1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/delay.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/of.h> 16 #include <linux/of_pci.h> 17 #include <linux/pci.h> 18 #include <linux/pm.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/spinlock.h> 22 #include <linux/string.h> 23 #include <linux/log2.h> 24 #include <linux/pci-aspm.h> 25 #include <linux/pm_wakeup.h> 26 #include <linux/interrupt.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <linux/pci-ats.h> 32 #include <asm/setup.h> 33 #include <asm/dma.h> 34 #include <linux/aer.h> 35 #include "pci.h" 36 37 const char *pci_power_names[] = { 38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 39 }; 40 EXPORT_SYMBOL_GPL(pci_power_names); 41 42 int isa_dma_bridge_buggy; 43 EXPORT_SYMBOL(isa_dma_bridge_buggy); 44 45 int pci_pci_problems; 46 EXPORT_SYMBOL(pci_pci_problems); 47 48 unsigned int pci_pm_d3_delay; 49 50 static void pci_pme_list_scan(struct work_struct *work); 51 52 static LIST_HEAD(pci_pme_list); 53 static DEFINE_MUTEX(pci_pme_list_mutex); 54 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 55 56 struct pci_pme_device { 57 struct list_head list; 58 struct pci_dev *dev; 59 }; 60 61 #define PME_TIMEOUT 1000 /* How long between PME checks */ 62 63 static void pci_dev_d3_sleep(struct pci_dev *dev) 64 { 65 unsigned int delay = dev->d3_delay; 66 67 if (delay < pci_pm_d3_delay) 68 delay = pci_pm_d3_delay; 69 70 if (delay) 71 msleep(delay); 72 } 73 74 #ifdef CONFIG_PCI_DOMAINS 75 int pci_domains_supported = 1; 76 #endif 77 78 #define DEFAULT_CARDBUS_IO_SIZE (256) 79 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 80 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 81 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 82 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 83 84 #define DEFAULT_HOTPLUG_IO_SIZE (256) 85 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 86 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 87 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 88 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 89 90 #define DEFAULT_HOTPLUG_BUS_SIZE 1 91 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 92 93 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 94 95 /* 96 * The default CLS is used if arch didn't set CLS explicitly and not 97 * all pci devices agree on the same value. Arch can override either 98 * the dfl or actual value as it sees fit. Don't forget this is 99 * measured in 32-bit words, not bytes. 100 */ 101 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 102 u8 pci_cache_line_size; 103 104 /* 105 * If we set up a device for bus mastering, we need to check the latency 106 * timer as certain BIOSes forget to set it properly. 107 */ 108 unsigned int pcibios_max_latency = 255; 109 110 /* If set, the PCIe ARI capability will not be used. */ 111 static bool pcie_ari_disabled; 112 113 /* Disable bridge_d3 for all PCIe ports */ 114 static bool pci_bridge_d3_disable; 115 /* Force bridge_d3 for all PCIe ports */ 116 static bool pci_bridge_d3_force; 117 118 static int __init pcie_port_pm_setup(char *str) 119 { 120 if (!strcmp(str, "off")) 121 pci_bridge_d3_disable = true; 122 else if (!strcmp(str, "force")) 123 pci_bridge_d3_force = true; 124 return 1; 125 } 126 __setup("pcie_port_pm=", pcie_port_pm_setup); 127 128 /** 129 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 130 * @bus: pointer to PCI bus structure to search 131 * 132 * Given a PCI bus, returns the highest PCI bus number present in the set 133 * including the given PCI bus and its list of child PCI buses. 134 */ 135 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 136 { 137 struct pci_bus *tmp; 138 unsigned char max, n; 139 140 max = bus->busn_res.end; 141 list_for_each_entry(tmp, &bus->children, node) { 142 n = pci_bus_max_busnr(tmp); 143 if (n > max) 144 max = n; 145 } 146 return max; 147 } 148 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 149 150 #ifdef CONFIG_HAS_IOMEM 151 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 152 { 153 struct resource *res = &pdev->resource[bar]; 154 155 /* 156 * Make sure the BAR is actually a memory resource, not an IO resource 157 */ 158 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 159 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res); 160 return NULL; 161 } 162 return ioremap_nocache(res->start, resource_size(res)); 163 } 164 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 165 166 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 167 { 168 /* 169 * Make sure the BAR is actually a memory resource, not an IO resource 170 */ 171 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 172 WARN_ON(1); 173 return NULL; 174 } 175 return ioremap_wc(pci_resource_start(pdev, bar), 176 pci_resource_len(pdev, bar)); 177 } 178 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 179 #endif 180 181 182 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 183 u8 pos, int cap, int *ttl) 184 { 185 u8 id; 186 u16 ent; 187 188 pci_bus_read_config_byte(bus, devfn, pos, &pos); 189 190 while ((*ttl)--) { 191 if (pos < 0x40) 192 break; 193 pos &= ~3; 194 pci_bus_read_config_word(bus, devfn, pos, &ent); 195 196 id = ent & 0xff; 197 if (id == 0xff) 198 break; 199 if (id == cap) 200 return pos; 201 pos = (ent >> 8); 202 } 203 return 0; 204 } 205 206 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 207 u8 pos, int cap) 208 { 209 int ttl = PCI_FIND_CAP_TTL; 210 211 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 212 } 213 214 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 215 { 216 return __pci_find_next_cap(dev->bus, dev->devfn, 217 pos + PCI_CAP_LIST_NEXT, cap); 218 } 219 EXPORT_SYMBOL_GPL(pci_find_next_capability); 220 221 static int __pci_bus_find_cap_start(struct pci_bus *bus, 222 unsigned int devfn, u8 hdr_type) 223 { 224 u16 status; 225 226 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 227 if (!(status & PCI_STATUS_CAP_LIST)) 228 return 0; 229 230 switch (hdr_type) { 231 case PCI_HEADER_TYPE_NORMAL: 232 case PCI_HEADER_TYPE_BRIDGE: 233 return PCI_CAPABILITY_LIST; 234 case PCI_HEADER_TYPE_CARDBUS: 235 return PCI_CB_CAPABILITY_LIST; 236 } 237 238 return 0; 239 } 240 241 /** 242 * pci_find_capability - query for devices' capabilities 243 * @dev: PCI device to query 244 * @cap: capability code 245 * 246 * Tell if a device supports a given PCI capability. 247 * Returns the address of the requested capability structure within the 248 * device's PCI configuration space or 0 in case the device does not 249 * support it. Possible values for @cap: 250 * 251 * %PCI_CAP_ID_PM Power Management 252 * %PCI_CAP_ID_AGP Accelerated Graphics Port 253 * %PCI_CAP_ID_VPD Vital Product Data 254 * %PCI_CAP_ID_SLOTID Slot Identification 255 * %PCI_CAP_ID_MSI Message Signalled Interrupts 256 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 257 * %PCI_CAP_ID_PCIX PCI-X 258 * %PCI_CAP_ID_EXP PCI Express 259 */ 260 int pci_find_capability(struct pci_dev *dev, int cap) 261 { 262 int pos; 263 264 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 265 if (pos) 266 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 267 268 return pos; 269 } 270 EXPORT_SYMBOL(pci_find_capability); 271 272 /** 273 * pci_bus_find_capability - query for devices' capabilities 274 * @bus: the PCI bus to query 275 * @devfn: PCI device to query 276 * @cap: capability code 277 * 278 * Like pci_find_capability() but works for pci devices that do not have a 279 * pci_dev structure set up yet. 280 * 281 * Returns the address of the requested capability structure within the 282 * device's PCI configuration space or 0 in case the device does not 283 * support it. 284 */ 285 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 286 { 287 int pos; 288 u8 hdr_type; 289 290 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 291 292 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 293 if (pos) 294 pos = __pci_find_next_cap(bus, devfn, pos, cap); 295 296 return pos; 297 } 298 EXPORT_SYMBOL(pci_bus_find_capability); 299 300 /** 301 * pci_find_next_ext_capability - Find an extended capability 302 * @dev: PCI device to query 303 * @start: address at which to start looking (0 to start at beginning of list) 304 * @cap: capability code 305 * 306 * Returns the address of the next matching extended capability structure 307 * within the device's PCI configuration space or 0 if the device does 308 * not support it. Some capabilities can occur several times, e.g., the 309 * vendor-specific capability, and this provides a way to find them all. 310 */ 311 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 312 { 313 u32 header; 314 int ttl; 315 int pos = PCI_CFG_SPACE_SIZE; 316 317 /* minimum 8 bytes per capability */ 318 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 319 320 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 321 return 0; 322 323 if (start) 324 pos = start; 325 326 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 327 return 0; 328 329 /* 330 * If we have no capabilities, this is indicated by cap ID, 331 * cap version and next pointer all being 0. 332 */ 333 if (header == 0) 334 return 0; 335 336 while (ttl-- > 0) { 337 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 338 return pos; 339 340 pos = PCI_EXT_CAP_NEXT(header); 341 if (pos < PCI_CFG_SPACE_SIZE) 342 break; 343 344 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 345 break; 346 } 347 348 return 0; 349 } 350 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 351 352 /** 353 * pci_find_ext_capability - Find an extended capability 354 * @dev: PCI device to query 355 * @cap: capability code 356 * 357 * Returns the address of the requested extended capability structure 358 * within the device's PCI configuration space or 0 if the device does 359 * not support it. Possible values for @cap: 360 * 361 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 362 * %PCI_EXT_CAP_ID_VC Virtual Channel 363 * %PCI_EXT_CAP_ID_DSN Device Serial Number 364 * %PCI_EXT_CAP_ID_PWR Power Budgeting 365 */ 366 int pci_find_ext_capability(struct pci_dev *dev, int cap) 367 { 368 return pci_find_next_ext_capability(dev, 0, cap); 369 } 370 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 371 372 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 373 { 374 int rc, ttl = PCI_FIND_CAP_TTL; 375 u8 cap, mask; 376 377 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 378 mask = HT_3BIT_CAP_MASK; 379 else 380 mask = HT_5BIT_CAP_MASK; 381 382 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 383 PCI_CAP_ID_HT, &ttl); 384 while (pos) { 385 rc = pci_read_config_byte(dev, pos + 3, &cap); 386 if (rc != PCIBIOS_SUCCESSFUL) 387 return 0; 388 389 if ((cap & mask) == ht_cap) 390 return pos; 391 392 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 393 pos + PCI_CAP_LIST_NEXT, 394 PCI_CAP_ID_HT, &ttl); 395 } 396 397 return 0; 398 } 399 /** 400 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 401 * @dev: PCI device to query 402 * @pos: Position from which to continue searching 403 * @ht_cap: Hypertransport capability code 404 * 405 * To be used in conjunction with pci_find_ht_capability() to search for 406 * all capabilities matching @ht_cap. @pos should always be a value returned 407 * from pci_find_ht_capability(). 408 * 409 * NB. To be 100% safe against broken PCI devices, the caller should take 410 * steps to avoid an infinite loop. 411 */ 412 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 413 { 414 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 415 } 416 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 417 418 /** 419 * pci_find_ht_capability - query a device's Hypertransport capabilities 420 * @dev: PCI device to query 421 * @ht_cap: Hypertransport capability code 422 * 423 * Tell if a device supports a given Hypertransport capability. 424 * Returns an address within the device's PCI configuration space 425 * or 0 in case the device does not support the request capability. 426 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 427 * which has a Hypertransport capability matching @ht_cap. 428 */ 429 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 430 { 431 int pos; 432 433 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 434 if (pos) 435 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 436 437 return pos; 438 } 439 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 440 441 /** 442 * pci_find_parent_resource - return resource region of parent bus of given region 443 * @dev: PCI device structure contains resources to be searched 444 * @res: child resource record for which parent is sought 445 * 446 * For given resource region of given device, return the resource 447 * region of parent bus the given region is contained in. 448 */ 449 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 450 struct resource *res) 451 { 452 const struct pci_bus *bus = dev->bus; 453 struct resource *r; 454 int i; 455 456 pci_bus_for_each_resource(bus, r, i) { 457 if (!r) 458 continue; 459 if (resource_contains(r, res)) { 460 461 /* 462 * If the window is prefetchable but the BAR is 463 * not, the allocator made a mistake. 464 */ 465 if (r->flags & IORESOURCE_PREFETCH && 466 !(res->flags & IORESOURCE_PREFETCH)) 467 return NULL; 468 469 /* 470 * If we're below a transparent bridge, there may 471 * be both a positively-decoded aperture and a 472 * subtractively-decoded region that contain the BAR. 473 * We want the positively-decoded one, so this depends 474 * on pci_bus_for_each_resource() giving us those 475 * first. 476 */ 477 return r; 478 } 479 } 480 return NULL; 481 } 482 EXPORT_SYMBOL(pci_find_parent_resource); 483 484 /** 485 * pci_find_resource - Return matching PCI device resource 486 * @dev: PCI device to query 487 * @res: Resource to look for 488 * 489 * Goes over standard PCI resources (BARs) and checks if the given resource 490 * is partially or fully contained in any of them. In that case the 491 * matching resource is returned, %NULL otherwise. 492 */ 493 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 494 { 495 int i; 496 497 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 498 struct resource *r = &dev->resource[i]; 499 500 if (r->start && resource_contains(r, res)) 501 return r; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL(pci_find_resource); 507 508 /** 509 * pci_find_pcie_root_port - return PCIe Root Port 510 * @dev: PCI device to query 511 * 512 * Traverse up the parent chain and return the PCIe Root Port PCI Device 513 * for a given PCI Device. 514 */ 515 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 516 { 517 struct pci_dev *bridge, *highest_pcie_bridge = dev; 518 519 bridge = pci_upstream_bridge(dev); 520 while (bridge && pci_is_pcie(bridge)) { 521 highest_pcie_bridge = bridge; 522 bridge = pci_upstream_bridge(bridge); 523 } 524 525 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 526 return NULL; 527 528 return highest_pcie_bridge; 529 } 530 EXPORT_SYMBOL(pci_find_pcie_root_port); 531 532 /** 533 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 534 * @dev: the PCI device to operate on 535 * @pos: config space offset of status word 536 * @mask: mask of bit(s) to care about in status word 537 * 538 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 539 */ 540 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 541 { 542 int i; 543 544 /* Wait for Transaction Pending bit clean */ 545 for (i = 0; i < 4; i++) { 546 u16 status; 547 if (i) 548 msleep((1 << (i - 1)) * 100); 549 550 pci_read_config_word(dev, pos, &status); 551 if (!(status & mask)) 552 return 1; 553 } 554 555 return 0; 556 } 557 558 /** 559 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 560 * @dev: PCI device to have its BARs restored 561 * 562 * Restore the BAR values for a given device, so as to make it 563 * accessible by its driver. 564 */ 565 static void pci_restore_bars(struct pci_dev *dev) 566 { 567 int i; 568 569 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 570 pci_update_resource(dev, i); 571 } 572 573 static const struct pci_platform_pm_ops *pci_platform_pm; 574 575 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 576 { 577 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 578 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 579 return -EINVAL; 580 pci_platform_pm = ops; 581 return 0; 582 } 583 584 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 585 { 586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 587 } 588 589 static inline int platform_pci_set_power_state(struct pci_dev *dev, 590 pci_power_t t) 591 { 592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 593 } 594 595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 596 { 597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 598 } 599 600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 601 { 602 return pci_platform_pm ? 603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 604 } 605 606 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 607 { 608 return pci_platform_pm ? 609 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 610 } 611 612 static inline bool platform_pci_need_resume(struct pci_dev *dev) 613 { 614 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 615 } 616 617 /** 618 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 619 * given PCI device 620 * @dev: PCI device to handle. 621 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 622 * 623 * RETURN VALUE: 624 * -EINVAL if the requested state is invalid. 625 * -EIO if device does not support PCI PM or its PM capabilities register has a 626 * wrong version, or device doesn't support the requested state. 627 * 0 if device already is in the requested state. 628 * 0 if device's power state has been successfully changed. 629 */ 630 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 631 { 632 u16 pmcsr; 633 bool need_restore = false; 634 635 /* Check if we're already there */ 636 if (dev->current_state == state) 637 return 0; 638 639 if (!dev->pm_cap) 640 return -EIO; 641 642 if (state < PCI_D0 || state > PCI_D3hot) 643 return -EINVAL; 644 645 /* Validate current state: 646 * Can enter D0 from any state, but if we can only go deeper 647 * to sleep if we're already in a low power state 648 */ 649 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 650 && dev->current_state > state) { 651 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 652 dev->current_state, state); 653 return -EINVAL; 654 } 655 656 /* check if this device supports the desired state */ 657 if ((state == PCI_D1 && !dev->d1_support) 658 || (state == PCI_D2 && !dev->d2_support)) 659 return -EIO; 660 661 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 662 663 /* If we're (effectively) in D3, force entire word to 0. 664 * This doesn't affect PME_Status, disables PME_En, and 665 * sets PowerState to 0. 666 */ 667 switch (dev->current_state) { 668 case PCI_D0: 669 case PCI_D1: 670 case PCI_D2: 671 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 672 pmcsr |= state; 673 break; 674 case PCI_D3hot: 675 case PCI_D3cold: 676 case PCI_UNKNOWN: /* Boot-up */ 677 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 678 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 679 need_restore = true; 680 /* Fall-through: force to D0 */ 681 default: 682 pmcsr = 0; 683 break; 684 } 685 686 /* enter specified state */ 687 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 688 689 /* Mandatory power management transition delays */ 690 /* see PCI PM 1.1 5.6.1 table 18 */ 691 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 692 pci_dev_d3_sleep(dev); 693 else if (state == PCI_D2 || dev->current_state == PCI_D2) 694 udelay(PCI_PM_D2_DELAY); 695 696 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 697 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 698 if (dev->current_state != state && printk_ratelimit()) 699 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 700 dev->current_state); 701 702 /* 703 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 704 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 705 * from D3hot to D0 _may_ perform an internal reset, thereby 706 * going to "D0 Uninitialized" rather than "D0 Initialized". 707 * For example, at least some versions of the 3c905B and the 708 * 3c556B exhibit this behaviour. 709 * 710 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 711 * devices in a D3hot state at boot. Consequently, we need to 712 * restore at least the BARs so that the device will be 713 * accessible to its driver. 714 */ 715 if (need_restore) 716 pci_restore_bars(dev); 717 718 if (dev->bus->self) 719 pcie_aspm_pm_state_change(dev->bus->self); 720 721 return 0; 722 } 723 724 /** 725 * pci_update_current_state - Read power state of given device and cache it 726 * @dev: PCI device to handle. 727 * @state: State to cache in case the device doesn't have the PM capability 728 * 729 * The power state is read from the PMCSR register, which however is 730 * inaccessible in D3cold. The platform firmware is therefore queried first 731 * to detect accessibility of the register. In case the platform firmware 732 * reports an incorrect state or the device isn't power manageable by the 733 * platform at all, we try to detect D3cold by testing accessibility of the 734 * vendor ID in config space. 735 */ 736 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 737 { 738 if (platform_pci_get_power_state(dev) == PCI_D3cold || 739 !pci_device_is_present(dev)) { 740 dev->current_state = PCI_D3cold; 741 } else if (dev->pm_cap) { 742 u16 pmcsr; 743 744 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 745 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 746 } else { 747 dev->current_state = state; 748 } 749 } 750 751 /** 752 * pci_power_up - Put the given device into D0 forcibly 753 * @dev: PCI device to power up 754 */ 755 void pci_power_up(struct pci_dev *dev) 756 { 757 if (platform_pci_power_manageable(dev)) 758 platform_pci_set_power_state(dev, PCI_D0); 759 760 pci_raw_set_power_state(dev, PCI_D0); 761 pci_update_current_state(dev, PCI_D0); 762 } 763 764 /** 765 * pci_platform_power_transition - Use platform to change device power state 766 * @dev: PCI device to handle. 767 * @state: State to put the device into. 768 */ 769 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 770 { 771 int error; 772 773 if (platform_pci_power_manageable(dev)) { 774 error = platform_pci_set_power_state(dev, state); 775 if (!error) 776 pci_update_current_state(dev, state); 777 } else 778 error = -ENODEV; 779 780 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 781 dev->current_state = PCI_D0; 782 783 return error; 784 } 785 786 /** 787 * pci_wakeup - Wake up a PCI device 788 * @pci_dev: Device to handle. 789 * @ign: ignored parameter 790 */ 791 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 792 { 793 pci_wakeup_event(pci_dev); 794 pm_request_resume(&pci_dev->dev); 795 return 0; 796 } 797 798 /** 799 * pci_wakeup_bus - Walk given bus and wake up devices on it 800 * @bus: Top bus of the subtree to walk. 801 */ 802 static void pci_wakeup_bus(struct pci_bus *bus) 803 { 804 if (bus) 805 pci_walk_bus(bus, pci_wakeup, NULL); 806 } 807 808 /** 809 * __pci_start_power_transition - Start power transition of a PCI device 810 * @dev: PCI device to handle. 811 * @state: State to put the device into. 812 */ 813 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 814 { 815 if (state == PCI_D0) { 816 pci_platform_power_transition(dev, PCI_D0); 817 /* 818 * Mandatory power management transition delays, see 819 * PCI Express Base Specification Revision 2.0 Section 820 * 6.6.1: Conventional Reset. Do not delay for 821 * devices powered on/off by corresponding bridge, 822 * because have already delayed for the bridge. 823 */ 824 if (dev->runtime_d3cold) { 825 if (dev->d3cold_delay) 826 msleep(dev->d3cold_delay); 827 /* 828 * When powering on a bridge from D3cold, the 829 * whole hierarchy may be powered on into 830 * D0uninitialized state, resume them to give 831 * them a chance to suspend again 832 */ 833 pci_wakeup_bus(dev->subordinate); 834 } 835 } 836 } 837 838 /** 839 * __pci_dev_set_current_state - Set current state of a PCI device 840 * @dev: Device to handle 841 * @data: pointer to state to be set 842 */ 843 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 844 { 845 pci_power_t state = *(pci_power_t *)data; 846 847 dev->current_state = state; 848 return 0; 849 } 850 851 /** 852 * __pci_bus_set_current_state - Walk given bus and set current state of devices 853 * @bus: Top bus of the subtree to walk. 854 * @state: state to be set 855 */ 856 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 857 { 858 if (bus) 859 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 860 } 861 862 /** 863 * __pci_complete_power_transition - Complete power transition of a PCI device 864 * @dev: PCI device to handle. 865 * @state: State to put the device into. 866 * 867 * This function should not be called directly by device drivers. 868 */ 869 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 870 { 871 int ret; 872 873 if (state <= PCI_D0) 874 return -EINVAL; 875 ret = pci_platform_power_transition(dev, state); 876 /* Power off the bridge may power off the whole hierarchy */ 877 if (!ret && state == PCI_D3cold) 878 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 879 return ret; 880 } 881 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 882 883 /** 884 * pci_set_power_state - Set the power state of a PCI device 885 * @dev: PCI device to handle. 886 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 887 * 888 * Transition a device to a new power state, using the platform firmware and/or 889 * the device's PCI PM registers. 890 * 891 * RETURN VALUE: 892 * -EINVAL if the requested state is invalid. 893 * -EIO if device does not support PCI PM or its PM capabilities register has a 894 * wrong version, or device doesn't support the requested state. 895 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 896 * 0 if device already is in the requested state. 897 * 0 if the transition is to D3 but D3 is not supported. 898 * 0 if device's power state has been successfully changed. 899 */ 900 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 901 { 902 int error; 903 904 /* bound the state we're entering */ 905 if (state > PCI_D3cold) 906 state = PCI_D3cold; 907 else if (state < PCI_D0) 908 state = PCI_D0; 909 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 910 /* 911 * If the device or the parent bridge do not support PCI PM, 912 * ignore the request if we're doing anything other than putting 913 * it into D0 (which would only happen on boot). 914 */ 915 return 0; 916 917 /* Check if we're already there */ 918 if (dev->current_state == state) 919 return 0; 920 921 __pci_start_power_transition(dev, state); 922 923 /* This device is quirked not to be put into D3, so 924 don't put it in D3 */ 925 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 926 return 0; 927 928 /* 929 * To put device in D3cold, we put device into D3hot in native 930 * way, then put device into D3cold with platform ops 931 */ 932 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 933 PCI_D3hot : state); 934 935 if (!__pci_complete_power_transition(dev, state)) 936 error = 0; 937 938 return error; 939 } 940 EXPORT_SYMBOL(pci_set_power_state); 941 942 /** 943 * pci_choose_state - Choose the power state of a PCI device 944 * @dev: PCI device to be suspended 945 * @state: target sleep state for the whole system. This is the value 946 * that is passed to suspend() function. 947 * 948 * Returns PCI power state suitable for given device and given system 949 * message. 950 */ 951 952 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 953 { 954 pci_power_t ret; 955 956 if (!dev->pm_cap) 957 return PCI_D0; 958 959 ret = platform_pci_choose_state(dev); 960 if (ret != PCI_POWER_ERROR) 961 return ret; 962 963 switch (state.event) { 964 case PM_EVENT_ON: 965 return PCI_D0; 966 case PM_EVENT_FREEZE: 967 case PM_EVENT_PRETHAW: 968 /* REVISIT both freeze and pre-thaw "should" use D0 */ 969 case PM_EVENT_SUSPEND: 970 case PM_EVENT_HIBERNATE: 971 return PCI_D3hot; 972 default: 973 dev_info(&dev->dev, "unrecognized suspend event %d\n", 974 state.event); 975 BUG(); 976 } 977 return PCI_D0; 978 } 979 EXPORT_SYMBOL(pci_choose_state); 980 981 #define PCI_EXP_SAVE_REGS 7 982 983 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 984 u16 cap, bool extended) 985 { 986 struct pci_cap_saved_state *tmp; 987 988 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 989 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 990 return tmp; 991 } 992 return NULL; 993 } 994 995 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 996 { 997 return _pci_find_saved_cap(dev, cap, false); 998 } 999 1000 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1001 { 1002 return _pci_find_saved_cap(dev, cap, true); 1003 } 1004 1005 static int pci_save_pcie_state(struct pci_dev *dev) 1006 { 1007 int i = 0; 1008 struct pci_cap_saved_state *save_state; 1009 u16 *cap; 1010 1011 if (!pci_is_pcie(dev)) 1012 return 0; 1013 1014 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1015 if (!save_state) { 1016 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1017 return -ENOMEM; 1018 } 1019 1020 cap = (u16 *)&save_state->cap.data[0]; 1021 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1022 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1023 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1024 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1028 1029 return 0; 1030 } 1031 1032 static void pci_restore_pcie_state(struct pci_dev *dev) 1033 { 1034 int i = 0; 1035 struct pci_cap_saved_state *save_state; 1036 u16 *cap; 1037 1038 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1039 if (!save_state) 1040 return; 1041 1042 cap = (u16 *)&save_state->cap.data[0]; 1043 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1044 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1045 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1046 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1050 } 1051 1052 1053 static int pci_save_pcix_state(struct pci_dev *dev) 1054 { 1055 int pos; 1056 struct pci_cap_saved_state *save_state; 1057 1058 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1059 if (!pos) 1060 return 0; 1061 1062 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1063 if (!save_state) { 1064 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1065 return -ENOMEM; 1066 } 1067 1068 pci_read_config_word(dev, pos + PCI_X_CMD, 1069 (u16 *)save_state->cap.data); 1070 1071 return 0; 1072 } 1073 1074 static void pci_restore_pcix_state(struct pci_dev *dev) 1075 { 1076 int i = 0, pos; 1077 struct pci_cap_saved_state *save_state; 1078 u16 *cap; 1079 1080 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1081 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1082 if (!save_state || !pos) 1083 return; 1084 cap = (u16 *)&save_state->cap.data[0]; 1085 1086 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1087 } 1088 1089 1090 /** 1091 * pci_save_state - save the PCI configuration space of a device before suspending 1092 * @dev: - PCI device that we're dealing with 1093 */ 1094 int pci_save_state(struct pci_dev *dev) 1095 { 1096 int i; 1097 /* XXX: 100% dword access ok here? */ 1098 for (i = 0; i < 16; i++) 1099 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1100 dev->state_saved = true; 1101 1102 i = pci_save_pcie_state(dev); 1103 if (i != 0) 1104 return i; 1105 1106 i = pci_save_pcix_state(dev); 1107 if (i != 0) 1108 return i; 1109 1110 return pci_save_vc_state(dev); 1111 } 1112 EXPORT_SYMBOL(pci_save_state); 1113 1114 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1115 u32 saved_val, int retry) 1116 { 1117 u32 val; 1118 1119 pci_read_config_dword(pdev, offset, &val); 1120 if (val == saved_val) 1121 return; 1122 1123 for (;;) { 1124 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1125 offset, val, saved_val); 1126 pci_write_config_dword(pdev, offset, saved_val); 1127 if (retry-- <= 0) 1128 return; 1129 1130 pci_read_config_dword(pdev, offset, &val); 1131 if (val == saved_val) 1132 return; 1133 1134 mdelay(1); 1135 } 1136 } 1137 1138 static void pci_restore_config_space_range(struct pci_dev *pdev, 1139 int start, int end, int retry) 1140 { 1141 int index; 1142 1143 for (index = end; index >= start; index--) 1144 pci_restore_config_dword(pdev, 4 * index, 1145 pdev->saved_config_space[index], 1146 retry); 1147 } 1148 1149 static void pci_restore_config_space(struct pci_dev *pdev) 1150 { 1151 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1152 pci_restore_config_space_range(pdev, 10, 15, 0); 1153 /* Restore BARs before the command register. */ 1154 pci_restore_config_space_range(pdev, 4, 9, 10); 1155 pci_restore_config_space_range(pdev, 0, 3, 0); 1156 } else { 1157 pci_restore_config_space_range(pdev, 0, 15, 0); 1158 } 1159 } 1160 1161 /** 1162 * pci_restore_state - Restore the saved state of a PCI device 1163 * @dev: - PCI device that we're dealing with 1164 */ 1165 void pci_restore_state(struct pci_dev *dev) 1166 { 1167 if (!dev->state_saved) 1168 return; 1169 1170 /* PCI Express register must be restored first */ 1171 pci_restore_pcie_state(dev); 1172 pci_restore_pasid_state(dev); 1173 pci_restore_pri_state(dev); 1174 pci_restore_ats_state(dev); 1175 pci_restore_vc_state(dev); 1176 1177 pci_cleanup_aer_error_status_regs(dev); 1178 1179 pci_restore_config_space(dev); 1180 1181 pci_restore_pcix_state(dev); 1182 pci_restore_msi_state(dev); 1183 1184 /* Restore ACS and IOV configuration state */ 1185 pci_enable_acs(dev); 1186 pci_restore_iov_state(dev); 1187 1188 dev->state_saved = false; 1189 } 1190 EXPORT_SYMBOL(pci_restore_state); 1191 1192 struct pci_saved_state { 1193 u32 config_space[16]; 1194 struct pci_cap_saved_data cap[0]; 1195 }; 1196 1197 /** 1198 * pci_store_saved_state - Allocate and return an opaque struct containing 1199 * the device saved state. 1200 * @dev: PCI device that we're dealing with 1201 * 1202 * Return NULL if no state or error. 1203 */ 1204 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1205 { 1206 struct pci_saved_state *state; 1207 struct pci_cap_saved_state *tmp; 1208 struct pci_cap_saved_data *cap; 1209 size_t size; 1210 1211 if (!dev->state_saved) 1212 return NULL; 1213 1214 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1215 1216 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1217 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1218 1219 state = kzalloc(size, GFP_KERNEL); 1220 if (!state) 1221 return NULL; 1222 1223 memcpy(state->config_space, dev->saved_config_space, 1224 sizeof(state->config_space)); 1225 1226 cap = state->cap; 1227 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1228 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1229 memcpy(cap, &tmp->cap, len); 1230 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1231 } 1232 /* Empty cap_save terminates list */ 1233 1234 return state; 1235 } 1236 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1237 1238 /** 1239 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1240 * @dev: PCI device that we're dealing with 1241 * @state: Saved state returned from pci_store_saved_state() 1242 */ 1243 int pci_load_saved_state(struct pci_dev *dev, 1244 struct pci_saved_state *state) 1245 { 1246 struct pci_cap_saved_data *cap; 1247 1248 dev->state_saved = false; 1249 1250 if (!state) 1251 return 0; 1252 1253 memcpy(dev->saved_config_space, state->config_space, 1254 sizeof(state->config_space)); 1255 1256 cap = state->cap; 1257 while (cap->size) { 1258 struct pci_cap_saved_state *tmp; 1259 1260 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1261 if (!tmp || tmp->cap.size != cap->size) 1262 return -EINVAL; 1263 1264 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1265 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1266 sizeof(struct pci_cap_saved_data) + cap->size); 1267 } 1268 1269 dev->state_saved = true; 1270 return 0; 1271 } 1272 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1273 1274 /** 1275 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1276 * and free the memory allocated for it. 1277 * @dev: PCI device that we're dealing with 1278 * @state: Pointer to saved state returned from pci_store_saved_state() 1279 */ 1280 int pci_load_and_free_saved_state(struct pci_dev *dev, 1281 struct pci_saved_state **state) 1282 { 1283 int ret = pci_load_saved_state(dev, *state); 1284 kfree(*state); 1285 *state = NULL; 1286 return ret; 1287 } 1288 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1289 1290 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1291 { 1292 return pci_enable_resources(dev, bars); 1293 } 1294 1295 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1296 { 1297 int err; 1298 struct pci_dev *bridge; 1299 u16 cmd; 1300 u8 pin; 1301 1302 err = pci_set_power_state(dev, PCI_D0); 1303 if (err < 0 && err != -EIO) 1304 return err; 1305 1306 bridge = pci_upstream_bridge(dev); 1307 if (bridge) 1308 pcie_aspm_powersave_config_link(bridge); 1309 1310 err = pcibios_enable_device(dev, bars); 1311 if (err < 0) 1312 return err; 1313 pci_fixup_device(pci_fixup_enable, dev); 1314 1315 if (dev->msi_enabled || dev->msix_enabled) 1316 return 0; 1317 1318 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1319 if (pin) { 1320 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1321 if (cmd & PCI_COMMAND_INTX_DISABLE) 1322 pci_write_config_word(dev, PCI_COMMAND, 1323 cmd & ~PCI_COMMAND_INTX_DISABLE); 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * pci_reenable_device - Resume abandoned device 1331 * @dev: PCI device to be resumed 1332 * 1333 * Note this function is a backend of pci_default_resume and is not supposed 1334 * to be called by normal code, write proper resume handler and use it instead. 1335 */ 1336 int pci_reenable_device(struct pci_dev *dev) 1337 { 1338 if (pci_is_enabled(dev)) 1339 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1340 return 0; 1341 } 1342 EXPORT_SYMBOL(pci_reenable_device); 1343 1344 static void pci_enable_bridge(struct pci_dev *dev) 1345 { 1346 struct pci_dev *bridge; 1347 int retval; 1348 1349 bridge = pci_upstream_bridge(dev); 1350 if (bridge) 1351 pci_enable_bridge(bridge); 1352 1353 if (pci_is_enabled(dev)) { 1354 if (!dev->is_busmaster) 1355 pci_set_master(dev); 1356 return; 1357 } 1358 1359 retval = pci_enable_device(dev); 1360 if (retval) 1361 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1362 retval); 1363 pci_set_master(dev); 1364 } 1365 1366 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1367 { 1368 struct pci_dev *bridge; 1369 int err; 1370 int i, bars = 0; 1371 1372 /* 1373 * Power state could be unknown at this point, either due to a fresh 1374 * boot or a device removal call. So get the current power state 1375 * so that things like MSI message writing will behave as expected 1376 * (e.g. if the device really is in D0 at enable time). 1377 */ 1378 if (dev->pm_cap) { 1379 u16 pmcsr; 1380 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1381 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1382 } 1383 1384 if (atomic_inc_return(&dev->enable_cnt) > 1) 1385 return 0; /* already enabled */ 1386 1387 bridge = pci_upstream_bridge(dev); 1388 if (bridge) 1389 pci_enable_bridge(bridge); 1390 1391 /* only skip sriov related */ 1392 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1393 if (dev->resource[i].flags & flags) 1394 bars |= (1 << i); 1395 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1396 if (dev->resource[i].flags & flags) 1397 bars |= (1 << i); 1398 1399 err = do_pci_enable_device(dev, bars); 1400 if (err < 0) 1401 atomic_dec(&dev->enable_cnt); 1402 return err; 1403 } 1404 1405 /** 1406 * pci_enable_device_io - Initialize a device for use with IO space 1407 * @dev: PCI device to be initialized 1408 * 1409 * Initialize device before it's used by a driver. Ask low-level code 1410 * to enable I/O resources. Wake up the device if it was suspended. 1411 * Beware, this function can fail. 1412 */ 1413 int pci_enable_device_io(struct pci_dev *dev) 1414 { 1415 return pci_enable_device_flags(dev, IORESOURCE_IO); 1416 } 1417 EXPORT_SYMBOL(pci_enable_device_io); 1418 1419 /** 1420 * pci_enable_device_mem - Initialize a device for use with Memory space 1421 * @dev: PCI device to be initialized 1422 * 1423 * Initialize device before it's used by a driver. Ask low-level code 1424 * to enable Memory resources. Wake up the device if it was suspended. 1425 * Beware, this function can fail. 1426 */ 1427 int pci_enable_device_mem(struct pci_dev *dev) 1428 { 1429 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1430 } 1431 EXPORT_SYMBOL(pci_enable_device_mem); 1432 1433 /** 1434 * pci_enable_device - Initialize device before it's used by a driver. 1435 * @dev: PCI device to be initialized 1436 * 1437 * Initialize device before it's used by a driver. Ask low-level code 1438 * to enable I/O and memory. Wake up the device if it was suspended. 1439 * Beware, this function can fail. 1440 * 1441 * Note we don't actually enable the device many times if we call 1442 * this function repeatedly (we just increment the count). 1443 */ 1444 int pci_enable_device(struct pci_dev *dev) 1445 { 1446 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1447 } 1448 EXPORT_SYMBOL(pci_enable_device); 1449 1450 /* 1451 * Managed PCI resources. This manages device on/off, intx/msi/msix 1452 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1453 * there's no need to track it separately. pci_devres is initialized 1454 * when a device is enabled using managed PCI device enable interface. 1455 */ 1456 struct pci_devres { 1457 unsigned int enabled:1; 1458 unsigned int pinned:1; 1459 unsigned int orig_intx:1; 1460 unsigned int restore_intx:1; 1461 u32 region_mask; 1462 }; 1463 1464 static void pcim_release(struct device *gendev, void *res) 1465 { 1466 struct pci_dev *dev = to_pci_dev(gendev); 1467 struct pci_devres *this = res; 1468 int i; 1469 1470 if (dev->msi_enabled) 1471 pci_disable_msi(dev); 1472 if (dev->msix_enabled) 1473 pci_disable_msix(dev); 1474 1475 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1476 if (this->region_mask & (1 << i)) 1477 pci_release_region(dev, i); 1478 1479 if (this->restore_intx) 1480 pci_intx(dev, this->orig_intx); 1481 1482 if (this->enabled && !this->pinned) 1483 pci_disable_device(dev); 1484 } 1485 1486 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1487 { 1488 struct pci_devres *dr, *new_dr; 1489 1490 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1491 if (dr) 1492 return dr; 1493 1494 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1495 if (!new_dr) 1496 return NULL; 1497 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1498 } 1499 1500 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1501 { 1502 if (pci_is_managed(pdev)) 1503 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1504 return NULL; 1505 } 1506 1507 /** 1508 * pcim_enable_device - Managed pci_enable_device() 1509 * @pdev: PCI device to be initialized 1510 * 1511 * Managed pci_enable_device(). 1512 */ 1513 int pcim_enable_device(struct pci_dev *pdev) 1514 { 1515 struct pci_devres *dr; 1516 int rc; 1517 1518 dr = get_pci_dr(pdev); 1519 if (unlikely(!dr)) 1520 return -ENOMEM; 1521 if (dr->enabled) 1522 return 0; 1523 1524 rc = pci_enable_device(pdev); 1525 if (!rc) { 1526 pdev->is_managed = 1; 1527 dr->enabled = 1; 1528 } 1529 return rc; 1530 } 1531 EXPORT_SYMBOL(pcim_enable_device); 1532 1533 /** 1534 * pcim_pin_device - Pin managed PCI device 1535 * @pdev: PCI device to pin 1536 * 1537 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1538 * driver detach. @pdev must have been enabled with 1539 * pcim_enable_device(). 1540 */ 1541 void pcim_pin_device(struct pci_dev *pdev) 1542 { 1543 struct pci_devres *dr; 1544 1545 dr = find_pci_dr(pdev); 1546 WARN_ON(!dr || !dr->enabled); 1547 if (dr) 1548 dr->pinned = 1; 1549 } 1550 EXPORT_SYMBOL(pcim_pin_device); 1551 1552 /* 1553 * pcibios_add_device - provide arch specific hooks when adding device dev 1554 * @dev: the PCI device being added 1555 * 1556 * Permits the platform to provide architecture specific functionality when 1557 * devices are added. This is the default implementation. Architecture 1558 * implementations can override this. 1559 */ 1560 int __weak pcibios_add_device(struct pci_dev *dev) 1561 { 1562 return 0; 1563 } 1564 1565 /** 1566 * pcibios_release_device - provide arch specific hooks when releasing device dev 1567 * @dev: the PCI device being released 1568 * 1569 * Permits the platform to provide architecture specific functionality when 1570 * devices are released. This is the default implementation. Architecture 1571 * implementations can override this. 1572 */ 1573 void __weak pcibios_release_device(struct pci_dev *dev) {} 1574 1575 /** 1576 * pcibios_disable_device - disable arch specific PCI resources for device dev 1577 * @dev: the PCI device to disable 1578 * 1579 * Disables architecture specific PCI resources for the device. This 1580 * is the default implementation. Architecture implementations can 1581 * override this. 1582 */ 1583 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1584 1585 /** 1586 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1587 * @irq: ISA IRQ to penalize 1588 * @active: IRQ active or not 1589 * 1590 * Permits the platform to provide architecture-specific functionality when 1591 * penalizing ISA IRQs. This is the default implementation. Architecture 1592 * implementations can override this. 1593 */ 1594 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1595 1596 static void do_pci_disable_device(struct pci_dev *dev) 1597 { 1598 u16 pci_command; 1599 1600 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1601 if (pci_command & PCI_COMMAND_MASTER) { 1602 pci_command &= ~PCI_COMMAND_MASTER; 1603 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1604 } 1605 1606 pcibios_disable_device(dev); 1607 } 1608 1609 /** 1610 * pci_disable_enabled_device - Disable device without updating enable_cnt 1611 * @dev: PCI device to disable 1612 * 1613 * NOTE: This function is a backend of PCI power management routines and is 1614 * not supposed to be called drivers. 1615 */ 1616 void pci_disable_enabled_device(struct pci_dev *dev) 1617 { 1618 if (pci_is_enabled(dev)) 1619 do_pci_disable_device(dev); 1620 } 1621 1622 /** 1623 * pci_disable_device - Disable PCI device after use 1624 * @dev: PCI device to be disabled 1625 * 1626 * Signal to the system that the PCI device is not in use by the system 1627 * anymore. This only involves disabling PCI bus-mastering, if active. 1628 * 1629 * Note we don't actually disable the device until all callers of 1630 * pci_enable_device() have called pci_disable_device(). 1631 */ 1632 void pci_disable_device(struct pci_dev *dev) 1633 { 1634 struct pci_devres *dr; 1635 1636 dr = find_pci_dr(dev); 1637 if (dr) 1638 dr->enabled = 0; 1639 1640 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1641 "disabling already-disabled device"); 1642 1643 if (atomic_dec_return(&dev->enable_cnt) != 0) 1644 return; 1645 1646 do_pci_disable_device(dev); 1647 1648 dev->is_busmaster = 0; 1649 } 1650 EXPORT_SYMBOL(pci_disable_device); 1651 1652 /** 1653 * pcibios_set_pcie_reset_state - set reset state for device dev 1654 * @dev: the PCIe device reset 1655 * @state: Reset state to enter into 1656 * 1657 * 1658 * Sets the PCIe reset state for the device. This is the default 1659 * implementation. Architecture implementations can override this. 1660 */ 1661 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1662 enum pcie_reset_state state) 1663 { 1664 return -EINVAL; 1665 } 1666 1667 /** 1668 * pci_set_pcie_reset_state - set reset state for device dev 1669 * @dev: the PCIe device reset 1670 * @state: Reset state to enter into 1671 * 1672 * 1673 * Sets the PCI reset state for the device. 1674 */ 1675 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1676 { 1677 return pcibios_set_pcie_reset_state(dev, state); 1678 } 1679 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1680 1681 /** 1682 * pci_check_pme_status - Check if given device has generated PME. 1683 * @dev: Device to check. 1684 * 1685 * Check the PME status of the device and if set, clear it and clear PME enable 1686 * (if set). Return 'true' if PME status and PME enable were both set or 1687 * 'false' otherwise. 1688 */ 1689 bool pci_check_pme_status(struct pci_dev *dev) 1690 { 1691 int pmcsr_pos; 1692 u16 pmcsr; 1693 bool ret = false; 1694 1695 if (!dev->pm_cap) 1696 return false; 1697 1698 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1699 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1700 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1701 return false; 1702 1703 /* Clear PME status. */ 1704 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1705 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1706 /* Disable PME to avoid interrupt flood. */ 1707 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1708 ret = true; 1709 } 1710 1711 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1712 1713 return ret; 1714 } 1715 1716 /** 1717 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1718 * @dev: Device to handle. 1719 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1720 * 1721 * Check if @dev has generated PME and queue a resume request for it in that 1722 * case. 1723 */ 1724 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1725 { 1726 if (pme_poll_reset && dev->pme_poll) 1727 dev->pme_poll = false; 1728 1729 if (pci_check_pme_status(dev)) { 1730 pci_wakeup_event(dev); 1731 pm_request_resume(&dev->dev); 1732 } 1733 return 0; 1734 } 1735 1736 /** 1737 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1738 * @bus: Top bus of the subtree to walk. 1739 */ 1740 void pci_pme_wakeup_bus(struct pci_bus *bus) 1741 { 1742 if (bus) 1743 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1744 } 1745 1746 1747 /** 1748 * pci_pme_capable - check the capability of PCI device to generate PME# 1749 * @dev: PCI device to handle. 1750 * @state: PCI state from which device will issue PME#. 1751 */ 1752 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1753 { 1754 if (!dev->pm_cap) 1755 return false; 1756 1757 return !!(dev->pme_support & (1 << state)); 1758 } 1759 EXPORT_SYMBOL(pci_pme_capable); 1760 1761 static void pci_pme_list_scan(struct work_struct *work) 1762 { 1763 struct pci_pme_device *pme_dev, *n; 1764 1765 mutex_lock(&pci_pme_list_mutex); 1766 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1767 if (pme_dev->dev->pme_poll) { 1768 struct pci_dev *bridge; 1769 1770 bridge = pme_dev->dev->bus->self; 1771 /* 1772 * If bridge is in low power state, the 1773 * configuration space of subordinate devices 1774 * may be not accessible 1775 */ 1776 if (bridge && bridge->current_state != PCI_D0) 1777 continue; 1778 pci_pme_wakeup(pme_dev->dev, NULL); 1779 } else { 1780 list_del(&pme_dev->list); 1781 kfree(pme_dev); 1782 } 1783 } 1784 if (!list_empty(&pci_pme_list)) 1785 queue_delayed_work(system_freezable_wq, &pci_pme_work, 1786 msecs_to_jiffies(PME_TIMEOUT)); 1787 mutex_unlock(&pci_pme_list_mutex); 1788 } 1789 1790 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1791 { 1792 u16 pmcsr; 1793 1794 if (!dev->pme_support) 1795 return; 1796 1797 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1798 /* Clear PME_Status by writing 1 to it and enable PME# */ 1799 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1800 if (!enable) 1801 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1802 1803 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1804 } 1805 1806 /** 1807 * pci_pme_restore - Restore PME configuration after config space restore. 1808 * @dev: PCI device to update. 1809 */ 1810 void pci_pme_restore(struct pci_dev *dev) 1811 { 1812 u16 pmcsr; 1813 1814 if (!dev->pme_support) 1815 return; 1816 1817 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1818 if (dev->wakeup_prepared) { 1819 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 1820 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 1821 } else { 1822 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1823 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1824 } 1825 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1826 } 1827 1828 /** 1829 * pci_pme_active - enable or disable PCI device's PME# function 1830 * @dev: PCI device to handle. 1831 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1832 * 1833 * The caller must verify that the device is capable of generating PME# before 1834 * calling this function with @enable equal to 'true'. 1835 */ 1836 void pci_pme_active(struct pci_dev *dev, bool enable) 1837 { 1838 __pci_pme_active(dev, enable); 1839 1840 /* 1841 * PCI (as opposed to PCIe) PME requires that the device have 1842 * its PME# line hooked up correctly. Not all hardware vendors 1843 * do this, so the PME never gets delivered and the device 1844 * remains asleep. The easiest way around this is to 1845 * periodically walk the list of suspended devices and check 1846 * whether any have their PME flag set. The assumption is that 1847 * we'll wake up often enough anyway that this won't be a huge 1848 * hit, and the power savings from the devices will still be a 1849 * win. 1850 * 1851 * Although PCIe uses in-band PME message instead of PME# line 1852 * to report PME, PME does not work for some PCIe devices in 1853 * reality. For example, there are devices that set their PME 1854 * status bits, but don't really bother to send a PME message; 1855 * there are PCI Express Root Ports that don't bother to 1856 * trigger interrupts when they receive PME messages from the 1857 * devices below. So PME poll is used for PCIe devices too. 1858 */ 1859 1860 if (dev->pme_poll) { 1861 struct pci_pme_device *pme_dev; 1862 if (enable) { 1863 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1864 GFP_KERNEL); 1865 if (!pme_dev) { 1866 dev_warn(&dev->dev, "can't enable PME#\n"); 1867 return; 1868 } 1869 pme_dev->dev = dev; 1870 mutex_lock(&pci_pme_list_mutex); 1871 list_add(&pme_dev->list, &pci_pme_list); 1872 if (list_is_singular(&pci_pme_list)) 1873 queue_delayed_work(system_freezable_wq, 1874 &pci_pme_work, 1875 msecs_to_jiffies(PME_TIMEOUT)); 1876 mutex_unlock(&pci_pme_list_mutex); 1877 } else { 1878 mutex_lock(&pci_pme_list_mutex); 1879 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1880 if (pme_dev->dev == dev) { 1881 list_del(&pme_dev->list); 1882 kfree(pme_dev); 1883 break; 1884 } 1885 } 1886 mutex_unlock(&pci_pme_list_mutex); 1887 } 1888 } 1889 1890 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1891 } 1892 EXPORT_SYMBOL(pci_pme_active); 1893 1894 /** 1895 * pci_enable_wake - enable PCI device as wakeup event source 1896 * @dev: PCI device affected 1897 * @state: PCI state from which device will issue wakeup events 1898 * @enable: True to enable event generation; false to disable 1899 * 1900 * This enables the device as a wakeup event source, or disables it. 1901 * When such events involves platform-specific hooks, those hooks are 1902 * called automatically by this routine. 1903 * 1904 * Devices with legacy power management (no standard PCI PM capabilities) 1905 * always require such platform hooks. 1906 * 1907 * RETURN VALUE: 1908 * 0 is returned on success 1909 * -EINVAL is returned if device is not supposed to wake up the system 1910 * Error code depending on the platform is returned if both the platform and 1911 * the native mechanism fail to enable the generation of wake-up events 1912 */ 1913 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 1914 { 1915 int ret = 0; 1916 1917 /* 1918 * Bridges can only signal wakeup on behalf of subordinate devices, 1919 * but that is set up elsewhere, so skip them. 1920 */ 1921 if (pci_has_subordinate(dev)) 1922 return 0; 1923 1924 /* Don't do the same thing twice in a row for one device. */ 1925 if (!!enable == !!dev->wakeup_prepared) 1926 return 0; 1927 1928 /* 1929 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1930 * Anderson we should be doing PME# wake enable followed by ACPI wake 1931 * enable. To disable wake-up we call the platform first, for symmetry. 1932 */ 1933 1934 if (enable) { 1935 int error; 1936 1937 if (pci_pme_capable(dev, state)) 1938 pci_pme_active(dev, true); 1939 else 1940 ret = 1; 1941 error = platform_pci_set_wakeup(dev, true); 1942 if (ret) 1943 ret = error; 1944 if (!ret) 1945 dev->wakeup_prepared = true; 1946 } else { 1947 platform_pci_set_wakeup(dev, false); 1948 pci_pme_active(dev, false); 1949 dev->wakeup_prepared = false; 1950 } 1951 1952 return ret; 1953 } 1954 EXPORT_SYMBOL(pci_enable_wake); 1955 1956 /** 1957 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1958 * @dev: PCI device to prepare 1959 * @enable: True to enable wake-up event generation; false to disable 1960 * 1961 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1962 * and this function allows them to set that up cleanly - pci_enable_wake() 1963 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1964 * ordering constraints. 1965 * 1966 * This function only returns error code if the device is not capable of 1967 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1968 * enable wake-up power for it. 1969 */ 1970 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1971 { 1972 return pci_pme_capable(dev, PCI_D3cold) ? 1973 pci_enable_wake(dev, PCI_D3cold, enable) : 1974 pci_enable_wake(dev, PCI_D3hot, enable); 1975 } 1976 EXPORT_SYMBOL(pci_wake_from_d3); 1977 1978 /** 1979 * pci_target_state - find an appropriate low power state for a given PCI dev 1980 * @dev: PCI device 1981 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 1982 * 1983 * Use underlying platform code to find a supported low power state for @dev. 1984 * If the platform can't manage @dev, return the deepest state from which it 1985 * can generate wake events, based on any available PME info. 1986 */ 1987 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 1988 { 1989 pci_power_t target_state = PCI_D3hot; 1990 1991 if (platform_pci_power_manageable(dev)) { 1992 /* 1993 * Call the platform to choose the target state of the device 1994 * and enable wake-up from this state if supported. 1995 */ 1996 pci_power_t state = platform_pci_choose_state(dev); 1997 1998 switch (state) { 1999 case PCI_POWER_ERROR: 2000 case PCI_UNKNOWN: 2001 break; 2002 case PCI_D1: 2003 case PCI_D2: 2004 if (pci_no_d1d2(dev)) 2005 break; 2006 default: 2007 target_state = state; 2008 } 2009 2010 return target_state; 2011 } 2012 2013 if (!dev->pm_cap) 2014 target_state = PCI_D0; 2015 2016 /* 2017 * If the device is in D3cold even though it's not power-manageable by 2018 * the platform, it may have been powered down by non-standard means. 2019 * Best to let it slumber. 2020 */ 2021 if (dev->current_state == PCI_D3cold) 2022 target_state = PCI_D3cold; 2023 2024 if (wakeup) { 2025 /* 2026 * Find the deepest state from which the device can generate 2027 * wake-up events, make it the target state and enable device 2028 * to generate PME#. 2029 */ 2030 if (dev->pme_support) { 2031 while (target_state 2032 && !(dev->pme_support & (1 << target_state))) 2033 target_state--; 2034 } 2035 } 2036 2037 return target_state; 2038 } 2039 2040 /** 2041 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2042 * @dev: Device to handle. 2043 * 2044 * Choose the power state appropriate for the device depending on whether 2045 * it can wake up the system and/or is power manageable by the platform 2046 * (PCI_D3hot is the default) and put the device into that state. 2047 */ 2048 int pci_prepare_to_sleep(struct pci_dev *dev) 2049 { 2050 bool wakeup = device_may_wakeup(&dev->dev); 2051 pci_power_t target_state = pci_target_state(dev, wakeup); 2052 int error; 2053 2054 if (target_state == PCI_POWER_ERROR) 2055 return -EIO; 2056 2057 pci_enable_wake(dev, target_state, wakeup); 2058 2059 error = pci_set_power_state(dev, target_state); 2060 2061 if (error) 2062 pci_enable_wake(dev, target_state, false); 2063 2064 return error; 2065 } 2066 EXPORT_SYMBOL(pci_prepare_to_sleep); 2067 2068 /** 2069 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2070 * @dev: Device to handle. 2071 * 2072 * Disable device's system wake-up capability and put it into D0. 2073 */ 2074 int pci_back_from_sleep(struct pci_dev *dev) 2075 { 2076 pci_enable_wake(dev, PCI_D0, false); 2077 return pci_set_power_state(dev, PCI_D0); 2078 } 2079 EXPORT_SYMBOL(pci_back_from_sleep); 2080 2081 /** 2082 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2083 * @dev: PCI device being suspended. 2084 * 2085 * Prepare @dev to generate wake-up events at run time and put it into a low 2086 * power state. 2087 */ 2088 int pci_finish_runtime_suspend(struct pci_dev *dev) 2089 { 2090 pci_power_t target_state; 2091 int error; 2092 2093 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2094 if (target_state == PCI_POWER_ERROR) 2095 return -EIO; 2096 2097 dev->runtime_d3cold = target_state == PCI_D3cold; 2098 2099 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2100 2101 error = pci_set_power_state(dev, target_state); 2102 2103 if (error) { 2104 pci_enable_wake(dev, target_state, false); 2105 dev->runtime_d3cold = false; 2106 } 2107 2108 return error; 2109 } 2110 2111 /** 2112 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2113 * @dev: Device to check. 2114 * 2115 * Return true if the device itself is capable of generating wake-up events 2116 * (through the platform or using the native PCIe PME) or if the device supports 2117 * PME and one of its upstream bridges can generate wake-up events. 2118 */ 2119 bool pci_dev_run_wake(struct pci_dev *dev) 2120 { 2121 struct pci_bus *bus = dev->bus; 2122 2123 if (device_can_wakeup(&dev->dev)) 2124 return true; 2125 2126 if (!dev->pme_support) 2127 return false; 2128 2129 /* PME-capable in principle, but not from the target power state */ 2130 if (!pci_pme_capable(dev, pci_target_state(dev, false))) 2131 return false; 2132 2133 while (bus->parent) { 2134 struct pci_dev *bridge = bus->self; 2135 2136 if (device_can_wakeup(&bridge->dev)) 2137 return true; 2138 2139 bus = bus->parent; 2140 } 2141 2142 /* We have reached the root bus. */ 2143 if (bus->bridge) 2144 return device_can_wakeup(bus->bridge); 2145 2146 return false; 2147 } 2148 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2149 2150 /** 2151 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2152 * @pci_dev: Device to check. 2153 * 2154 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2155 * reconfigured due to wakeup settings difference between system and runtime 2156 * suspend and the current power state of it is suitable for the upcoming 2157 * (system) transition. 2158 * 2159 * If the device is not configured for system wakeup, disable PME for it before 2160 * returning 'true' to prevent it from waking up the system unnecessarily. 2161 */ 2162 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2163 { 2164 struct device *dev = &pci_dev->dev; 2165 bool wakeup = device_may_wakeup(dev); 2166 2167 if (!pm_runtime_suspended(dev) 2168 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2169 || platform_pci_need_resume(pci_dev)) 2170 return false; 2171 2172 /* 2173 * At this point the device is good to go unless it's been configured 2174 * to generate PME at the runtime suspend time, but it is not supposed 2175 * to wake up the system. In that case, simply disable PME for it 2176 * (it will have to be re-enabled on exit from system resume). 2177 * 2178 * If the device's power state is D3cold and the platform check above 2179 * hasn't triggered, the device's configuration is suitable and we don't 2180 * need to manipulate it at all. 2181 */ 2182 spin_lock_irq(&dev->power.lock); 2183 2184 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2185 !wakeup) 2186 __pci_pme_active(pci_dev, false); 2187 2188 spin_unlock_irq(&dev->power.lock); 2189 return true; 2190 } 2191 2192 /** 2193 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2194 * @pci_dev: Device to handle. 2195 * 2196 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2197 * it might have been disabled during the prepare phase of system suspend if 2198 * the device was not configured for system wakeup. 2199 */ 2200 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2201 { 2202 struct device *dev = &pci_dev->dev; 2203 2204 if (!pci_dev_run_wake(pci_dev)) 2205 return; 2206 2207 spin_lock_irq(&dev->power.lock); 2208 2209 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2210 __pci_pme_active(pci_dev, true); 2211 2212 spin_unlock_irq(&dev->power.lock); 2213 } 2214 2215 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2216 { 2217 struct device *dev = &pdev->dev; 2218 struct device *parent = dev->parent; 2219 2220 if (parent) 2221 pm_runtime_get_sync(parent); 2222 pm_runtime_get_noresume(dev); 2223 /* 2224 * pdev->current_state is set to PCI_D3cold during suspending, 2225 * so wait until suspending completes 2226 */ 2227 pm_runtime_barrier(dev); 2228 /* 2229 * Only need to resume devices in D3cold, because config 2230 * registers are still accessible for devices suspended but 2231 * not in D3cold. 2232 */ 2233 if (pdev->current_state == PCI_D3cold) 2234 pm_runtime_resume(dev); 2235 } 2236 2237 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2238 { 2239 struct device *dev = &pdev->dev; 2240 struct device *parent = dev->parent; 2241 2242 pm_runtime_put(dev); 2243 if (parent) 2244 pm_runtime_put_sync(parent); 2245 } 2246 2247 /** 2248 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2249 * @bridge: Bridge to check 2250 * 2251 * This function checks if it is possible to move the bridge to D3. 2252 * Currently we only allow D3 for recent enough PCIe ports. 2253 */ 2254 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2255 { 2256 unsigned int year; 2257 2258 if (!pci_is_pcie(bridge)) 2259 return false; 2260 2261 switch (pci_pcie_type(bridge)) { 2262 case PCI_EXP_TYPE_ROOT_PORT: 2263 case PCI_EXP_TYPE_UPSTREAM: 2264 case PCI_EXP_TYPE_DOWNSTREAM: 2265 if (pci_bridge_d3_disable) 2266 return false; 2267 2268 /* 2269 * Hotplug interrupts cannot be delivered if the link is down, 2270 * so parents of a hotplug port must stay awake. In addition, 2271 * hotplug ports handled by firmware in System Management Mode 2272 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2273 * For simplicity, disallow in general for now. 2274 */ 2275 if (bridge->is_hotplug_bridge) 2276 return false; 2277 2278 if (pci_bridge_d3_force) 2279 return true; 2280 2281 /* 2282 * It should be safe to put PCIe ports from 2015 or newer 2283 * to D3. 2284 */ 2285 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && 2286 year >= 2015) { 2287 return true; 2288 } 2289 break; 2290 } 2291 2292 return false; 2293 } 2294 2295 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2296 { 2297 bool *d3cold_ok = data; 2298 2299 if (/* The device needs to be allowed to go D3cold ... */ 2300 dev->no_d3cold || !dev->d3cold_allowed || 2301 2302 /* ... and if it is wakeup capable to do so from D3cold. */ 2303 (device_may_wakeup(&dev->dev) && 2304 !pci_pme_capable(dev, PCI_D3cold)) || 2305 2306 /* If it is a bridge it must be allowed to go to D3. */ 2307 !pci_power_manageable(dev)) 2308 2309 *d3cold_ok = false; 2310 2311 return !*d3cold_ok; 2312 } 2313 2314 /* 2315 * pci_bridge_d3_update - Update bridge D3 capabilities 2316 * @dev: PCI device which is changed 2317 * 2318 * Update upstream bridge PM capabilities accordingly depending on if the 2319 * device PM configuration was changed or the device is being removed. The 2320 * change is also propagated upstream. 2321 */ 2322 void pci_bridge_d3_update(struct pci_dev *dev) 2323 { 2324 bool remove = !device_is_registered(&dev->dev); 2325 struct pci_dev *bridge; 2326 bool d3cold_ok = true; 2327 2328 bridge = pci_upstream_bridge(dev); 2329 if (!bridge || !pci_bridge_d3_possible(bridge)) 2330 return; 2331 2332 /* 2333 * If D3 is currently allowed for the bridge, removing one of its 2334 * children won't change that. 2335 */ 2336 if (remove && bridge->bridge_d3) 2337 return; 2338 2339 /* 2340 * If D3 is currently allowed for the bridge and a child is added or 2341 * changed, disallowance of D3 can only be caused by that child, so 2342 * we only need to check that single device, not any of its siblings. 2343 * 2344 * If D3 is currently not allowed for the bridge, checking the device 2345 * first may allow us to skip checking its siblings. 2346 */ 2347 if (!remove) 2348 pci_dev_check_d3cold(dev, &d3cold_ok); 2349 2350 /* 2351 * If D3 is currently not allowed for the bridge, this may be caused 2352 * either by the device being changed/removed or any of its siblings, 2353 * so we need to go through all children to find out if one of them 2354 * continues to block D3. 2355 */ 2356 if (d3cold_ok && !bridge->bridge_d3) 2357 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2358 &d3cold_ok); 2359 2360 if (bridge->bridge_d3 != d3cold_ok) { 2361 bridge->bridge_d3 = d3cold_ok; 2362 /* Propagate change to upstream bridges */ 2363 pci_bridge_d3_update(bridge); 2364 } 2365 } 2366 2367 /** 2368 * pci_d3cold_enable - Enable D3cold for device 2369 * @dev: PCI device to handle 2370 * 2371 * This function can be used in drivers to enable D3cold from the device 2372 * they handle. It also updates upstream PCI bridge PM capabilities 2373 * accordingly. 2374 */ 2375 void pci_d3cold_enable(struct pci_dev *dev) 2376 { 2377 if (dev->no_d3cold) { 2378 dev->no_d3cold = false; 2379 pci_bridge_d3_update(dev); 2380 } 2381 } 2382 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2383 2384 /** 2385 * pci_d3cold_disable - Disable D3cold for device 2386 * @dev: PCI device to handle 2387 * 2388 * This function can be used in drivers to disable D3cold from the device 2389 * they handle. It also updates upstream PCI bridge PM capabilities 2390 * accordingly. 2391 */ 2392 void pci_d3cold_disable(struct pci_dev *dev) 2393 { 2394 if (!dev->no_d3cold) { 2395 dev->no_d3cold = true; 2396 pci_bridge_d3_update(dev); 2397 } 2398 } 2399 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2400 2401 /** 2402 * pci_pm_init - Initialize PM functions of given PCI device 2403 * @dev: PCI device to handle. 2404 */ 2405 void pci_pm_init(struct pci_dev *dev) 2406 { 2407 int pm; 2408 u16 pmc; 2409 2410 pm_runtime_forbid(&dev->dev); 2411 pm_runtime_set_active(&dev->dev); 2412 pm_runtime_enable(&dev->dev); 2413 device_enable_async_suspend(&dev->dev); 2414 dev->wakeup_prepared = false; 2415 2416 dev->pm_cap = 0; 2417 dev->pme_support = 0; 2418 2419 /* find PCI PM capability in list */ 2420 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2421 if (!pm) 2422 return; 2423 /* Check device's ability to generate PME# */ 2424 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2425 2426 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2427 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2428 pmc & PCI_PM_CAP_VER_MASK); 2429 return; 2430 } 2431 2432 dev->pm_cap = pm; 2433 dev->d3_delay = PCI_PM_D3_WAIT; 2434 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2435 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2436 dev->d3cold_allowed = true; 2437 2438 dev->d1_support = false; 2439 dev->d2_support = false; 2440 if (!pci_no_d1d2(dev)) { 2441 if (pmc & PCI_PM_CAP_D1) 2442 dev->d1_support = true; 2443 if (pmc & PCI_PM_CAP_D2) 2444 dev->d2_support = true; 2445 2446 if (dev->d1_support || dev->d2_support) 2447 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2448 dev->d1_support ? " D1" : "", 2449 dev->d2_support ? " D2" : ""); 2450 } 2451 2452 pmc &= PCI_PM_CAP_PME_MASK; 2453 if (pmc) { 2454 dev_printk(KERN_DEBUG, &dev->dev, 2455 "PME# supported from%s%s%s%s%s\n", 2456 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2457 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2458 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2459 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2460 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2461 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2462 dev->pme_poll = true; 2463 /* 2464 * Make device's PM flags reflect the wake-up capability, but 2465 * let the user space enable it to wake up the system as needed. 2466 */ 2467 device_set_wakeup_capable(&dev->dev, true); 2468 /* Disable the PME# generation functionality */ 2469 pci_pme_active(dev, false); 2470 } 2471 } 2472 2473 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2474 { 2475 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2476 2477 switch (prop) { 2478 case PCI_EA_P_MEM: 2479 case PCI_EA_P_VF_MEM: 2480 flags |= IORESOURCE_MEM; 2481 break; 2482 case PCI_EA_P_MEM_PREFETCH: 2483 case PCI_EA_P_VF_MEM_PREFETCH: 2484 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2485 break; 2486 case PCI_EA_P_IO: 2487 flags |= IORESOURCE_IO; 2488 break; 2489 default: 2490 return 0; 2491 } 2492 2493 return flags; 2494 } 2495 2496 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2497 u8 prop) 2498 { 2499 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2500 return &dev->resource[bei]; 2501 #ifdef CONFIG_PCI_IOV 2502 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2503 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2504 return &dev->resource[PCI_IOV_RESOURCES + 2505 bei - PCI_EA_BEI_VF_BAR0]; 2506 #endif 2507 else if (bei == PCI_EA_BEI_ROM) 2508 return &dev->resource[PCI_ROM_RESOURCE]; 2509 else 2510 return NULL; 2511 } 2512 2513 /* Read an Enhanced Allocation (EA) entry */ 2514 static int pci_ea_read(struct pci_dev *dev, int offset) 2515 { 2516 struct resource *res; 2517 int ent_size, ent_offset = offset; 2518 resource_size_t start, end; 2519 unsigned long flags; 2520 u32 dw0, bei, base, max_offset; 2521 u8 prop; 2522 bool support_64 = (sizeof(resource_size_t) >= 8); 2523 2524 pci_read_config_dword(dev, ent_offset, &dw0); 2525 ent_offset += 4; 2526 2527 /* Entry size field indicates DWORDs after 1st */ 2528 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2529 2530 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2531 goto out; 2532 2533 bei = (dw0 & PCI_EA_BEI) >> 4; 2534 prop = (dw0 & PCI_EA_PP) >> 8; 2535 2536 /* 2537 * If the Property is in the reserved range, try the Secondary 2538 * Property instead. 2539 */ 2540 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2541 prop = (dw0 & PCI_EA_SP) >> 16; 2542 if (prop > PCI_EA_P_BRIDGE_IO) 2543 goto out; 2544 2545 res = pci_ea_get_resource(dev, bei, prop); 2546 if (!res) { 2547 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei); 2548 goto out; 2549 } 2550 2551 flags = pci_ea_flags(dev, prop); 2552 if (!flags) { 2553 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop); 2554 goto out; 2555 } 2556 2557 /* Read Base */ 2558 pci_read_config_dword(dev, ent_offset, &base); 2559 start = (base & PCI_EA_FIELD_MASK); 2560 ent_offset += 4; 2561 2562 /* Read MaxOffset */ 2563 pci_read_config_dword(dev, ent_offset, &max_offset); 2564 ent_offset += 4; 2565 2566 /* Read Base MSBs (if 64-bit entry) */ 2567 if (base & PCI_EA_IS_64) { 2568 u32 base_upper; 2569 2570 pci_read_config_dword(dev, ent_offset, &base_upper); 2571 ent_offset += 4; 2572 2573 flags |= IORESOURCE_MEM_64; 2574 2575 /* entry starts above 32-bit boundary, can't use */ 2576 if (!support_64 && base_upper) 2577 goto out; 2578 2579 if (support_64) 2580 start |= ((u64)base_upper << 32); 2581 } 2582 2583 end = start + (max_offset | 0x03); 2584 2585 /* Read MaxOffset MSBs (if 64-bit entry) */ 2586 if (max_offset & PCI_EA_IS_64) { 2587 u32 max_offset_upper; 2588 2589 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2590 ent_offset += 4; 2591 2592 flags |= IORESOURCE_MEM_64; 2593 2594 /* entry too big, can't use */ 2595 if (!support_64 && max_offset_upper) 2596 goto out; 2597 2598 if (support_64) 2599 end += ((u64)max_offset_upper << 32); 2600 } 2601 2602 if (end < start) { 2603 dev_err(&dev->dev, "EA Entry crosses address boundary\n"); 2604 goto out; 2605 } 2606 2607 if (ent_size != ent_offset - offset) { 2608 dev_err(&dev->dev, 2609 "EA Entry Size (%d) does not match length read (%d)\n", 2610 ent_size, ent_offset - offset); 2611 goto out; 2612 } 2613 2614 res->name = pci_name(dev); 2615 res->start = start; 2616 res->end = end; 2617 res->flags = flags; 2618 2619 if (bei <= PCI_EA_BEI_BAR5) 2620 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2621 bei, res, prop); 2622 else if (bei == PCI_EA_BEI_ROM) 2623 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2624 res, prop); 2625 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2626 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2627 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2628 else 2629 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2630 bei, res, prop); 2631 2632 out: 2633 return offset + ent_size; 2634 } 2635 2636 /* Enhanced Allocation Initialization */ 2637 void pci_ea_init(struct pci_dev *dev) 2638 { 2639 int ea; 2640 u8 num_ent; 2641 int offset; 2642 int i; 2643 2644 /* find PCI EA capability in list */ 2645 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2646 if (!ea) 2647 return; 2648 2649 /* determine the number of entries */ 2650 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2651 &num_ent); 2652 num_ent &= PCI_EA_NUM_ENT_MASK; 2653 2654 offset = ea + PCI_EA_FIRST_ENT; 2655 2656 /* Skip DWORD 2 for type 1 functions */ 2657 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2658 offset += 4; 2659 2660 /* parse each EA entry */ 2661 for (i = 0; i < num_ent; ++i) 2662 offset = pci_ea_read(dev, offset); 2663 } 2664 2665 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2666 struct pci_cap_saved_state *new_cap) 2667 { 2668 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2669 } 2670 2671 /** 2672 * _pci_add_cap_save_buffer - allocate buffer for saving given 2673 * capability registers 2674 * @dev: the PCI device 2675 * @cap: the capability to allocate the buffer for 2676 * @extended: Standard or Extended capability ID 2677 * @size: requested size of the buffer 2678 */ 2679 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2680 bool extended, unsigned int size) 2681 { 2682 int pos; 2683 struct pci_cap_saved_state *save_state; 2684 2685 if (extended) 2686 pos = pci_find_ext_capability(dev, cap); 2687 else 2688 pos = pci_find_capability(dev, cap); 2689 2690 if (!pos) 2691 return 0; 2692 2693 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2694 if (!save_state) 2695 return -ENOMEM; 2696 2697 save_state->cap.cap_nr = cap; 2698 save_state->cap.cap_extended = extended; 2699 save_state->cap.size = size; 2700 pci_add_saved_cap(dev, save_state); 2701 2702 return 0; 2703 } 2704 2705 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2706 { 2707 return _pci_add_cap_save_buffer(dev, cap, false, size); 2708 } 2709 2710 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2711 { 2712 return _pci_add_cap_save_buffer(dev, cap, true, size); 2713 } 2714 2715 /** 2716 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2717 * @dev: the PCI device 2718 */ 2719 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2720 { 2721 int error; 2722 2723 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2724 PCI_EXP_SAVE_REGS * sizeof(u16)); 2725 if (error) 2726 dev_err(&dev->dev, 2727 "unable to preallocate PCI Express save buffer\n"); 2728 2729 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2730 if (error) 2731 dev_err(&dev->dev, 2732 "unable to preallocate PCI-X save buffer\n"); 2733 2734 pci_allocate_vc_save_buffers(dev); 2735 } 2736 2737 void pci_free_cap_save_buffers(struct pci_dev *dev) 2738 { 2739 struct pci_cap_saved_state *tmp; 2740 struct hlist_node *n; 2741 2742 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2743 kfree(tmp); 2744 } 2745 2746 /** 2747 * pci_configure_ari - enable or disable ARI forwarding 2748 * @dev: the PCI device 2749 * 2750 * If @dev and its upstream bridge both support ARI, enable ARI in the 2751 * bridge. Otherwise, disable ARI in the bridge. 2752 */ 2753 void pci_configure_ari(struct pci_dev *dev) 2754 { 2755 u32 cap; 2756 struct pci_dev *bridge; 2757 2758 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2759 return; 2760 2761 bridge = dev->bus->self; 2762 if (!bridge) 2763 return; 2764 2765 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2766 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2767 return; 2768 2769 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2770 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2771 PCI_EXP_DEVCTL2_ARI); 2772 bridge->ari_enabled = 1; 2773 } else { 2774 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2775 PCI_EXP_DEVCTL2_ARI); 2776 bridge->ari_enabled = 0; 2777 } 2778 } 2779 2780 static int pci_acs_enable; 2781 2782 /** 2783 * pci_request_acs - ask for ACS to be enabled if supported 2784 */ 2785 void pci_request_acs(void) 2786 { 2787 pci_acs_enable = 1; 2788 } 2789 2790 /** 2791 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2792 * @dev: the PCI device 2793 */ 2794 static void pci_std_enable_acs(struct pci_dev *dev) 2795 { 2796 int pos; 2797 u16 cap; 2798 u16 ctrl; 2799 2800 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2801 if (!pos) 2802 return; 2803 2804 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2805 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2806 2807 /* Source Validation */ 2808 ctrl |= (cap & PCI_ACS_SV); 2809 2810 /* P2P Request Redirect */ 2811 ctrl |= (cap & PCI_ACS_RR); 2812 2813 /* P2P Completion Redirect */ 2814 ctrl |= (cap & PCI_ACS_CR); 2815 2816 /* Upstream Forwarding */ 2817 ctrl |= (cap & PCI_ACS_UF); 2818 2819 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2820 } 2821 2822 /** 2823 * pci_enable_acs - enable ACS if hardware support it 2824 * @dev: the PCI device 2825 */ 2826 void pci_enable_acs(struct pci_dev *dev) 2827 { 2828 if (!pci_acs_enable) 2829 return; 2830 2831 if (!pci_dev_specific_enable_acs(dev)) 2832 return; 2833 2834 pci_std_enable_acs(dev); 2835 } 2836 2837 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2838 { 2839 int pos; 2840 u16 cap, ctrl; 2841 2842 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2843 if (!pos) 2844 return false; 2845 2846 /* 2847 * Except for egress control, capabilities are either required 2848 * or only required if controllable. Features missing from the 2849 * capability field can therefore be assumed as hard-wired enabled. 2850 */ 2851 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2852 acs_flags &= (cap | PCI_ACS_EC); 2853 2854 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2855 return (ctrl & acs_flags) == acs_flags; 2856 } 2857 2858 /** 2859 * pci_acs_enabled - test ACS against required flags for a given device 2860 * @pdev: device to test 2861 * @acs_flags: required PCI ACS flags 2862 * 2863 * Return true if the device supports the provided flags. Automatically 2864 * filters out flags that are not implemented on multifunction devices. 2865 * 2866 * Note that this interface checks the effective ACS capabilities of the 2867 * device rather than the actual capabilities. For instance, most single 2868 * function endpoints are not required to support ACS because they have no 2869 * opportunity for peer-to-peer access. We therefore return 'true' 2870 * regardless of whether the device exposes an ACS capability. This makes 2871 * it much easier for callers of this function to ignore the actual type 2872 * or topology of the device when testing ACS support. 2873 */ 2874 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2875 { 2876 int ret; 2877 2878 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2879 if (ret >= 0) 2880 return ret > 0; 2881 2882 /* 2883 * Conventional PCI and PCI-X devices never support ACS, either 2884 * effectively or actually. The shared bus topology implies that 2885 * any device on the bus can receive or snoop DMA. 2886 */ 2887 if (!pci_is_pcie(pdev)) 2888 return false; 2889 2890 switch (pci_pcie_type(pdev)) { 2891 /* 2892 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2893 * but since their primary interface is PCI/X, we conservatively 2894 * handle them as we would a non-PCIe device. 2895 */ 2896 case PCI_EXP_TYPE_PCIE_BRIDGE: 2897 /* 2898 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2899 * applicable... must never implement an ACS Extended Capability...". 2900 * This seems arbitrary, but we take a conservative interpretation 2901 * of this statement. 2902 */ 2903 case PCI_EXP_TYPE_PCI_BRIDGE: 2904 case PCI_EXP_TYPE_RC_EC: 2905 return false; 2906 /* 2907 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2908 * implement ACS in order to indicate their peer-to-peer capabilities, 2909 * regardless of whether they are single- or multi-function devices. 2910 */ 2911 case PCI_EXP_TYPE_DOWNSTREAM: 2912 case PCI_EXP_TYPE_ROOT_PORT: 2913 return pci_acs_flags_enabled(pdev, acs_flags); 2914 /* 2915 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2916 * implemented by the remaining PCIe types to indicate peer-to-peer 2917 * capabilities, but only when they are part of a multifunction 2918 * device. The footnote for section 6.12 indicates the specific 2919 * PCIe types included here. 2920 */ 2921 case PCI_EXP_TYPE_ENDPOINT: 2922 case PCI_EXP_TYPE_UPSTREAM: 2923 case PCI_EXP_TYPE_LEG_END: 2924 case PCI_EXP_TYPE_RC_END: 2925 if (!pdev->multifunction) 2926 break; 2927 2928 return pci_acs_flags_enabled(pdev, acs_flags); 2929 } 2930 2931 /* 2932 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2933 * to single function devices with the exception of downstream ports. 2934 */ 2935 return true; 2936 } 2937 2938 /** 2939 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2940 * @start: starting downstream device 2941 * @end: ending upstream device or NULL to search to the root bus 2942 * @acs_flags: required flags 2943 * 2944 * Walk up a device tree from start to end testing PCI ACS support. If 2945 * any step along the way does not support the required flags, return false. 2946 */ 2947 bool pci_acs_path_enabled(struct pci_dev *start, 2948 struct pci_dev *end, u16 acs_flags) 2949 { 2950 struct pci_dev *pdev, *parent = start; 2951 2952 do { 2953 pdev = parent; 2954 2955 if (!pci_acs_enabled(pdev, acs_flags)) 2956 return false; 2957 2958 if (pci_is_root_bus(pdev->bus)) 2959 return (end == NULL); 2960 2961 parent = pdev->bus->self; 2962 } while (pdev != end); 2963 2964 return true; 2965 } 2966 2967 /** 2968 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 2969 * @pdev: PCI device 2970 * @bar: BAR to find 2971 * 2972 * Helper to find the position of the ctrl register for a BAR. 2973 * Returns -ENOTSUPP if resizable BARs are not supported at all. 2974 * Returns -ENOENT if no ctrl register for the BAR could be found. 2975 */ 2976 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 2977 { 2978 unsigned int pos, nbars, i; 2979 u32 ctrl; 2980 2981 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 2982 if (!pos) 2983 return -ENOTSUPP; 2984 2985 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 2986 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 2987 PCI_REBAR_CTRL_NBAR_SHIFT; 2988 2989 for (i = 0; i < nbars; i++, pos += 8) { 2990 int bar_idx; 2991 2992 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 2993 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 2994 if (bar_idx == bar) 2995 return pos; 2996 } 2997 2998 return -ENOENT; 2999 } 3000 3001 /** 3002 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3003 * @pdev: PCI device 3004 * @bar: BAR to query 3005 * 3006 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3007 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3008 */ 3009 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3010 { 3011 int pos; 3012 u32 cap; 3013 3014 pos = pci_rebar_find_pos(pdev, bar); 3015 if (pos < 0) 3016 return 0; 3017 3018 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3019 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3020 } 3021 3022 /** 3023 * pci_rebar_get_current_size - get the current size of a BAR 3024 * @pdev: PCI device 3025 * @bar: BAR to set size to 3026 * 3027 * Read the size of a BAR from the resizable BAR config. 3028 * Returns size if found or negative error code. 3029 */ 3030 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3031 { 3032 int pos; 3033 u32 ctrl; 3034 3035 pos = pci_rebar_find_pos(pdev, bar); 3036 if (pos < 0) 3037 return pos; 3038 3039 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3040 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8; 3041 } 3042 3043 /** 3044 * pci_rebar_set_size - set a new size for a BAR 3045 * @pdev: PCI device 3046 * @bar: BAR to set size to 3047 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3048 * 3049 * Set the new size of a BAR as defined in the spec. 3050 * Returns zero if resizing was successful, error code otherwise. 3051 */ 3052 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3053 { 3054 int pos; 3055 u32 ctrl; 3056 3057 pos = pci_rebar_find_pos(pdev, bar); 3058 if (pos < 0) 3059 return pos; 3060 3061 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3062 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3063 ctrl |= size << 8; 3064 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3065 return 0; 3066 } 3067 3068 /** 3069 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3070 * @dev: the PCI device 3071 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3072 * 3073 * Perform INTx swizzling for a device behind one level of bridge. This is 3074 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3075 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3076 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3077 * the PCI Express Base Specification, Revision 2.1) 3078 */ 3079 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3080 { 3081 int slot; 3082 3083 if (pci_ari_enabled(dev->bus)) 3084 slot = 0; 3085 else 3086 slot = PCI_SLOT(dev->devfn); 3087 3088 return (((pin - 1) + slot) % 4) + 1; 3089 } 3090 3091 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3092 { 3093 u8 pin; 3094 3095 pin = dev->pin; 3096 if (!pin) 3097 return -1; 3098 3099 while (!pci_is_root_bus(dev->bus)) { 3100 pin = pci_swizzle_interrupt_pin(dev, pin); 3101 dev = dev->bus->self; 3102 } 3103 *bridge = dev; 3104 return pin; 3105 } 3106 3107 /** 3108 * pci_common_swizzle - swizzle INTx all the way to root bridge 3109 * @dev: the PCI device 3110 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3111 * 3112 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3113 * bridges all the way up to a PCI root bus. 3114 */ 3115 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3116 { 3117 u8 pin = *pinp; 3118 3119 while (!pci_is_root_bus(dev->bus)) { 3120 pin = pci_swizzle_interrupt_pin(dev, pin); 3121 dev = dev->bus->self; 3122 } 3123 *pinp = pin; 3124 return PCI_SLOT(dev->devfn); 3125 } 3126 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3127 3128 /** 3129 * pci_release_region - Release a PCI bar 3130 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3131 * @bar: BAR to release 3132 * 3133 * Releases the PCI I/O and memory resources previously reserved by a 3134 * successful call to pci_request_region. Call this function only 3135 * after all use of the PCI regions has ceased. 3136 */ 3137 void pci_release_region(struct pci_dev *pdev, int bar) 3138 { 3139 struct pci_devres *dr; 3140 3141 if (pci_resource_len(pdev, bar) == 0) 3142 return; 3143 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3144 release_region(pci_resource_start(pdev, bar), 3145 pci_resource_len(pdev, bar)); 3146 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3147 release_mem_region(pci_resource_start(pdev, bar), 3148 pci_resource_len(pdev, bar)); 3149 3150 dr = find_pci_dr(pdev); 3151 if (dr) 3152 dr->region_mask &= ~(1 << bar); 3153 } 3154 EXPORT_SYMBOL(pci_release_region); 3155 3156 /** 3157 * __pci_request_region - Reserved PCI I/O and memory resource 3158 * @pdev: PCI device whose resources are to be reserved 3159 * @bar: BAR to be reserved 3160 * @res_name: Name to be associated with resource. 3161 * @exclusive: whether the region access is exclusive or not 3162 * 3163 * Mark the PCI region associated with PCI device @pdev BR @bar as 3164 * being reserved by owner @res_name. Do not access any 3165 * address inside the PCI regions unless this call returns 3166 * successfully. 3167 * 3168 * If @exclusive is set, then the region is marked so that userspace 3169 * is explicitly not allowed to map the resource via /dev/mem or 3170 * sysfs MMIO access. 3171 * 3172 * Returns 0 on success, or %EBUSY on error. A warning 3173 * message is also printed on failure. 3174 */ 3175 static int __pci_request_region(struct pci_dev *pdev, int bar, 3176 const char *res_name, int exclusive) 3177 { 3178 struct pci_devres *dr; 3179 3180 if (pci_resource_len(pdev, bar) == 0) 3181 return 0; 3182 3183 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3184 if (!request_region(pci_resource_start(pdev, bar), 3185 pci_resource_len(pdev, bar), res_name)) 3186 goto err_out; 3187 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3188 if (!__request_mem_region(pci_resource_start(pdev, bar), 3189 pci_resource_len(pdev, bar), res_name, 3190 exclusive)) 3191 goto err_out; 3192 } 3193 3194 dr = find_pci_dr(pdev); 3195 if (dr) 3196 dr->region_mask |= 1 << bar; 3197 3198 return 0; 3199 3200 err_out: 3201 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 3202 &pdev->resource[bar]); 3203 return -EBUSY; 3204 } 3205 3206 /** 3207 * pci_request_region - Reserve PCI I/O and memory resource 3208 * @pdev: PCI device whose resources are to be reserved 3209 * @bar: BAR to be reserved 3210 * @res_name: Name to be associated with resource 3211 * 3212 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3213 * being reserved by owner @res_name. Do not access any 3214 * address inside the PCI regions unless this call returns 3215 * successfully. 3216 * 3217 * Returns 0 on success, or %EBUSY on error. A warning 3218 * message is also printed on failure. 3219 */ 3220 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3221 { 3222 return __pci_request_region(pdev, bar, res_name, 0); 3223 } 3224 EXPORT_SYMBOL(pci_request_region); 3225 3226 /** 3227 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3228 * @pdev: PCI device whose resources are to be reserved 3229 * @bar: BAR to be reserved 3230 * @res_name: Name to be associated with resource. 3231 * 3232 * Mark the PCI region associated with PCI device @pdev BR @bar as 3233 * being reserved by owner @res_name. Do not access any 3234 * address inside the PCI regions unless this call returns 3235 * successfully. 3236 * 3237 * Returns 0 on success, or %EBUSY on error. A warning 3238 * message is also printed on failure. 3239 * 3240 * The key difference that _exclusive makes it that userspace is 3241 * explicitly not allowed to map the resource via /dev/mem or 3242 * sysfs. 3243 */ 3244 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3245 const char *res_name) 3246 { 3247 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3248 } 3249 EXPORT_SYMBOL(pci_request_region_exclusive); 3250 3251 /** 3252 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3253 * @pdev: PCI device whose resources were previously reserved 3254 * @bars: Bitmask of BARs to be released 3255 * 3256 * Release selected PCI I/O and memory resources previously reserved. 3257 * Call this function only after all use of the PCI regions has ceased. 3258 */ 3259 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3260 { 3261 int i; 3262 3263 for (i = 0; i < 6; i++) 3264 if (bars & (1 << i)) 3265 pci_release_region(pdev, i); 3266 } 3267 EXPORT_SYMBOL(pci_release_selected_regions); 3268 3269 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3270 const char *res_name, int excl) 3271 { 3272 int i; 3273 3274 for (i = 0; i < 6; i++) 3275 if (bars & (1 << i)) 3276 if (__pci_request_region(pdev, i, res_name, excl)) 3277 goto err_out; 3278 return 0; 3279 3280 err_out: 3281 while (--i >= 0) 3282 if (bars & (1 << i)) 3283 pci_release_region(pdev, i); 3284 3285 return -EBUSY; 3286 } 3287 3288 3289 /** 3290 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3291 * @pdev: PCI device whose resources are to be reserved 3292 * @bars: Bitmask of BARs to be requested 3293 * @res_name: Name to be associated with resource 3294 */ 3295 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3296 const char *res_name) 3297 { 3298 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3299 } 3300 EXPORT_SYMBOL(pci_request_selected_regions); 3301 3302 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3303 const char *res_name) 3304 { 3305 return __pci_request_selected_regions(pdev, bars, res_name, 3306 IORESOURCE_EXCLUSIVE); 3307 } 3308 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3309 3310 /** 3311 * pci_release_regions - Release reserved PCI I/O and memory resources 3312 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3313 * 3314 * Releases all PCI I/O and memory resources previously reserved by a 3315 * successful call to pci_request_regions. Call this function only 3316 * after all use of the PCI regions has ceased. 3317 */ 3318 3319 void pci_release_regions(struct pci_dev *pdev) 3320 { 3321 pci_release_selected_regions(pdev, (1 << 6) - 1); 3322 } 3323 EXPORT_SYMBOL(pci_release_regions); 3324 3325 /** 3326 * pci_request_regions - Reserved PCI I/O and memory resources 3327 * @pdev: PCI device whose resources are to be reserved 3328 * @res_name: Name to be associated with resource. 3329 * 3330 * Mark all PCI regions associated with PCI device @pdev as 3331 * being reserved by owner @res_name. Do not access any 3332 * address inside the PCI regions unless this call returns 3333 * successfully. 3334 * 3335 * Returns 0 on success, or %EBUSY on error. A warning 3336 * message is also printed on failure. 3337 */ 3338 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3339 { 3340 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3341 } 3342 EXPORT_SYMBOL(pci_request_regions); 3343 3344 /** 3345 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3346 * @pdev: PCI device whose resources are to be reserved 3347 * @res_name: Name to be associated with resource. 3348 * 3349 * Mark all PCI regions associated with PCI device @pdev as 3350 * being reserved by owner @res_name. Do not access any 3351 * address inside the PCI regions unless this call returns 3352 * successfully. 3353 * 3354 * pci_request_regions_exclusive() will mark the region so that 3355 * /dev/mem and the sysfs MMIO access will not be allowed. 3356 * 3357 * Returns 0 on success, or %EBUSY on error. A warning 3358 * message is also printed on failure. 3359 */ 3360 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3361 { 3362 return pci_request_selected_regions_exclusive(pdev, 3363 ((1 << 6) - 1), res_name); 3364 } 3365 EXPORT_SYMBOL(pci_request_regions_exclusive); 3366 3367 #ifdef PCI_IOBASE 3368 struct io_range { 3369 struct list_head list; 3370 phys_addr_t start; 3371 resource_size_t size; 3372 }; 3373 3374 static LIST_HEAD(io_range_list); 3375 static DEFINE_SPINLOCK(io_range_lock); 3376 #endif 3377 3378 /* 3379 * Record the PCI IO range (expressed as CPU physical address + size). 3380 * Return a negative value if an error has occured, zero otherwise 3381 */ 3382 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) 3383 { 3384 int err = 0; 3385 3386 #ifdef PCI_IOBASE 3387 struct io_range *range; 3388 resource_size_t allocated_size = 0; 3389 3390 /* check if the range hasn't been previously recorded */ 3391 spin_lock(&io_range_lock); 3392 list_for_each_entry(range, &io_range_list, list) { 3393 if (addr >= range->start && addr + size <= range->start + size) { 3394 /* range already registered, bail out */ 3395 goto end_register; 3396 } 3397 allocated_size += range->size; 3398 } 3399 3400 /* range not registed yet, check for available space */ 3401 if (allocated_size + size - 1 > IO_SPACE_LIMIT) { 3402 /* if it's too big check if 64K space can be reserved */ 3403 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { 3404 err = -E2BIG; 3405 goto end_register; 3406 } 3407 3408 size = SZ_64K; 3409 pr_warn("Requested IO range too big, new size set to 64K\n"); 3410 } 3411 3412 /* add the range to the list */ 3413 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3414 if (!range) { 3415 err = -ENOMEM; 3416 goto end_register; 3417 } 3418 3419 range->start = addr; 3420 range->size = size; 3421 3422 list_add_tail(&range->list, &io_range_list); 3423 3424 end_register: 3425 spin_unlock(&io_range_lock); 3426 #endif 3427 3428 return err; 3429 } 3430 3431 phys_addr_t pci_pio_to_address(unsigned long pio) 3432 { 3433 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3434 3435 #ifdef PCI_IOBASE 3436 struct io_range *range; 3437 resource_size_t allocated_size = 0; 3438 3439 if (pio > IO_SPACE_LIMIT) 3440 return address; 3441 3442 spin_lock(&io_range_lock); 3443 list_for_each_entry(range, &io_range_list, list) { 3444 if (pio >= allocated_size && pio < allocated_size + range->size) { 3445 address = range->start + pio - allocated_size; 3446 break; 3447 } 3448 allocated_size += range->size; 3449 } 3450 spin_unlock(&io_range_lock); 3451 #endif 3452 3453 return address; 3454 } 3455 3456 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3457 { 3458 #ifdef PCI_IOBASE 3459 struct io_range *res; 3460 resource_size_t offset = 0; 3461 unsigned long addr = -1; 3462 3463 spin_lock(&io_range_lock); 3464 list_for_each_entry(res, &io_range_list, list) { 3465 if (address >= res->start && address < res->start + res->size) { 3466 addr = address - res->start + offset; 3467 break; 3468 } 3469 offset += res->size; 3470 } 3471 spin_unlock(&io_range_lock); 3472 3473 return addr; 3474 #else 3475 if (address > IO_SPACE_LIMIT) 3476 return (unsigned long)-1; 3477 3478 return (unsigned long) address; 3479 #endif 3480 } 3481 3482 /** 3483 * pci_remap_iospace - Remap the memory mapped I/O space 3484 * @res: Resource describing the I/O space 3485 * @phys_addr: physical address of range to be mapped 3486 * 3487 * Remap the memory mapped I/O space described by the @res 3488 * and the CPU physical address @phys_addr into virtual address space. 3489 * Only architectures that have memory mapped IO functions defined 3490 * (and the PCI_IOBASE value defined) should call this function. 3491 */ 3492 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3493 { 3494 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3495 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3496 3497 if (!(res->flags & IORESOURCE_IO)) 3498 return -EINVAL; 3499 3500 if (res->end > IO_SPACE_LIMIT) 3501 return -EINVAL; 3502 3503 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3504 pgprot_device(PAGE_KERNEL)); 3505 #else 3506 /* this architecture does not have memory mapped I/O space, 3507 so this function should never be called */ 3508 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3509 return -ENODEV; 3510 #endif 3511 } 3512 EXPORT_SYMBOL(pci_remap_iospace); 3513 3514 /** 3515 * pci_unmap_iospace - Unmap the memory mapped I/O space 3516 * @res: resource to be unmapped 3517 * 3518 * Unmap the CPU virtual address @res from virtual address space. 3519 * Only architectures that have memory mapped IO functions defined 3520 * (and the PCI_IOBASE value defined) should call this function. 3521 */ 3522 void pci_unmap_iospace(struct resource *res) 3523 { 3524 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3525 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3526 3527 unmap_kernel_range(vaddr, resource_size(res)); 3528 #endif 3529 } 3530 EXPORT_SYMBOL(pci_unmap_iospace); 3531 3532 /** 3533 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3534 * @dev: Generic device to remap IO address for 3535 * @offset: Resource address to map 3536 * @size: Size of map 3537 * 3538 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3539 * detach. 3540 */ 3541 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3542 resource_size_t offset, 3543 resource_size_t size) 3544 { 3545 void __iomem **ptr, *addr; 3546 3547 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3548 if (!ptr) 3549 return NULL; 3550 3551 addr = pci_remap_cfgspace(offset, size); 3552 if (addr) { 3553 *ptr = addr; 3554 devres_add(dev, ptr); 3555 } else 3556 devres_free(ptr); 3557 3558 return addr; 3559 } 3560 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3561 3562 /** 3563 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3564 * @dev: generic device to handle the resource for 3565 * @res: configuration space resource to be handled 3566 * 3567 * Checks that a resource is a valid memory region, requests the memory 3568 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3569 * proper PCI configuration space memory attributes are guaranteed. 3570 * 3571 * All operations are managed and will be undone on driver detach. 3572 * 3573 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3574 * on failure. Usage example:: 3575 * 3576 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3577 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3578 * if (IS_ERR(base)) 3579 * return PTR_ERR(base); 3580 */ 3581 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3582 struct resource *res) 3583 { 3584 resource_size_t size; 3585 const char *name; 3586 void __iomem *dest_ptr; 3587 3588 BUG_ON(!dev); 3589 3590 if (!res || resource_type(res) != IORESOURCE_MEM) { 3591 dev_err(dev, "invalid resource\n"); 3592 return IOMEM_ERR_PTR(-EINVAL); 3593 } 3594 3595 size = resource_size(res); 3596 name = res->name ?: dev_name(dev); 3597 3598 if (!devm_request_mem_region(dev, res->start, size, name)) { 3599 dev_err(dev, "can't request region for resource %pR\n", res); 3600 return IOMEM_ERR_PTR(-EBUSY); 3601 } 3602 3603 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3604 if (!dest_ptr) { 3605 dev_err(dev, "ioremap failed for resource %pR\n", res); 3606 devm_release_mem_region(dev, res->start, size); 3607 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3608 } 3609 3610 return dest_ptr; 3611 } 3612 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3613 3614 static void __pci_set_master(struct pci_dev *dev, bool enable) 3615 { 3616 u16 old_cmd, cmd; 3617 3618 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3619 if (enable) 3620 cmd = old_cmd | PCI_COMMAND_MASTER; 3621 else 3622 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3623 if (cmd != old_cmd) { 3624 dev_dbg(&dev->dev, "%s bus mastering\n", 3625 enable ? "enabling" : "disabling"); 3626 pci_write_config_word(dev, PCI_COMMAND, cmd); 3627 } 3628 dev->is_busmaster = enable; 3629 } 3630 3631 /** 3632 * pcibios_setup - process "pci=" kernel boot arguments 3633 * @str: string used to pass in "pci=" kernel boot arguments 3634 * 3635 * Process kernel boot arguments. This is the default implementation. 3636 * Architecture specific implementations can override this as necessary. 3637 */ 3638 char * __weak __init pcibios_setup(char *str) 3639 { 3640 return str; 3641 } 3642 3643 /** 3644 * pcibios_set_master - enable PCI bus-mastering for device dev 3645 * @dev: the PCI device to enable 3646 * 3647 * Enables PCI bus-mastering for the device. This is the default 3648 * implementation. Architecture specific implementations can override 3649 * this if necessary. 3650 */ 3651 void __weak pcibios_set_master(struct pci_dev *dev) 3652 { 3653 u8 lat; 3654 3655 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3656 if (pci_is_pcie(dev)) 3657 return; 3658 3659 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3660 if (lat < 16) 3661 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3662 else if (lat > pcibios_max_latency) 3663 lat = pcibios_max_latency; 3664 else 3665 return; 3666 3667 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3668 } 3669 3670 /** 3671 * pci_set_master - enables bus-mastering for device dev 3672 * @dev: the PCI device to enable 3673 * 3674 * Enables bus-mastering on the device and calls pcibios_set_master() 3675 * to do the needed arch specific settings. 3676 */ 3677 void pci_set_master(struct pci_dev *dev) 3678 { 3679 __pci_set_master(dev, true); 3680 pcibios_set_master(dev); 3681 } 3682 EXPORT_SYMBOL(pci_set_master); 3683 3684 /** 3685 * pci_clear_master - disables bus-mastering for device dev 3686 * @dev: the PCI device to disable 3687 */ 3688 void pci_clear_master(struct pci_dev *dev) 3689 { 3690 __pci_set_master(dev, false); 3691 } 3692 EXPORT_SYMBOL(pci_clear_master); 3693 3694 /** 3695 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3696 * @dev: the PCI device for which MWI is to be enabled 3697 * 3698 * Helper function for pci_set_mwi. 3699 * Originally copied from drivers/net/acenic.c. 3700 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3701 * 3702 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3703 */ 3704 int pci_set_cacheline_size(struct pci_dev *dev) 3705 { 3706 u8 cacheline_size; 3707 3708 if (!pci_cache_line_size) 3709 return -EINVAL; 3710 3711 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3712 equal to or multiple of the right value. */ 3713 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3714 if (cacheline_size >= pci_cache_line_size && 3715 (cacheline_size % pci_cache_line_size) == 0) 3716 return 0; 3717 3718 /* Write the correct value. */ 3719 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3720 /* Read it back. */ 3721 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3722 if (cacheline_size == pci_cache_line_size) 3723 return 0; 3724 3725 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 3726 pci_cache_line_size << 2); 3727 3728 return -EINVAL; 3729 } 3730 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3731 3732 /** 3733 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3734 * @dev: the PCI device for which MWI is enabled 3735 * 3736 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3737 * 3738 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3739 */ 3740 int pci_set_mwi(struct pci_dev *dev) 3741 { 3742 #ifdef PCI_DISABLE_MWI 3743 return 0; 3744 #else 3745 int rc; 3746 u16 cmd; 3747 3748 rc = pci_set_cacheline_size(dev); 3749 if (rc) 3750 return rc; 3751 3752 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3753 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3754 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 3755 cmd |= PCI_COMMAND_INVALIDATE; 3756 pci_write_config_word(dev, PCI_COMMAND, cmd); 3757 } 3758 return 0; 3759 #endif 3760 } 3761 EXPORT_SYMBOL(pci_set_mwi); 3762 3763 /** 3764 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3765 * @dev: the PCI device for which MWI is enabled 3766 * 3767 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3768 * Callers are not required to check the return value. 3769 * 3770 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3771 */ 3772 int pci_try_set_mwi(struct pci_dev *dev) 3773 { 3774 #ifdef PCI_DISABLE_MWI 3775 return 0; 3776 #else 3777 return pci_set_mwi(dev); 3778 #endif 3779 } 3780 EXPORT_SYMBOL(pci_try_set_mwi); 3781 3782 /** 3783 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3784 * @dev: the PCI device to disable 3785 * 3786 * Disables PCI Memory-Write-Invalidate transaction on the device 3787 */ 3788 void pci_clear_mwi(struct pci_dev *dev) 3789 { 3790 #ifndef PCI_DISABLE_MWI 3791 u16 cmd; 3792 3793 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3794 if (cmd & PCI_COMMAND_INVALIDATE) { 3795 cmd &= ~PCI_COMMAND_INVALIDATE; 3796 pci_write_config_word(dev, PCI_COMMAND, cmd); 3797 } 3798 #endif 3799 } 3800 EXPORT_SYMBOL(pci_clear_mwi); 3801 3802 /** 3803 * pci_intx - enables/disables PCI INTx for device dev 3804 * @pdev: the PCI device to operate on 3805 * @enable: boolean: whether to enable or disable PCI INTx 3806 * 3807 * Enables/disables PCI INTx for device dev 3808 */ 3809 void pci_intx(struct pci_dev *pdev, int enable) 3810 { 3811 u16 pci_command, new; 3812 3813 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3814 3815 if (enable) 3816 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3817 else 3818 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3819 3820 if (new != pci_command) { 3821 struct pci_devres *dr; 3822 3823 pci_write_config_word(pdev, PCI_COMMAND, new); 3824 3825 dr = find_pci_dr(pdev); 3826 if (dr && !dr->restore_intx) { 3827 dr->restore_intx = 1; 3828 dr->orig_intx = !enable; 3829 } 3830 } 3831 } 3832 EXPORT_SYMBOL_GPL(pci_intx); 3833 3834 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3835 { 3836 struct pci_bus *bus = dev->bus; 3837 bool mask_updated = true; 3838 u32 cmd_status_dword; 3839 u16 origcmd, newcmd; 3840 unsigned long flags; 3841 bool irq_pending; 3842 3843 /* 3844 * We do a single dword read to retrieve both command and status. 3845 * Document assumptions that make this possible. 3846 */ 3847 BUILD_BUG_ON(PCI_COMMAND % 4); 3848 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3849 3850 raw_spin_lock_irqsave(&pci_lock, flags); 3851 3852 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3853 3854 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3855 3856 /* 3857 * Check interrupt status register to see whether our device 3858 * triggered the interrupt (when masking) or the next IRQ is 3859 * already pending (when unmasking). 3860 */ 3861 if (mask != irq_pending) { 3862 mask_updated = false; 3863 goto done; 3864 } 3865 3866 origcmd = cmd_status_dword; 3867 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3868 if (mask) 3869 newcmd |= PCI_COMMAND_INTX_DISABLE; 3870 if (newcmd != origcmd) 3871 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3872 3873 done: 3874 raw_spin_unlock_irqrestore(&pci_lock, flags); 3875 3876 return mask_updated; 3877 } 3878 3879 /** 3880 * pci_check_and_mask_intx - mask INTx on pending interrupt 3881 * @dev: the PCI device to operate on 3882 * 3883 * Check if the device dev has its INTx line asserted, mask it and 3884 * return true in that case. False is returned if no interrupt was 3885 * pending. 3886 */ 3887 bool pci_check_and_mask_intx(struct pci_dev *dev) 3888 { 3889 return pci_check_and_set_intx_mask(dev, true); 3890 } 3891 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3892 3893 /** 3894 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3895 * @dev: the PCI device to operate on 3896 * 3897 * Check if the device dev has its INTx line asserted, unmask it if not 3898 * and return true. False is returned and the mask remains active if 3899 * there was still an interrupt pending. 3900 */ 3901 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3902 { 3903 return pci_check_and_set_intx_mask(dev, false); 3904 } 3905 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3906 3907 /** 3908 * pci_wait_for_pending_transaction - waits for pending transaction 3909 * @dev: the PCI device to operate on 3910 * 3911 * Return 0 if transaction is pending 1 otherwise. 3912 */ 3913 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3914 { 3915 if (!pci_is_pcie(dev)) 3916 return 1; 3917 3918 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3919 PCI_EXP_DEVSTA_TRPND); 3920 } 3921 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3922 3923 static void pci_flr_wait(struct pci_dev *dev) 3924 { 3925 int delay = 1, timeout = 60000; 3926 u32 id; 3927 3928 /* 3929 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within 3930 * 100ms, but may silently discard requests while the FLR is in 3931 * progress. Wait 100ms before trying to access the device. 3932 */ 3933 msleep(100); 3934 3935 /* 3936 * After 100ms, the device should not silently discard config 3937 * requests, but it may still indicate that it needs more time by 3938 * responding to them with CRS completions. The Root Port will 3939 * generally synthesize ~0 data to complete the read (except when 3940 * CRS SV is enabled and the read was for the Vendor ID; in that 3941 * case it synthesizes 0x0001 data). 3942 * 3943 * Wait for the device to return a non-CRS completion. Read the 3944 * Command register instead of Vendor ID so we don't have to 3945 * contend with the CRS SV value. 3946 */ 3947 pci_read_config_dword(dev, PCI_COMMAND, &id); 3948 while (id == ~0) { 3949 if (delay > timeout) { 3950 dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n", 3951 100 + delay - 1); 3952 return; 3953 } 3954 3955 if (delay > 1000) 3956 dev_info(&dev->dev, "not ready %dms after FLR; waiting\n", 3957 100 + delay - 1); 3958 3959 msleep(delay); 3960 delay *= 2; 3961 pci_read_config_dword(dev, PCI_COMMAND, &id); 3962 } 3963 3964 if (delay > 1000) 3965 dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1); 3966 } 3967 3968 /** 3969 * pcie_has_flr - check if a device supports function level resets 3970 * @dev: device to check 3971 * 3972 * Returns true if the device advertises support for PCIe function level 3973 * resets. 3974 */ 3975 static bool pcie_has_flr(struct pci_dev *dev) 3976 { 3977 u32 cap; 3978 3979 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 3980 return false; 3981 3982 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3983 return cap & PCI_EXP_DEVCAP_FLR; 3984 } 3985 3986 /** 3987 * pcie_flr - initiate a PCIe function level reset 3988 * @dev: device to reset 3989 * 3990 * Initiate a function level reset on @dev. The caller should ensure the 3991 * device supports FLR before calling this function, e.g. by using the 3992 * pcie_has_flr() helper. 3993 */ 3994 void pcie_flr(struct pci_dev *dev) 3995 { 3996 if (!pci_wait_for_pending_transaction(dev)) 3997 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 3998 3999 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4000 pci_flr_wait(dev); 4001 } 4002 EXPORT_SYMBOL_GPL(pcie_flr); 4003 4004 static int pci_af_flr(struct pci_dev *dev, int probe) 4005 { 4006 int pos; 4007 u8 cap; 4008 4009 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4010 if (!pos) 4011 return -ENOTTY; 4012 4013 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4014 return -ENOTTY; 4015 4016 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4017 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4018 return -ENOTTY; 4019 4020 if (probe) 4021 return 0; 4022 4023 /* 4024 * Wait for Transaction Pending bit to clear. A word-aligned test 4025 * is used, so we use the conrol offset rather than status and shift 4026 * the test bit to match. 4027 */ 4028 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4029 PCI_AF_STATUS_TP << 8)) 4030 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4031 4032 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4033 pci_flr_wait(dev); 4034 return 0; 4035 } 4036 4037 /** 4038 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4039 * @dev: Device to reset. 4040 * @probe: If set, only check if the device can be reset this way. 4041 * 4042 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4043 * unset, it will be reinitialized internally when going from PCI_D3hot to 4044 * PCI_D0. If that's the case and the device is not in a low-power state 4045 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4046 * 4047 * NOTE: This causes the caller to sleep for twice the device power transition 4048 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4049 * by default (i.e. unless the @dev's d3_delay field has a different value). 4050 * Moreover, only devices in D0 can be reset by this function. 4051 */ 4052 static int pci_pm_reset(struct pci_dev *dev, int probe) 4053 { 4054 u16 csr; 4055 4056 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4057 return -ENOTTY; 4058 4059 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4060 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4061 return -ENOTTY; 4062 4063 if (probe) 4064 return 0; 4065 4066 if (dev->current_state != PCI_D0) 4067 return -EINVAL; 4068 4069 csr &= ~PCI_PM_CTRL_STATE_MASK; 4070 csr |= PCI_D3hot; 4071 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4072 pci_dev_d3_sleep(dev); 4073 4074 csr &= ~PCI_PM_CTRL_STATE_MASK; 4075 csr |= PCI_D0; 4076 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4077 pci_dev_d3_sleep(dev); 4078 4079 return 0; 4080 } 4081 4082 void pci_reset_secondary_bus(struct pci_dev *dev) 4083 { 4084 u16 ctrl; 4085 4086 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4087 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4088 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4089 /* 4090 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4091 * this to 2ms to ensure that we meet the minimum requirement. 4092 */ 4093 msleep(2); 4094 4095 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4096 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4097 4098 /* 4099 * Trhfa for conventional PCI is 2^25 clock cycles. 4100 * Assuming a minimum 33MHz clock this results in a 1s 4101 * delay before we can consider subordinate devices to 4102 * be re-initialized. PCIe has some ways to shorten this, 4103 * but we don't make use of them yet. 4104 */ 4105 ssleep(1); 4106 } 4107 4108 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4109 { 4110 pci_reset_secondary_bus(dev); 4111 } 4112 4113 /** 4114 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 4115 * @dev: Bridge device 4116 * 4117 * Use the bridge control register to assert reset on the secondary bus. 4118 * Devices on the secondary bus are left in power-on state. 4119 */ 4120 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 4121 { 4122 pcibios_reset_secondary_bus(dev); 4123 } 4124 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 4125 4126 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4127 { 4128 struct pci_dev *pdev; 4129 4130 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4131 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4132 return -ENOTTY; 4133 4134 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4135 if (pdev != dev) 4136 return -ENOTTY; 4137 4138 if (probe) 4139 return 0; 4140 4141 pci_reset_bridge_secondary_bus(dev->bus->self); 4142 4143 return 0; 4144 } 4145 4146 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4147 { 4148 int rc = -ENOTTY; 4149 4150 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4151 return rc; 4152 4153 if (hotplug->ops->reset_slot) 4154 rc = hotplug->ops->reset_slot(hotplug, probe); 4155 4156 module_put(hotplug->ops->owner); 4157 4158 return rc; 4159 } 4160 4161 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4162 { 4163 struct pci_dev *pdev; 4164 4165 if (dev->subordinate || !dev->slot || 4166 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4167 return -ENOTTY; 4168 4169 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4170 if (pdev != dev && pdev->slot == dev->slot) 4171 return -ENOTTY; 4172 4173 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4174 } 4175 4176 static void pci_dev_lock(struct pci_dev *dev) 4177 { 4178 pci_cfg_access_lock(dev); 4179 /* block PM suspend, driver probe, etc. */ 4180 device_lock(&dev->dev); 4181 } 4182 4183 /* Return 1 on successful lock, 0 on contention */ 4184 static int pci_dev_trylock(struct pci_dev *dev) 4185 { 4186 if (pci_cfg_access_trylock(dev)) { 4187 if (device_trylock(&dev->dev)) 4188 return 1; 4189 pci_cfg_access_unlock(dev); 4190 } 4191 4192 return 0; 4193 } 4194 4195 static void pci_dev_unlock(struct pci_dev *dev) 4196 { 4197 device_unlock(&dev->dev); 4198 pci_cfg_access_unlock(dev); 4199 } 4200 4201 static void pci_dev_save_and_disable(struct pci_dev *dev) 4202 { 4203 const struct pci_error_handlers *err_handler = 4204 dev->driver ? dev->driver->err_handler : NULL; 4205 4206 /* 4207 * dev->driver->err_handler->reset_prepare() is protected against 4208 * races with ->remove() by the device lock, which must be held by 4209 * the caller. 4210 */ 4211 if (err_handler && err_handler->reset_prepare) 4212 err_handler->reset_prepare(dev); 4213 4214 /* 4215 * Wake-up device prior to save. PM registers default to D0 after 4216 * reset and a simple register restore doesn't reliably return 4217 * to a non-D0 state anyway. 4218 */ 4219 pci_set_power_state(dev, PCI_D0); 4220 4221 pci_save_state(dev); 4222 /* 4223 * Disable the device by clearing the Command register, except for 4224 * INTx-disable which is set. This not only disables MMIO and I/O port 4225 * BARs, but also prevents the device from being Bus Master, preventing 4226 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4227 * compliant devices, INTx-disable prevents legacy interrupts. 4228 */ 4229 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4230 } 4231 4232 static void pci_dev_restore(struct pci_dev *dev) 4233 { 4234 const struct pci_error_handlers *err_handler = 4235 dev->driver ? dev->driver->err_handler : NULL; 4236 4237 pci_restore_state(dev); 4238 4239 /* 4240 * dev->driver->err_handler->reset_done() is protected against 4241 * races with ->remove() by the device lock, which must be held by 4242 * the caller. 4243 */ 4244 if (err_handler && err_handler->reset_done) 4245 err_handler->reset_done(dev); 4246 } 4247 4248 /** 4249 * __pci_reset_function_locked - reset a PCI device function while holding 4250 * the @dev mutex lock. 4251 * @dev: PCI device to reset 4252 * 4253 * Some devices allow an individual function to be reset without affecting 4254 * other functions in the same device. The PCI device must be responsive 4255 * to PCI config space in order to use this function. 4256 * 4257 * The device function is presumed to be unused and the caller is holding 4258 * the device mutex lock when this function is called. 4259 * Resetting the device will make the contents of PCI configuration space 4260 * random, so any caller of this must be prepared to reinitialise the 4261 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4262 * etc. 4263 * 4264 * Returns 0 if the device function was successfully reset or negative if the 4265 * device doesn't support resetting a single function. 4266 */ 4267 int __pci_reset_function_locked(struct pci_dev *dev) 4268 { 4269 int rc; 4270 4271 might_sleep(); 4272 4273 /* 4274 * A reset method returns -ENOTTY if it doesn't support this device 4275 * and we should try the next method. 4276 * 4277 * If it returns 0 (success), we're finished. If it returns any 4278 * other error, we're also finished: this indicates that further 4279 * reset mechanisms might be broken on the device. 4280 */ 4281 rc = pci_dev_specific_reset(dev, 0); 4282 if (rc != -ENOTTY) 4283 return rc; 4284 if (pcie_has_flr(dev)) { 4285 pcie_flr(dev); 4286 return 0; 4287 } 4288 rc = pci_af_flr(dev, 0); 4289 if (rc != -ENOTTY) 4290 return rc; 4291 rc = pci_pm_reset(dev, 0); 4292 if (rc != -ENOTTY) 4293 return rc; 4294 rc = pci_dev_reset_slot_function(dev, 0); 4295 if (rc != -ENOTTY) 4296 return rc; 4297 return pci_parent_bus_reset(dev, 0); 4298 } 4299 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4300 4301 /** 4302 * pci_probe_reset_function - check whether the device can be safely reset 4303 * @dev: PCI device to reset 4304 * 4305 * Some devices allow an individual function to be reset without affecting 4306 * other functions in the same device. The PCI device must be responsive 4307 * to PCI config space in order to use this function. 4308 * 4309 * Returns 0 if the device function can be reset or negative if the 4310 * device doesn't support resetting a single function. 4311 */ 4312 int pci_probe_reset_function(struct pci_dev *dev) 4313 { 4314 int rc; 4315 4316 might_sleep(); 4317 4318 rc = pci_dev_specific_reset(dev, 1); 4319 if (rc != -ENOTTY) 4320 return rc; 4321 if (pcie_has_flr(dev)) 4322 return 0; 4323 rc = pci_af_flr(dev, 1); 4324 if (rc != -ENOTTY) 4325 return rc; 4326 rc = pci_pm_reset(dev, 1); 4327 if (rc != -ENOTTY) 4328 return rc; 4329 rc = pci_dev_reset_slot_function(dev, 1); 4330 if (rc != -ENOTTY) 4331 return rc; 4332 4333 return pci_parent_bus_reset(dev, 1); 4334 } 4335 4336 /** 4337 * pci_reset_function - quiesce and reset a PCI device function 4338 * @dev: PCI device to reset 4339 * 4340 * Some devices allow an individual function to be reset without affecting 4341 * other functions in the same device. The PCI device must be responsive 4342 * to PCI config space in order to use this function. 4343 * 4344 * This function does not just reset the PCI portion of a device, but 4345 * clears all the state associated with the device. This function differs 4346 * from __pci_reset_function_locked() in that it saves and restores device state 4347 * over the reset and takes the PCI device lock. 4348 * 4349 * Returns 0 if the device function was successfully reset or negative if the 4350 * device doesn't support resetting a single function. 4351 */ 4352 int pci_reset_function(struct pci_dev *dev) 4353 { 4354 int rc; 4355 4356 rc = pci_probe_reset_function(dev); 4357 if (rc) 4358 return rc; 4359 4360 pci_dev_lock(dev); 4361 pci_dev_save_and_disable(dev); 4362 4363 rc = __pci_reset_function_locked(dev); 4364 4365 pci_dev_restore(dev); 4366 pci_dev_unlock(dev); 4367 4368 return rc; 4369 } 4370 EXPORT_SYMBOL_GPL(pci_reset_function); 4371 4372 /** 4373 * pci_reset_function_locked - quiesce and reset a PCI device function 4374 * @dev: PCI device to reset 4375 * 4376 * Some devices allow an individual function to be reset without affecting 4377 * other functions in the same device. The PCI device must be responsive 4378 * to PCI config space in order to use this function. 4379 * 4380 * This function does not just reset the PCI portion of a device, but 4381 * clears all the state associated with the device. This function differs 4382 * from __pci_reset_function_locked() in that it saves and restores device state 4383 * over the reset. It also differs from pci_reset_function() in that it 4384 * requires the PCI device lock to be held. 4385 * 4386 * Returns 0 if the device function was successfully reset or negative if the 4387 * device doesn't support resetting a single function. 4388 */ 4389 int pci_reset_function_locked(struct pci_dev *dev) 4390 { 4391 int rc; 4392 4393 rc = pci_probe_reset_function(dev); 4394 if (rc) 4395 return rc; 4396 4397 pci_dev_save_and_disable(dev); 4398 4399 rc = __pci_reset_function_locked(dev); 4400 4401 pci_dev_restore(dev); 4402 4403 return rc; 4404 } 4405 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4406 4407 /** 4408 * pci_try_reset_function - quiesce and reset a PCI device function 4409 * @dev: PCI device to reset 4410 * 4411 * Same as above, except return -EAGAIN if unable to lock device. 4412 */ 4413 int pci_try_reset_function(struct pci_dev *dev) 4414 { 4415 int rc; 4416 4417 rc = pci_probe_reset_function(dev); 4418 if (rc) 4419 return rc; 4420 4421 if (!pci_dev_trylock(dev)) 4422 return -EAGAIN; 4423 4424 pci_dev_save_and_disable(dev); 4425 rc = __pci_reset_function_locked(dev); 4426 pci_dev_unlock(dev); 4427 4428 pci_dev_restore(dev); 4429 return rc; 4430 } 4431 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4432 4433 /* Do any devices on or below this bus prevent a bus reset? */ 4434 static bool pci_bus_resetable(struct pci_bus *bus) 4435 { 4436 struct pci_dev *dev; 4437 4438 4439 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4440 return false; 4441 4442 list_for_each_entry(dev, &bus->devices, bus_list) { 4443 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4444 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4445 return false; 4446 } 4447 4448 return true; 4449 } 4450 4451 /* Lock devices from the top of the tree down */ 4452 static void pci_bus_lock(struct pci_bus *bus) 4453 { 4454 struct pci_dev *dev; 4455 4456 list_for_each_entry(dev, &bus->devices, bus_list) { 4457 pci_dev_lock(dev); 4458 if (dev->subordinate) 4459 pci_bus_lock(dev->subordinate); 4460 } 4461 } 4462 4463 /* Unlock devices from the bottom of the tree up */ 4464 static void pci_bus_unlock(struct pci_bus *bus) 4465 { 4466 struct pci_dev *dev; 4467 4468 list_for_each_entry(dev, &bus->devices, bus_list) { 4469 if (dev->subordinate) 4470 pci_bus_unlock(dev->subordinate); 4471 pci_dev_unlock(dev); 4472 } 4473 } 4474 4475 /* Return 1 on successful lock, 0 on contention */ 4476 static int pci_bus_trylock(struct pci_bus *bus) 4477 { 4478 struct pci_dev *dev; 4479 4480 list_for_each_entry(dev, &bus->devices, bus_list) { 4481 if (!pci_dev_trylock(dev)) 4482 goto unlock; 4483 if (dev->subordinate) { 4484 if (!pci_bus_trylock(dev->subordinate)) { 4485 pci_dev_unlock(dev); 4486 goto unlock; 4487 } 4488 } 4489 } 4490 return 1; 4491 4492 unlock: 4493 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4494 if (dev->subordinate) 4495 pci_bus_unlock(dev->subordinate); 4496 pci_dev_unlock(dev); 4497 } 4498 return 0; 4499 } 4500 4501 /* Do any devices on or below this slot prevent a bus reset? */ 4502 static bool pci_slot_resetable(struct pci_slot *slot) 4503 { 4504 struct pci_dev *dev; 4505 4506 if (slot->bus->self && 4507 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4508 return false; 4509 4510 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4511 if (!dev->slot || dev->slot != slot) 4512 continue; 4513 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4514 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4515 return false; 4516 } 4517 4518 return true; 4519 } 4520 4521 /* Lock devices from the top of the tree down */ 4522 static void pci_slot_lock(struct pci_slot *slot) 4523 { 4524 struct pci_dev *dev; 4525 4526 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4527 if (!dev->slot || dev->slot != slot) 4528 continue; 4529 pci_dev_lock(dev); 4530 if (dev->subordinate) 4531 pci_bus_lock(dev->subordinate); 4532 } 4533 } 4534 4535 /* Unlock devices from the bottom of the tree up */ 4536 static void pci_slot_unlock(struct pci_slot *slot) 4537 { 4538 struct pci_dev *dev; 4539 4540 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4541 if (!dev->slot || dev->slot != slot) 4542 continue; 4543 if (dev->subordinate) 4544 pci_bus_unlock(dev->subordinate); 4545 pci_dev_unlock(dev); 4546 } 4547 } 4548 4549 /* Return 1 on successful lock, 0 on contention */ 4550 static int pci_slot_trylock(struct pci_slot *slot) 4551 { 4552 struct pci_dev *dev; 4553 4554 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4555 if (!dev->slot || dev->slot != slot) 4556 continue; 4557 if (!pci_dev_trylock(dev)) 4558 goto unlock; 4559 if (dev->subordinate) { 4560 if (!pci_bus_trylock(dev->subordinate)) { 4561 pci_dev_unlock(dev); 4562 goto unlock; 4563 } 4564 } 4565 } 4566 return 1; 4567 4568 unlock: 4569 list_for_each_entry_continue_reverse(dev, 4570 &slot->bus->devices, bus_list) { 4571 if (!dev->slot || dev->slot != slot) 4572 continue; 4573 if (dev->subordinate) 4574 pci_bus_unlock(dev->subordinate); 4575 pci_dev_unlock(dev); 4576 } 4577 return 0; 4578 } 4579 4580 /* Save and disable devices from the top of the tree down */ 4581 static void pci_bus_save_and_disable(struct pci_bus *bus) 4582 { 4583 struct pci_dev *dev; 4584 4585 list_for_each_entry(dev, &bus->devices, bus_list) { 4586 pci_dev_lock(dev); 4587 pci_dev_save_and_disable(dev); 4588 pci_dev_unlock(dev); 4589 if (dev->subordinate) 4590 pci_bus_save_and_disable(dev->subordinate); 4591 } 4592 } 4593 4594 /* 4595 * Restore devices from top of the tree down - parent bridges need to be 4596 * restored before we can get to subordinate devices. 4597 */ 4598 static void pci_bus_restore(struct pci_bus *bus) 4599 { 4600 struct pci_dev *dev; 4601 4602 list_for_each_entry(dev, &bus->devices, bus_list) { 4603 pci_dev_lock(dev); 4604 pci_dev_restore(dev); 4605 pci_dev_unlock(dev); 4606 if (dev->subordinate) 4607 pci_bus_restore(dev->subordinate); 4608 } 4609 } 4610 4611 /* Save and disable devices from the top of the tree down */ 4612 static void pci_slot_save_and_disable(struct pci_slot *slot) 4613 { 4614 struct pci_dev *dev; 4615 4616 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4617 if (!dev->slot || dev->slot != slot) 4618 continue; 4619 pci_dev_save_and_disable(dev); 4620 if (dev->subordinate) 4621 pci_bus_save_and_disable(dev->subordinate); 4622 } 4623 } 4624 4625 /* 4626 * Restore devices from top of the tree down - parent bridges need to be 4627 * restored before we can get to subordinate devices. 4628 */ 4629 static void pci_slot_restore(struct pci_slot *slot) 4630 { 4631 struct pci_dev *dev; 4632 4633 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4634 if (!dev->slot || dev->slot != slot) 4635 continue; 4636 pci_dev_restore(dev); 4637 if (dev->subordinate) 4638 pci_bus_restore(dev->subordinate); 4639 } 4640 } 4641 4642 static int pci_slot_reset(struct pci_slot *slot, int probe) 4643 { 4644 int rc; 4645 4646 if (!slot || !pci_slot_resetable(slot)) 4647 return -ENOTTY; 4648 4649 if (!probe) 4650 pci_slot_lock(slot); 4651 4652 might_sleep(); 4653 4654 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4655 4656 if (!probe) 4657 pci_slot_unlock(slot); 4658 4659 return rc; 4660 } 4661 4662 /** 4663 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4664 * @slot: PCI slot to probe 4665 * 4666 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4667 */ 4668 int pci_probe_reset_slot(struct pci_slot *slot) 4669 { 4670 return pci_slot_reset(slot, 1); 4671 } 4672 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4673 4674 /** 4675 * pci_reset_slot - reset a PCI slot 4676 * @slot: PCI slot to reset 4677 * 4678 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4679 * independent of other slots. For instance, some slots may support slot power 4680 * control. In the case of a 1:1 bus to slot architecture, this function may 4681 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4682 * Generally a slot reset should be attempted before a bus reset. All of the 4683 * function of the slot and any subordinate buses behind the slot are reset 4684 * through this function. PCI config space of all devices in the slot and 4685 * behind the slot is saved before and restored after reset. 4686 * 4687 * Return 0 on success, non-zero on error. 4688 */ 4689 int pci_reset_slot(struct pci_slot *slot) 4690 { 4691 int rc; 4692 4693 rc = pci_slot_reset(slot, 1); 4694 if (rc) 4695 return rc; 4696 4697 pci_slot_save_and_disable(slot); 4698 4699 rc = pci_slot_reset(slot, 0); 4700 4701 pci_slot_restore(slot); 4702 4703 return rc; 4704 } 4705 EXPORT_SYMBOL_GPL(pci_reset_slot); 4706 4707 /** 4708 * pci_try_reset_slot - Try to reset a PCI slot 4709 * @slot: PCI slot to reset 4710 * 4711 * Same as above except return -EAGAIN if the slot cannot be locked 4712 */ 4713 int pci_try_reset_slot(struct pci_slot *slot) 4714 { 4715 int rc; 4716 4717 rc = pci_slot_reset(slot, 1); 4718 if (rc) 4719 return rc; 4720 4721 pci_slot_save_and_disable(slot); 4722 4723 if (pci_slot_trylock(slot)) { 4724 might_sleep(); 4725 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4726 pci_slot_unlock(slot); 4727 } else 4728 rc = -EAGAIN; 4729 4730 pci_slot_restore(slot); 4731 4732 return rc; 4733 } 4734 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4735 4736 static int pci_bus_reset(struct pci_bus *bus, int probe) 4737 { 4738 if (!bus->self || !pci_bus_resetable(bus)) 4739 return -ENOTTY; 4740 4741 if (probe) 4742 return 0; 4743 4744 pci_bus_lock(bus); 4745 4746 might_sleep(); 4747 4748 pci_reset_bridge_secondary_bus(bus->self); 4749 4750 pci_bus_unlock(bus); 4751 4752 return 0; 4753 } 4754 4755 /** 4756 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4757 * @bus: PCI bus to probe 4758 * 4759 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4760 */ 4761 int pci_probe_reset_bus(struct pci_bus *bus) 4762 { 4763 return pci_bus_reset(bus, 1); 4764 } 4765 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4766 4767 /** 4768 * pci_reset_bus - reset a PCI bus 4769 * @bus: top level PCI bus to reset 4770 * 4771 * Do a bus reset on the given bus and any subordinate buses, saving 4772 * and restoring state of all devices. 4773 * 4774 * Return 0 on success, non-zero on error. 4775 */ 4776 int pci_reset_bus(struct pci_bus *bus) 4777 { 4778 int rc; 4779 4780 rc = pci_bus_reset(bus, 1); 4781 if (rc) 4782 return rc; 4783 4784 pci_bus_save_and_disable(bus); 4785 4786 rc = pci_bus_reset(bus, 0); 4787 4788 pci_bus_restore(bus); 4789 4790 return rc; 4791 } 4792 EXPORT_SYMBOL_GPL(pci_reset_bus); 4793 4794 /** 4795 * pci_try_reset_bus - Try to reset a PCI bus 4796 * @bus: top level PCI bus to reset 4797 * 4798 * Same as above except return -EAGAIN if the bus cannot be locked 4799 */ 4800 int pci_try_reset_bus(struct pci_bus *bus) 4801 { 4802 int rc; 4803 4804 rc = pci_bus_reset(bus, 1); 4805 if (rc) 4806 return rc; 4807 4808 pci_bus_save_and_disable(bus); 4809 4810 if (pci_bus_trylock(bus)) { 4811 might_sleep(); 4812 pci_reset_bridge_secondary_bus(bus->self); 4813 pci_bus_unlock(bus); 4814 } else 4815 rc = -EAGAIN; 4816 4817 pci_bus_restore(bus); 4818 4819 return rc; 4820 } 4821 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4822 4823 /** 4824 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4825 * @dev: PCI device to query 4826 * 4827 * Returns mmrbc: maximum designed memory read count in bytes 4828 * or appropriate error value. 4829 */ 4830 int pcix_get_max_mmrbc(struct pci_dev *dev) 4831 { 4832 int cap; 4833 u32 stat; 4834 4835 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4836 if (!cap) 4837 return -EINVAL; 4838 4839 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4840 return -EINVAL; 4841 4842 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4843 } 4844 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4845 4846 /** 4847 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4848 * @dev: PCI device to query 4849 * 4850 * Returns mmrbc: maximum memory read count in bytes 4851 * or appropriate error value. 4852 */ 4853 int pcix_get_mmrbc(struct pci_dev *dev) 4854 { 4855 int cap; 4856 u16 cmd; 4857 4858 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4859 if (!cap) 4860 return -EINVAL; 4861 4862 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4863 return -EINVAL; 4864 4865 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4866 } 4867 EXPORT_SYMBOL(pcix_get_mmrbc); 4868 4869 /** 4870 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4871 * @dev: PCI device to query 4872 * @mmrbc: maximum memory read count in bytes 4873 * valid values are 512, 1024, 2048, 4096 4874 * 4875 * If possible sets maximum memory read byte count, some bridges have erratas 4876 * that prevent this. 4877 */ 4878 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4879 { 4880 int cap; 4881 u32 stat, v, o; 4882 u16 cmd; 4883 4884 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4885 return -EINVAL; 4886 4887 v = ffs(mmrbc) - 10; 4888 4889 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4890 if (!cap) 4891 return -EINVAL; 4892 4893 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4894 return -EINVAL; 4895 4896 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4897 return -E2BIG; 4898 4899 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4900 return -EINVAL; 4901 4902 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4903 if (o != v) { 4904 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4905 return -EIO; 4906 4907 cmd &= ~PCI_X_CMD_MAX_READ; 4908 cmd |= v << 2; 4909 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4910 return -EIO; 4911 } 4912 return 0; 4913 } 4914 EXPORT_SYMBOL(pcix_set_mmrbc); 4915 4916 /** 4917 * pcie_get_readrq - get PCI Express read request size 4918 * @dev: PCI device to query 4919 * 4920 * Returns maximum memory read request in bytes 4921 * or appropriate error value. 4922 */ 4923 int pcie_get_readrq(struct pci_dev *dev) 4924 { 4925 u16 ctl; 4926 4927 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4928 4929 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4930 } 4931 EXPORT_SYMBOL(pcie_get_readrq); 4932 4933 /** 4934 * pcie_set_readrq - set PCI Express maximum memory read request 4935 * @dev: PCI device to query 4936 * @rq: maximum memory read count in bytes 4937 * valid values are 128, 256, 512, 1024, 2048, 4096 4938 * 4939 * If possible sets maximum memory read request in bytes 4940 */ 4941 int pcie_set_readrq(struct pci_dev *dev, int rq) 4942 { 4943 u16 v; 4944 4945 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4946 return -EINVAL; 4947 4948 /* 4949 * If using the "performance" PCIe config, we clamp the 4950 * read rq size to the max packet size to prevent the 4951 * host bridge generating requests larger than we can 4952 * cope with 4953 */ 4954 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4955 int mps = pcie_get_mps(dev); 4956 4957 if (mps < rq) 4958 rq = mps; 4959 } 4960 4961 v = (ffs(rq) - 8) << 12; 4962 4963 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4964 PCI_EXP_DEVCTL_READRQ, v); 4965 } 4966 EXPORT_SYMBOL(pcie_set_readrq); 4967 4968 /** 4969 * pcie_get_mps - get PCI Express maximum payload size 4970 * @dev: PCI device to query 4971 * 4972 * Returns maximum payload size in bytes 4973 */ 4974 int pcie_get_mps(struct pci_dev *dev) 4975 { 4976 u16 ctl; 4977 4978 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4979 4980 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4981 } 4982 EXPORT_SYMBOL(pcie_get_mps); 4983 4984 /** 4985 * pcie_set_mps - set PCI Express maximum payload size 4986 * @dev: PCI device to query 4987 * @mps: maximum payload size in bytes 4988 * valid values are 128, 256, 512, 1024, 2048, 4096 4989 * 4990 * If possible sets maximum payload size 4991 */ 4992 int pcie_set_mps(struct pci_dev *dev, int mps) 4993 { 4994 u16 v; 4995 4996 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4997 return -EINVAL; 4998 4999 v = ffs(mps) - 8; 5000 if (v > dev->pcie_mpss) 5001 return -EINVAL; 5002 v <<= 5; 5003 5004 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5005 PCI_EXP_DEVCTL_PAYLOAD, v); 5006 } 5007 EXPORT_SYMBOL(pcie_set_mps); 5008 5009 /** 5010 * pcie_get_minimum_link - determine minimum link settings of a PCI device 5011 * @dev: PCI device to query 5012 * @speed: storage for minimum speed 5013 * @width: storage for minimum width 5014 * 5015 * This function will walk up the PCI device chain and determine the minimum 5016 * link width and speed of the device. 5017 */ 5018 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 5019 enum pcie_link_width *width) 5020 { 5021 int ret; 5022 5023 *speed = PCI_SPEED_UNKNOWN; 5024 *width = PCIE_LNK_WIDTH_UNKNOWN; 5025 5026 while (dev) { 5027 u16 lnksta; 5028 enum pci_bus_speed next_speed; 5029 enum pcie_link_width next_width; 5030 5031 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5032 if (ret) 5033 return ret; 5034 5035 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5036 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5037 PCI_EXP_LNKSTA_NLW_SHIFT; 5038 5039 if (next_speed < *speed) 5040 *speed = next_speed; 5041 5042 if (next_width < *width) 5043 *width = next_width; 5044 5045 dev = dev->bus->self; 5046 } 5047 5048 return 0; 5049 } 5050 EXPORT_SYMBOL(pcie_get_minimum_link); 5051 5052 /** 5053 * pci_select_bars - Make BAR mask from the type of resource 5054 * @dev: the PCI device for which BAR mask is made 5055 * @flags: resource type mask to be selected 5056 * 5057 * This helper routine makes bar mask from the type of resource. 5058 */ 5059 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5060 { 5061 int i, bars = 0; 5062 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5063 if (pci_resource_flags(dev, i) & flags) 5064 bars |= (1 << i); 5065 return bars; 5066 } 5067 EXPORT_SYMBOL(pci_select_bars); 5068 5069 /* Some architectures require additional programming to enable VGA */ 5070 static arch_set_vga_state_t arch_set_vga_state; 5071 5072 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5073 { 5074 arch_set_vga_state = func; /* NULL disables */ 5075 } 5076 5077 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5078 unsigned int command_bits, u32 flags) 5079 { 5080 if (arch_set_vga_state) 5081 return arch_set_vga_state(dev, decode, command_bits, 5082 flags); 5083 return 0; 5084 } 5085 5086 /** 5087 * pci_set_vga_state - set VGA decode state on device and parents if requested 5088 * @dev: the PCI device 5089 * @decode: true = enable decoding, false = disable decoding 5090 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5091 * @flags: traverse ancestors and change bridges 5092 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5093 */ 5094 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5095 unsigned int command_bits, u32 flags) 5096 { 5097 struct pci_bus *bus; 5098 struct pci_dev *bridge; 5099 u16 cmd; 5100 int rc; 5101 5102 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5103 5104 /* ARCH specific VGA enables */ 5105 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5106 if (rc) 5107 return rc; 5108 5109 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5110 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5111 if (decode == true) 5112 cmd |= command_bits; 5113 else 5114 cmd &= ~command_bits; 5115 pci_write_config_word(dev, PCI_COMMAND, cmd); 5116 } 5117 5118 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5119 return 0; 5120 5121 bus = dev->bus; 5122 while (bus) { 5123 bridge = bus->self; 5124 if (bridge) { 5125 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5126 &cmd); 5127 if (decode == true) 5128 cmd |= PCI_BRIDGE_CTL_VGA; 5129 else 5130 cmd &= ~PCI_BRIDGE_CTL_VGA; 5131 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5132 cmd); 5133 } 5134 bus = bus->parent; 5135 } 5136 return 0; 5137 } 5138 5139 /** 5140 * pci_add_dma_alias - Add a DMA devfn alias for a device 5141 * @dev: the PCI device for which alias is added 5142 * @devfn: alias slot and function 5143 * 5144 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 5145 * It should be called early, preferably as PCI fixup header quirk. 5146 */ 5147 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5148 { 5149 if (!dev->dma_alias_mask) 5150 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5151 sizeof(long), GFP_KERNEL); 5152 if (!dev->dma_alias_mask) { 5153 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n"); 5154 return; 5155 } 5156 5157 set_bit(devfn, dev->dma_alias_mask); 5158 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n", 5159 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5160 } 5161 5162 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5163 { 5164 return (dev1->dma_alias_mask && 5165 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5166 (dev2->dma_alias_mask && 5167 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5168 } 5169 5170 bool pci_device_is_present(struct pci_dev *pdev) 5171 { 5172 u32 v; 5173 5174 if (pci_dev_is_disconnected(pdev)) 5175 return false; 5176 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5177 } 5178 EXPORT_SYMBOL_GPL(pci_device_is_present); 5179 5180 void pci_ignore_hotplug(struct pci_dev *dev) 5181 { 5182 struct pci_dev *bridge = dev->bus->self; 5183 5184 dev->ignore_hotplug = 1; 5185 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5186 if (bridge) 5187 bridge->ignore_hotplug = 1; 5188 } 5189 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5190 5191 resource_size_t __weak pcibios_default_alignment(void) 5192 { 5193 return 0; 5194 } 5195 5196 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5197 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5198 static DEFINE_SPINLOCK(resource_alignment_lock); 5199 5200 /** 5201 * pci_specified_resource_alignment - get resource alignment specified by user. 5202 * @dev: the PCI device to get 5203 * @resize: whether or not to change resources' size when reassigning alignment 5204 * 5205 * RETURNS: Resource alignment if it is specified. 5206 * Zero if it is not specified. 5207 */ 5208 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5209 bool *resize) 5210 { 5211 int seg, bus, slot, func, align_order, count; 5212 unsigned short vendor, device, subsystem_vendor, subsystem_device; 5213 resource_size_t align = pcibios_default_alignment(); 5214 char *p; 5215 5216 spin_lock(&resource_alignment_lock); 5217 p = resource_alignment_param; 5218 if (!*p && !align) 5219 goto out; 5220 if (pci_has_flag(PCI_PROBE_ONLY)) { 5221 align = 0; 5222 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5223 goto out; 5224 } 5225 5226 while (*p) { 5227 count = 0; 5228 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5229 p[count] == '@') { 5230 p += count + 1; 5231 } else { 5232 align_order = -1; 5233 } 5234 if (strncmp(p, "pci:", 4) == 0) { 5235 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5236 p += 4; 5237 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5238 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5239 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5240 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5241 p); 5242 break; 5243 } 5244 subsystem_vendor = subsystem_device = 0; 5245 } 5246 p += count; 5247 if ((!vendor || (vendor == dev->vendor)) && 5248 (!device || (device == dev->device)) && 5249 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5250 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5251 *resize = true; 5252 if (align_order == -1) 5253 align = PAGE_SIZE; 5254 else 5255 align = 1 << align_order; 5256 /* Found */ 5257 break; 5258 } 5259 } 5260 else { 5261 if (sscanf(p, "%x:%x:%x.%x%n", 5262 &seg, &bus, &slot, &func, &count) != 4) { 5263 seg = 0; 5264 if (sscanf(p, "%x:%x.%x%n", 5265 &bus, &slot, &func, &count) != 3) { 5266 /* Invalid format */ 5267 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5268 p); 5269 break; 5270 } 5271 } 5272 p += count; 5273 if (seg == pci_domain_nr(dev->bus) && 5274 bus == dev->bus->number && 5275 slot == PCI_SLOT(dev->devfn) && 5276 func == PCI_FUNC(dev->devfn)) { 5277 *resize = true; 5278 if (align_order == -1) 5279 align = PAGE_SIZE; 5280 else 5281 align = 1 << align_order; 5282 /* Found */ 5283 break; 5284 } 5285 } 5286 if (*p != ';' && *p != ',') { 5287 /* End of param or invalid format */ 5288 break; 5289 } 5290 p++; 5291 } 5292 out: 5293 spin_unlock(&resource_alignment_lock); 5294 return align; 5295 } 5296 5297 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5298 resource_size_t align, bool resize) 5299 { 5300 struct resource *r = &dev->resource[bar]; 5301 resource_size_t size; 5302 5303 if (!(r->flags & IORESOURCE_MEM)) 5304 return; 5305 5306 if (r->flags & IORESOURCE_PCI_FIXED) { 5307 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5308 bar, r, (unsigned long long)align); 5309 return; 5310 } 5311 5312 size = resource_size(r); 5313 if (size >= align) 5314 return; 5315 5316 /* 5317 * Increase the alignment of the resource. There are two ways we 5318 * can do this: 5319 * 5320 * 1) Increase the size of the resource. BARs are aligned on their 5321 * size, so when we reallocate space for this resource, we'll 5322 * allocate it with the larger alignment. This also prevents 5323 * assignment of any other BARs inside the alignment region, so 5324 * if we're requesting page alignment, this means no other BARs 5325 * will share the page. 5326 * 5327 * The disadvantage is that this makes the resource larger than 5328 * the hardware BAR, which may break drivers that compute things 5329 * based on the resource size, e.g., to find registers at a 5330 * fixed offset before the end of the BAR. 5331 * 5332 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5333 * set r->start to the desired alignment. By itself this 5334 * doesn't prevent other BARs being put inside the alignment 5335 * region, but if we realign *every* resource of every device in 5336 * the system, none of them will share an alignment region. 5337 * 5338 * When the user has requested alignment for only some devices via 5339 * the "pci=resource_alignment" argument, "resize" is true and we 5340 * use the first method. Otherwise we assume we're aligning all 5341 * devices and we use the second. 5342 */ 5343 5344 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n", 5345 bar, r, (unsigned long long)align); 5346 5347 if (resize) { 5348 r->start = 0; 5349 r->end = align - 1; 5350 } else { 5351 r->flags &= ~IORESOURCE_SIZEALIGN; 5352 r->flags |= IORESOURCE_STARTALIGN; 5353 r->start = align; 5354 r->end = r->start + size - 1; 5355 } 5356 r->flags |= IORESOURCE_UNSET; 5357 } 5358 5359 /* 5360 * This function disables memory decoding and releases memory resources 5361 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5362 * It also rounds up size to specified alignment. 5363 * Later on, the kernel will assign page-aligned memory resource back 5364 * to the device. 5365 */ 5366 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5367 { 5368 int i; 5369 struct resource *r; 5370 resource_size_t align; 5371 u16 command; 5372 bool resize = false; 5373 5374 /* 5375 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5376 * 3.4.1.11. Their resources are allocated from the space 5377 * described by the VF BARx register in the PF's SR-IOV capability. 5378 * We can't influence their alignment here. 5379 */ 5380 if (dev->is_virtfn) 5381 return; 5382 5383 /* check if specified PCI is target device to reassign */ 5384 align = pci_specified_resource_alignment(dev, &resize); 5385 if (!align) 5386 return; 5387 5388 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5389 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5390 dev_warn(&dev->dev, 5391 "Can't reassign resources to host bridge.\n"); 5392 return; 5393 } 5394 5395 dev_info(&dev->dev, 5396 "Disabling memory decoding and releasing memory resources.\n"); 5397 pci_read_config_word(dev, PCI_COMMAND, &command); 5398 command &= ~PCI_COMMAND_MEMORY; 5399 pci_write_config_word(dev, PCI_COMMAND, command); 5400 5401 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5402 pci_request_resource_alignment(dev, i, align, resize); 5403 5404 /* 5405 * Need to disable bridge's resource window, 5406 * to enable the kernel to reassign new resource 5407 * window later on. 5408 */ 5409 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5410 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5411 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5412 r = &dev->resource[i]; 5413 if (!(r->flags & IORESOURCE_MEM)) 5414 continue; 5415 r->flags |= IORESOURCE_UNSET; 5416 r->end = resource_size(r) - 1; 5417 r->start = 0; 5418 } 5419 pci_disable_bridge_window(dev); 5420 } 5421 } 5422 5423 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5424 { 5425 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5426 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5427 spin_lock(&resource_alignment_lock); 5428 strncpy(resource_alignment_param, buf, count); 5429 resource_alignment_param[count] = '\0'; 5430 spin_unlock(&resource_alignment_lock); 5431 return count; 5432 } 5433 5434 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5435 { 5436 size_t count; 5437 spin_lock(&resource_alignment_lock); 5438 count = snprintf(buf, size, "%s", resource_alignment_param); 5439 spin_unlock(&resource_alignment_lock); 5440 return count; 5441 } 5442 5443 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5444 { 5445 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5446 } 5447 5448 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5449 const char *buf, size_t count) 5450 { 5451 return pci_set_resource_alignment_param(buf, count); 5452 } 5453 5454 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5455 pci_resource_alignment_store); 5456 5457 static int __init pci_resource_alignment_sysfs_init(void) 5458 { 5459 return bus_create_file(&pci_bus_type, 5460 &bus_attr_resource_alignment); 5461 } 5462 late_initcall(pci_resource_alignment_sysfs_init); 5463 5464 static void pci_no_domains(void) 5465 { 5466 #ifdef CONFIG_PCI_DOMAINS 5467 pci_domains_supported = 0; 5468 #endif 5469 } 5470 5471 #ifdef CONFIG_PCI_DOMAINS 5472 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5473 5474 int pci_get_new_domain_nr(void) 5475 { 5476 return atomic_inc_return(&__domain_nr); 5477 } 5478 5479 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5480 static int of_pci_bus_find_domain_nr(struct device *parent) 5481 { 5482 static int use_dt_domains = -1; 5483 int domain = -1; 5484 5485 if (parent) 5486 domain = of_get_pci_domain_nr(parent->of_node); 5487 /* 5488 * Check DT domain and use_dt_domains values. 5489 * 5490 * If DT domain property is valid (domain >= 0) and 5491 * use_dt_domains != 0, the DT assignment is valid since this means 5492 * we have not previously allocated a domain number by using 5493 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5494 * 1, to indicate that we have just assigned a domain number from 5495 * DT. 5496 * 5497 * If DT domain property value is not valid (ie domain < 0), and we 5498 * have not previously assigned a domain number from DT 5499 * (use_dt_domains != 1) we should assign a domain number by 5500 * using the: 5501 * 5502 * pci_get_new_domain_nr() 5503 * 5504 * API and update the use_dt_domains value to keep track of method we 5505 * are using to assign domain numbers (use_dt_domains = 0). 5506 * 5507 * All other combinations imply we have a platform that is trying 5508 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5509 * which is a recipe for domain mishandling and it is prevented by 5510 * invalidating the domain value (domain = -1) and printing a 5511 * corresponding error. 5512 */ 5513 if (domain >= 0 && use_dt_domains) { 5514 use_dt_domains = 1; 5515 } else if (domain < 0 && use_dt_domains != 1) { 5516 use_dt_domains = 0; 5517 domain = pci_get_new_domain_nr(); 5518 } else { 5519 dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n", 5520 parent->of_node); 5521 domain = -1; 5522 } 5523 5524 return domain; 5525 } 5526 5527 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5528 { 5529 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5530 acpi_pci_bus_find_domain_nr(bus); 5531 } 5532 #endif 5533 #endif 5534 5535 /** 5536 * pci_ext_cfg_avail - can we access extended PCI config space? 5537 * 5538 * Returns 1 if we can access PCI extended config space (offsets 5539 * greater than 0xff). This is the default implementation. Architecture 5540 * implementations can override this. 5541 */ 5542 int __weak pci_ext_cfg_avail(void) 5543 { 5544 return 1; 5545 } 5546 5547 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5548 { 5549 } 5550 EXPORT_SYMBOL(pci_fixup_cardbus); 5551 5552 static int __init pci_setup(char *str) 5553 { 5554 while (str) { 5555 char *k = strchr(str, ','); 5556 if (k) 5557 *k++ = 0; 5558 if (*str && (str = pcibios_setup(str)) && *str) { 5559 if (!strcmp(str, "nomsi")) { 5560 pci_no_msi(); 5561 } else if (!strcmp(str, "noaer")) { 5562 pci_no_aer(); 5563 } else if (!strncmp(str, "realloc=", 8)) { 5564 pci_realloc_get_opt(str + 8); 5565 } else if (!strncmp(str, "realloc", 7)) { 5566 pci_realloc_get_opt("on"); 5567 } else if (!strcmp(str, "nodomains")) { 5568 pci_no_domains(); 5569 } else if (!strncmp(str, "noari", 5)) { 5570 pcie_ari_disabled = true; 5571 } else if (!strncmp(str, "cbiosize=", 9)) { 5572 pci_cardbus_io_size = memparse(str + 9, &str); 5573 } else if (!strncmp(str, "cbmemsize=", 10)) { 5574 pci_cardbus_mem_size = memparse(str + 10, &str); 5575 } else if (!strncmp(str, "resource_alignment=", 19)) { 5576 pci_set_resource_alignment_param(str + 19, 5577 strlen(str + 19)); 5578 } else if (!strncmp(str, "ecrc=", 5)) { 5579 pcie_ecrc_get_policy(str + 5); 5580 } else if (!strncmp(str, "hpiosize=", 9)) { 5581 pci_hotplug_io_size = memparse(str + 9, &str); 5582 } else if (!strncmp(str, "hpmemsize=", 10)) { 5583 pci_hotplug_mem_size = memparse(str + 10, &str); 5584 } else if (!strncmp(str, "hpbussize=", 10)) { 5585 pci_hotplug_bus_size = 5586 simple_strtoul(str + 10, &str, 0); 5587 if (pci_hotplug_bus_size > 0xff) 5588 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5589 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5590 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5591 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5592 pcie_bus_config = PCIE_BUS_SAFE; 5593 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5594 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5595 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5596 pcie_bus_config = PCIE_BUS_PEER2PEER; 5597 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5598 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5599 } else { 5600 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5601 str); 5602 } 5603 } 5604 str = k; 5605 } 5606 return 0; 5607 } 5608 early_param("pci", pci_setup); 5609