);
1625 
1626 	return cci_pmu;
1627 }
1628 
1629 static int cci_pmu_probe(struct platform_device *pdev)
1630 {
1631 	struct cci_pmu *cci_pmu;
1632 	int i, ret, irq;
1633 
1634 	cci_pmu = cci_pmu_alloc(&pdev->dev);
1635 	if (IS_ERR(cci_pmu))
1636 		return PTR_ERR(cci_pmu);
1637 
1638 	cci_pmu->base = devm_platform_ioremap_resource(pdev, 0);
1639 	if (IS_ERR(cci_pmu->base))
1640 		return -ENOMEM;
1641 
1642 	/*
1643 	 * CCI PMU has one overflow interrupt per counter; but some may be tied
1644 	 * together to a common interrupt.
1645 	 */
1646 	cci_pmu->nr_irqs = 0;
1647 	for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
1648 		irq = platform_get_irq(pdev, i);
1649 		if (irq < 0)
1650 			break;
1651 
1652 		if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
1653 			continue;
1654 
1655 		cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
1656 	}
1657 
1658 	/*
1659 	 * Ensure that the device tree has as many interrupts as the number
1660 	 * of counters.
1661 	 */
1662 	if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
1663 		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
1664 			i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
1665 		return -EINVAL;
1666 	}
1667 
1668 	raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1669 	mutex_init(&cci_pmu->reserve_mutex);
1670 	atomic_set(&cci_pmu->active_events, 0);
1671 
1672 	cci_pmu->cpu = raw_smp_processor_id();
1673 	g_cci_pmu = cci_pmu;
1674 	cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_CCI_ONLINE,
1675 				  "perf/arm/cci:online", NULL,
1676 				  cci_pmu_offline_cpu);
1677 
1678 	ret = cci_pmu_init(cci_pmu, pdev);
1679 	if (ret)
1680 		goto error_pmu_init;
1681 
1682 	pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
1683 	return 0;
1684 
1685 error_pmu_init:
1686 	cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
1687 	g_cci_pmu = NULL;
1688 	return ret;
1689 }
1690 
1691 static void cci_pmu_remove(struct platform_device *pdev)
1692 {
1693 	if (!g_cci_pmu)
1694 		return;
1695 
1696 	cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
1697 	perf_pmu_unregister(&g_cci_pmu->pmu);
1698 	g_cci_pmu = NULL;
1699 }
1700 
1701 static struct platform_driver cci_pmu_driver = {
1702 	.driver = {
1703 		   .name = DRIVER_NAME,
1704 		   .of_match_table = arm_cci_pmu_matches,
1705 		   .suppress_bind_attrs = true,
1706 		  },
1707 	.probe = cci_pmu_probe,
1708 	.remove_new = cci_pmu_remove,
1709 };
1710 
1711 module_platform_driver(cci_pmu_driver);
1712 MODULE_LICENSE("GPL v2");
1713 MODULE_DESCRIPTION("ARM CCI PMU support");
1714