xref: /linux/drivers/pci/vc.c (revision 293d5b43948309434568f4dcbb36cce4c3c51bd5)
1 /*
2  * PCI Virtual Channel support
3  *
4  * Copyright (C) 2013 Red Hat, Inc.  All rights reserved.
5  *     Author: Alex Williamson <alex.williamson@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/device.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/pci_regs.h>
17 #include <linux/types.h>
18 
19 /**
20  * pci_vc_save_restore_dwords - Save or restore a series of dwords
21  * @dev: device
22  * @pos: starting config space position
23  * @buf: buffer to save to or restore from
24  * @dwords: number of dwords to save/restore
25  * @save: whether to save or restore
26  */
27 static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
28 				       u32 *buf, int dwords, bool save)
29 {
30 	int i;
31 
32 	for (i = 0; i < dwords; i++, buf++) {
33 		if (save)
34 			pci_read_config_dword(dev, pos + (i * 4), buf);
35 		else
36 			pci_write_config_dword(dev, pos + (i * 4), *buf);
37 	}
38 }
39 
40 /**
41  * pci_vc_load_arb_table - load and wait for VC arbitration table
42  * @dev: device
43  * @pos: starting position of VC capability (VC/VC9/MFVC)
44  *
45  * Set Load VC Arbitration Table bit requesting hardware to apply the VC
46  * Arbitration Table (previously loaded).  When the VC Arbitration Table
47  * Status clears, hardware has latched the table into VC arbitration logic.
48  */
49 static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
50 {
51 	u16 ctrl;
52 
53 	pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
54 	pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
55 			      ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
56 	if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
57 				 PCI_VC_PORT_STATUS_TABLE))
58 		return;
59 
60 	dev_err(&dev->dev, "VC arbitration table failed to load\n");
61 }
62 
63 /**
64  * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
65  * @dev: device
66  * @pos: starting position of VC capability (VC/VC9/MFVC)
67  * @res: VC resource number, ie. VCn (0-7)
68  *
69  * Set Load Port Arbitration Table bit requesting hardware to apply the Port
70  * Arbitration Table (previously loaded).  When the Port Arbitration Table
71  * Status clears, hardware has latched the table into port arbitration logic.
72  */
73 static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
74 {
75 	int ctrl_pos, status_pos;
76 	u32 ctrl;
77 
78 	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
79 	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
80 
81 	pci_read_config_dword(dev, ctrl_pos, &ctrl);
82 	pci_write_config_dword(dev, ctrl_pos,
83 			       ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
84 
85 	if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
86 		return;
87 
88 	dev_err(&dev->dev, "VC%d port arbitration table failed to load\n", res);
89 }
90 
91 /**
92  * pci_vc_enable - Enable virtual channel
93  * @dev: device
94  * @pos: starting position of VC capability (VC/VC9/MFVC)
95  * @res: VC res number, ie. VCn (0-7)
96  *
97  * A VC is enabled by setting the enable bit in matching resource control
98  * registers on both sides of a link.  We therefore need to find the opposite
99  * end of the link.  To keep this simple we enable from the downstream device.
100  * RC devices do not have an upstream device, nor does it seem that VC9 do
101  * (spec is unclear).  Once we find the upstream device, match the VC ID to
102  * get the correct resource, disable and enable on both ends.
103  */
104 static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
105 {
106 	int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
107 	u32 ctrl, header, cap1, ctrl2;
108 	struct pci_dev *link = NULL;
109 
110 	/* Enable VCs from the downstream device */
111 	if (!dev->has_secondary_link)
112 		return;
113 
114 	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
115 	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
116 
117 	pci_read_config_dword(dev, ctrl_pos, &ctrl);
118 	id = ctrl & PCI_VC_RES_CTRL_ID;
119 
120 	pci_read_config_dword(dev, pos, &header);
121 
122 	/* If there is no opposite end of the link, skip to enable */
123 	if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
124 	    pci_is_root_bus(dev->bus))
125 		goto enable;
126 
127 	pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
128 	if (!pos2)
129 		goto enable;
130 
131 	pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
132 	evcc = cap1 & PCI_VC_CAP1_EVCC;
133 
134 	/* VC0 is hardwired enabled, so we can start with 1 */
135 	for (i = 1; i < evcc + 1; i++) {
136 		ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
137 				(i * PCI_CAP_VC_PER_VC_SIZEOF);
138 		status_pos2 = pos2 + PCI_VC_RES_STATUS +
139 				(i * PCI_CAP_VC_PER_VC_SIZEOF);
140 		pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
141 		if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
142 			link = dev->bus->self;
143 			break;
144 		}
145 	}
146 
147 	if (!link)
148 		goto enable;
149 
150 	/* Disable if enabled */
151 	if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
152 		ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
153 		pci_write_config_dword(link, ctrl_pos2, ctrl2);
154 	}
155 
156 	/* Enable on both ends */
157 	ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
158 	pci_write_config_dword(link, ctrl_pos2, ctrl2);
159 enable:
160 	ctrl |= PCI_VC_RES_CTRL_ENABLE;
161 	pci_write_config_dword(dev, ctrl_pos, ctrl);
162 
163 	if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
164 		dev_err(&dev->dev, "VC%d negotiation stuck pending\n", id);
165 
166 	if (link && !pci_wait_for_pending(link, status_pos2,
167 					  PCI_VC_RES_STATUS_NEGO))
168 		dev_err(&link->dev, "VC%d negotiation stuck pending\n", id);
169 }
170 
171 /**
172  * pci_vc_do_save_buffer - Size, save, or restore VC state
173  * @dev: device
174  * @pos: starting position of VC capability (VC/VC9/MFVC)
175  * @save_state: buffer for save/restore
176  * @name: for error message
177  * @save: if provided a buffer, this indicates what to do with it
178  *
179  * Walking Virtual Channel config space to size, save, or restore it
180  * is complicated, so we do it all from one function to reduce code and
181  * guarantee ordering matches in the buffer.  When called with NULL
182  * @save_state, return the size of the necessary save buffer.  When called
183  * with a non-NULL @save_state, @save determines whether we save to the
184  * buffer or restore from it.
185  */
186 static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
187 				 struct pci_cap_saved_state *save_state,
188 				 bool save)
189 {
190 	u32 cap1;
191 	char evcc, lpevcc, parb_size;
192 	int i, len = 0;
193 	u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
194 
195 	/* Sanity check buffer size for save/restore */
196 	if (buf && save_state->cap.size !=
197 	    pci_vc_do_save_buffer(dev, pos, NULL, save)) {
198 		dev_err(&dev->dev,
199 			"VC save buffer size does not match @0x%x\n", pos);
200 		return -ENOMEM;
201 	}
202 
203 	pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
204 	/* Extended VC Count (not counting VC0) */
205 	evcc = cap1 & PCI_VC_CAP1_EVCC;
206 	/* Low Priority Extended VC Count (not counting VC0) */
207 	lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4;
208 	/* Port Arbitration Table Entry Size (bits) */
209 	parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10);
210 
211 	/*
212 	 * Port VC Control Register contains VC Arbitration Select, which
213 	 * cannot be modified when more than one LPVC is in operation.  We
214 	 * therefore save/restore it first, as only VC0 should be enabled
215 	 * after device reset.
216 	 */
217 	if (buf) {
218 		if (save)
219 			pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
220 					     (u16 *)buf);
221 		else
222 			pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
223 					      *(u16 *)buf);
224 		buf += 4;
225 	}
226 	len += 4;
227 
228 	/*
229 	 * If we have any Low Priority VCs and a VC Arbitration Table Offset
230 	 * in Port VC Capability Register 2 then save/restore it next.
231 	 */
232 	if (lpevcc) {
233 		u32 cap2;
234 		int vcarb_offset;
235 
236 		pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
237 		vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16;
238 
239 		if (vcarb_offset) {
240 			int size, vcarb_phases = 0;
241 
242 			if (cap2 & PCI_VC_CAP2_128_PHASE)
243 				vcarb_phases = 128;
244 			else if (cap2 & PCI_VC_CAP2_64_PHASE)
245 				vcarb_phases = 64;
246 			else if (cap2 & PCI_VC_CAP2_32_PHASE)
247 				vcarb_phases = 32;
248 
249 			/* Fixed 4 bits per phase per lpevcc (plus VC0) */
250 			size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
251 
252 			if (size && buf) {
253 				pci_vc_save_restore_dwords(dev,
254 							   pos + vcarb_offset,
255 							   (u32 *)buf,
256 							   size / 4, save);
257 				/*
258 				 * On restore, we need to signal hardware to
259 				 * re-load the VC Arbitration Table.
260 				 */
261 				if (!save)
262 					pci_vc_load_arb_table(dev, pos);
263 
264 				buf += size;
265 			}
266 			len += size;
267 		}
268 	}
269 
270 	/*
271 	 * In addition to each VC Resource Control Register, we may have a
272 	 * Port Arbitration Table attached to each VC.  The Port Arbitration
273 	 * Table Offset in each VC Resource Capability Register tells us if
274 	 * it exists.  The entry size is global from the Port VC Capability
275 	 * Register1 above.  The number of phases is determined per VC.
276 	 */
277 	for (i = 0; i < evcc + 1; i++) {
278 		u32 cap;
279 		int parb_offset;
280 
281 		pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
282 				      (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
283 		parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16;
284 		if (parb_offset) {
285 			int size, parb_phases = 0;
286 
287 			if (cap & PCI_VC_RES_CAP_256_PHASE)
288 				parb_phases = 256;
289 			else if (cap & (PCI_VC_RES_CAP_128_PHASE |
290 					PCI_VC_RES_CAP_128_PHASE_TB))
291 				parb_phases = 128;
292 			else if (cap & PCI_VC_RES_CAP_64_PHASE)
293 				parb_phases = 64;
294 			else if (cap & PCI_VC_RES_CAP_32_PHASE)
295 				parb_phases = 32;
296 
297 			size = (parb_size * parb_phases) / 8;
298 
299 			if (size && buf) {
300 				pci_vc_save_restore_dwords(dev,
301 							   pos + parb_offset,
302 							   (u32 *)buf,
303 							   size / 4, save);
304 				buf += size;
305 			}
306 			len += size;
307 		}
308 
309 		/* VC Resource Control Register */
310 		if (buf) {
311 			int ctrl_pos = pos + PCI_VC_RES_CTRL +
312 						(i * PCI_CAP_VC_PER_VC_SIZEOF);
313 			if (save)
314 				pci_read_config_dword(dev, ctrl_pos,
315 						      (u32 *)buf);
316 			else {
317 				u32 tmp, ctrl = *(u32 *)buf;
318 				/*
319 				 * For an FLR case, the VC config may remain.
320 				 * Preserve enable bit, restore the rest.
321 				 */
322 				pci_read_config_dword(dev, ctrl_pos, &tmp);
323 				tmp &= PCI_VC_RES_CTRL_ENABLE;
324 				tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
325 				pci_write_config_dword(dev, ctrl_pos, tmp);
326 				/* Load port arbitration table if used */
327 				if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
328 					pci_vc_load_port_arb_table(dev, pos, i);
329 				/* Re-enable if needed */
330 				if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
331 					pci_vc_enable(dev, pos, i);
332 			}
333 			buf += 4;
334 		}
335 		len += 4;
336 	}
337 
338 	return buf ? 0 : len;
339 }
340 
341 static struct {
342 	u16 id;
343 	const char *name;
344 } vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
345 		{ PCI_EXT_CAP_ID_VC, "VC" },
346 		{ PCI_EXT_CAP_ID_VC9, "VC9" } };
347 
348 /**
349  * pci_save_vc_state - Save VC state to pre-allocate save buffer
350  * @dev: device
351  *
352  * For each type of VC capability, VC/VC9/MFVC, find the capability and
353  * save it to the pre-allocated save buffer.
354  */
355 int pci_save_vc_state(struct pci_dev *dev)
356 {
357 	int i;
358 
359 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
360 		int pos, ret;
361 		struct pci_cap_saved_state *save_state;
362 
363 		pos = pci_find_ext_capability(dev, vc_caps[i].id);
364 		if (!pos)
365 			continue;
366 
367 		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
368 		if (!save_state) {
369 			dev_err(&dev->dev, "%s buffer not found in %s\n",
370 				vc_caps[i].name, __func__);
371 			return -ENOMEM;
372 		}
373 
374 		ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
375 		if (ret) {
376 			dev_err(&dev->dev, "%s save unsuccessful %s\n",
377 				vc_caps[i].name, __func__);
378 			return ret;
379 		}
380 	}
381 
382 	return 0;
383 }
384 
385 /**
386  * pci_restore_vc_state - Restore VC state from save buffer
387  * @dev: device
388  *
389  * For each type of VC capability, VC/VC9/MFVC, find the capability and
390  * restore it from the previously saved buffer.
391  */
392 void pci_restore_vc_state(struct pci_dev *dev)
393 {
394 	int i;
395 
396 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
397 		int pos;
398 		struct pci_cap_saved_state *save_state;
399 
400 		pos = pci_find_ext_capability(dev, vc_caps[i].id);
401 		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
402 		if (!save_state || !pos)
403 			continue;
404 
405 		pci_vc_do_save_buffer(dev, pos, save_state, false);
406 	}
407 }
408 
409 /**
410  * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
411  * @dev: device
412  *
413  * For each type of VC capability, VC/VC9/MFVC, find the capability, size
414  * it, and allocate a buffer for save/restore.
415  */
416 
417 void pci_allocate_vc_save_buffers(struct pci_dev *dev)
418 {
419 	int i;
420 
421 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
422 		int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);
423 
424 		if (!pos)
425 			continue;
426 
427 		len = pci_vc_do_save_buffer(dev, pos, NULL, false);
428 		if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
429 			dev_err(&dev->dev,
430 				"unable to preallocate %s save buffer\n",
431 				vc_caps[i].name);
432 	}
433 }
434