xref: /linux/drivers/pci/vc.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Virtual Channel support
4  *
5  * Copyright (C) 2013 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/pci_regs.h>
14 #include <linux/types.h>
15 
16 /**
17  * pci_vc_save_restore_dwords - Save or restore a series of dwords
18  * @dev: device
19  * @pos: starting config space position
20  * @buf: buffer to save to or restore from
21  * @dwords: number of dwords to save/restore
22  * @save: whether to save or restore
23  */
24 static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
25 				       u32 *buf, int dwords, bool save)
26 {
27 	int i;
28 
29 	for (i = 0; i < dwords; i++, buf++) {
30 		if (save)
31 			pci_read_config_dword(dev, pos + (i * 4), buf);
32 		else
33 			pci_write_config_dword(dev, pos + (i * 4), *buf);
34 	}
35 }
36 
37 /**
38  * pci_vc_load_arb_table - load and wait for VC arbitration table
39  * @dev: device
40  * @pos: starting position of VC capability (VC/VC9/MFVC)
41  *
42  * Set Load VC Arbitration Table bit requesting hardware to apply the VC
43  * Arbitration Table (previously loaded).  When the VC Arbitration Table
44  * Status clears, hardware has latched the table into VC arbitration logic.
45  */
46 static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
47 {
48 	u16 ctrl;
49 
50 	pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
51 	pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
52 			      ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
53 	if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
54 				 PCI_VC_PORT_STATUS_TABLE))
55 		return;
56 
57 	pci_err(dev, "VC arbitration table failed to load\n");
58 }
59 
60 /**
61  * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
62  * @dev: device
63  * @pos: starting position of VC capability (VC/VC9/MFVC)
64  * @res: VC resource number, ie. VCn (0-7)
65  *
66  * Set Load Port Arbitration Table bit requesting hardware to apply the Port
67  * Arbitration Table (previously loaded).  When the Port Arbitration Table
68  * Status clears, hardware has latched the table into port arbitration logic.
69  */
70 static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
71 {
72 	int ctrl_pos, status_pos;
73 	u32 ctrl;
74 
75 	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
76 	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
77 
78 	pci_read_config_dword(dev, ctrl_pos, &ctrl);
79 	pci_write_config_dword(dev, ctrl_pos,
80 			       ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
81 
82 	if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
83 		return;
84 
85 	pci_err(dev, "VC%d port arbitration table failed to load\n", res);
86 }
87 
88 /**
89  * pci_vc_enable - Enable virtual channel
90  * @dev: device
91  * @pos: starting position of VC capability (VC/VC9/MFVC)
92  * @res: VC res number, ie. VCn (0-7)
93  *
94  * A VC is enabled by setting the enable bit in matching resource control
95  * registers on both sides of a link.  We therefore need to find the opposite
96  * end of the link.  To keep this simple we enable from the downstream device.
97  * RC devices do not have an upstream device, nor does it seem that VC9 do
98  * (spec is unclear).  Once we find the upstream device, match the VC ID to
99  * get the correct resource, disable and enable on both ends.
100  */
101 static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
102 {
103 	int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
104 	u32 ctrl, header, cap1, ctrl2;
105 	struct pci_dev *link = NULL;
106 
107 	/* Enable VCs from the downstream device */
108 	if (!dev->has_secondary_link)
109 		return;
110 
111 	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
112 	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
113 
114 	pci_read_config_dword(dev, ctrl_pos, &ctrl);
115 	id = ctrl & PCI_VC_RES_CTRL_ID;
116 
117 	pci_read_config_dword(dev, pos, &header);
118 
119 	/* If there is no opposite end of the link, skip to enable */
120 	if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
121 	    pci_is_root_bus(dev->bus))
122 		goto enable;
123 
124 	pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
125 	if (!pos2)
126 		goto enable;
127 
128 	pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
129 	evcc = cap1 & PCI_VC_CAP1_EVCC;
130 
131 	/* VC0 is hardwired enabled, so we can start with 1 */
132 	for (i = 1; i < evcc + 1; i++) {
133 		ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
134 				(i * PCI_CAP_VC_PER_VC_SIZEOF);
135 		status_pos2 = pos2 + PCI_VC_RES_STATUS +
136 				(i * PCI_CAP_VC_PER_VC_SIZEOF);
137 		pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
138 		if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
139 			link = dev->bus->self;
140 			break;
141 		}
142 	}
143 
144 	if (!link)
145 		goto enable;
146 
147 	/* Disable if enabled */
148 	if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
149 		ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
150 		pci_write_config_dword(link, ctrl_pos2, ctrl2);
151 	}
152 
153 	/* Enable on both ends */
154 	ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
155 	pci_write_config_dword(link, ctrl_pos2, ctrl2);
156 enable:
157 	ctrl |= PCI_VC_RES_CTRL_ENABLE;
158 	pci_write_config_dword(dev, ctrl_pos, ctrl);
159 
160 	if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
161 		pci_err(dev, "VC%d negotiation stuck pending\n", id);
162 
163 	if (link && !pci_wait_for_pending(link, status_pos2,
164 					  PCI_VC_RES_STATUS_NEGO))
165 		pci_err(link, "VC%d negotiation stuck pending\n", id);
166 }
167 
168 /**
169  * pci_vc_do_save_buffer - Size, save, or restore VC state
170  * @dev: device
171  * @pos: starting position of VC capability (VC/VC9/MFVC)
172  * @save_state: buffer for save/restore
173  * @name: for error message
174  * @save: if provided a buffer, this indicates what to do with it
175  *
176  * Walking Virtual Channel config space to size, save, or restore it
177  * is complicated, so we do it all from one function to reduce code and
178  * guarantee ordering matches in the buffer.  When called with NULL
179  * @save_state, return the size of the necessary save buffer.  When called
180  * with a non-NULL @save_state, @save determines whether we save to the
181  * buffer or restore from it.
182  */
183 static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
184 				 struct pci_cap_saved_state *save_state,
185 				 bool save)
186 {
187 	u32 cap1;
188 	char evcc, lpevcc, parb_size;
189 	int i, len = 0;
190 	u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
191 
192 	/* Sanity check buffer size for save/restore */
193 	if (buf && save_state->cap.size !=
194 	    pci_vc_do_save_buffer(dev, pos, NULL, save)) {
195 		pci_err(dev, "VC save buffer size does not match @0x%x\n", pos);
196 		return -ENOMEM;
197 	}
198 
199 	pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
200 	/* Extended VC Count (not counting VC0) */
201 	evcc = cap1 & PCI_VC_CAP1_EVCC;
202 	/* Low Priority Extended VC Count (not counting VC0) */
203 	lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4;
204 	/* Port Arbitration Table Entry Size (bits) */
205 	parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10);
206 
207 	/*
208 	 * Port VC Control Register contains VC Arbitration Select, which
209 	 * cannot be modified when more than one LPVC is in operation.  We
210 	 * therefore save/restore it first, as only VC0 should be enabled
211 	 * after device reset.
212 	 */
213 	if (buf) {
214 		if (save)
215 			pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
216 					     (u16 *)buf);
217 		else
218 			pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
219 					      *(u16 *)buf);
220 		buf += 4;
221 	}
222 	len += 4;
223 
224 	/*
225 	 * If we have any Low Priority VCs and a VC Arbitration Table Offset
226 	 * in Port VC Capability Register 2 then save/restore it next.
227 	 */
228 	if (lpevcc) {
229 		u32 cap2;
230 		int vcarb_offset;
231 
232 		pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
233 		vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16;
234 
235 		if (vcarb_offset) {
236 			int size, vcarb_phases = 0;
237 
238 			if (cap2 & PCI_VC_CAP2_128_PHASE)
239 				vcarb_phases = 128;
240 			else if (cap2 & PCI_VC_CAP2_64_PHASE)
241 				vcarb_phases = 64;
242 			else if (cap2 & PCI_VC_CAP2_32_PHASE)
243 				vcarb_phases = 32;
244 
245 			/* Fixed 4 bits per phase per lpevcc (plus VC0) */
246 			size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
247 
248 			if (size && buf) {
249 				pci_vc_save_restore_dwords(dev,
250 							   pos + vcarb_offset,
251 							   (u32 *)buf,
252 							   size / 4, save);
253 				/*
254 				 * On restore, we need to signal hardware to
255 				 * re-load the VC Arbitration Table.
256 				 */
257 				if (!save)
258 					pci_vc_load_arb_table(dev, pos);
259 
260 				buf += size;
261 			}
262 			len += size;
263 		}
264 	}
265 
266 	/*
267 	 * In addition to each VC Resource Control Register, we may have a
268 	 * Port Arbitration Table attached to each VC.  The Port Arbitration
269 	 * Table Offset in each VC Resource Capability Register tells us if
270 	 * it exists.  The entry size is global from the Port VC Capability
271 	 * Register1 above.  The number of phases is determined per VC.
272 	 */
273 	for (i = 0; i < evcc + 1; i++) {
274 		u32 cap;
275 		int parb_offset;
276 
277 		pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
278 				      (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
279 		parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16;
280 		if (parb_offset) {
281 			int size, parb_phases = 0;
282 
283 			if (cap & PCI_VC_RES_CAP_256_PHASE)
284 				parb_phases = 256;
285 			else if (cap & (PCI_VC_RES_CAP_128_PHASE |
286 					PCI_VC_RES_CAP_128_PHASE_TB))
287 				parb_phases = 128;
288 			else if (cap & PCI_VC_RES_CAP_64_PHASE)
289 				parb_phases = 64;
290 			else if (cap & PCI_VC_RES_CAP_32_PHASE)
291 				parb_phases = 32;
292 
293 			size = (parb_size * parb_phases) / 8;
294 
295 			if (size && buf) {
296 				pci_vc_save_restore_dwords(dev,
297 							   pos + parb_offset,
298 							   (u32 *)buf,
299 							   size / 4, save);
300 				buf += size;
301 			}
302 			len += size;
303 		}
304 
305 		/* VC Resource Control Register */
306 		if (buf) {
307 			int ctrl_pos = pos + PCI_VC_RES_CTRL +
308 						(i * PCI_CAP_VC_PER_VC_SIZEOF);
309 			if (save)
310 				pci_read_config_dword(dev, ctrl_pos,
311 						      (u32 *)buf);
312 			else {
313 				u32 tmp, ctrl = *(u32 *)buf;
314 				/*
315 				 * For an FLR case, the VC config may remain.
316 				 * Preserve enable bit, restore the rest.
317 				 */
318 				pci_read_config_dword(dev, ctrl_pos, &tmp);
319 				tmp &= PCI_VC_RES_CTRL_ENABLE;
320 				tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
321 				pci_write_config_dword(dev, ctrl_pos, tmp);
322 				/* Load port arbitration table if used */
323 				if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
324 					pci_vc_load_port_arb_table(dev, pos, i);
325 				/* Re-enable if needed */
326 				if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
327 					pci_vc_enable(dev, pos, i);
328 			}
329 			buf += 4;
330 		}
331 		len += 4;
332 	}
333 
334 	return buf ? 0 : len;
335 }
336 
337 static struct {
338 	u16 id;
339 	const char *name;
340 } vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
341 		{ PCI_EXT_CAP_ID_VC, "VC" },
342 		{ PCI_EXT_CAP_ID_VC9, "VC9" } };
343 
344 /**
345  * pci_save_vc_state - Save VC state to pre-allocate save buffer
346  * @dev: device
347  *
348  * For each type of VC capability, VC/VC9/MFVC, find the capability and
349  * save it to the pre-allocated save buffer.
350  */
351 int pci_save_vc_state(struct pci_dev *dev)
352 {
353 	int i;
354 
355 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
356 		int pos, ret;
357 		struct pci_cap_saved_state *save_state;
358 
359 		pos = pci_find_ext_capability(dev, vc_caps[i].id);
360 		if (!pos)
361 			continue;
362 
363 		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
364 		if (!save_state) {
365 			pci_err(dev, "%s buffer not found in %s\n",
366 				vc_caps[i].name, __func__);
367 			return -ENOMEM;
368 		}
369 
370 		ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
371 		if (ret) {
372 			pci_err(dev, "%s save unsuccessful %s\n",
373 				vc_caps[i].name, __func__);
374 			return ret;
375 		}
376 	}
377 
378 	return 0;
379 }
380 
381 /**
382  * pci_restore_vc_state - Restore VC state from save buffer
383  * @dev: device
384  *
385  * For each type of VC capability, VC/VC9/MFVC, find the capability and
386  * restore it from the previously saved buffer.
387  */
388 void pci_restore_vc_state(struct pci_dev *dev)
389 {
390 	int i;
391 
392 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
393 		int pos;
394 		struct pci_cap_saved_state *save_state;
395 
396 		pos = pci_find_ext_capability(dev, vc_caps[i].id);
397 		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
398 		if (!save_state || !pos)
399 			continue;
400 
401 		pci_vc_do_save_buffer(dev, pos, save_state, false);
402 	}
403 }
404 
405 /**
406  * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
407  * @dev: device
408  *
409  * For each type of VC capability, VC/VC9/MFVC, find the capability, size
410  * it, and allocate a buffer for save/restore.
411  */
412 
413 void pci_allocate_vc_save_buffers(struct pci_dev *dev)
414 {
415 	int i;
416 
417 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
418 		int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);
419 
420 		if (!pos)
421 			continue;
422 
423 		len = pci_vc_do_save_buffer(dev, pos, NULL, false);
424 		if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
425 			pci_err(dev, "unable to preallocate %s save buffer\n",
426 				vc_caps[i].name);
427 	}
428 }
429