xref: /linux/drivers/pci/pci.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pci-ats.h>
32 #include <asm/setup.h>
33 #include <asm/dma.h>
34 #include <linux/aer.h>
35 #include "pci.h"
36 
37 const char *pci_power_names[] = {
38 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 };
40 EXPORT_SYMBOL_GPL(pci_power_names);
41 
42 int isa_dma_bridge_buggy;
43 EXPORT_SYMBOL(isa_dma_bridge_buggy);
44 
45 int pci_pci_problems;
46 EXPORT_SYMBOL(pci_pci_problems);
47 
48 unsigned int pci_pm_d3_delay;
49 
50 static void pci_pme_list_scan(struct work_struct *work);
51 
52 static LIST_HEAD(pci_pme_list);
53 static DEFINE_MUTEX(pci_pme_list_mutex);
54 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55 
56 struct pci_pme_device {
57 	struct list_head list;
58 	struct pci_dev *dev;
59 };
60 
61 #define PME_TIMEOUT 1000 /* How long between PME checks */
62 
63 static void pci_dev_d3_sleep(struct pci_dev *dev)
64 {
65 	unsigned int delay = dev->d3_delay;
66 
67 	if (delay < pci_pm_d3_delay)
68 		delay = pci_pm_d3_delay;
69 
70 	if (delay)
71 		msleep(delay);
72 }
73 
74 #ifdef CONFIG_PCI_DOMAINS
75 int pci_domains_supported = 1;
76 #endif
77 
78 #define DEFAULT_CARDBUS_IO_SIZE		(256)
79 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
80 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
81 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
82 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
83 
84 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
85 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
86 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
87 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
88 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
89 
90 #define DEFAULT_HOTPLUG_BUS_SIZE	1
91 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
92 
93 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
94 
95 /*
96  * The default CLS is used if arch didn't set CLS explicitly and not
97  * all pci devices agree on the same value.  Arch can override either
98  * the dfl or actual value as it sees fit.  Don't forget this is
99  * measured in 32-bit words, not bytes.
100  */
101 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
102 u8 pci_cache_line_size;
103 
104 /*
105  * If we set up a device for bus mastering, we need to check the latency
106  * timer as certain BIOSes forget to set it properly.
107  */
108 unsigned int pcibios_max_latency = 255;
109 
110 /* If set, the PCIe ARI capability will not be used. */
111 static bool pcie_ari_disabled;
112 
113 /* Disable bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_disable;
115 /* Force bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_force;
117 
118 static int __init pcie_port_pm_setup(char *str)
119 {
120 	if (!strcmp(str, "off"))
121 		pci_bridge_d3_disable = true;
122 	else if (!strcmp(str, "force"))
123 		pci_bridge_d3_force = true;
124 	return 1;
125 }
126 __setup("pcie_port_pm=", pcie_port_pm_setup);
127 
128 /**
129  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
130  * @bus: pointer to PCI bus structure to search
131  *
132  * Given a PCI bus, returns the highest PCI bus number present in the set
133  * including the given PCI bus and its list of child PCI buses.
134  */
135 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
136 {
137 	struct pci_bus *tmp;
138 	unsigned char max, n;
139 
140 	max = bus->busn_res.end;
141 	list_for_each_entry(tmp, &bus->children, node) {
142 		n = pci_bus_max_busnr(tmp);
143 		if (n > max)
144 			max = n;
145 	}
146 	return max;
147 }
148 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
149 
150 #ifdef CONFIG_HAS_IOMEM
151 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
152 {
153 	struct resource *res = &pdev->resource[bar];
154 
155 	/*
156 	 * Make sure the BAR is actually a memory resource, not an IO resource
157 	 */
158 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
159 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
160 		return NULL;
161 	}
162 	return ioremap_nocache(res->start, resource_size(res));
163 }
164 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
165 
166 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
167 {
168 	/*
169 	 * Make sure the BAR is actually a memory resource, not an IO resource
170 	 */
171 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
172 		WARN_ON(1);
173 		return NULL;
174 	}
175 	return ioremap_wc(pci_resource_start(pdev, bar),
176 			  pci_resource_len(pdev, bar));
177 }
178 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
179 #endif
180 
181 
182 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
183 				   u8 pos, int cap, int *ttl)
184 {
185 	u8 id;
186 	u16 ent;
187 
188 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
189 
190 	while ((*ttl)--) {
191 		if (pos < 0x40)
192 			break;
193 		pos &= ~3;
194 		pci_bus_read_config_word(bus, devfn, pos, &ent);
195 
196 		id = ent & 0xff;
197 		if (id == 0xff)
198 			break;
199 		if (id == cap)
200 			return pos;
201 		pos = (ent >> 8);
202 	}
203 	return 0;
204 }
205 
206 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
207 			       u8 pos, int cap)
208 {
209 	int ttl = PCI_FIND_CAP_TTL;
210 
211 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
212 }
213 
214 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
215 {
216 	return __pci_find_next_cap(dev->bus, dev->devfn,
217 				   pos + PCI_CAP_LIST_NEXT, cap);
218 }
219 EXPORT_SYMBOL_GPL(pci_find_next_capability);
220 
221 static int __pci_bus_find_cap_start(struct pci_bus *bus,
222 				    unsigned int devfn, u8 hdr_type)
223 {
224 	u16 status;
225 
226 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
227 	if (!(status & PCI_STATUS_CAP_LIST))
228 		return 0;
229 
230 	switch (hdr_type) {
231 	case PCI_HEADER_TYPE_NORMAL:
232 	case PCI_HEADER_TYPE_BRIDGE:
233 		return PCI_CAPABILITY_LIST;
234 	case PCI_HEADER_TYPE_CARDBUS:
235 		return PCI_CB_CAPABILITY_LIST;
236 	}
237 
238 	return 0;
239 }
240 
241 /**
242  * pci_find_capability - query for devices' capabilities
243  * @dev: PCI device to query
244  * @cap: capability code
245  *
246  * Tell if a device supports a given PCI capability.
247  * Returns the address of the requested capability structure within the
248  * device's PCI configuration space or 0 in case the device does not
249  * support it.  Possible values for @cap:
250  *
251  *  %PCI_CAP_ID_PM           Power Management
252  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
253  *  %PCI_CAP_ID_VPD          Vital Product Data
254  *  %PCI_CAP_ID_SLOTID       Slot Identification
255  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
256  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
257  *  %PCI_CAP_ID_PCIX         PCI-X
258  *  %PCI_CAP_ID_EXP          PCI Express
259  */
260 int pci_find_capability(struct pci_dev *dev, int cap)
261 {
262 	int pos;
263 
264 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
265 	if (pos)
266 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
267 
268 	return pos;
269 }
270 EXPORT_SYMBOL(pci_find_capability);
271 
272 /**
273  * pci_bus_find_capability - query for devices' capabilities
274  * @bus:   the PCI bus to query
275  * @devfn: PCI device to query
276  * @cap:   capability code
277  *
278  * Like pci_find_capability() but works for pci devices that do not have a
279  * pci_dev structure set up yet.
280  *
281  * Returns the address of the requested capability structure within the
282  * device's PCI configuration space or 0 in case the device does not
283  * support it.
284  */
285 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
286 {
287 	int pos;
288 	u8 hdr_type;
289 
290 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
291 
292 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
293 	if (pos)
294 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
295 
296 	return pos;
297 }
298 EXPORT_SYMBOL(pci_bus_find_capability);
299 
300 /**
301  * pci_find_next_ext_capability - Find an extended capability
302  * @dev: PCI device to query
303  * @start: address at which to start looking (0 to start at beginning of list)
304  * @cap: capability code
305  *
306  * Returns the address of the next matching extended capability structure
307  * within the device's PCI configuration space or 0 if the device does
308  * not support it.  Some capabilities can occur several times, e.g., the
309  * vendor-specific capability, and this provides a way to find them all.
310  */
311 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
312 {
313 	u32 header;
314 	int ttl;
315 	int pos = PCI_CFG_SPACE_SIZE;
316 
317 	/* minimum 8 bytes per capability */
318 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
319 
320 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
321 		return 0;
322 
323 	if (start)
324 		pos = start;
325 
326 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
327 		return 0;
328 
329 	/*
330 	 * If we have no capabilities, this is indicated by cap ID,
331 	 * cap version and next pointer all being 0.
332 	 */
333 	if (header == 0)
334 		return 0;
335 
336 	while (ttl-- > 0) {
337 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
338 			return pos;
339 
340 		pos = PCI_EXT_CAP_NEXT(header);
341 		if (pos < PCI_CFG_SPACE_SIZE)
342 			break;
343 
344 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
345 			break;
346 	}
347 
348 	return 0;
349 }
350 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
351 
352 /**
353  * pci_find_ext_capability - Find an extended capability
354  * @dev: PCI device to query
355  * @cap: capability code
356  *
357  * Returns the address of the requested extended capability structure
358  * within the device's PCI configuration space or 0 if the device does
359  * not support it.  Possible values for @cap:
360  *
361  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
362  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
363  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
364  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
365  */
366 int pci_find_ext_capability(struct pci_dev *dev, int cap)
367 {
368 	return pci_find_next_ext_capability(dev, 0, cap);
369 }
370 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
371 
372 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
373 {
374 	int rc, ttl = PCI_FIND_CAP_TTL;
375 	u8 cap, mask;
376 
377 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
378 		mask = HT_3BIT_CAP_MASK;
379 	else
380 		mask = HT_5BIT_CAP_MASK;
381 
382 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
383 				      PCI_CAP_ID_HT, &ttl);
384 	while (pos) {
385 		rc = pci_read_config_byte(dev, pos + 3, &cap);
386 		if (rc != PCIBIOS_SUCCESSFUL)
387 			return 0;
388 
389 		if ((cap & mask) == ht_cap)
390 			return pos;
391 
392 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
393 					      pos + PCI_CAP_LIST_NEXT,
394 					      PCI_CAP_ID_HT, &ttl);
395 	}
396 
397 	return 0;
398 }
399 /**
400  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
401  * @dev: PCI device to query
402  * @pos: Position from which to continue searching
403  * @ht_cap: Hypertransport capability code
404  *
405  * To be used in conjunction with pci_find_ht_capability() to search for
406  * all capabilities matching @ht_cap. @pos should always be a value returned
407  * from pci_find_ht_capability().
408  *
409  * NB. To be 100% safe against broken PCI devices, the caller should take
410  * steps to avoid an infinite loop.
411  */
412 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
413 {
414 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
415 }
416 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
417 
418 /**
419  * pci_find_ht_capability - query a device's Hypertransport capabilities
420  * @dev: PCI device to query
421  * @ht_cap: Hypertransport capability code
422  *
423  * Tell if a device supports a given Hypertransport capability.
424  * Returns an address within the device's PCI configuration space
425  * or 0 in case the device does not support the request capability.
426  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
427  * which has a Hypertransport capability matching @ht_cap.
428  */
429 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
430 {
431 	int pos;
432 
433 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
434 	if (pos)
435 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
436 
437 	return pos;
438 }
439 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
440 
441 /**
442  * pci_find_parent_resource - return resource region of parent bus of given region
443  * @dev: PCI device structure contains resources to be searched
444  * @res: child resource record for which parent is sought
445  *
446  *  For given resource region of given device, return the resource
447  *  region of parent bus the given region is contained in.
448  */
449 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
450 					  struct resource *res)
451 {
452 	const struct pci_bus *bus = dev->bus;
453 	struct resource *r;
454 	int i;
455 
456 	pci_bus_for_each_resource(bus, r, i) {
457 		if (!r)
458 			continue;
459 		if (resource_contains(r, res)) {
460 
461 			/*
462 			 * If the window is prefetchable but the BAR is
463 			 * not, the allocator made a mistake.
464 			 */
465 			if (r->flags & IORESOURCE_PREFETCH &&
466 			    !(res->flags & IORESOURCE_PREFETCH))
467 				return NULL;
468 
469 			/*
470 			 * If we're below a transparent bridge, there may
471 			 * be both a positively-decoded aperture and a
472 			 * subtractively-decoded region that contain the BAR.
473 			 * We want the positively-decoded one, so this depends
474 			 * on pci_bus_for_each_resource() giving us those
475 			 * first.
476 			 */
477 			return r;
478 		}
479 	}
480 	return NULL;
481 }
482 EXPORT_SYMBOL(pci_find_parent_resource);
483 
484 /**
485  * pci_find_resource - Return matching PCI device resource
486  * @dev: PCI device to query
487  * @res: Resource to look for
488  *
489  * Goes over standard PCI resources (BARs) and checks if the given resource
490  * is partially or fully contained in any of them. In that case the
491  * matching resource is returned, %NULL otherwise.
492  */
493 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
494 {
495 	int i;
496 
497 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
498 		struct resource *r = &dev->resource[i];
499 
500 		if (r->start && resource_contains(r, res))
501 			return r;
502 	}
503 
504 	return NULL;
505 }
506 EXPORT_SYMBOL(pci_find_resource);
507 
508 /**
509  * pci_find_pcie_root_port - return PCIe Root Port
510  * @dev: PCI device to query
511  *
512  * Traverse up the parent chain and return the PCIe Root Port PCI Device
513  * for a given PCI Device.
514  */
515 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
516 {
517 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
518 
519 	bridge = pci_upstream_bridge(dev);
520 	while (bridge && pci_is_pcie(bridge)) {
521 		highest_pcie_bridge = bridge;
522 		bridge = pci_upstream_bridge(bridge);
523 	}
524 
525 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
526 		return NULL;
527 
528 	return highest_pcie_bridge;
529 }
530 EXPORT_SYMBOL(pci_find_pcie_root_port);
531 
532 /**
533  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
534  * @dev: the PCI device to operate on
535  * @pos: config space offset of status word
536  * @mask: mask of bit(s) to care about in status word
537  *
538  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
539  */
540 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
541 {
542 	int i;
543 
544 	/* Wait for Transaction Pending bit clean */
545 	for (i = 0; i < 4; i++) {
546 		u16 status;
547 		if (i)
548 			msleep((1 << (i - 1)) * 100);
549 
550 		pci_read_config_word(dev, pos, &status);
551 		if (!(status & mask))
552 			return 1;
553 	}
554 
555 	return 0;
556 }
557 
558 /**
559  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
560  * @dev: PCI device to have its BARs restored
561  *
562  * Restore the BAR values for a given device, so as to make it
563  * accessible by its driver.
564  */
565 static void pci_restore_bars(struct pci_dev *dev)
566 {
567 	int i;
568 
569 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
570 		pci_update_resource(dev, i);
571 }
572 
573 static const struct pci_platform_pm_ops *pci_platform_pm;
574 
575 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
576 {
577 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
578 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
579 		return -EINVAL;
580 	pci_platform_pm = ops;
581 	return 0;
582 }
583 
584 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
585 {
586 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
587 }
588 
589 static inline int platform_pci_set_power_state(struct pci_dev *dev,
590 					       pci_power_t t)
591 {
592 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
593 }
594 
595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
596 {
597 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
598 }
599 
600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
601 {
602 	return pci_platform_pm ?
603 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
604 }
605 
606 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
607 {
608 	return pci_platform_pm ?
609 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
610 }
611 
612 static inline bool platform_pci_need_resume(struct pci_dev *dev)
613 {
614 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
615 }
616 
617 /**
618  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
619  *                           given PCI device
620  * @dev: PCI device to handle.
621  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
622  *
623  * RETURN VALUE:
624  * -EINVAL if the requested state is invalid.
625  * -EIO if device does not support PCI PM or its PM capabilities register has a
626  * wrong version, or device doesn't support the requested state.
627  * 0 if device already is in the requested state.
628  * 0 if device's power state has been successfully changed.
629  */
630 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
631 {
632 	u16 pmcsr;
633 	bool need_restore = false;
634 
635 	/* Check if we're already there */
636 	if (dev->current_state == state)
637 		return 0;
638 
639 	if (!dev->pm_cap)
640 		return -EIO;
641 
642 	if (state < PCI_D0 || state > PCI_D3hot)
643 		return -EINVAL;
644 
645 	/* Validate current state:
646 	 * Can enter D0 from any state, but if we can only go deeper
647 	 * to sleep if we're already in a low power state
648 	 */
649 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
650 	    && dev->current_state > state) {
651 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
652 			dev->current_state, state);
653 		return -EINVAL;
654 	}
655 
656 	/* check if this device supports the desired state */
657 	if ((state == PCI_D1 && !dev->d1_support)
658 	   || (state == PCI_D2 && !dev->d2_support))
659 		return -EIO;
660 
661 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
662 
663 	/* If we're (effectively) in D3, force entire word to 0.
664 	 * This doesn't affect PME_Status, disables PME_En, and
665 	 * sets PowerState to 0.
666 	 */
667 	switch (dev->current_state) {
668 	case PCI_D0:
669 	case PCI_D1:
670 	case PCI_D2:
671 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
672 		pmcsr |= state;
673 		break;
674 	case PCI_D3hot:
675 	case PCI_D3cold:
676 	case PCI_UNKNOWN: /* Boot-up */
677 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
678 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
679 			need_restore = true;
680 		/* Fall-through: force to D0 */
681 	default:
682 		pmcsr = 0;
683 		break;
684 	}
685 
686 	/* enter specified state */
687 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
688 
689 	/* Mandatory power management transition delays */
690 	/* see PCI PM 1.1 5.6.1 table 18 */
691 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
692 		pci_dev_d3_sleep(dev);
693 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
694 		udelay(PCI_PM_D2_DELAY);
695 
696 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
697 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
698 	if (dev->current_state != state && printk_ratelimit())
699 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
700 			 dev->current_state);
701 
702 	/*
703 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
704 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
705 	 * from D3hot to D0 _may_ perform an internal reset, thereby
706 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
707 	 * For example, at least some versions of the 3c905B and the
708 	 * 3c556B exhibit this behaviour.
709 	 *
710 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
711 	 * devices in a D3hot state at boot.  Consequently, we need to
712 	 * restore at least the BARs so that the device will be
713 	 * accessible to its driver.
714 	 */
715 	if (need_restore)
716 		pci_restore_bars(dev);
717 
718 	if (dev->bus->self)
719 		pcie_aspm_pm_state_change(dev->bus->self);
720 
721 	return 0;
722 }
723 
724 /**
725  * pci_update_current_state - Read power state of given device and cache it
726  * @dev: PCI device to handle.
727  * @state: State to cache in case the device doesn't have the PM capability
728  *
729  * The power state is read from the PMCSR register, which however is
730  * inaccessible in D3cold.  The platform firmware is therefore queried first
731  * to detect accessibility of the register.  In case the platform firmware
732  * reports an incorrect state or the device isn't power manageable by the
733  * platform at all, we try to detect D3cold by testing accessibility of the
734  * vendor ID in config space.
735  */
736 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
737 {
738 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
739 	    !pci_device_is_present(dev)) {
740 		dev->current_state = PCI_D3cold;
741 	} else if (dev->pm_cap) {
742 		u16 pmcsr;
743 
744 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
745 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
746 	} else {
747 		dev->current_state = state;
748 	}
749 }
750 
751 /**
752  * pci_power_up - Put the given device into D0 forcibly
753  * @dev: PCI device to power up
754  */
755 void pci_power_up(struct pci_dev *dev)
756 {
757 	if (platform_pci_power_manageable(dev))
758 		platform_pci_set_power_state(dev, PCI_D0);
759 
760 	pci_raw_set_power_state(dev, PCI_D0);
761 	pci_update_current_state(dev, PCI_D0);
762 }
763 
764 /**
765  * pci_platform_power_transition - Use platform to change device power state
766  * @dev: PCI device to handle.
767  * @state: State to put the device into.
768  */
769 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
770 {
771 	int error;
772 
773 	if (platform_pci_power_manageable(dev)) {
774 		error = platform_pci_set_power_state(dev, state);
775 		if (!error)
776 			pci_update_current_state(dev, state);
777 	} else
778 		error = -ENODEV;
779 
780 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
781 		dev->current_state = PCI_D0;
782 
783 	return error;
784 }
785 
786 /**
787  * pci_wakeup - Wake up a PCI device
788  * @pci_dev: Device to handle.
789  * @ign: ignored parameter
790  */
791 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
792 {
793 	pci_wakeup_event(pci_dev);
794 	pm_request_resume(&pci_dev->dev);
795 	return 0;
796 }
797 
798 /**
799  * pci_wakeup_bus - Walk given bus and wake up devices on it
800  * @bus: Top bus of the subtree to walk.
801  */
802 static void pci_wakeup_bus(struct pci_bus *bus)
803 {
804 	if (bus)
805 		pci_walk_bus(bus, pci_wakeup, NULL);
806 }
807 
808 /**
809  * __pci_start_power_transition - Start power transition of a PCI device
810  * @dev: PCI device to handle.
811  * @state: State to put the device into.
812  */
813 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
814 {
815 	if (state == PCI_D0) {
816 		pci_platform_power_transition(dev, PCI_D0);
817 		/*
818 		 * Mandatory power management transition delays, see
819 		 * PCI Express Base Specification Revision 2.0 Section
820 		 * 6.6.1: Conventional Reset.  Do not delay for
821 		 * devices powered on/off by corresponding bridge,
822 		 * because have already delayed for the bridge.
823 		 */
824 		if (dev->runtime_d3cold) {
825 			if (dev->d3cold_delay)
826 				msleep(dev->d3cold_delay);
827 			/*
828 			 * When powering on a bridge from D3cold, the
829 			 * whole hierarchy may be powered on into
830 			 * D0uninitialized state, resume them to give
831 			 * them a chance to suspend again
832 			 */
833 			pci_wakeup_bus(dev->subordinate);
834 		}
835 	}
836 }
837 
838 /**
839  * __pci_dev_set_current_state - Set current state of a PCI device
840  * @dev: Device to handle
841  * @data: pointer to state to be set
842  */
843 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
844 {
845 	pci_power_t state = *(pci_power_t *)data;
846 
847 	dev->current_state = state;
848 	return 0;
849 }
850 
851 /**
852  * __pci_bus_set_current_state - Walk given bus and set current state of devices
853  * @bus: Top bus of the subtree to walk.
854  * @state: state to be set
855  */
856 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
857 {
858 	if (bus)
859 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
860 }
861 
862 /**
863  * __pci_complete_power_transition - Complete power transition of a PCI device
864  * @dev: PCI device to handle.
865  * @state: State to put the device into.
866  *
867  * This function should not be called directly by device drivers.
868  */
869 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
870 {
871 	int ret;
872 
873 	if (state <= PCI_D0)
874 		return -EINVAL;
875 	ret = pci_platform_power_transition(dev, state);
876 	/* Power off the bridge may power off the whole hierarchy */
877 	if (!ret && state == PCI_D3cold)
878 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
879 	return ret;
880 }
881 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
882 
883 /**
884  * pci_set_power_state - Set the power state of a PCI device
885  * @dev: PCI device to handle.
886  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
887  *
888  * Transition a device to a new power state, using the platform firmware and/or
889  * the device's PCI PM registers.
890  *
891  * RETURN VALUE:
892  * -EINVAL if the requested state is invalid.
893  * -EIO if device does not support PCI PM or its PM capabilities register has a
894  * wrong version, or device doesn't support the requested state.
895  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
896  * 0 if device already is in the requested state.
897  * 0 if the transition is to D3 but D3 is not supported.
898  * 0 if device's power state has been successfully changed.
899  */
900 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
901 {
902 	int error;
903 
904 	/* bound the state we're entering */
905 	if (state > PCI_D3cold)
906 		state = PCI_D3cold;
907 	else if (state < PCI_D0)
908 		state = PCI_D0;
909 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
910 		/*
911 		 * If the device or the parent bridge do not support PCI PM,
912 		 * ignore the request if we're doing anything other than putting
913 		 * it into D0 (which would only happen on boot).
914 		 */
915 		return 0;
916 
917 	/* Check if we're already there */
918 	if (dev->current_state == state)
919 		return 0;
920 
921 	__pci_start_power_transition(dev, state);
922 
923 	/* This device is quirked not to be put into D3, so
924 	   don't put it in D3 */
925 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
926 		return 0;
927 
928 	/*
929 	 * To put device in D3cold, we put device into D3hot in native
930 	 * way, then put device into D3cold with platform ops
931 	 */
932 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
933 					PCI_D3hot : state);
934 
935 	if (!__pci_complete_power_transition(dev, state))
936 		error = 0;
937 
938 	return error;
939 }
940 EXPORT_SYMBOL(pci_set_power_state);
941 
942 /**
943  * pci_choose_state - Choose the power state of a PCI device
944  * @dev: PCI device to be suspended
945  * @state: target sleep state for the whole system. This is the value
946  *	that is passed to suspend() function.
947  *
948  * Returns PCI power state suitable for given device and given system
949  * message.
950  */
951 
952 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
953 {
954 	pci_power_t ret;
955 
956 	if (!dev->pm_cap)
957 		return PCI_D0;
958 
959 	ret = platform_pci_choose_state(dev);
960 	if (ret != PCI_POWER_ERROR)
961 		return ret;
962 
963 	switch (state.event) {
964 	case PM_EVENT_ON:
965 		return PCI_D0;
966 	case PM_EVENT_FREEZE:
967 	case PM_EVENT_PRETHAW:
968 		/* REVISIT both freeze and pre-thaw "should" use D0 */
969 	case PM_EVENT_SUSPEND:
970 	case PM_EVENT_HIBERNATE:
971 		return PCI_D3hot;
972 	default:
973 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
974 			 state.event);
975 		BUG();
976 	}
977 	return PCI_D0;
978 }
979 EXPORT_SYMBOL(pci_choose_state);
980 
981 #define PCI_EXP_SAVE_REGS	7
982 
983 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
984 						       u16 cap, bool extended)
985 {
986 	struct pci_cap_saved_state *tmp;
987 
988 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
989 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
990 			return tmp;
991 	}
992 	return NULL;
993 }
994 
995 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
996 {
997 	return _pci_find_saved_cap(dev, cap, false);
998 }
999 
1000 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1001 {
1002 	return _pci_find_saved_cap(dev, cap, true);
1003 }
1004 
1005 static int pci_save_pcie_state(struct pci_dev *dev)
1006 {
1007 	int i = 0;
1008 	struct pci_cap_saved_state *save_state;
1009 	u16 *cap;
1010 
1011 	if (!pci_is_pcie(dev))
1012 		return 0;
1013 
1014 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1015 	if (!save_state) {
1016 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1017 		return -ENOMEM;
1018 	}
1019 
1020 	cap = (u16 *)&save_state->cap.data[0];
1021 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1022 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1023 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1024 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1025 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1026 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1027 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1028 
1029 	return 0;
1030 }
1031 
1032 static void pci_restore_pcie_state(struct pci_dev *dev)
1033 {
1034 	int i = 0;
1035 	struct pci_cap_saved_state *save_state;
1036 	u16 *cap;
1037 
1038 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1039 	if (!save_state)
1040 		return;
1041 
1042 	cap = (u16 *)&save_state->cap.data[0];
1043 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1044 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1045 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1046 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1047 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1048 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1049 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1050 }
1051 
1052 
1053 static int pci_save_pcix_state(struct pci_dev *dev)
1054 {
1055 	int pos;
1056 	struct pci_cap_saved_state *save_state;
1057 
1058 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1059 	if (!pos)
1060 		return 0;
1061 
1062 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1063 	if (!save_state) {
1064 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1065 		return -ENOMEM;
1066 	}
1067 
1068 	pci_read_config_word(dev, pos + PCI_X_CMD,
1069 			     (u16 *)save_state->cap.data);
1070 
1071 	return 0;
1072 }
1073 
1074 static void pci_restore_pcix_state(struct pci_dev *dev)
1075 {
1076 	int i = 0, pos;
1077 	struct pci_cap_saved_state *save_state;
1078 	u16 *cap;
1079 
1080 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1081 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1082 	if (!save_state || !pos)
1083 		return;
1084 	cap = (u16 *)&save_state->cap.data[0];
1085 
1086 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1087 }
1088 
1089 
1090 /**
1091  * pci_save_state - save the PCI configuration space of a device before suspending
1092  * @dev: - PCI device that we're dealing with
1093  */
1094 int pci_save_state(struct pci_dev *dev)
1095 {
1096 	int i;
1097 	/* XXX: 100% dword access ok here? */
1098 	for (i = 0; i < 16; i++)
1099 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1100 	dev->state_saved = true;
1101 
1102 	i = pci_save_pcie_state(dev);
1103 	if (i != 0)
1104 		return i;
1105 
1106 	i = pci_save_pcix_state(dev);
1107 	if (i != 0)
1108 		return i;
1109 
1110 	return pci_save_vc_state(dev);
1111 }
1112 EXPORT_SYMBOL(pci_save_state);
1113 
1114 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1115 				     u32 saved_val, int retry)
1116 {
1117 	u32 val;
1118 
1119 	pci_read_config_dword(pdev, offset, &val);
1120 	if (val == saved_val)
1121 		return;
1122 
1123 	for (;;) {
1124 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1125 			offset, val, saved_val);
1126 		pci_write_config_dword(pdev, offset, saved_val);
1127 		if (retry-- <= 0)
1128 			return;
1129 
1130 		pci_read_config_dword(pdev, offset, &val);
1131 		if (val == saved_val)
1132 			return;
1133 
1134 		mdelay(1);
1135 	}
1136 }
1137 
1138 static void pci_restore_config_space_range(struct pci_dev *pdev,
1139 					   int start, int end, int retry)
1140 {
1141 	int index;
1142 
1143 	for (index = end; index >= start; index--)
1144 		pci_restore_config_dword(pdev, 4 * index,
1145 					 pdev->saved_config_space[index],
1146 					 retry);
1147 }
1148 
1149 static void pci_restore_config_space(struct pci_dev *pdev)
1150 {
1151 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1152 		pci_restore_config_space_range(pdev, 10, 15, 0);
1153 		/* Restore BARs before the command register. */
1154 		pci_restore_config_space_range(pdev, 4, 9, 10);
1155 		pci_restore_config_space_range(pdev, 0, 3, 0);
1156 	} else {
1157 		pci_restore_config_space_range(pdev, 0, 15, 0);
1158 	}
1159 }
1160 
1161 /**
1162  * pci_restore_state - Restore the saved state of a PCI device
1163  * @dev: - PCI device that we're dealing with
1164  */
1165 void pci_restore_state(struct pci_dev *dev)
1166 {
1167 	if (!dev->state_saved)
1168 		return;
1169 
1170 	/* PCI Express register must be restored first */
1171 	pci_restore_pcie_state(dev);
1172 	pci_restore_pasid_state(dev);
1173 	pci_restore_pri_state(dev);
1174 	pci_restore_ats_state(dev);
1175 	pci_restore_vc_state(dev);
1176 
1177 	pci_cleanup_aer_error_status_regs(dev);
1178 
1179 	pci_restore_config_space(dev);
1180 
1181 	pci_restore_pcix_state(dev);
1182 	pci_restore_msi_state(dev);
1183 
1184 	/* Restore ACS and IOV configuration state */
1185 	pci_enable_acs(dev);
1186 	pci_restore_iov_state(dev);
1187 
1188 	dev->state_saved = false;
1189 }
1190 EXPORT_SYMBOL(pci_restore_state);
1191 
1192 struct pci_saved_state {
1193 	u32 config_space[16];
1194 	struct pci_cap_saved_data cap[0];
1195 };
1196 
1197 /**
1198  * pci_store_saved_state - Allocate and return an opaque struct containing
1199  *			   the device saved state.
1200  * @dev: PCI device that we're dealing with
1201  *
1202  * Return NULL if no state or error.
1203  */
1204 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1205 {
1206 	struct pci_saved_state *state;
1207 	struct pci_cap_saved_state *tmp;
1208 	struct pci_cap_saved_data *cap;
1209 	size_t size;
1210 
1211 	if (!dev->state_saved)
1212 		return NULL;
1213 
1214 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1215 
1216 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1217 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1218 
1219 	state = kzalloc(size, GFP_KERNEL);
1220 	if (!state)
1221 		return NULL;
1222 
1223 	memcpy(state->config_space, dev->saved_config_space,
1224 	       sizeof(state->config_space));
1225 
1226 	cap = state->cap;
1227 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1228 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1229 		memcpy(cap, &tmp->cap, len);
1230 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1231 	}
1232 	/* Empty cap_save terminates list */
1233 
1234 	return state;
1235 }
1236 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1237 
1238 /**
1239  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1240  * @dev: PCI device that we're dealing with
1241  * @state: Saved state returned from pci_store_saved_state()
1242  */
1243 int pci_load_saved_state(struct pci_dev *dev,
1244 			 struct pci_saved_state *state)
1245 {
1246 	struct pci_cap_saved_data *cap;
1247 
1248 	dev->state_saved = false;
1249 
1250 	if (!state)
1251 		return 0;
1252 
1253 	memcpy(dev->saved_config_space, state->config_space,
1254 	       sizeof(state->config_space));
1255 
1256 	cap = state->cap;
1257 	while (cap->size) {
1258 		struct pci_cap_saved_state *tmp;
1259 
1260 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1261 		if (!tmp || tmp->cap.size != cap->size)
1262 			return -EINVAL;
1263 
1264 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1265 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1266 		       sizeof(struct pci_cap_saved_data) + cap->size);
1267 	}
1268 
1269 	dev->state_saved = true;
1270 	return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1273 
1274 /**
1275  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1276  *				   and free the memory allocated for it.
1277  * @dev: PCI device that we're dealing with
1278  * @state: Pointer to saved state returned from pci_store_saved_state()
1279  */
1280 int pci_load_and_free_saved_state(struct pci_dev *dev,
1281 				  struct pci_saved_state **state)
1282 {
1283 	int ret = pci_load_saved_state(dev, *state);
1284 	kfree(*state);
1285 	*state = NULL;
1286 	return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1289 
1290 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1291 {
1292 	return pci_enable_resources(dev, bars);
1293 }
1294 
1295 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1296 {
1297 	int err;
1298 	struct pci_dev *bridge;
1299 	u16 cmd;
1300 	u8 pin;
1301 
1302 	err = pci_set_power_state(dev, PCI_D0);
1303 	if (err < 0 && err != -EIO)
1304 		return err;
1305 
1306 	bridge = pci_upstream_bridge(dev);
1307 	if (bridge)
1308 		pcie_aspm_powersave_config_link(bridge);
1309 
1310 	err = pcibios_enable_device(dev, bars);
1311 	if (err < 0)
1312 		return err;
1313 	pci_fixup_device(pci_fixup_enable, dev);
1314 
1315 	if (dev->msi_enabled || dev->msix_enabled)
1316 		return 0;
1317 
1318 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1319 	if (pin) {
1320 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1321 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1322 			pci_write_config_word(dev, PCI_COMMAND,
1323 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * pci_reenable_device - Resume abandoned device
1331  * @dev: PCI device to be resumed
1332  *
1333  *  Note this function is a backend of pci_default_resume and is not supposed
1334  *  to be called by normal code, write proper resume handler and use it instead.
1335  */
1336 int pci_reenable_device(struct pci_dev *dev)
1337 {
1338 	if (pci_is_enabled(dev))
1339 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL(pci_reenable_device);
1343 
1344 static void pci_enable_bridge(struct pci_dev *dev)
1345 {
1346 	struct pci_dev *bridge;
1347 	int retval;
1348 
1349 	bridge = pci_upstream_bridge(dev);
1350 	if (bridge)
1351 		pci_enable_bridge(bridge);
1352 
1353 	if (pci_is_enabled(dev)) {
1354 		if (!dev->is_busmaster)
1355 			pci_set_master(dev);
1356 		return;
1357 	}
1358 
1359 	retval = pci_enable_device(dev);
1360 	if (retval)
1361 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1362 			retval);
1363 	pci_set_master(dev);
1364 }
1365 
1366 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1367 {
1368 	struct pci_dev *bridge;
1369 	int err;
1370 	int i, bars = 0;
1371 
1372 	/*
1373 	 * Power state could be unknown at this point, either due to a fresh
1374 	 * boot or a device removal call.  So get the current power state
1375 	 * so that things like MSI message writing will behave as expected
1376 	 * (e.g. if the device really is in D0 at enable time).
1377 	 */
1378 	if (dev->pm_cap) {
1379 		u16 pmcsr;
1380 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1382 	}
1383 
1384 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1385 		return 0;		/* already enabled */
1386 
1387 	bridge = pci_upstream_bridge(dev);
1388 	if (bridge)
1389 		pci_enable_bridge(bridge);
1390 
1391 	/* only skip sriov related */
1392 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1393 		if (dev->resource[i].flags & flags)
1394 			bars |= (1 << i);
1395 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1396 		if (dev->resource[i].flags & flags)
1397 			bars |= (1 << i);
1398 
1399 	err = do_pci_enable_device(dev, bars);
1400 	if (err < 0)
1401 		atomic_dec(&dev->enable_cnt);
1402 	return err;
1403 }
1404 
1405 /**
1406  * pci_enable_device_io - Initialize a device for use with IO space
1407  * @dev: PCI device to be initialized
1408  *
1409  *  Initialize device before it's used by a driver. Ask low-level code
1410  *  to enable I/O resources. Wake up the device if it was suspended.
1411  *  Beware, this function can fail.
1412  */
1413 int pci_enable_device_io(struct pci_dev *dev)
1414 {
1415 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1416 }
1417 EXPORT_SYMBOL(pci_enable_device_io);
1418 
1419 /**
1420  * pci_enable_device_mem - Initialize a device for use with Memory space
1421  * @dev: PCI device to be initialized
1422  *
1423  *  Initialize device before it's used by a driver. Ask low-level code
1424  *  to enable Memory resources. Wake up the device if it was suspended.
1425  *  Beware, this function can fail.
1426  */
1427 int pci_enable_device_mem(struct pci_dev *dev)
1428 {
1429 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1430 }
1431 EXPORT_SYMBOL(pci_enable_device_mem);
1432 
1433 /**
1434  * pci_enable_device - Initialize device before it's used by a driver.
1435  * @dev: PCI device to be initialized
1436  *
1437  *  Initialize device before it's used by a driver. Ask low-level code
1438  *  to enable I/O and memory. Wake up the device if it was suspended.
1439  *  Beware, this function can fail.
1440  *
1441  *  Note we don't actually enable the device many times if we call
1442  *  this function repeatedly (we just increment the count).
1443  */
1444 int pci_enable_device(struct pci_dev *dev)
1445 {
1446 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1447 }
1448 EXPORT_SYMBOL(pci_enable_device);
1449 
1450 /*
1451  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1452  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1453  * there's no need to track it separately.  pci_devres is initialized
1454  * when a device is enabled using managed PCI device enable interface.
1455  */
1456 struct pci_devres {
1457 	unsigned int enabled:1;
1458 	unsigned int pinned:1;
1459 	unsigned int orig_intx:1;
1460 	unsigned int restore_intx:1;
1461 	u32 region_mask;
1462 };
1463 
1464 static void pcim_release(struct device *gendev, void *res)
1465 {
1466 	struct pci_dev *dev = to_pci_dev(gendev);
1467 	struct pci_devres *this = res;
1468 	int i;
1469 
1470 	if (dev->msi_enabled)
1471 		pci_disable_msi(dev);
1472 	if (dev->msix_enabled)
1473 		pci_disable_msix(dev);
1474 
1475 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1476 		if (this->region_mask & (1 << i))
1477 			pci_release_region(dev, i);
1478 
1479 	if (this->restore_intx)
1480 		pci_intx(dev, this->orig_intx);
1481 
1482 	if (this->enabled && !this->pinned)
1483 		pci_disable_device(dev);
1484 }
1485 
1486 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1487 {
1488 	struct pci_devres *dr, *new_dr;
1489 
1490 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1491 	if (dr)
1492 		return dr;
1493 
1494 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1495 	if (!new_dr)
1496 		return NULL;
1497 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1498 }
1499 
1500 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1501 {
1502 	if (pci_is_managed(pdev))
1503 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1504 	return NULL;
1505 }
1506 
1507 /**
1508  * pcim_enable_device - Managed pci_enable_device()
1509  * @pdev: PCI device to be initialized
1510  *
1511  * Managed pci_enable_device().
1512  */
1513 int pcim_enable_device(struct pci_dev *pdev)
1514 {
1515 	struct pci_devres *dr;
1516 	int rc;
1517 
1518 	dr = get_pci_dr(pdev);
1519 	if (unlikely(!dr))
1520 		return -ENOMEM;
1521 	if (dr->enabled)
1522 		return 0;
1523 
1524 	rc = pci_enable_device(pdev);
1525 	if (!rc) {
1526 		pdev->is_managed = 1;
1527 		dr->enabled = 1;
1528 	}
1529 	return rc;
1530 }
1531 EXPORT_SYMBOL(pcim_enable_device);
1532 
1533 /**
1534  * pcim_pin_device - Pin managed PCI device
1535  * @pdev: PCI device to pin
1536  *
1537  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1538  * driver detach.  @pdev must have been enabled with
1539  * pcim_enable_device().
1540  */
1541 void pcim_pin_device(struct pci_dev *pdev)
1542 {
1543 	struct pci_devres *dr;
1544 
1545 	dr = find_pci_dr(pdev);
1546 	WARN_ON(!dr || !dr->enabled);
1547 	if (dr)
1548 		dr->pinned = 1;
1549 }
1550 EXPORT_SYMBOL(pcim_pin_device);
1551 
1552 /*
1553  * pcibios_add_device - provide arch specific hooks when adding device dev
1554  * @dev: the PCI device being added
1555  *
1556  * Permits the platform to provide architecture specific functionality when
1557  * devices are added. This is the default implementation. Architecture
1558  * implementations can override this.
1559  */
1560 int __weak pcibios_add_device(struct pci_dev *dev)
1561 {
1562 	return 0;
1563 }
1564 
1565 /**
1566  * pcibios_release_device - provide arch specific hooks when releasing device dev
1567  * @dev: the PCI device being released
1568  *
1569  * Permits the platform to provide architecture specific functionality when
1570  * devices are released. This is the default implementation. Architecture
1571  * implementations can override this.
1572  */
1573 void __weak pcibios_release_device(struct pci_dev *dev) {}
1574 
1575 /**
1576  * pcibios_disable_device - disable arch specific PCI resources for device dev
1577  * @dev: the PCI device to disable
1578  *
1579  * Disables architecture specific PCI resources for the device. This
1580  * is the default implementation. Architecture implementations can
1581  * override this.
1582  */
1583 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1584 
1585 /**
1586  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1587  * @irq: ISA IRQ to penalize
1588  * @active: IRQ active or not
1589  *
1590  * Permits the platform to provide architecture-specific functionality when
1591  * penalizing ISA IRQs. This is the default implementation. Architecture
1592  * implementations can override this.
1593  */
1594 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1595 
1596 static void do_pci_disable_device(struct pci_dev *dev)
1597 {
1598 	u16 pci_command;
1599 
1600 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1601 	if (pci_command & PCI_COMMAND_MASTER) {
1602 		pci_command &= ~PCI_COMMAND_MASTER;
1603 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1604 	}
1605 
1606 	pcibios_disable_device(dev);
1607 }
1608 
1609 /**
1610  * pci_disable_enabled_device - Disable device without updating enable_cnt
1611  * @dev: PCI device to disable
1612  *
1613  * NOTE: This function is a backend of PCI power management routines and is
1614  * not supposed to be called drivers.
1615  */
1616 void pci_disable_enabled_device(struct pci_dev *dev)
1617 {
1618 	if (pci_is_enabled(dev))
1619 		do_pci_disable_device(dev);
1620 }
1621 
1622 /**
1623  * pci_disable_device - Disable PCI device after use
1624  * @dev: PCI device to be disabled
1625  *
1626  * Signal to the system that the PCI device is not in use by the system
1627  * anymore.  This only involves disabling PCI bus-mastering, if active.
1628  *
1629  * Note we don't actually disable the device until all callers of
1630  * pci_enable_device() have called pci_disable_device().
1631  */
1632 void pci_disable_device(struct pci_dev *dev)
1633 {
1634 	struct pci_devres *dr;
1635 
1636 	dr = find_pci_dr(dev);
1637 	if (dr)
1638 		dr->enabled = 0;
1639 
1640 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1641 		      "disabling already-disabled device");
1642 
1643 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1644 		return;
1645 
1646 	do_pci_disable_device(dev);
1647 
1648 	dev->is_busmaster = 0;
1649 }
1650 EXPORT_SYMBOL(pci_disable_device);
1651 
1652 /**
1653  * pcibios_set_pcie_reset_state - set reset state for device dev
1654  * @dev: the PCIe device reset
1655  * @state: Reset state to enter into
1656  *
1657  *
1658  * Sets the PCIe reset state for the device. This is the default
1659  * implementation. Architecture implementations can override this.
1660  */
1661 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1662 					enum pcie_reset_state state)
1663 {
1664 	return -EINVAL;
1665 }
1666 
1667 /**
1668  * pci_set_pcie_reset_state - set reset state for device dev
1669  * @dev: the PCIe device reset
1670  * @state: Reset state to enter into
1671  *
1672  *
1673  * Sets the PCI reset state for the device.
1674  */
1675 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1676 {
1677 	return pcibios_set_pcie_reset_state(dev, state);
1678 }
1679 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1680 
1681 /**
1682  * pci_check_pme_status - Check if given device has generated PME.
1683  * @dev: Device to check.
1684  *
1685  * Check the PME status of the device and if set, clear it and clear PME enable
1686  * (if set).  Return 'true' if PME status and PME enable were both set or
1687  * 'false' otherwise.
1688  */
1689 bool pci_check_pme_status(struct pci_dev *dev)
1690 {
1691 	int pmcsr_pos;
1692 	u16 pmcsr;
1693 	bool ret = false;
1694 
1695 	if (!dev->pm_cap)
1696 		return false;
1697 
1698 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1699 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1700 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1701 		return false;
1702 
1703 	/* Clear PME status. */
1704 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1705 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1706 		/* Disable PME to avoid interrupt flood. */
1707 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1708 		ret = true;
1709 	}
1710 
1711 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1712 
1713 	return ret;
1714 }
1715 
1716 /**
1717  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1718  * @dev: Device to handle.
1719  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1720  *
1721  * Check if @dev has generated PME and queue a resume request for it in that
1722  * case.
1723  */
1724 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1725 {
1726 	if (pme_poll_reset && dev->pme_poll)
1727 		dev->pme_poll = false;
1728 
1729 	if (pci_check_pme_status(dev)) {
1730 		pci_wakeup_event(dev);
1731 		pm_request_resume(&dev->dev);
1732 	}
1733 	return 0;
1734 }
1735 
1736 /**
1737  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1738  * @bus: Top bus of the subtree to walk.
1739  */
1740 void pci_pme_wakeup_bus(struct pci_bus *bus)
1741 {
1742 	if (bus)
1743 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1744 }
1745 
1746 
1747 /**
1748  * pci_pme_capable - check the capability of PCI device to generate PME#
1749  * @dev: PCI device to handle.
1750  * @state: PCI state from which device will issue PME#.
1751  */
1752 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1753 {
1754 	if (!dev->pm_cap)
1755 		return false;
1756 
1757 	return !!(dev->pme_support & (1 << state));
1758 }
1759 EXPORT_SYMBOL(pci_pme_capable);
1760 
1761 static void pci_pme_list_scan(struct work_struct *work)
1762 {
1763 	struct pci_pme_device *pme_dev, *n;
1764 
1765 	mutex_lock(&pci_pme_list_mutex);
1766 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1767 		if (pme_dev->dev->pme_poll) {
1768 			struct pci_dev *bridge;
1769 
1770 			bridge = pme_dev->dev->bus->self;
1771 			/*
1772 			 * If bridge is in low power state, the
1773 			 * configuration space of subordinate devices
1774 			 * may be not accessible
1775 			 */
1776 			if (bridge && bridge->current_state != PCI_D0)
1777 				continue;
1778 			pci_pme_wakeup(pme_dev->dev, NULL);
1779 		} else {
1780 			list_del(&pme_dev->list);
1781 			kfree(pme_dev);
1782 		}
1783 	}
1784 	if (!list_empty(&pci_pme_list))
1785 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1786 				   msecs_to_jiffies(PME_TIMEOUT));
1787 	mutex_unlock(&pci_pme_list_mutex);
1788 }
1789 
1790 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1791 {
1792 	u16 pmcsr;
1793 
1794 	if (!dev->pme_support)
1795 		return;
1796 
1797 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1798 	/* Clear PME_Status by writing 1 to it and enable PME# */
1799 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1800 	if (!enable)
1801 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1802 
1803 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1804 }
1805 
1806 /**
1807  * pci_pme_restore - Restore PME configuration after config space restore.
1808  * @dev: PCI device to update.
1809  */
1810 void pci_pme_restore(struct pci_dev *dev)
1811 {
1812 	u16 pmcsr;
1813 
1814 	if (!dev->pme_support)
1815 		return;
1816 
1817 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1818 	if (dev->wakeup_prepared) {
1819 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1820 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1821 	} else {
1822 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1823 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
1824 	}
1825 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1826 }
1827 
1828 /**
1829  * pci_pme_active - enable or disable PCI device's PME# function
1830  * @dev: PCI device to handle.
1831  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1832  *
1833  * The caller must verify that the device is capable of generating PME# before
1834  * calling this function with @enable equal to 'true'.
1835  */
1836 void pci_pme_active(struct pci_dev *dev, bool enable)
1837 {
1838 	__pci_pme_active(dev, enable);
1839 
1840 	/*
1841 	 * PCI (as opposed to PCIe) PME requires that the device have
1842 	 * its PME# line hooked up correctly. Not all hardware vendors
1843 	 * do this, so the PME never gets delivered and the device
1844 	 * remains asleep. The easiest way around this is to
1845 	 * periodically walk the list of suspended devices and check
1846 	 * whether any have their PME flag set. The assumption is that
1847 	 * we'll wake up often enough anyway that this won't be a huge
1848 	 * hit, and the power savings from the devices will still be a
1849 	 * win.
1850 	 *
1851 	 * Although PCIe uses in-band PME message instead of PME# line
1852 	 * to report PME, PME does not work for some PCIe devices in
1853 	 * reality.  For example, there are devices that set their PME
1854 	 * status bits, but don't really bother to send a PME message;
1855 	 * there are PCI Express Root Ports that don't bother to
1856 	 * trigger interrupts when they receive PME messages from the
1857 	 * devices below.  So PME poll is used for PCIe devices too.
1858 	 */
1859 
1860 	if (dev->pme_poll) {
1861 		struct pci_pme_device *pme_dev;
1862 		if (enable) {
1863 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1864 					  GFP_KERNEL);
1865 			if (!pme_dev) {
1866 				dev_warn(&dev->dev, "can't enable PME#\n");
1867 				return;
1868 			}
1869 			pme_dev->dev = dev;
1870 			mutex_lock(&pci_pme_list_mutex);
1871 			list_add(&pme_dev->list, &pci_pme_list);
1872 			if (list_is_singular(&pci_pme_list))
1873 				queue_delayed_work(system_freezable_wq,
1874 						   &pci_pme_work,
1875 						   msecs_to_jiffies(PME_TIMEOUT));
1876 			mutex_unlock(&pci_pme_list_mutex);
1877 		} else {
1878 			mutex_lock(&pci_pme_list_mutex);
1879 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1880 				if (pme_dev->dev == dev) {
1881 					list_del(&pme_dev->list);
1882 					kfree(pme_dev);
1883 					break;
1884 				}
1885 			}
1886 			mutex_unlock(&pci_pme_list_mutex);
1887 		}
1888 	}
1889 
1890 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1891 }
1892 EXPORT_SYMBOL(pci_pme_active);
1893 
1894 /**
1895  * pci_enable_wake - enable PCI device as wakeup event source
1896  * @dev: PCI device affected
1897  * @state: PCI state from which device will issue wakeup events
1898  * @enable: True to enable event generation; false to disable
1899  *
1900  * This enables the device as a wakeup event source, or disables it.
1901  * When such events involves platform-specific hooks, those hooks are
1902  * called automatically by this routine.
1903  *
1904  * Devices with legacy power management (no standard PCI PM capabilities)
1905  * always require such platform hooks.
1906  *
1907  * RETURN VALUE:
1908  * 0 is returned on success
1909  * -EINVAL is returned if device is not supposed to wake up the system
1910  * Error code depending on the platform is returned if both the platform and
1911  * the native mechanism fail to enable the generation of wake-up events
1912  */
1913 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1914 {
1915 	int ret = 0;
1916 
1917 	/*
1918 	 * Bridges can only signal wakeup on behalf of subordinate devices,
1919 	 * but that is set up elsewhere, so skip them.
1920 	 */
1921 	if (pci_has_subordinate(dev))
1922 		return 0;
1923 
1924 	/* Don't do the same thing twice in a row for one device. */
1925 	if (!!enable == !!dev->wakeup_prepared)
1926 		return 0;
1927 
1928 	/*
1929 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1930 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1931 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1932 	 */
1933 
1934 	if (enable) {
1935 		int error;
1936 
1937 		if (pci_pme_capable(dev, state))
1938 			pci_pme_active(dev, true);
1939 		else
1940 			ret = 1;
1941 		error = platform_pci_set_wakeup(dev, true);
1942 		if (ret)
1943 			ret = error;
1944 		if (!ret)
1945 			dev->wakeup_prepared = true;
1946 	} else {
1947 		platform_pci_set_wakeup(dev, false);
1948 		pci_pme_active(dev, false);
1949 		dev->wakeup_prepared = false;
1950 	}
1951 
1952 	return ret;
1953 }
1954 EXPORT_SYMBOL(pci_enable_wake);
1955 
1956 /**
1957  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1958  * @dev: PCI device to prepare
1959  * @enable: True to enable wake-up event generation; false to disable
1960  *
1961  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1962  * and this function allows them to set that up cleanly - pci_enable_wake()
1963  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1964  * ordering constraints.
1965  *
1966  * This function only returns error code if the device is not capable of
1967  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1968  * enable wake-up power for it.
1969  */
1970 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1971 {
1972 	return pci_pme_capable(dev, PCI_D3cold) ?
1973 			pci_enable_wake(dev, PCI_D3cold, enable) :
1974 			pci_enable_wake(dev, PCI_D3hot, enable);
1975 }
1976 EXPORT_SYMBOL(pci_wake_from_d3);
1977 
1978 /**
1979  * pci_target_state - find an appropriate low power state for a given PCI dev
1980  * @dev: PCI device
1981  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
1982  *
1983  * Use underlying platform code to find a supported low power state for @dev.
1984  * If the platform can't manage @dev, return the deepest state from which it
1985  * can generate wake events, based on any available PME info.
1986  */
1987 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
1988 {
1989 	pci_power_t target_state = PCI_D3hot;
1990 
1991 	if (platform_pci_power_manageable(dev)) {
1992 		/*
1993 		 * Call the platform to choose the target state of the device
1994 		 * and enable wake-up from this state if supported.
1995 		 */
1996 		pci_power_t state = platform_pci_choose_state(dev);
1997 
1998 		switch (state) {
1999 		case PCI_POWER_ERROR:
2000 		case PCI_UNKNOWN:
2001 			break;
2002 		case PCI_D1:
2003 		case PCI_D2:
2004 			if (pci_no_d1d2(dev))
2005 				break;
2006 		default:
2007 			target_state = state;
2008 		}
2009 
2010 		return target_state;
2011 	}
2012 
2013 	if (!dev->pm_cap)
2014 		target_state = PCI_D0;
2015 
2016 	/*
2017 	 * If the device is in D3cold even though it's not power-manageable by
2018 	 * the platform, it may have been powered down by non-standard means.
2019 	 * Best to let it slumber.
2020 	 */
2021 	if (dev->current_state == PCI_D3cold)
2022 		target_state = PCI_D3cold;
2023 
2024 	if (wakeup) {
2025 		/*
2026 		 * Find the deepest state from which the device can generate
2027 		 * wake-up events, make it the target state and enable device
2028 		 * to generate PME#.
2029 		 */
2030 		if (dev->pme_support) {
2031 			while (target_state
2032 			      && !(dev->pme_support & (1 << target_state)))
2033 				target_state--;
2034 		}
2035 	}
2036 
2037 	return target_state;
2038 }
2039 
2040 /**
2041  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2042  * @dev: Device to handle.
2043  *
2044  * Choose the power state appropriate for the device depending on whether
2045  * it can wake up the system and/or is power manageable by the platform
2046  * (PCI_D3hot is the default) and put the device into that state.
2047  */
2048 int pci_prepare_to_sleep(struct pci_dev *dev)
2049 {
2050 	bool wakeup = device_may_wakeup(&dev->dev);
2051 	pci_power_t target_state = pci_target_state(dev, wakeup);
2052 	int error;
2053 
2054 	if (target_state == PCI_POWER_ERROR)
2055 		return -EIO;
2056 
2057 	pci_enable_wake(dev, target_state, wakeup);
2058 
2059 	error = pci_set_power_state(dev, target_state);
2060 
2061 	if (error)
2062 		pci_enable_wake(dev, target_state, false);
2063 
2064 	return error;
2065 }
2066 EXPORT_SYMBOL(pci_prepare_to_sleep);
2067 
2068 /**
2069  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2070  * @dev: Device to handle.
2071  *
2072  * Disable device's system wake-up capability and put it into D0.
2073  */
2074 int pci_back_from_sleep(struct pci_dev *dev)
2075 {
2076 	pci_enable_wake(dev, PCI_D0, false);
2077 	return pci_set_power_state(dev, PCI_D0);
2078 }
2079 EXPORT_SYMBOL(pci_back_from_sleep);
2080 
2081 /**
2082  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2083  * @dev: PCI device being suspended.
2084  *
2085  * Prepare @dev to generate wake-up events at run time and put it into a low
2086  * power state.
2087  */
2088 int pci_finish_runtime_suspend(struct pci_dev *dev)
2089 {
2090 	pci_power_t target_state;
2091 	int error;
2092 
2093 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2094 	if (target_state == PCI_POWER_ERROR)
2095 		return -EIO;
2096 
2097 	dev->runtime_d3cold = target_state == PCI_D3cold;
2098 
2099 	pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2100 
2101 	error = pci_set_power_state(dev, target_state);
2102 
2103 	if (error) {
2104 		pci_enable_wake(dev, target_state, false);
2105 		dev->runtime_d3cold = false;
2106 	}
2107 
2108 	return error;
2109 }
2110 
2111 /**
2112  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2113  * @dev: Device to check.
2114  *
2115  * Return true if the device itself is capable of generating wake-up events
2116  * (through the platform or using the native PCIe PME) or if the device supports
2117  * PME and one of its upstream bridges can generate wake-up events.
2118  */
2119 bool pci_dev_run_wake(struct pci_dev *dev)
2120 {
2121 	struct pci_bus *bus = dev->bus;
2122 
2123 	if (device_can_wakeup(&dev->dev))
2124 		return true;
2125 
2126 	if (!dev->pme_support)
2127 		return false;
2128 
2129 	/* PME-capable in principle, but not from the target power state */
2130 	if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2131 		return false;
2132 
2133 	while (bus->parent) {
2134 		struct pci_dev *bridge = bus->self;
2135 
2136 		if (device_can_wakeup(&bridge->dev))
2137 			return true;
2138 
2139 		bus = bus->parent;
2140 	}
2141 
2142 	/* We have reached the root bus. */
2143 	if (bus->bridge)
2144 		return device_can_wakeup(bus->bridge);
2145 
2146 	return false;
2147 }
2148 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2149 
2150 /**
2151  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2152  * @pci_dev: Device to check.
2153  *
2154  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2155  * reconfigured due to wakeup settings difference between system and runtime
2156  * suspend and the current power state of it is suitable for the upcoming
2157  * (system) transition.
2158  *
2159  * If the device is not configured for system wakeup, disable PME for it before
2160  * returning 'true' to prevent it from waking up the system unnecessarily.
2161  */
2162 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2163 {
2164 	struct device *dev = &pci_dev->dev;
2165 	bool wakeup = device_may_wakeup(dev);
2166 
2167 	if (!pm_runtime_suspended(dev)
2168 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2169 	    || platform_pci_need_resume(pci_dev))
2170 		return false;
2171 
2172 	/*
2173 	 * At this point the device is good to go unless it's been configured
2174 	 * to generate PME at the runtime suspend time, but it is not supposed
2175 	 * to wake up the system.  In that case, simply disable PME for it
2176 	 * (it will have to be re-enabled on exit from system resume).
2177 	 *
2178 	 * If the device's power state is D3cold and the platform check above
2179 	 * hasn't triggered, the device's configuration is suitable and we don't
2180 	 * need to manipulate it at all.
2181 	 */
2182 	spin_lock_irq(&dev->power.lock);
2183 
2184 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2185 	    !wakeup)
2186 		__pci_pme_active(pci_dev, false);
2187 
2188 	spin_unlock_irq(&dev->power.lock);
2189 	return true;
2190 }
2191 
2192 /**
2193  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2194  * @pci_dev: Device to handle.
2195  *
2196  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2197  * it might have been disabled during the prepare phase of system suspend if
2198  * the device was not configured for system wakeup.
2199  */
2200 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2201 {
2202 	struct device *dev = &pci_dev->dev;
2203 
2204 	if (!pci_dev_run_wake(pci_dev))
2205 		return;
2206 
2207 	spin_lock_irq(&dev->power.lock);
2208 
2209 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2210 		__pci_pme_active(pci_dev, true);
2211 
2212 	spin_unlock_irq(&dev->power.lock);
2213 }
2214 
2215 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2216 {
2217 	struct device *dev = &pdev->dev;
2218 	struct device *parent = dev->parent;
2219 
2220 	if (parent)
2221 		pm_runtime_get_sync(parent);
2222 	pm_runtime_get_noresume(dev);
2223 	/*
2224 	 * pdev->current_state is set to PCI_D3cold during suspending,
2225 	 * so wait until suspending completes
2226 	 */
2227 	pm_runtime_barrier(dev);
2228 	/*
2229 	 * Only need to resume devices in D3cold, because config
2230 	 * registers are still accessible for devices suspended but
2231 	 * not in D3cold.
2232 	 */
2233 	if (pdev->current_state == PCI_D3cold)
2234 		pm_runtime_resume(dev);
2235 }
2236 
2237 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2238 {
2239 	struct device *dev = &pdev->dev;
2240 	struct device *parent = dev->parent;
2241 
2242 	pm_runtime_put(dev);
2243 	if (parent)
2244 		pm_runtime_put_sync(parent);
2245 }
2246 
2247 /**
2248  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2249  * @bridge: Bridge to check
2250  *
2251  * This function checks if it is possible to move the bridge to D3.
2252  * Currently we only allow D3 for recent enough PCIe ports.
2253  */
2254 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2255 {
2256 	unsigned int year;
2257 
2258 	if (!pci_is_pcie(bridge))
2259 		return false;
2260 
2261 	switch (pci_pcie_type(bridge)) {
2262 	case PCI_EXP_TYPE_ROOT_PORT:
2263 	case PCI_EXP_TYPE_UPSTREAM:
2264 	case PCI_EXP_TYPE_DOWNSTREAM:
2265 		if (pci_bridge_d3_disable)
2266 			return false;
2267 
2268 		/*
2269 		 * Hotplug interrupts cannot be delivered if the link is down,
2270 		 * so parents of a hotplug port must stay awake. In addition,
2271 		 * hotplug ports handled by firmware in System Management Mode
2272 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2273 		 * For simplicity, disallow in general for now.
2274 		 */
2275 		if (bridge->is_hotplug_bridge)
2276 			return false;
2277 
2278 		if (pci_bridge_d3_force)
2279 			return true;
2280 
2281 		/*
2282 		 * It should be safe to put PCIe ports from 2015 or newer
2283 		 * to D3.
2284 		 */
2285 		if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2286 		    year >= 2015) {
2287 			return true;
2288 		}
2289 		break;
2290 	}
2291 
2292 	return false;
2293 }
2294 
2295 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2296 {
2297 	bool *d3cold_ok = data;
2298 
2299 	if (/* The device needs to be allowed to go D3cold ... */
2300 	    dev->no_d3cold || !dev->d3cold_allowed ||
2301 
2302 	    /* ... and if it is wakeup capable to do so from D3cold. */
2303 	    (device_may_wakeup(&dev->dev) &&
2304 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2305 
2306 	    /* If it is a bridge it must be allowed to go to D3. */
2307 	    !pci_power_manageable(dev))
2308 
2309 		*d3cold_ok = false;
2310 
2311 	return !*d3cold_ok;
2312 }
2313 
2314 /*
2315  * pci_bridge_d3_update - Update bridge D3 capabilities
2316  * @dev: PCI device which is changed
2317  *
2318  * Update upstream bridge PM capabilities accordingly depending on if the
2319  * device PM configuration was changed or the device is being removed.  The
2320  * change is also propagated upstream.
2321  */
2322 void pci_bridge_d3_update(struct pci_dev *dev)
2323 {
2324 	bool remove = !device_is_registered(&dev->dev);
2325 	struct pci_dev *bridge;
2326 	bool d3cold_ok = true;
2327 
2328 	bridge = pci_upstream_bridge(dev);
2329 	if (!bridge || !pci_bridge_d3_possible(bridge))
2330 		return;
2331 
2332 	/*
2333 	 * If D3 is currently allowed for the bridge, removing one of its
2334 	 * children won't change that.
2335 	 */
2336 	if (remove && bridge->bridge_d3)
2337 		return;
2338 
2339 	/*
2340 	 * If D3 is currently allowed for the bridge and a child is added or
2341 	 * changed, disallowance of D3 can only be caused by that child, so
2342 	 * we only need to check that single device, not any of its siblings.
2343 	 *
2344 	 * If D3 is currently not allowed for the bridge, checking the device
2345 	 * first may allow us to skip checking its siblings.
2346 	 */
2347 	if (!remove)
2348 		pci_dev_check_d3cold(dev, &d3cold_ok);
2349 
2350 	/*
2351 	 * If D3 is currently not allowed for the bridge, this may be caused
2352 	 * either by the device being changed/removed or any of its siblings,
2353 	 * so we need to go through all children to find out if one of them
2354 	 * continues to block D3.
2355 	 */
2356 	if (d3cold_ok && !bridge->bridge_d3)
2357 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2358 			     &d3cold_ok);
2359 
2360 	if (bridge->bridge_d3 != d3cold_ok) {
2361 		bridge->bridge_d3 = d3cold_ok;
2362 		/* Propagate change to upstream bridges */
2363 		pci_bridge_d3_update(bridge);
2364 	}
2365 }
2366 
2367 /**
2368  * pci_d3cold_enable - Enable D3cold for device
2369  * @dev: PCI device to handle
2370  *
2371  * This function can be used in drivers to enable D3cold from the device
2372  * they handle.  It also updates upstream PCI bridge PM capabilities
2373  * accordingly.
2374  */
2375 void pci_d3cold_enable(struct pci_dev *dev)
2376 {
2377 	if (dev->no_d3cold) {
2378 		dev->no_d3cold = false;
2379 		pci_bridge_d3_update(dev);
2380 	}
2381 }
2382 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2383 
2384 /**
2385  * pci_d3cold_disable - Disable D3cold for device
2386  * @dev: PCI device to handle
2387  *
2388  * This function can be used in drivers to disable D3cold from the device
2389  * they handle.  It also updates upstream PCI bridge PM capabilities
2390  * accordingly.
2391  */
2392 void pci_d3cold_disable(struct pci_dev *dev)
2393 {
2394 	if (!dev->no_d3cold) {
2395 		dev->no_d3cold = true;
2396 		pci_bridge_d3_update(dev);
2397 	}
2398 }
2399 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2400 
2401 /**
2402  * pci_pm_init - Initialize PM functions of given PCI device
2403  * @dev: PCI device to handle.
2404  */
2405 void pci_pm_init(struct pci_dev *dev)
2406 {
2407 	int pm;
2408 	u16 pmc;
2409 
2410 	pm_runtime_forbid(&dev->dev);
2411 	pm_runtime_set_active(&dev->dev);
2412 	pm_runtime_enable(&dev->dev);
2413 	device_enable_async_suspend(&dev->dev);
2414 	dev->wakeup_prepared = false;
2415 
2416 	dev->pm_cap = 0;
2417 	dev->pme_support = 0;
2418 
2419 	/* find PCI PM capability in list */
2420 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2421 	if (!pm)
2422 		return;
2423 	/* Check device's ability to generate PME# */
2424 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2425 
2426 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2427 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2428 			pmc & PCI_PM_CAP_VER_MASK);
2429 		return;
2430 	}
2431 
2432 	dev->pm_cap = pm;
2433 	dev->d3_delay = PCI_PM_D3_WAIT;
2434 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2435 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2436 	dev->d3cold_allowed = true;
2437 
2438 	dev->d1_support = false;
2439 	dev->d2_support = false;
2440 	if (!pci_no_d1d2(dev)) {
2441 		if (pmc & PCI_PM_CAP_D1)
2442 			dev->d1_support = true;
2443 		if (pmc & PCI_PM_CAP_D2)
2444 			dev->d2_support = true;
2445 
2446 		if (dev->d1_support || dev->d2_support)
2447 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2448 				   dev->d1_support ? " D1" : "",
2449 				   dev->d2_support ? " D2" : "");
2450 	}
2451 
2452 	pmc &= PCI_PM_CAP_PME_MASK;
2453 	if (pmc) {
2454 		dev_printk(KERN_DEBUG, &dev->dev,
2455 			 "PME# supported from%s%s%s%s%s\n",
2456 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2457 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2458 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2459 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2460 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2461 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2462 		dev->pme_poll = true;
2463 		/*
2464 		 * Make device's PM flags reflect the wake-up capability, but
2465 		 * let the user space enable it to wake up the system as needed.
2466 		 */
2467 		device_set_wakeup_capable(&dev->dev, true);
2468 		/* Disable the PME# generation functionality */
2469 		pci_pme_active(dev, false);
2470 	}
2471 }
2472 
2473 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2474 {
2475 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2476 
2477 	switch (prop) {
2478 	case PCI_EA_P_MEM:
2479 	case PCI_EA_P_VF_MEM:
2480 		flags |= IORESOURCE_MEM;
2481 		break;
2482 	case PCI_EA_P_MEM_PREFETCH:
2483 	case PCI_EA_P_VF_MEM_PREFETCH:
2484 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2485 		break;
2486 	case PCI_EA_P_IO:
2487 		flags |= IORESOURCE_IO;
2488 		break;
2489 	default:
2490 		return 0;
2491 	}
2492 
2493 	return flags;
2494 }
2495 
2496 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2497 					    u8 prop)
2498 {
2499 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2500 		return &dev->resource[bei];
2501 #ifdef CONFIG_PCI_IOV
2502 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2503 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2504 		return &dev->resource[PCI_IOV_RESOURCES +
2505 				      bei - PCI_EA_BEI_VF_BAR0];
2506 #endif
2507 	else if (bei == PCI_EA_BEI_ROM)
2508 		return &dev->resource[PCI_ROM_RESOURCE];
2509 	else
2510 		return NULL;
2511 }
2512 
2513 /* Read an Enhanced Allocation (EA) entry */
2514 static int pci_ea_read(struct pci_dev *dev, int offset)
2515 {
2516 	struct resource *res;
2517 	int ent_size, ent_offset = offset;
2518 	resource_size_t start, end;
2519 	unsigned long flags;
2520 	u32 dw0, bei, base, max_offset;
2521 	u8 prop;
2522 	bool support_64 = (sizeof(resource_size_t) >= 8);
2523 
2524 	pci_read_config_dword(dev, ent_offset, &dw0);
2525 	ent_offset += 4;
2526 
2527 	/* Entry size field indicates DWORDs after 1st */
2528 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2529 
2530 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2531 		goto out;
2532 
2533 	bei = (dw0 & PCI_EA_BEI) >> 4;
2534 	prop = (dw0 & PCI_EA_PP) >> 8;
2535 
2536 	/*
2537 	 * If the Property is in the reserved range, try the Secondary
2538 	 * Property instead.
2539 	 */
2540 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2541 		prop = (dw0 & PCI_EA_SP) >> 16;
2542 	if (prop > PCI_EA_P_BRIDGE_IO)
2543 		goto out;
2544 
2545 	res = pci_ea_get_resource(dev, bei, prop);
2546 	if (!res) {
2547 		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2548 		goto out;
2549 	}
2550 
2551 	flags = pci_ea_flags(dev, prop);
2552 	if (!flags) {
2553 		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2554 		goto out;
2555 	}
2556 
2557 	/* Read Base */
2558 	pci_read_config_dword(dev, ent_offset, &base);
2559 	start = (base & PCI_EA_FIELD_MASK);
2560 	ent_offset += 4;
2561 
2562 	/* Read MaxOffset */
2563 	pci_read_config_dword(dev, ent_offset, &max_offset);
2564 	ent_offset += 4;
2565 
2566 	/* Read Base MSBs (if 64-bit entry) */
2567 	if (base & PCI_EA_IS_64) {
2568 		u32 base_upper;
2569 
2570 		pci_read_config_dword(dev, ent_offset, &base_upper);
2571 		ent_offset += 4;
2572 
2573 		flags |= IORESOURCE_MEM_64;
2574 
2575 		/* entry starts above 32-bit boundary, can't use */
2576 		if (!support_64 && base_upper)
2577 			goto out;
2578 
2579 		if (support_64)
2580 			start |= ((u64)base_upper << 32);
2581 	}
2582 
2583 	end = start + (max_offset | 0x03);
2584 
2585 	/* Read MaxOffset MSBs (if 64-bit entry) */
2586 	if (max_offset & PCI_EA_IS_64) {
2587 		u32 max_offset_upper;
2588 
2589 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2590 		ent_offset += 4;
2591 
2592 		flags |= IORESOURCE_MEM_64;
2593 
2594 		/* entry too big, can't use */
2595 		if (!support_64 && max_offset_upper)
2596 			goto out;
2597 
2598 		if (support_64)
2599 			end += ((u64)max_offset_upper << 32);
2600 	}
2601 
2602 	if (end < start) {
2603 		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2604 		goto out;
2605 	}
2606 
2607 	if (ent_size != ent_offset - offset) {
2608 		dev_err(&dev->dev,
2609 			"EA Entry Size (%d) does not match length read (%d)\n",
2610 			ent_size, ent_offset - offset);
2611 		goto out;
2612 	}
2613 
2614 	res->name = pci_name(dev);
2615 	res->start = start;
2616 	res->end = end;
2617 	res->flags = flags;
2618 
2619 	if (bei <= PCI_EA_BEI_BAR5)
2620 		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2621 			   bei, res, prop);
2622 	else if (bei == PCI_EA_BEI_ROM)
2623 		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2624 			   res, prop);
2625 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2626 		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2627 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2628 	else
2629 		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2630 			   bei, res, prop);
2631 
2632 out:
2633 	return offset + ent_size;
2634 }
2635 
2636 /* Enhanced Allocation Initialization */
2637 void pci_ea_init(struct pci_dev *dev)
2638 {
2639 	int ea;
2640 	u8 num_ent;
2641 	int offset;
2642 	int i;
2643 
2644 	/* find PCI EA capability in list */
2645 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2646 	if (!ea)
2647 		return;
2648 
2649 	/* determine the number of entries */
2650 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2651 					&num_ent);
2652 	num_ent &= PCI_EA_NUM_ENT_MASK;
2653 
2654 	offset = ea + PCI_EA_FIRST_ENT;
2655 
2656 	/* Skip DWORD 2 for type 1 functions */
2657 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2658 		offset += 4;
2659 
2660 	/* parse each EA entry */
2661 	for (i = 0; i < num_ent; ++i)
2662 		offset = pci_ea_read(dev, offset);
2663 }
2664 
2665 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2666 	struct pci_cap_saved_state *new_cap)
2667 {
2668 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2669 }
2670 
2671 /**
2672  * _pci_add_cap_save_buffer - allocate buffer for saving given
2673  *                            capability registers
2674  * @dev: the PCI device
2675  * @cap: the capability to allocate the buffer for
2676  * @extended: Standard or Extended capability ID
2677  * @size: requested size of the buffer
2678  */
2679 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2680 				    bool extended, unsigned int size)
2681 {
2682 	int pos;
2683 	struct pci_cap_saved_state *save_state;
2684 
2685 	if (extended)
2686 		pos = pci_find_ext_capability(dev, cap);
2687 	else
2688 		pos = pci_find_capability(dev, cap);
2689 
2690 	if (!pos)
2691 		return 0;
2692 
2693 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2694 	if (!save_state)
2695 		return -ENOMEM;
2696 
2697 	save_state->cap.cap_nr = cap;
2698 	save_state->cap.cap_extended = extended;
2699 	save_state->cap.size = size;
2700 	pci_add_saved_cap(dev, save_state);
2701 
2702 	return 0;
2703 }
2704 
2705 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2706 {
2707 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2708 }
2709 
2710 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2711 {
2712 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2713 }
2714 
2715 /**
2716  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2717  * @dev: the PCI device
2718  */
2719 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2720 {
2721 	int error;
2722 
2723 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2724 					PCI_EXP_SAVE_REGS * sizeof(u16));
2725 	if (error)
2726 		dev_err(&dev->dev,
2727 			"unable to preallocate PCI Express save buffer\n");
2728 
2729 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2730 	if (error)
2731 		dev_err(&dev->dev,
2732 			"unable to preallocate PCI-X save buffer\n");
2733 
2734 	pci_allocate_vc_save_buffers(dev);
2735 }
2736 
2737 void pci_free_cap_save_buffers(struct pci_dev *dev)
2738 {
2739 	struct pci_cap_saved_state *tmp;
2740 	struct hlist_node *n;
2741 
2742 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2743 		kfree(tmp);
2744 }
2745 
2746 /**
2747  * pci_configure_ari - enable or disable ARI forwarding
2748  * @dev: the PCI device
2749  *
2750  * If @dev and its upstream bridge both support ARI, enable ARI in the
2751  * bridge.  Otherwise, disable ARI in the bridge.
2752  */
2753 void pci_configure_ari(struct pci_dev *dev)
2754 {
2755 	u32 cap;
2756 	struct pci_dev *bridge;
2757 
2758 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2759 		return;
2760 
2761 	bridge = dev->bus->self;
2762 	if (!bridge)
2763 		return;
2764 
2765 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2766 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2767 		return;
2768 
2769 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2770 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2771 					 PCI_EXP_DEVCTL2_ARI);
2772 		bridge->ari_enabled = 1;
2773 	} else {
2774 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2775 					   PCI_EXP_DEVCTL2_ARI);
2776 		bridge->ari_enabled = 0;
2777 	}
2778 }
2779 
2780 static int pci_acs_enable;
2781 
2782 /**
2783  * pci_request_acs - ask for ACS to be enabled if supported
2784  */
2785 void pci_request_acs(void)
2786 {
2787 	pci_acs_enable = 1;
2788 }
2789 
2790 /**
2791  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2792  * @dev: the PCI device
2793  */
2794 static void pci_std_enable_acs(struct pci_dev *dev)
2795 {
2796 	int pos;
2797 	u16 cap;
2798 	u16 ctrl;
2799 
2800 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2801 	if (!pos)
2802 		return;
2803 
2804 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2805 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2806 
2807 	/* Source Validation */
2808 	ctrl |= (cap & PCI_ACS_SV);
2809 
2810 	/* P2P Request Redirect */
2811 	ctrl |= (cap & PCI_ACS_RR);
2812 
2813 	/* P2P Completion Redirect */
2814 	ctrl |= (cap & PCI_ACS_CR);
2815 
2816 	/* Upstream Forwarding */
2817 	ctrl |= (cap & PCI_ACS_UF);
2818 
2819 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2820 }
2821 
2822 /**
2823  * pci_enable_acs - enable ACS if hardware support it
2824  * @dev: the PCI device
2825  */
2826 void pci_enable_acs(struct pci_dev *dev)
2827 {
2828 	if (!pci_acs_enable)
2829 		return;
2830 
2831 	if (!pci_dev_specific_enable_acs(dev))
2832 		return;
2833 
2834 	pci_std_enable_acs(dev);
2835 }
2836 
2837 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2838 {
2839 	int pos;
2840 	u16 cap, ctrl;
2841 
2842 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2843 	if (!pos)
2844 		return false;
2845 
2846 	/*
2847 	 * Except for egress control, capabilities are either required
2848 	 * or only required if controllable.  Features missing from the
2849 	 * capability field can therefore be assumed as hard-wired enabled.
2850 	 */
2851 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2852 	acs_flags &= (cap | PCI_ACS_EC);
2853 
2854 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2855 	return (ctrl & acs_flags) == acs_flags;
2856 }
2857 
2858 /**
2859  * pci_acs_enabled - test ACS against required flags for a given device
2860  * @pdev: device to test
2861  * @acs_flags: required PCI ACS flags
2862  *
2863  * Return true if the device supports the provided flags.  Automatically
2864  * filters out flags that are not implemented on multifunction devices.
2865  *
2866  * Note that this interface checks the effective ACS capabilities of the
2867  * device rather than the actual capabilities.  For instance, most single
2868  * function endpoints are not required to support ACS because they have no
2869  * opportunity for peer-to-peer access.  We therefore return 'true'
2870  * regardless of whether the device exposes an ACS capability.  This makes
2871  * it much easier for callers of this function to ignore the actual type
2872  * or topology of the device when testing ACS support.
2873  */
2874 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2875 {
2876 	int ret;
2877 
2878 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2879 	if (ret >= 0)
2880 		return ret > 0;
2881 
2882 	/*
2883 	 * Conventional PCI and PCI-X devices never support ACS, either
2884 	 * effectively or actually.  The shared bus topology implies that
2885 	 * any device on the bus can receive or snoop DMA.
2886 	 */
2887 	if (!pci_is_pcie(pdev))
2888 		return false;
2889 
2890 	switch (pci_pcie_type(pdev)) {
2891 	/*
2892 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2893 	 * but since their primary interface is PCI/X, we conservatively
2894 	 * handle them as we would a non-PCIe device.
2895 	 */
2896 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2897 	/*
2898 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2899 	 * applicable... must never implement an ACS Extended Capability...".
2900 	 * This seems arbitrary, but we take a conservative interpretation
2901 	 * of this statement.
2902 	 */
2903 	case PCI_EXP_TYPE_PCI_BRIDGE:
2904 	case PCI_EXP_TYPE_RC_EC:
2905 		return false;
2906 	/*
2907 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2908 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2909 	 * regardless of whether they are single- or multi-function devices.
2910 	 */
2911 	case PCI_EXP_TYPE_DOWNSTREAM:
2912 	case PCI_EXP_TYPE_ROOT_PORT:
2913 		return pci_acs_flags_enabled(pdev, acs_flags);
2914 	/*
2915 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2916 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2917 	 * capabilities, but only when they are part of a multifunction
2918 	 * device.  The footnote for section 6.12 indicates the specific
2919 	 * PCIe types included here.
2920 	 */
2921 	case PCI_EXP_TYPE_ENDPOINT:
2922 	case PCI_EXP_TYPE_UPSTREAM:
2923 	case PCI_EXP_TYPE_LEG_END:
2924 	case PCI_EXP_TYPE_RC_END:
2925 		if (!pdev->multifunction)
2926 			break;
2927 
2928 		return pci_acs_flags_enabled(pdev, acs_flags);
2929 	}
2930 
2931 	/*
2932 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2933 	 * to single function devices with the exception of downstream ports.
2934 	 */
2935 	return true;
2936 }
2937 
2938 /**
2939  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2940  * @start: starting downstream device
2941  * @end: ending upstream device or NULL to search to the root bus
2942  * @acs_flags: required flags
2943  *
2944  * Walk up a device tree from start to end testing PCI ACS support.  If
2945  * any step along the way does not support the required flags, return false.
2946  */
2947 bool pci_acs_path_enabled(struct pci_dev *start,
2948 			  struct pci_dev *end, u16 acs_flags)
2949 {
2950 	struct pci_dev *pdev, *parent = start;
2951 
2952 	do {
2953 		pdev = parent;
2954 
2955 		if (!pci_acs_enabled(pdev, acs_flags))
2956 			return false;
2957 
2958 		if (pci_is_root_bus(pdev->bus))
2959 			return (end == NULL);
2960 
2961 		parent = pdev->bus->self;
2962 	} while (pdev != end);
2963 
2964 	return true;
2965 }
2966 
2967 /**
2968  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2969  * @pdev: PCI device
2970  * @bar: BAR to find
2971  *
2972  * Helper to find the position of the ctrl register for a BAR.
2973  * Returns -ENOTSUPP if resizable BARs are not supported at all.
2974  * Returns -ENOENT if no ctrl register for the BAR could be found.
2975  */
2976 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
2977 {
2978 	unsigned int pos, nbars, i;
2979 	u32 ctrl;
2980 
2981 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
2982 	if (!pos)
2983 		return -ENOTSUPP;
2984 
2985 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2986 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
2987 		    PCI_REBAR_CTRL_NBAR_SHIFT;
2988 
2989 	for (i = 0; i < nbars; i++, pos += 8) {
2990 		int bar_idx;
2991 
2992 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2993 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
2994 		if (bar_idx == bar)
2995 			return pos;
2996 	}
2997 
2998 	return -ENOENT;
2999 }
3000 
3001 /**
3002  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3003  * @pdev: PCI device
3004  * @bar: BAR to query
3005  *
3006  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3007  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3008  */
3009 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3010 {
3011 	int pos;
3012 	u32 cap;
3013 
3014 	pos = pci_rebar_find_pos(pdev, bar);
3015 	if (pos < 0)
3016 		return 0;
3017 
3018 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3019 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3020 }
3021 
3022 /**
3023  * pci_rebar_get_current_size - get the current size of a BAR
3024  * @pdev: PCI device
3025  * @bar: BAR to set size to
3026  *
3027  * Read the size of a BAR from the resizable BAR config.
3028  * Returns size if found or negative error code.
3029  */
3030 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3031 {
3032 	int pos;
3033 	u32 ctrl;
3034 
3035 	pos = pci_rebar_find_pos(pdev, bar);
3036 	if (pos < 0)
3037 		return pos;
3038 
3039 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3040 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3041 }
3042 
3043 /**
3044  * pci_rebar_set_size - set a new size for a BAR
3045  * @pdev: PCI device
3046  * @bar: BAR to set size to
3047  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3048  *
3049  * Set the new size of a BAR as defined in the spec.
3050  * Returns zero if resizing was successful, error code otherwise.
3051  */
3052 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3053 {
3054 	int pos;
3055 	u32 ctrl;
3056 
3057 	pos = pci_rebar_find_pos(pdev, bar);
3058 	if (pos < 0)
3059 		return pos;
3060 
3061 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3062 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3063 	ctrl |= size << 8;
3064 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3065 	return 0;
3066 }
3067 
3068 /**
3069  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3070  * @dev: the PCI device
3071  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3072  *
3073  * Perform INTx swizzling for a device behind one level of bridge.  This is
3074  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3075  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3076  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3077  * the PCI Express Base Specification, Revision 2.1)
3078  */
3079 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3080 {
3081 	int slot;
3082 
3083 	if (pci_ari_enabled(dev->bus))
3084 		slot = 0;
3085 	else
3086 		slot = PCI_SLOT(dev->devfn);
3087 
3088 	return (((pin - 1) + slot) % 4) + 1;
3089 }
3090 
3091 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3092 {
3093 	u8 pin;
3094 
3095 	pin = dev->pin;
3096 	if (!pin)
3097 		return -1;
3098 
3099 	while (!pci_is_root_bus(dev->bus)) {
3100 		pin = pci_swizzle_interrupt_pin(dev, pin);
3101 		dev = dev->bus->self;
3102 	}
3103 	*bridge = dev;
3104 	return pin;
3105 }
3106 
3107 /**
3108  * pci_common_swizzle - swizzle INTx all the way to root bridge
3109  * @dev: the PCI device
3110  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3111  *
3112  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3113  * bridges all the way up to a PCI root bus.
3114  */
3115 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3116 {
3117 	u8 pin = *pinp;
3118 
3119 	while (!pci_is_root_bus(dev->bus)) {
3120 		pin = pci_swizzle_interrupt_pin(dev, pin);
3121 		dev = dev->bus->self;
3122 	}
3123 	*pinp = pin;
3124 	return PCI_SLOT(dev->devfn);
3125 }
3126 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3127 
3128 /**
3129  *	pci_release_region - Release a PCI bar
3130  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3131  *	@bar: BAR to release
3132  *
3133  *	Releases the PCI I/O and memory resources previously reserved by a
3134  *	successful call to pci_request_region.  Call this function only
3135  *	after all use of the PCI regions has ceased.
3136  */
3137 void pci_release_region(struct pci_dev *pdev, int bar)
3138 {
3139 	struct pci_devres *dr;
3140 
3141 	if (pci_resource_len(pdev, bar) == 0)
3142 		return;
3143 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3144 		release_region(pci_resource_start(pdev, bar),
3145 				pci_resource_len(pdev, bar));
3146 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3147 		release_mem_region(pci_resource_start(pdev, bar),
3148 				pci_resource_len(pdev, bar));
3149 
3150 	dr = find_pci_dr(pdev);
3151 	if (dr)
3152 		dr->region_mask &= ~(1 << bar);
3153 }
3154 EXPORT_SYMBOL(pci_release_region);
3155 
3156 /**
3157  *	__pci_request_region - Reserved PCI I/O and memory resource
3158  *	@pdev: PCI device whose resources are to be reserved
3159  *	@bar: BAR to be reserved
3160  *	@res_name: Name to be associated with resource.
3161  *	@exclusive: whether the region access is exclusive or not
3162  *
3163  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3164  *	being reserved by owner @res_name.  Do not access any
3165  *	address inside the PCI regions unless this call returns
3166  *	successfully.
3167  *
3168  *	If @exclusive is set, then the region is marked so that userspace
3169  *	is explicitly not allowed to map the resource via /dev/mem or
3170  *	sysfs MMIO access.
3171  *
3172  *	Returns 0 on success, or %EBUSY on error.  A warning
3173  *	message is also printed on failure.
3174  */
3175 static int __pci_request_region(struct pci_dev *pdev, int bar,
3176 				const char *res_name, int exclusive)
3177 {
3178 	struct pci_devres *dr;
3179 
3180 	if (pci_resource_len(pdev, bar) == 0)
3181 		return 0;
3182 
3183 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3184 		if (!request_region(pci_resource_start(pdev, bar),
3185 			    pci_resource_len(pdev, bar), res_name))
3186 			goto err_out;
3187 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3188 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3189 					pci_resource_len(pdev, bar), res_name,
3190 					exclusive))
3191 			goto err_out;
3192 	}
3193 
3194 	dr = find_pci_dr(pdev);
3195 	if (dr)
3196 		dr->region_mask |= 1 << bar;
3197 
3198 	return 0;
3199 
3200 err_out:
3201 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3202 		 &pdev->resource[bar]);
3203 	return -EBUSY;
3204 }
3205 
3206 /**
3207  *	pci_request_region - Reserve PCI I/O and memory resource
3208  *	@pdev: PCI device whose resources are to be reserved
3209  *	@bar: BAR to be reserved
3210  *	@res_name: Name to be associated with resource
3211  *
3212  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3213  *	being reserved by owner @res_name.  Do not access any
3214  *	address inside the PCI regions unless this call returns
3215  *	successfully.
3216  *
3217  *	Returns 0 on success, or %EBUSY on error.  A warning
3218  *	message is also printed on failure.
3219  */
3220 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3221 {
3222 	return __pci_request_region(pdev, bar, res_name, 0);
3223 }
3224 EXPORT_SYMBOL(pci_request_region);
3225 
3226 /**
3227  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3228  *	@pdev: PCI device whose resources are to be reserved
3229  *	@bar: BAR to be reserved
3230  *	@res_name: Name to be associated with resource.
3231  *
3232  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3233  *	being reserved by owner @res_name.  Do not access any
3234  *	address inside the PCI regions unless this call returns
3235  *	successfully.
3236  *
3237  *	Returns 0 on success, or %EBUSY on error.  A warning
3238  *	message is also printed on failure.
3239  *
3240  *	The key difference that _exclusive makes it that userspace is
3241  *	explicitly not allowed to map the resource via /dev/mem or
3242  *	sysfs.
3243  */
3244 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3245 				 const char *res_name)
3246 {
3247 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3248 }
3249 EXPORT_SYMBOL(pci_request_region_exclusive);
3250 
3251 /**
3252  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3253  * @pdev: PCI device whose resources were previously reserved
3254  * @bars: Bitmask of BARs to be released
3255  *
3256  * Release selected PCI I/O and memory resources previously reserved.
3257  * Call this function only after all use of the PCI regions has ceased.
3258  */
3259 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3260 {
3261 	int i;
3262 
3263 	for (i = 0; i < 6; i++)
3264 		if (bars & (1 << i))
3265 			pci_release_region(pdev, i);
3266 }
3267 EXPORT_SYMBOL(pci_release_selected_regions);
3268 
3269 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3270 					  const char *res_name, int excl)
3271 {
3272 	int i;
3273 
3274 	for (i = 0; i < 6; i++)
3275 		if (bars & (1 << i))
3276 			if (__pci_request_region(pdev, i, res_name, excl))
3277 				goto err_out;
3278 	return 0;
3279 
3280 err_out:
3281 	while (--i >= 0)
3282 		if (bars & (1 << i))
3283 			pci_release_region(pdev, i);
3284 
3285 	return -EBUSY;
3286 }
3287 
3288 
3289 /**
3290  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3291  * @pdev: PCI device whose resources are to be reserved
3292  * @bars: Bitmask of BARs to be requested
3293  * @res_name: Name to be associated with resource
3294  */
3295 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3296 				 const char *res_name)
3297 {
3298 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3299 }
3300 EXPORT_SYMBOL(pci_request_selected_regions);
3301 
3302 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3303 					   const char *res_name)
3304 {
3305 	return __pci_request_selected_regions(pdev, bars, res_name,
3306 			IORESOURCE_EXCLUSIVE);
3307 }
3308 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3309 
3310 /**
3311  *	pci_release_regions - Release reserved PCI I/O and memory resources
3312  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3313  *
3314  *	Releases all PCI I/O and memory resources previously reserved by a
3315  *	successful call to pci_request_regions.  Call this function only
3316  *	after all use of the PCI regions has ceased.
3317  */
3318 
3319 void pci_release_regions(struct pci_dev *pdev)
3320 {
3321 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3322 }
3323 EXPORT_SYMBOL(pci_release_regions);
3324 
3325 /**
3326  *	pci_request_regions - Reserved PCI I/O and memory resources
3327  *	@pdev: PCI device whose resources are to be reserved
3328  *	@res_name: Name to be associated with resource.
3329  *
3330  *	Mark all PCI regions associated with PCI device @pdev as
3331  *	being reserved by owner @res_name.  Do not access any
3332  *	address inside the PCI regions unless this call returns
3333  *	successfully.
3334  *
3335  *	Returns 0 on success, or %EBUSY on error.  A warning
3336  *	message is also printed on failure.
3337  */
3338 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3339 {
3340 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3341 }
3342 EXPORT_SYMBOL(pci_request_regions);
3343 
3344 /**
3345  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3346  *	@pdev: PCI device whose resources are to be reserved
3347  *	@res_name: Name to be associated with resource.
3348  *
3349  *	Mark all PCI regions associated with PCI device @pdev as
3350  *	being reserved by owner @res_name.  Do not access any
3351  *	address inside the PCI regions unless this call returns
3352  *	successfully.
3353  *
3354  *	pci_request_regions_exclusive() will mark the region so that
3355  *	/dev/mem and the sysfs MMIO access will not be allowed.
3356  *
3357  *	Returns 0 on success, or %EBUSY on error.  A warning
3358  *	message is also printed on failure.
3359  */
3360 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3361 {
3362 	return pci_request_selected_regions_exclusive(pdev,
3363 					((1 << 6) - 1), res_name);
3364 }
3365 EXPORT_SYMBOL(pci_request_regions_exclusive);
3366 
3367 #ifdef PCI_IOBASE
3368 struct io_range {
3369 	struct list_head list;
3370 	phys_addr_t start;
3371 	resource_size_t size;
3372 };
3373 
3374 static LIST_HEAD(io_range_list);
3375 static DEFINE_SPINLOCK(io_range_lock);
3376 #endif
3377 
3378 /*
3379  * Record the PCI IO range (expressed as CPU physical address + size).
3380  * Return a negative value if an error has occured, zero otherwise
3381  */
3382 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3383 {
3384 	int err = 0;
3385 
3386 #ifdef PCI_IOBASE
3387 	struct io_range *range;
3388 	resource_size_t allocated_size = 0;
3389 
3390 	/* check if the range hasn't been previously recorded */
3391 	spin_lock(&io_range_lock);
3392 	list_for_each_entry(range, &io_range_list, list) {
3393 		if (addr >= range->start && addr + size <= range->start + size) {
3394 			/* range already registered, bail out */
3395 			goto end_register;
3396 		}
3397 		allocated_size += range->size;
3398 	}
3399 
3400 	/* range not registed yet, check for available space */
3401 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3402 		/* if it's too big check if 64K space can be reserved */
3403 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3404 			err = -E2BIG;
3405 			goto end_register;
3406 		}
3407 
3408 		size = SZ_64K;
3409 		pr_warn("Requested IO range too big, new size set to 64K\n");
3410 	}
3411 
3412 	/* add the range to the list */
3413 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3414 	if (!range) {
3415 		err = -ENOMEM;
3416 		goto end_register;
3417 	}
3418 
3419 	range->start = addr;
3420 	range->size = size;
3421 
3422 	list_add_tail(&range->list, &io_range_list);
3423 
3424 end_register:
3425 	spin_unlock(&io_range_lock);
3426 #endif
3427 
3428 	return err;
3429 }
3430 
3431 phys_addr_t pci_pio_to_address(unsigned long pio)
3432 {
3433 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3434 
3435 #ifdef PCI_IOBASE
3436 	struct io_range *range;
3437 	resource_size_t allocated_size = 0;
3438 
3439 	if (pio > IO_SPACE_LIMIT)
3440 		return address;
3441 
3442 	spin_lock(&io_range_lock);
3443 	list_for_each_entry(range, &io_range_list, list) {
3444 		if (pio >= allocated_size && pio < allocated_size + range->size) {
3445 			address = range->start + pio - allocated_size;
3446 			break;
3447 		}
3448 		allocated_size += range->size;
3449 	}
3450 	spin_unlock(&io_range_lock);
3451 #endif
3452 
3453 	return address;
3454 }
3455 
3456 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3457 {
3458 #ifdef PCI_IOBASE
3459 	struct io_range *res;
3460 	resource_size_t offset = 0;
3461 	unsigned long addr = -1;
3462 
3463 	spin_lock(&io_range_lock);
3464 	list_for_each_entry(res, &io_range_list, list) {
3465 		if (address >= res->start && address < res->start + res->size) {
3466 			addr = address - res->start + offset;
3467 			break;
3468 		}
3469 		offset += res->size;
3470 	}
3471 	spin_unlock(&io_range_lock);
3472 
3473 	return addr;
3474 #else
3475 	if (address > IO_SPACE_LIMIT)
3476 		return (unsigned long)-1;
3477 
3478 	return (unsigned long) address;
3479 #endif
3480 }
3481 
3482 /**
3483  *	pci_remap_iospace - Remap the memory mapped I/O space
3484  *	@res: Resource describing the I/O space
3485  *	@phys_addr: physical address of range to be mapped
3486  *
3487  *	Remap the memory mapped I/O space described by the @res
3488  *	and the CPU physical address @phys_addr into virtual address space.
3489  *	Only architectures that have memory mapped IO functions defined
3490  *	(and the PCI_IOBASE value defined) should call this function.
3491  */
3492 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3493 {
3494 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3495 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3496 
3497 	if (!(res->flags & IORESOURCE_IO))
3498 		return -EINVAL;
3499 
3500 	if (res->end > IO_SPACE_LIMIT)
3501 		return -EINVAL;
3502 
3503 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3504 				  pgprot_device(PAGE_KERNEL));
3505 #else
3506 	/* this architecture does not have memory mapped I/O space,
3507 	   so this function should never be called */
3508 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3509 	return -ENODEV;
3510 #endif
3511 }
3512 EXPORT_SYMBOL(pci_remap_iospace);
3513 
3514 /**
3515  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3516  *	@res: resource to be unmapped
3517  *
3518  *	Unmap the CPU virtual address @res from virtual address space.
3519  *	Only architectures that have memory mapped IO functions defined
3520  *	(and the PCI_IOBASE value defined) should call this function.
3521  */
3522 void pci_unmap_iospace(struct resource *res)
3523 {
3524 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3525 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3526 
3527 	unmap_kernel_range(vaddr, resource_size(res));
3528 #endif
3529 }
3530 EXPORT_SYMBOL(pci_unmap_iospace);
3531 
3532 /**
3533  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3534  * @dev: Generic device to remap IO address for
3535  * @offset: Resource address to map
3536  * @size: Size of map
3537  *
3538  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3539  * detach.
3540  */
3541 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3542 				      resource_size_t offset,
3543 				      resource_size_t size)
3544 {
3545 	void __iomem **ptr, *addr;
3546 
3547 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3548 	if (!ptr)
3549 		return NULL;
3550 
3551 	addr = pci_remap_cfgspace(offset, size);
3552 	if (addr) {
3553 		*ptr = addr;
3554 		devres_add(dev, ptr);
3555 	} else
3556 		devres_free(ptr);
3557 
3558 	return addr;
3559 }
3560 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3561 
3562 /**
3563  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3564  * @dev: generic device to handle the resource for
3565  * @res: configuration space resource to be handled
3566  *
3567  * Checks that a resource is a valid memory region, requests the memory
3568  * region and ioremaps with pci_remap_cfgspace() API that ensures the
3569  * proper PCI configuration space memory attributes are guaranteed.
3570  *
3571  * All operations are managed and will be undone on driver detach.
3572  *
3573  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3574  * on failure. Usage example::
3575  *
3576  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3577  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3578  *	if (IS_ERR(base))
3579  *		return PTR_ERR(base);
3580  */
3581 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3582 					  struct resource *res)
3583 {
3584 	resource_size_t size;
3585 	const char *name;
3586 	void __iomem *dest_ptr;
3587 
3588 	BUG_ON(!dev);
3589 
3590 	if (!res || resource_type(res) != IORESOURCE_MEM) {
3591 		dev_err(dev, "invalid resource\n");
3592 		return IOMEM_ERR_PTR(-EINVAL);
3593 	}
3594 
3595 	size = resource_size(res);
3596 	name = res->name ?: dev_name(dev);
3597 
3598 	if (!devm_request_mem_region(dev, res->start, size, name)) {
3599 		dev_err(dev, "can't request region for resource %pR\n", res);
3600 		return IOMEM_ERR_PTR(-EBUSY);
3601 	}
3602 
3603 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3604 	if (!dest_ptr) {
3605 		dev_err(dev, "ioremap failed for resource %pR\n", res);
3606 		devm_release_mem_region(dev, res->start, size);
3607 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3608 	}
3609 
3610 	return dest_ptr;
3611 }
3612 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3613 
3614 static void __pci_set_master(struct pci_dev *dev, bool enable)
3615 {
3616 	u16 old_cmd, cmd;
3617 
3618 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3619 	if (enable)
3620 		cmd = old_cmd | PCI_COMMAND_MASTER;
3621 	else
3622 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3623 	if (cmd != old_cmd) {
3624 		dev_dbg(&dev->dev, "%s bus mastering\n",
3625 			enable ? "enabling" : "disabling");
3626 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3627 	}
3628 	dev->is_busmaster = enable;
3629 }
3630 
3631 /**
3632  * pcibios_setup - process "pci=" kernel boot arguments
3633  * @str: string used to pass in "pci=" kernel boot arguments
3634  *
3635  * Process kernel boot arguments.  This is the default implementation.
3636  * Architecture specific implementations can override this as necessary.
3637  */
3638 char * __weak __init pcibios_setup(char *str)
3639 {
3640 	return str;
3641 }
3642 
3643 /**
3644  * pcibios_set_master - enable PCI bus-mastering for device dev
3645  * @dev: the PCI device to enable
3646  *
3647  * Enables PCI bus-mastering for the device.  This is the default
3648  * implementation.  Architecture specific implementations can override
3649  * this if necessary.
3650  */
3651 void __weak pcibios_set_master(struct pci_dev *dev)
3652 {
3653 	u8 lat;
3654 
3655 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3656 	if (pci_is_pcie(dev))
3657 		return;
3658 
3659 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3660 	if (lat < 16)
3661 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3662 	else if (lat > pcibios_max_latency)
3663 		lat = pcibios_max_latency;
3664 	else
3665 		return;
3666 
3667 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3668 }
3669 
3670 /**
3671  * pci_set_master - enables bus-mastering for device dev
3672  * @dev: the PCI device to enable
3673  *
3674  * Enables bus-mastering on the device and calls pcibios_set_master()
3675  * to do the needed arch specific settings.
3676  */
3677 void pci_set_master(struct pci_dev *dev)
3678 {
3679 	__pci_set_master(dev, true);
3680 	pcibios_set_master(dev);
3681 }
3682 EXPORT_SYMBOL(pci_set_master);
3683 
3684 /**
3685  * pci_clear_master - disables bus-mastering for device dev
3686  * @dev: the PCI device to disable
3687  */
3688 void pci_clear_master(struct pci_dev *dev)
3689 {
3690 	__pci_set_master(dev, false);
3691 }
3692 EXPORT_SYMBOL(pci_clear_master);
3693 
3694 /**
3695  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3696  * @dev: the PCI device for which MWI is to be enabled
3697  *
3698  * Helper function for pci_set_mwi.
3699  * Originally copied from drivers/net/acenic.c.
3700  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3701  *
3702  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3703  */
3704 int pci_set_cacheline_size(struct pci_dev *dev)
3705 {
3706 	u8 cacheline_size;
3707 
3708 	if (!pci_cache_line_size)
3709 		return -EINVAL;
3710 
3711 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3712 	   equal to or multiple of the right value. */
3713 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3714 	if (cacheline_size >= pci_cache_line_size &&
3715 	    (cacheline_size % pci_cache_line_size) == 0)
3716 		return 0;
3717 
3718 	/* Write the correct value. */
3719 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3720 	/* Read it back. */
3721 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3722 	if (cacheline_size == pci_cache_line_size)
3723 		return 0;
3724 
3725 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3726 		   pci_cache_line_size << 2);
3727 
3728 	return -EINVAL;
3729 }
3730 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3731 
3732 /**
3733  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3734  * @dev: the PCI device for which MWI is enabled
3735  *
3736  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3737  *
3738  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3739  */
3740 int pci_set_mwi(struct pci_dev *dev)
3741 {
3742 #ifdef PCI_DISABLE_MWI
3743 	return 0;
3744 #else
3745 	int rc;
3746 	u16 cmd;
3747 
3748 	rc = pci_set_cacheline_size(dev);
3749 	if (rc)
3750 		return rc;
3751 
3752 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3753 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3754 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3755 		cmd |= PCI_COMMAND_INVALIDATE;
3756 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3757 	}
3758 	return 0;
3759 #endif
3760 }
3761 EXPORT_SYMBOL(pci_set_mwi);
3762 
3763 /**
3764  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3765  * @dev: the PCI device for which MWI is enabled
3766  *
3767  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3768  * Callers are not required to check the return value.
3769  *
3770  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3771  */
3772 int pci_try_set_mwi(struct pci_dev *dev)
3773 {
3774 #ifdef PCI_DISABLE_MWI
3775 	return 0;
3776 #else
3777 	return pci_set_mwi(dev);
3778 #endif
3779 }
3780 EXPORT_SYMBOL(pci_try_set_mwi);
3781 
3782 /**
3783  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3784  * @dev: the PCI device to disable
3785  *
3786  * Disables PCI Memory-Write-Invalidate transaction on the device
3787  */
3788 void pci_clear_mwi(struct pci_dev *dev)
3789 {
3790 #ifndef PCI_DISABLE_MWI
3791 	u16 cmd;
3792 
3793 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3794 	if (cmd & PCI_COMMAND_INVALIDATE) {
3795 		cmd &= ~PCI_COMMAND_INVALIDATE;
3796 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3797 	}
3798 #endif
3799 }
3800 EXPORT_SYMBOL(pci_clear_mwi);
3801 
3802 /**
3803  * pci_intx - enables/disables PCI INTx for device dev
3804  * @pdev: the PCI device to operate on
3805  * @enable: boolean: whether to enable or disable PCI INTx
3806  *
3807  * Enables/disables PCI INTx for device dev
3808  */
3809 void pci_intx(struct pci_dev *pdev, int enable)
3810 {
3811 	u16 pci_command, new;
3812 
3813 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3814 
3815 	if (enable)
3816 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3817 	else
3818 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3819 
3820 	if (new != pci_command) {
3821 		struct pci_devres *dr;
3822 
3823 		pci_write_config_word(pdev, PCI_COMMAND, new);
3824 
3825 		dr = find_pci_dr(pdev);
3826 		if (dr && !dr->restore_intx) {
3827 			dr->restore_intx = 1;
3828 			dr->orig_intx = !enable;
3829 		}
3830 	}
3831 }
3832 EXPORT_SYMBOL_GPL(pci_intx);
3833 
3834 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3835 {
3836 	struct pci_bus *bus = dev->bus;
3837 	bool mask_updated = true;
3838 	u32 cmd_status_dword;
3839 	u16 origcmd, newcmd;
3840 	unsigned long flags;
3841 	bool irq_pending;
3842 
3843 	/*
3844 	 * We do a single dword read to retrieve both command and status.
3845 	 * Document assumptions that make this possible.
3846 	 */
3847 	BUILD_BUG_ON(PCI_COMMAND % 4);
3848 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3849 
3850 	raw_spin_lock_irqsave(&pci_lock, flags);
3851 
3852 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3853 
3854 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3855 
3856 	/*
3857 	 * Check interrupt status register to see whether our device
3858 	 * triggered the interrupt (when masking) or the next IRQ is
3859 	 * already pending (when unmasking).
3860 	 */
3861 	if (mask != irq_pending) {
3862 		mask_updated = false;
3863 		goto done;
3864 	}
3865 
3866 	origcmd = cmd_status_dword;
3867 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3868 	if (mask)
3869 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3870 	if (newcmd != origcmd)
3871 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3872 
3873 done:
3874 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3875 
3876 	return mask_updated;
3877 }
3878 
3879 /**
3880  * pci_check_and_mask_intx - mask INTx on pending interrupt
3881  * @dev: the PCI device to operate on
3882  *
3883  * Check if the device dev has its INTx line asserted, mask it and
3884  * return true in that case. False is returned if no interrupt was
3885  * pending.
3886  */
3887 bool pci_check_and_mask_intx(struct pci_dev *dev)
3888 {
3889 	return pci_check_and_set_intx_mask(dev, true);
3890 }
3891 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3892 
3893 /**
3894  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3895  * @dev: the PCI device to operate on
3896  *
3897  * Check if the device dev has its INTx line asserted, unmask it if not
3898  * and return true. False is returned and the mask remains active if
3899  * there was still an interrupt pending.
3900  */
3901 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3902 {
3903 	return pci_check_and_set_intx_mask(dev, false);
3904 }
3905 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3906 
3907 /**
3908  * pci_wait_for_pending_transaction - waits for pending transaction
3909  * @dev: the PCI device to operate on
3910  *
3911  * Return 0 if transaction is pending 1 otherwise.
3912  */
3913 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3914 {
3915 	if (!pci_is_pcie(dev))
3916 		return 1;
3917 
3918 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3919 				    PCI_EXP_DEVSTA_TRPND);
3920 }
3921 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3922 
3923 static void pci_flr_wait(struct pci_dev *dev)
3924 {
3925 	int delay = 1, timeout = 60000;
3926 	u32 id;
3927 
3928 	/*
3929 	 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3930 	 * 100ms, but may silently discard requests while the FLR is in
3931 	 * progress.  Wait 100ms before trying to access the device.
3932 	 */
3933 	msleep(100);
3934 
3935 	/*
3936 	 * After 100ms, the device should not silently discard config
3937 	 * requests, but it may still indicate that it needs more time by
3938 	 * responding to them with CRS completions.  The Root Port will
3939 	 * generally synthesize ~0 data to complete the read (except when
3940 	 * CRS SV is enabled and the read was for the Vendor ID; in that
3941 	 * case it synthesizes 0x0001 data).
3942 	 *
3943 	 * Wait for the device to return a non-CRS completion.  Read the
3944 	 * Command register instead of Vendor ID so we don't have to
3945 	 * contend with the CRS SV value.
3946 	 */
3947 	pci_read_config_dword(dev, PCI_COMMAND, &id);
3948 	while (id == ~0) {
3949 		if (delay > timeout) {
3950 			dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3951 				 100 + delay - 1);
3952 			return;
3953 		}
3954 
3955 		if (delay > 1000)
3956 			dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3957 				 100 + delay - 1);
3958 
3959 		msleep(delay);
3960 		delay *= 2;
3961 		pci_read_config_dword(dev, PCI_COMMAND, &id);
3962 	}
3963 
3964 	if (delay > 1000)
3965 		dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
3966 }
3967 
3968 /**
3969  * pcie_has_flr - check if a device supports function level resets
3970  * @dev:	device to check
3971  *
3972  * Returns true if the device advertises support for PCIe function level
3973  * resets.
3974  */
3975 static bool pcie_has_flr(struct pci_dev *dev)
3976 {
3977 	u32 cap;
3978 
3979 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3980 		return false;
3981 
3982 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3983 	return cap & PCI_EXP_DEVCAP_FLR;
3984 }
3985 
3986 /**
3987  * pcie_flr - initiate a PCIe function level reset
3988  * @dev:	device to reset
3989  *
3990  * Initiate a function level reset on @dev.  The caller should ensure the
3991  * device supports FLR before calling this function, e.g. by using the
3992  * pcie_has_flr() helper.
3993  */
3994 void pcie_flr(struct pci_dev *dev)
3995 {
3996 	if (!pci_wait_for_pending_transaction(dev))
3997 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3998 
3999 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4000 	pci_flr_wait(dev);
4001 }
4002 EXPORT_SYMBOL_GPL(pcie_flr);
4003 
4004 static int pci_af_flr(struct pci_dev *dev, int probe)
4005 {
4006 	int pos;
4007 	u8 cap;
4008 
4009 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4010 	if (!pos)
4011 		return -ENOTTY;
4012 
4013 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4014 		return -ENOTTY;
4015 
4016 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4017 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4018 		return -ENOTTY;
4019 
4020 	if (probe)
4021 		return 0;
4022 
4023 	/*
4024 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4025 	 * is used, so we use the conrol offset rather than status and shift
4026 	 * the test bit to match.
4027 	 */
4028 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4029 				 PCI_AF_STATUS_TP << 8))
4030 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4031 
4032 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4033 	pci_flr_wait(dev);
4034 	return 0;
4035 }
4036 
4037 /**
4038  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4039  * @dev: Device to reset.
4040  * @probe: If set, only check if the device can be reset this way.
4041  *
4042  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4043  * unset, it will be reinitialized internally when going from PCI_D3hot to
4044  * PCI_D0.  If that's the case and the device is not in a low-power state
4045  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4046  *
4047  * NOTE: This causes the caller to sleep for twice the device power transition
4048  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4049  * by default (i.e. unless the @dev's d3_delay field has a different value).
4050  * Moreover, only devices in D0 can be reset by this function.
4051  */
4052 static int pci_pm_reset(struct pci_dev *dev, int probe)
4053 {
4054 	u16 csr;
4055 
4056 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4057 		return -ENOTTY;
4058 
4059 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4060 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4061 		return -ENOTTY;
4062 
4063 	if (probe)
4064 		return 0;
4065 
4066 	if (dev->current_state != PCI_D0)
4067 		return -EINVAL;
4068 
4069 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4070 	csr |= PCI_D3hot;
4071 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4072 	pci_dev_d3_sleep(dev);
4073 
4074 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4075 	csr |= PCI_D0;
4076 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4077 	pci_dev_d3_sleep(dev);
4078 
4079 	return 0;
4080 }
4081 
4082 void pci_reset_secondary_bus(struct pci_dev *dev)
4083 {
4084 	u16 ctrl;
4085 
4086 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4087 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4088 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4089 	/*
4090 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4091 	 * this to 2ms to ensure that we meet the minimum requirement.
4092 	 */
4093 	msleep(2);
4094 
4095 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4096 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4097 
4098 	/*
4099 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4100 	 * Assuming a minimum 33MHz clock this results in a 1s
4101 	 * delay before we can consider subordinate devices to
4102 	 * be re-initialized.  PCIe has some ways to shorten this,
4103 	 * but we don't make use of them yet.
4104 	 */
4105 	ssleep(1);
4106 }
4107 
4108 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4109 {
4110 	pci_reset_secondary_bus(dev);
4111 }
4112 
4113 /**
4114  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4115  * @dev: Bridge device
4116  *
4117  * Use the bridge control register to assert reset on the secondary bus.
4118  * Devices on the secondary bus are left in power-on state.
4119  */
4120 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4121 {
4122 	pcibios_reset_secondary_bus(dev);
4123 }
4124 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4125 
4126 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4127 {
4128 	struct pci_dev *pdev;
4129 
4130 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4131 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4132 		return -ENOTTY;
4133 
4134 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4135 		if (pdev != dev)
4136 			return -ENOTTY;
4137 
4138 	if (probe)
4139 		return 0;
4140 
4141 	pci_reset_bridge_secondary_bus(dev->bus->self);
4142 
4143 	return 0;
4144 }
4145 
4146 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4147 {
4148 	int rc = -ENOTTY;
4149 
4150 	if (!hotplug || !try_module_get(hotplug->ops->owner))
4151 		return rc;
4152 
4153 	if (hotplug->ops->reset_slot)
4154 		rc = hotplug->ops->reset_slot(hotplug, probe);
4155 
4156 	module_put(hotplug->ops->owner);
4157 
4158 	return rc;
4159 }
4160 
4161 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4162 {
4163 	struct pci_dev *pdev;
4164 
4165 	if (dev->subordinate || !dev->slot ||
4166 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4167 		return -ENOTTY;
4168 
4169 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4170 		if (pdev != dev && pdev->slot == dev->slot)
4171 			return -ENOTTY;
4172 
4173 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4174 }
4175 
4176 static void pci_dev_lock(struct pci_dev *dev)
4177 {
4178 	pci_cfg_access_lock(dev);
4179 	/* block PM suspend, driver probe, etc. */
4180 	device_lock(&dev->dev);
4181 }
4182 
4183 /* Return 1 on successful lock, 0 on contention */
4184 static int pci_dev_trylock(struct pci_dev *dev)
4185 {
4186 	if (pci_cfg_access_trylock(dev)) {
4187 		if (device_trylock(&dev->dev))
4188 			return 1;
4189 		pci_cfg_access_unlock(dev);
4190 	}
4191 
4192 	return 0;
4193 }
4194 
4195 static void pci_dev_unlock(struct pci_dev *dev)
4196 {
4197 	device_unlock(&dev->dev);
4198 	pci_cfg_access_unlock(dev);
4199 }
4200 
4201 static void pci_dev_save_and_disable(struct pci_dev *dev)
4202 {
4203 	const struct pci_error_handlers *err_handler =
4204 			dev->driver ? dev->driver->err_handler : NULL;
4205 
4206 	/*
4207 	 * dev->driver->err_handler->reset_prepare() is protected against
4208 	 * races with ->remove() by the device lock, which must be held by
4209 	 * the caller.
4210 	 */
4211 	if (err_handler && err_handler->reset_prepare)
4212 		err_handler->reset_prepare(dev);
4213 
4214 	/*
4215 	 * Wake-up device prior to save.  PM registers default to D0 after
4216 	 * reset and a simple register restore doesn't reliably return
4217 	 * to a non-D0 state anyway.
4218 	 */
4219 	pci_set_power_state(dev, PCI_D0);
4220 
4221 	pci_save_state(dev);
4222 	/*
4223 	 * Disable the device by clearing the Command register, except for
4224 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4225 	 * BARs, but also prevents the device from being Bus Master, preventing
4226 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4227 	 * compliant devices, INTx-disable prevents legacy interrupts.
4228 	 */
4229 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4230 }
4231 
4232 static void pci_dev_restore(struct pci_dev *dev)
4233 {
4234 	const struct pci_error_handlers *err_handler =
4235 			dev->driver ? dev->driver->err_handler : NULL;
4236 
4237 	pci_restore_state(dev);
4238 
4239 	/*
4240 	 * dev->driver->err_handler->reset_done() is protected against
4241 	 * races with ->remove() by the device lock, which must be held by
4242 	 * the caller.
4243 	 */
4244 	if (err_handler && err_handler->reset_done)
4245 		err_handler->reset_done(dev);
4246 }
4247 
4248 /**
4249  * __pci_reset_function_locked - reset a PCI device function while holding
4250  * the @dev mutex lock.
4251  * @dev: PCI device to reset
4252  *
4253  * Some devices allow an individual function to be reset without affecting
4254  * other functions in the same device.  The PCI device must be responsive
4255  * to PCI config space in order to use this function.
4256  *
4257  * The device function is presumed to be unused and the caller is holding
4258  * the device mutex lock when this function is called.
4259  * Resetting the device will make the contents of PCI configuration space
4260  * random, so any caller of this must be prepared to reinitialise the
4261  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4262  * etc.
4263  *
4264  * Returns 0 if the device function was successfully reset or negative if the
4265  * device doesn't support resetting a single function.
4266  */
4267 int __pci_reset_function_locked(struct pci_dev *dev)
4268 {
4269 	int rc;
4270 
4271 	might_sleep();
4272 
4273 	/*
4274 	 * A reset method returns -ENOTTY if it doesn't support this device
4275 	 * and we should try the next method.
4276 	 *
4277 	 * If it returns 0 (success), we're finished.  If it returns any
4278 	 * other error, we're also finished: this indicates that further
4279 	 * reset mechanisms might be broken on the device.
4280 	 */
4281 	rc = pci_dev_specific_reset(dev, 0);
4282 	if (rc != -ENOTTY)
4283 		return rc;
4284 	if (pcie_has_flr(dev)) {
4285 		pcie_flr(dev);
4286 		return 0;
4287 	}
4288 	rc = pci_af_flr(dev, 0);
4289 	if (rc != -ENOTTY)
4290 		return rc;
4291 	rc = pci_pm_reset(dev, 0);
4292 	if (rc != -ENOTTY)
4293 		return rc;
4294 	rc = pci_dev_reset_slot_function(dev, 0);
4295 	if (rc != -ENOTTY)
4296 		return rc;
4297 	return pci_parent_bus_reset(dev, 0);
4298 }
4299 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4300 
4301 /**
4302  * pci_probe_reset_function - check whether the device can be safely reset
4303  * @dev: PCI device to reset
4304  *
4305  * Some devices allow an individual function to be reset without affecting
4306  * other functions in the same device.  The PCI device must be responsive
4307  * to PCI config space in order to use this function.
4308  *
4309  * Returns 0 if the device function can be reset or negative if the
4310  * device doesn't support resetting a single function.
4311  */
4312 int pci_probe_reset_function(struct pci_dev *dev)
4313 {
4314 	int rc;
4315 
4316 	might_sleep();
4317 
4318 	rc = pci_dev_specific_reset(dev, 1);
4319 	if (rc != -ENOTTY)
4320 		return rc;
4321 	if (pcie_has_flr(dev))
4322 		return 0;
4323 	rc = pci_af_flr(dev, 1);
4324 	if (rc != -ENOTTY)
4325 		return rc;
4326 	rc = pci_pm_reset(dev, 1);
4327 	if (rc != -ENOTTY)
4328 		return rc;
4329 	rc = pci_dev_reset_slot_function(dev, 1);
4330 	if (rc != -ENOTTY)
4331 		return rc;
4332 
4333 	return pci_parent_bus_reset(dev, 1);
4334 }
4335 
4336 /**
4337  * pci_reset_function - quiesce and reset a PCI device function
4338  * @dev: PCI device to reset
4339  *
4340  * Some devices allow an individual function to be reset without affecting
4341  * other functions in the same device.  The PCI device must be responsive
4342  * to PCI config space in order to use this function.
4343  *
4344  * This function does not just reset the PCI portion of a device, but
4345  * clears all the state associated with the device.  This function differs
4346  * from __pci_reset_function_locked() in that it saves and restores device state
4347  * over the reset and takes the PCI device lock.
4348  *
4349  * Returns 0 if the device function was successfully reset or negative if the
4350  * device doesn't support resetting a single function.
4351  */
4352 int pci_reset_function(struct pci_dev *dev)
4353 {
4354 	int rc;
4355 
4356 	rc = pci_probe_reset_function(dev);
4357 	if (rc)
4358 		return rc;
4359 
4360 	pci_dev_lock(dev);
4361 	pci_dev_save_and_disable(dev);
4362 
4363 	rc = __pci_reset_function_locked(dev);
4364 
4365 	pci_dev_restore(dev);
4366 	pci_dev_unlock(dev);
4367 
4368 	return rc;
4369 }
4370 EXPORT_SYMBOL_GPL(pci_reset_function);
4371 
4372 /**
4373  * pci_reset_function_locked - quiesce and reset a PCI device function
4374  * @dev: PCI device to reset
4375  *
4376  * Some devices allow an individual function to be reset without affecting
4377  * other functions in the same device.  The PCI device must be responsive
4378  * to PCI config space in order to use this function.
4379  *
4380  * This function does not just reset the PCI portion of a device, but
4381  * clears all the state associated with the device.  This function differs
4382  * from __pci_reset_function_locked() in that it saves and restores device state
4383  * over the reset.  It also differs from pci_reset_function() in that it
4384  * requires the PCI device lock to be held.
4385  *
4386  * Returns 0 if the device function was successfully reset or negative if the
4387  * device doesn't support resetting a single function.
4388  */
4389 int pci_reset_function_locked(struct pci_dev *dev)
4390 {
4391 	int rc;
4392 
4393 	rc = pci_probe_reset_function(dev);
4394 	if (rc)
4395 		return rc;
4396 
4397 	pci_dev_save_and_disable(dev);
4398 
4399 	rc = __pci_reset_function_locked(dev);
4400 
4401 	pci_dev_restore(dev);
4402 
4403 	return rc;
4404 }
4405 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4406 
4407 /**
4408  * pci_try_reset_function - quiesce and reset a PCI device function
4409  * @dev: PCI device to reset
4410  *
4411  * Same as above, except return -EAGAIN if unable to lock device.
4412  */
4413 int pci_try_reset_function(struct pci_dev *dev)
4414 {
4415 	int rc;
4416 
4417 	rc = pci_probe_reset_function(dev);
4418 	if (rc)
4419 		return rc;
4420 
4421 	if (!pci_dev_trylock(dev))
4422 		return -EAGAIN;
4423 
4424 	pci_dev_save_and_disable(dev);
4425 	rc = __pci_reset_function_locked(dev);
4426 	pci_dev_unlock(dev);
4427 
4428 	pci_dev_restore(dev);
4429 	return rc;
4430 }
4431 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4432 
4433 /* Do any devices on or below this bus prevent a bus reset? */
4434 static bool pci_bus_resetable(struct pci_bus *bus)
4435 {
4436 	struct pci_dev *dev;
4437 
4438 
4439 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4440 		return false;
4441 
4442 	list_for_each_entry(dev, &bus->devices, bus_list) {
4443 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4444 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4445 			return false;
4446 	}
4447 
4448 	return true;
4449 }
4450 
4451 /* Lock devices from the top of the tree down */
4452 static void pci_bus_lock(struct pci_bus *bus)
4453 {
4454 	struct pci_dev *dev;
4455 
4456 	list_for_each_entry(dev, &bus->devices, bus_list) {
4457 		pci_dev_lock(dev);
4458 		if (dev->subordinate)
4459 			pci_bus_lock(dev->subordinate);
4460 	}
4461 }
4462 
4463 /* Unlock devices from the bottom of the tree up */
4464 static void pci_bus_unlock(struct pci_bus *bus)
4465 {
4466 	struct pci_dev *dev;
4467 
4468 	list_for_each_entry(dev, &bus->devices, bus_list) {
4469 		if (dev->subordinate)
4470 			pci_bus_unlock(dev->subordinate);
4471 		pci_dev_unlock(dev);
4472 	}
4473 }
4474 
4475 /* Return 1 on successful lock, 0 on contention */
4476 static int pci_bus_trylock(struct pci_bus *bus)
4477 {
4478 	struct pci_dev *dev;
4479 
4480 	list_for_each_entry(dev, &bus->devices, bus_list) {
4481 		if (!pci_dev_trylock(dev))
4482 			goto unlock;
4483 		if (dev->subordinate) {
4484 			if (!pci_bus_trylock(dev->subordinate)) {
4485 				pci_dev_unlock(dev);
4486 				goto unlock;
4487 			}
4488 		}
4489 	}
4490 	return 1;
4491 
4492 unlock:
4493 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4494 		if (dev->subordinate)
4495 			pci_bus_unlock(dev->subordinate);
4496 		pci_dev_unlock(dev);
4497 	}
4498 	return 0;
4499 }
4500 
4501 /* Do any devices on or below this slot prevent a bus reset? */
4502 static bool pci_slot_resetable(struct pci_slot *slot)
4503 {
4504 	struct pci_dev *dev;
4505 
4506 	if (slot->bus->self &&
4507 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4508 		return false;
4509 
4510 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4511 		if (!dev->slot || dev->slot != slot)
4512 			continue;
4513 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4514 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4515 			return false;
4516 	}
4517 
4518 	return true;
4519 }
4520 
4521 /* Lock devices from the top of the tree down */
4522 static void pci_slot_lock(struct pci_slot *slot)
4523 {
4524 	struct pci_dev *dev;
4525 
4526 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4527 		if (!dev->slot || dev->slot != slot)
4528 			continue;
4529 		pci_dev_lock(dev);
4530 		if (dev->subordinate)
4531 			pci_bus_lock(dev->subordinate);
4532 	}
4533 }
4534 
4535 /* Unlock devices from the bottom of the tree up */
4536 static void pci_slot_unlock(struct pci_slot *slot)
4537 {
4538 	struct pci_dev *dev;
4539 
4540 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4541 		if (!dev->slot || dev->slot != slot)
4542 			continue;
4543 		if (dev->subordinate)
4544 			pci_bus_unlock(dev->subordinate);
4545 		pci_dev_unlock(dev);
4546 	}
4547 }
4548 
4549 /* Return 1 on successful lock, 0 on contention */
4550 static int pci_slot_trylock(struct pci_slot *slot)
4551 {
4552 	struct pci_dev *dev;
4553 
4554 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4555 		if (!dev->slot || dev->slot != slot)
4556 			continue;
4557 		if (!pci_dev_trylock(dev))
4558 			goto unlock;
4559 		if (dev->subordinate) {
4560 			if (!pci_bus_trylock(dev->subordinate)) {
4561 				pci_dev_unlock(dev);
4562 				goto unlock;
4563 			}
4564 		}
4565 	}
4566 	return 1;
4567 
4568 unlock:
4569 	list_for_each_entry_continue_reverse(dev,
4570 					     &slot->bus->devices, bus_list) {
4571 		if (!dev->slot || dev->slot != slot)
4572 			continue;
4573 		if (dev->subordinate)
4574 			pci_bus_unlock(dev->subordinate);
4575 		pci_dev_unlock(dev);
4576 	}
4577 	return 0;
4578 }
4579 
4580 /* Save and disable devices from the top of the tree down */
4581 static void pci_bus_save_and_disable(struct pci_bus *bus)
4582 {
4583 	struct pci_dev *dev;
4584 
4585 	list_for_each_entry(dev, &bus->devices, bus_list) {
4586 		pci_dev_lock(dev);
4587 		pci_dev_save_and_disable(dev);
4588 		pci_dev_unlock(dev);
4589 		if (dev->subordinate)
4590 			pci_bus_save_and_disable(dev->subordinate);
4591 	}
4592 }
4593 
4594 /*
4595  * Restore devices from top of the tree down - parent bridges need to be
4596  * restored before we can get to subordinate devices.
4597  */
4598 static void pci_bus_restore(struct pci_bus *bus)
4599 {
4600 	struct pci_dev *dev;
4601 
4602 	list_for_each_entry(dev, &bus->devices, bus_list) {
4603 		pci_dev_lock(dev);
4604 		pci_dev_restore(dev);
4605 		pci_dev_unlock(dev);
4606 		if (dev->subordinate)
4607 			pci_bus_restore(dev->subordinate);
4608 	}
4609 }
4610 
4611 /* Save and disable devices from the top of the tree down */
4612 static void pci_slot_save_and_disable(struct pci_slot *slot)
4613 {
4614 	struct pci_dev *dev;
4615 
4616 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4617 		if (!dev->slot || dev->slot != slot)
4618 			continue;
4619 		pci_dev_save_and_disable(dev);
4620 		if (dev->subordinate)
4621 			pci_bus_save_and_disable(dev->subordinate);
4622 	}
4623 }
4624 
4625 /*
4626  * Restore devices from top of the tree down - parent bridges need to be
4627  * restored before we can get to subordinate devices.
4628  */
4629 static void pci_slot_restore(struct pci_slot *slot)
4630 {
4631 	struct pci_dev *dev;
4632 
4633 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4634 		if (!dev->slot || dev->slot != slot)
4635 			continue;
4636 		pci_dev_restore(dev);
4637 		if (dev->subordinate)
4638 			pci_bus_restore(dev->subordinate);
4639 	}
4640 }
4641 
4642 static int pci_slot_reset(struct pci_slot *slot, int probe)
4643 {
4644 	int rc;
4645 
4646 	if (!slot || !pci_slot_resetable(slot))
4647 		return -ENOTTY;
4648 
4649 	if (!probe)
4650 		pci_slot_lock(slot);
4651 
4652 	might_sleep();
4653 
4654 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4655 
4656 	if (!probe)
4657 		pci_slot_unlock(slot);
4658 
4659 	return rc;
4660 }
4661 
4662 /**
4663  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4664  * @slot: PCI slot to probe
4665  *
4666  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4667  */
4668 int pci_probe_reset_slot(struct pci_slot *slot)
4669 {
4670 	return pci_slot_reset(slot, 1);
4671 }
4672 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4673 
4674 /**
4675  * pci_reset_slot - reset a PCI slot
4676  * @slot: PCI slot to reset
4677  *
4678  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4679  * independent of other slots.  For instance, some slots may support slot power
4680  * control.  In the case of a 1:1 bus to slot architecture, this function may
4681  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4682  * Generally a slot reset should be attempted before a bus reset.  All of the
4683  * function of the slot and any subordinate buses behind the slot are reset
4684  * through this function.  PCI config space of all devices in the slot and
4685  * behind the slot is saved before and restored after reset.
4686  *
4687  * Return 0 on success, non-zero on error.
4688  */
4689 int pci_reset_slot(struct pci_slot *slot)
4690 {
4691 	int rc;
4692 
4693 	rc = pci_slot_reset(slot, 1);
4694 	if (rc)
4695 		return rc;
4696 
4697 	pci_slot_save_and_disable(slot);
4698 
4699 	rc = pci_slot_reset(slot, 0);
4700 
4701 	pci_slot_restore(slot);
4702 
4703 	return rc;
4704 }
4705 EXPORT_SYMBOL_GPL(pci_reset_slot);
4706 
4707 /**
4708  * pci_try_reset_slot - Try to reset a PCI slot
4709  * @slot: PCI slot to reset
4710  *
4711  * Same as above except return -EAGAIN if the slot cannot be locked
4712  */
4713 int pci_try_reset_slot(struct pci_slot *slot)
4714 {
4715 	int rc;
4716 
4717 	rc = pci_slot_reset(slot, 1);
4718 	if (rc)
4719 		return rc;
4720 
4721 	pci_slot_save_and_disable(slot);
4722 
4723 	if (pci_slot_trylock(slot)) {
4724 		might_sleep();
4725 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4726 		pci_slot_unlock(slot);
4727 	} else
4728 		rc = -EAGAIN;
4729 
4730 	pci_slot_restore(slot);
4731 
4732 	return rc;
4733 }
4734 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4735 
4736 static int pci_bus_reset(struct pci_bus *bus, int probe)
4737 {
4738 	if (!bus->self || !pci_bus_resetable(bus))
4739 		return -ENOTTY;
4740 
4741 	if (probe)
4742 		return 0;
4743 
4744 	pci_bus_lock(bus);
4745 
4746 	might_sleep();
4747 
4748 	pci_reset_bridge_secondary_bus(bus->self);
4749 
4750 	pci_bus_unlock(bus);
4751 
4752 	return 0;
4753 }
4754 
4755 /**
4756  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4757  * @bus: PCI bus to probe
4758  *
4759  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4760  */
4761 int pci_probe_reset_bus(struct pci_bus *bus)
4762 {
4763 	return pci_bus_reset(bus, 1);
4764 }
4765 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4766 
4767 /**
4768  * pci_reset_bus - reset a PCI bus
4769  * @bus: top level PCI bus to reset
4770  *
4771  * Do a bus reset on the given bus and any subordinate buses, saving
4772  * and restoring state of all devices.
4773  *
4774  * Return 0 on success, non-zero on error.
4775  */
4776 int pci_reset_bus(struct pci_bus *bus)
4777 {
4778 	int rc;
4779 
4780 	rc = pci_bus_reset(bus, 1);
4781 	if (rc)
4782 		return rc;
4783 
4784 	pci_bus_save_and_disable(bus);
4785 
4786 	rc = pci_bus_reset(bus, 0);
4787 
4788 	pci_bus_restore(bus);
4789 
4790 	return rc;
4791 }
4792 EXPORT_SYMBOL_GPL(pci_reset_bus);
4793 
4794 /**
4795  * pci_try_reset_bus - Try to reset a PCI bus
4796  * @bus: top level PCI bus to reset
4797  *
4798  * Same as above except return -EAGAIN if the bus cannot be locked
4799  */
4800 int pci_try_reset_bus(struct pci_bus *bus)
4801 {
4802 	int rc;
4803 
4804 	rc = pci_bus_reset(bus, 1);
4805 	if (rc)
4806 		return rc;
4807 
4808 	pci_bus_save_and_disable(bus);
4809 
4810 	if (pci_bus_trylock(bus)) {
4811 		might_sleep();
4812 		pci_reset_bridge_secondary_bus(bus->self);
4813 		pci_bus_unlock(bus);
4814 	} else
4815 		rc = -EAGAIN;
4816 
4817 	pci_bus_restore(bus);
4818 
4819 	return rc;
4820 }
4821 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4822 
4823 /**
4824  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4825  * @dev: PCI device to query
4826  *
4827  * Returns mmrbc: maximum designed memory read count in bytes
4828  *    or appropriate error value.
4829  */
4830 int pcix_get_max_mmrbc(struct pci_dev *dev)
4831 {
4832 	int cap;
4833 	u32 stat;
4834 
4835 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4836 	if (!cap)
4837 		return -EINVAL;
4838 
4839 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4840 		return -EINVAL;
4841 
4842 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4843 }
4844 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4845 
4846 /**
4847  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4848  * @dev: PCI device to query
4849  *
4850  * Returns mmrbc: maximum memory read count in bytes
4851  *    or appropriate error value.
4852  */
4853 int pcix_get_mmrbc(struct pci_dev *dev)
4854 {
4855 	int cap;
4856 	u16 cmd;
4857 
4858 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4859 	if (!cap)
4860 		return -EINVAL;
4861 
4862 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4863 		return -EINVAL;
4864 
4865 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4866 }
4867 EXPORT_SYMBOL(pcix_get_mmrbc);
4868 
4869 /**
4870  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4871  * @dev: PCI device to query
4872  * @mmrbc: maximum memory read count in bytes
4873  *    valid values are 512, 1024, 2048, 4096
4874  *
4875  * If possible sets maximum memory read byte count, some bridges have erratas
4876  * that prevent this.
4877  */
4878 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4879 {
4880 	int cap;
4881 	u32 stat, v, o;
4882 	u16 cmd;
4883 
4884 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4885 		return -EINVAL;
4886 
4887 	v = ffs(mmrbc) - 10;
4888 
4889 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4890 	if (!cap)
4891 		return -EINVAL;
4892 
4893 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4894 		return -EINVAL;
4895 
4896 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4897 		return -E2BIG;
4898 
4899 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4900 		return -EINVAL;
4901 
4902 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4903 	if (o != v) {
4904 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4905 			return -EIO;
4906 
4907 		cmd &= ~PCI_X_CMD_MAX_READ;
4908 		cmd |= v << 2;
4909 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4910 			return -EIO;
4911 	}
4912 	return 0;
4913 }
4914 EXPORT_SYMBOL(pcix_set_mmrbc);
4915 
4916 /**
4917  * pcie_get_readrq - get PCI Express read request size
4918  * @dev: PCI device to query
4919  *
4920  * Returns maximum memory read request in bytes
4921  *    or appropriate error value.
4922  */
4923 int pcie_get_readrq(struct pci_dev *dev)
4924 {
4925 	u16 ctl;
4926 
4927 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4928 
4929 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4930 }
4931 EXPORT_SYMBOL(pcie_get_readrq);
4932 
4933 /**
4934  * pcie_set_readrq - set PCI Express maximum memory read request
4935  * @dev: PCI device to query
4936  * @rq: maximum memory read count in bytes
4937  *    valid values are 128, 256, 512, 1024, 2048, 4096
4938  *
4939  * If possible sets maximum memory read request in bytes
4940  */
4941 int pcie_set_readrq(struct pci_dev *dev, int rq)
4942 {
4943 	u16 v;
4944 
4945 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4946 		return -EINVAL;
4947 
4948 	/*
4949 	 * If using the "performance" PCIe config, we clamp the
4950 	 * read rq size to the max packet size to prevent the
4951 	 * host bridge generating requests larger than we can
4952 	 * cope with
4953 	 */
4954 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4955 		int mps = pcie_get_mps(dev);
4956 
4957 		if (mps < rq)
4958 			rq = mps;
4959 	}
4960 
4961 	v = (ffs(rq) - 8) << 12;
4962 
4963 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4964 						  PCI_EXP_DEVCTL_READRQ, v);
4965 }
4966 EXPORT_SYMBOL(pcie_set_readrq);
4967 
4968 /**
4969  * pcie_get_mps - get PCI Express maximum payload size
4970  * @dev: PCI device to query
4971  *
4972  * Returns maximum payload size in bytes
4973  */
4974 int pcie_get_mps(struct pci_dev *dev)
4975 {
4976 	u16 ctl;
4977 
4978 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4979 
4980 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4981 }
4982 EXPORT_SYMBOL(pcie_get_mps);
4983 
4984 /**
4985  * pcie_set_mps - set PCI Express maximum payload size
4986  * @dev: PCI device to query
4987  * @mps: maximum payload size in bytes
4988  *    valid values are 128, 256, 512, 1024, 2048, 4096
4989  *
4990  * If possible sets maximum payload size
4991  */
4992 int pcie_set_mps(struct pci_dev *dev, int mps)
4993 {
4994 	u16 v;
4995 
4996 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4997 		return -EINVAL;
4998 
4999 	v = ffs(mps) - 8;
5000 	if (v > dev->pcie_mpss)
5001 		return -EINVAL;
5002 	v <<= 5;
5003 
5004 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5005 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5006 }
5007 EXPORT_SYMBOL(pcie_set_mps);
5008 
5009 /**
5010  * pcie_get_minimum_link - determine minimum link settings of a PCI device
5011  * @dev: PCI device to query
5012  * @speed: storage for minimum speed
5013  * @width: storage for minimum width
5014  *
5015  * This function will walk up the PCI device chain and determine the minimum
5016  * link width and speed of the device.
5017  */
5018 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5019 			  enum pcie_link_width *width)
5020 {
5021 	int ret;
5022 
5023 	*speed = PCI_SPEED_UNKNOWN;
5024 	*width = PCIE_LNK_WIDTH_UNKNOWN;
5025 
5026 	while (dev) {
5027 		u16 lnksta;
5028 		enum pci_bus_speed next_speed;
5029 		enum pcie_link_width next_width;
5030 
5031 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5032 		if (ret)
5033 			return ret;
5034 
5035 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5036 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5037 			PCI_EXP_LNKSTA_NLW_SHIFT;
5038 
5039 		if (next_speed < *speed)
5040 			*speed = next_speed;
5041 
5042 		if (next_width < *width)
5043 			*width = next_width;
5044 
5045 		dev = dev->bus->self;
5046 	}
5047 
5048 	return 0;
5049 }
5050 EXPORT_SYMBOL(pcie_get_minimum_link);
5051 
5052 /**
5053  * pci_select_bars - Make BAR mask from the type of resource
5054  * @dev: the PCI device for which BAR mask is made
5055  * @flags: resource type mask to be selected
5056  *
5057  * This helper routine makes bar mask from the type of resource.
5058  */
5059 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5060 {
5061 	int i, bars = 0;
5062 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5063 		if (pci_resource_flags(dev, i) & flags)
5064 			bars |= (1 << i);
5065 	return bars;
5066 }
5067 EXPORT_SYMBOL(pci_select_bars);
5068 
5069 /* Some architectures require additional programming to enable VGA */
5070 static arch_set_vga_state_t arch_set_vga_state;
5071 
5072 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5073 {
5074 	arch_set_vga_state = func;	/* NULL disables */
5075 }
5076 
5077 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5078 				  unsigned int command_bits, u32 flags)
5079 {
5080 	if (arch_set_vga_state)
5081 		return arch_set_vga_state(dev, decode, command_bits,
5082 						flags);
5083 	return 0;
5084 }
5085 
5086 /**
5087  * pci_set_vga_state - set VGA decode state on device and parents if requested
5088  * @dev: the PCI device
5089  * @decode: true = enable decoding, false = disable decoding
5090  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5091  * @flags: traverse ancestors and change bridges
5092  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5093  */
5094 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5095 		      unsigned int command_bits, u32 flags)
5096 {
5097 	struct pci_bus *bus;
5098 	struct pci_dev *bridge;
5099 	u16 cmd;
5100 	int rc;
5101 
5102 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5103 
5104 	/* ARCH specific VGA enables */
5105 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5106 	if (rc)
5107 		return rc;
5108 
5109 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5110 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5111 		if (decode == true)
5112 			cmd |= command_bits;
5113 		else
5114 			cmd &= ~command_bits;
5115 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5116 	}
5117 
5118 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5119 		return 0;
5120 
5121 	bus = dev->bus;
5122 	while (bus) {
5123 		bridge = bus->self;
5124 		if (bridge) {
5125 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5126 					     &cmd);
5127 			if (decode == true)
5128 				cmd |= PCI_BRIDGE_CTL_VGA;
5129 			else
5130 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5131 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5132 					      cmd);
5133 		}
5134 		bus = bus->parent;
5135 	}
5136 	return 0;
5137 }
5138 
5139 /**
5140  * pci_add_dma_alias - Add a DMA devfn alias for a device
5141  * @dev: the PCI device for which alias is added
5142  * @devfn: alias slot and function
5143  *
5144  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5145  * It should be called early, preferably as PCI fixup header quirk.
5146  */
5147 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5148 {
5149 	if (!dev->dma_alias_mask)
5150 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5151 					      sizeof(long), GFP_KERNEL);
5152 	if (!dev->dma_alias_mask) {
5153 		dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5154 		return;
5155 	}
5156 
5157 	set_bit(devfn, dev->dma_alias_mask);
5158 	dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5159 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5160 }
5161 
5162 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5163 {
5164 	return (dev1->dma_alias_mask &&
5165 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5166 	       (dev2->dma_alias_mask &&
5167 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5168 }
5169 
5170 bool pci_device_is_present(struct pci_dev *pdev)
5171 {
5172 	u32 v;
5173 
5174 	if (pci_dev_is_disconnected(pdev))
5175 		return false;
5176 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5177 }
5178 EXPORT_SYMBOL_GPL(pci_device_is_present);
5179 
5180 void pci_ignore_hotplug(struct pci_dev *dev)
5181 {
5182 	struct pci_dev *bridge = dev->bus->self;
5183 
5184 	dev->ignore_hotplug = 1;
5185 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5186 	if (bridge)
5187 		bridge->ignore_hotplug = 1;
5188 }
5189 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5190 
5191 resource_size_t __weak pcibios_default_alignment(void)
5192 {
5193 	return 0;
5194 }
5195 
5196 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5197 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5198 static DEFINE_SPINLOCK(resource_alignment_lock);
5199 
5200 /**
5201  * pci_specified_resource_alignment - get resource alignment specified by user.
5202  * @dev: the PCI device to get
5203  * @resize: whether or not to change resources' size when reassigning alignment
5204  *
5205  * RETURNS: Resource alignment if it is specified.
5206  *          Zero if it is not specified.
5207  */
5208 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5209 							bool *resize)
5210 {
5211 	int seg, bus, slot, func, align_order, count;
5212 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
5213 	resource_size_t align = pcibios_default_alignment();
5214 	char *p;
5215 
5216 	spin_lock(&resource_alignment_lock);
5217 	p = resource_alignment_param;
5218 	if (!*p && !align)
5219 		goto out;
5220 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5221 		align = 0;
5222 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5223 		goto out;
5224 	}
5225 
5226 	while (*p) {
5227 		count = 0;
5228 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5229 							p[count] == '@') {
5230 			p += count + 1;
5231 		} else {
5232 			align_order = -1;
5233 		}
5234 		if (strncmp(p, "pci:", 4) == 0) {
5235 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5236 			p += 4;
5237 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5238 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5239 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5240 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5241 						p);
5242 					break;
5243 				}
5244 				subsystem_vendor = subsystem_device = 0;
5245 			}
5246 			p += count;
5247 			if ((!vendor || (vendor == dev->vendor)) &&
5248 				(!device || (device == dev->device)) &&
5249 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5250 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5251 				*resize = true;
5252 				if (align_order == -1)
5253 					align = PAGE_SIZE;
5254 				else
5255 					align = 1 << align_order;
5256 				/* Found */
5257 				break;
5258 			}
5259 		}
5260 		else {
5261 			if (sscanf(p, "%x:%x:%x.%x%n",
5262 				&seg, &bus, &slot, &func, &count) != 4) {
5263 				seg = 0;
5264 				if (sscanf(p, "%x:%x.%x%n",
5265 						&bus, &slot, &func, &count) != 3) {
5266 					/* Invalid format */
5267 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5268 						p);
5269 					break;
5270 				}
5271 			}
5272 			p += count;
5273 			if (seg == pci_domain_nr(dev->bus) &&
5274 				bus == dev->bus->number &&
5275 				slot == PCI_SLOT(dev->devfn) &&
5276 				func == PCI_FUNC(dev->devfn)) {
5277 				*resize = true;
5278 				if (align_order == -1)
5279 					align = PAGE_SIZE;
5280 				else
5281 					align = 1 << align_order;
5282 				/* Found */
5283 				break;
5284 			}
5285 		}
5286 		if (*p != ';' && *p != ',') {
5287 			/* End of param or invalid format */
5288 			break;
5289 		}
5290 		p++;
5291 	}
5292 out:
5293 	spin_unlock(&resource_alignment_lock);
5294 	return align;
5295 }
5296 
5297 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5298 					   resource_size_t align, bool resize)
5299 {
5300 	struct resource *r = &dev->resource[bar];
5301 	resource_size_t size;
5302 
5303 	if (!(r->flags & IORESOURCE_MEM))
5304 		return;
5305 
5306 	if (r->flags & IORESOURCE_PCI_FIXED) {
5307 		dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5308 			 bar, r, (unsigned long long)align);
5309 		return;
5310 	}
5311 
5312 	size = resource_size(r);
5313 	if (size >= align)
5314 		return;
5315 
5316 	/*
5317 	 * Increase the alignment of the resource.  There are two ways we
5318 	 * can do this:
5319 	 *
5320 	 * 1) Increase the size of the resource.  BARs are aligned on their
5321 	 *    size, so when we reallocate space for this resource, we'll
5322 	 *    allocate it with the larger alignment.  This also prevents
5323 	 *    assignment of any other BARs inside the alignment region, so
5324 	 *    if we're requesting page alignment, this means no other BARs
5325 	 *    will share the page.
5326 	 *
5327 	 *    The disadvantage is that this makes the resource larger than
5328 	 *    the hardware BAR, which may break drivers that compute things
5329 	 *    based on the resource size, e.g., to find registers at a
5330 	 *    fixed offset before the end of the BAR.
5331 	 *
5332 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5333 	 *    set r->start to the desired alignment.  By itself this
5334 	 *    doesn't prevent other BARs being put inside the alignment
5335 	 *    region, but if we realign *every* resource of every device in
5336 	 *    the system, none of them will share an alignment region.
5337 	 *
5338 	 * When the user has requested alignment for only some devices via
5339 	 * the "pci=resource_alignment" argument, "resize" is true and we
5340 	 * use the first method.  Otherwise we assume we're aligning all
5341 	 * devices and we use the second.
5342 	 */
5343 
5344 	dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5345 		 bar, r, (unsigned long long)align);
5346 
5347 	if (resize) {
5348 		r->start = 0;
5349 		r->end = align - 1;
5350 	} else {
5351 		r->flags &= ~IORESOURCE_SIZEALIGN;
5352 		r->flags |= IORESOURCE_STARTALIGN;
5353 		r->start = align;
5354 		r->end = r->start + size - 1;
5355 	}
5356 	r->flags |= IORESOURCE_UNSET;
5357 }
5358 
5359 /*
5360  * This function disables memory decoding and releases memory resources
5361  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5362  * It also rounds up size to specified alignment.
5363  * Later on, the kernel will assign page-aligned memory resource back
5364  * to the device.
5365  */
5366 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5367 {
5368 	int i;
5369 	struct resource *r;
5370 	resource_size_t align;
5371 	u16 command;
5372 	bool resize = false;
5373 
5374 	/*
5375 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5376 	 * 3.4.1.11.  Their resources are allocated from the space
5377 	 * described by the VF BARx register in the PF's SR-IOV capability.
5378 	 * We can't influence their alignment here.
5379 	 */
5380 	if (dev->is_virtfn)
5381 		return;
5382 
5383 	/* check if specified PCI is target device to reassign */
5384 	align = pci_specified_resource_alignment(dev, &resize);
5385 	if (!align)
5386 		return;
5387 
5388 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5389 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5390 		dev_warn(&dev->dev,
5391 			"Can't reassign resources to host bridge.\n");
5392 		return;
5393 	}
5394 
5395 	dev_info(&dev->dev,
5396 		"Disabling memory decoding and releasing memory resources.\n");
5397 	pci_read_config_word(dev, PCI_COMMAND, &command);
5398 	command &= ~PCI_COMMAND_MEMORY;
5399 	pci_write_config_word(dev, PCI_COMMAND, command);
5400 
5401 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5402 		pci_request_resource_alignment(dev, i, align, resize);
5403 
5404 	/*
5405 	 * Need to disable bridge's resource window,
5406 	 * to enable the kernel to reassign new resource
5407 	 * window later on.
5408 	 */
5409 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5410 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5411 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5412 			r = &dev->resource[i];
5413 			if (!(r->flags & IORESOURCE_MEM))
5414 				continue;
5415 			r->flags |= IORESOURCE_UNSET;
5416 			r->end = resource_size(r) - 1;
5417 			r->start = 0;
5418 		}
5419 		pci_disable_bridge_window(dev);
5420 	}
5421 }
5422 
5423 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5424 {
5425 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5426 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5427 	spin_lock(&resource_alignment_lock);
5428 	strncpy(resource_alignment_param, buf, count);
5429 	resource_alignment_param[count] = '\0';
5430 	spin_unlock(&resource_alignment_lock);
5431 	return count;
5432 }
5433 
5434 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5435 {
5436 	size_t count;
5437 	spin_lock(&resource_alignment_lock);
5438 	count = snprintf(buf, size, "%s", resource_alignment_param);
5439 	spin_unlock(&resource_alignment_lock);
5440 	return count;
5441 }
5442 
5443 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5444 {
5445 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5446 }
5447 
5448 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5449 					const char *buf, size_t count)
5450 {
5451 	return pci_set_resource_alignment_param(buf, count);
5452 }
5453 
5454 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5455 					pci_resource_alignment_store);
5456 
5457 static int __init pci_resource_alignment_sysfs_init(void)
5458 {
5459 	return bus_create_file(&pci_bus_type,
5460 					&bus_attr_resource_alignment);
5461 }
5462 late_initcall(pci_resource_alignment_sysfs_init);
5463 
5464 static void pci_no_domains(void)
5465 {
5466 #ifdef CONFIG_PCI_DOMAINS
5467 	pci_domains_supported = 0;
5468 #endif
5469 }
5470 
5471 #ifdef CONFIG_PCI_DOMAINS
5472 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5473 
5474 int pci_get_new_domain_nr(void)
5475 {
5476 	return atomic_inc_return(&__domain_nr);
5477 }
5478 
5479 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5480 static int of_pci_bus_find_domain_nr(struct device *parent)
5481 {
5482 	static int use_dt_domains = -1;
5483 	int domain = -1;
5484 
5485 	if (parent)
5486 		domain = of_get_pci_domain_nr(parent->of_node);
5487 	/*
5488 	 * Check DT domain and use_dt_domains values.
5489 	 *
5490 	 * If DT domain property is valid (domain >= 0) and
5491 	 * use_dt_domains != 0, the DT assignment is valid since this means
5492 	 * we have not previously allocated a domain number by using
5493 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5494 	 * 1, to indicate that we have just assigned a domain number from
5495 	 * DT.
5496 	 *
5497 	 * If DT domain property value is not valid (ie domain < 0), and we
5498 	 * have not previously assigned a domain number from DT
5499 	 * (use_dt_domains != 1) we should assign a domain number by
5500 	 * using the:
5501 	 *
5502 	 * pci_get_new_domain_nr()
5503 	 *
5504 	 * API and update the use_dt_domains value to keep track of method we
5505 	 * are using to assign domain numbers (use_dt_domains = 0).
5506 	 *
5507 	 * All other combinations imply we have a platform that is trying
5508 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5509 	 * which is a recipe for domain mishandling and it is prevented by
5510 	 * invalidating the domain value (domain = -1) and printing a
5511 	 * corresponding error.
5512 	 */
5513 	if (domain >= 0 && use_dt_domains) {
5514 		use_dt_domains = 1;
5515 	} else if (domain < 0 && use_dt_domains != 1) {
5516 		use_dt_domains = 0;
5517 		domain = pci_get_new_domain_nr();
5518 	} else {
5519 		dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5520 			parent->of_node);
5521 		domain = -1;
5522 	}
5523 
5524 	return domain;
5525 }
5526 
5527 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5528 {
5529 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5530 			       acpi_pci_bus_find_domain_nr(bus);
5531 }
5532 #endif
5533 #endif
5534 
5535 /**
5536  * pci_ext_cfg_avail - can we access extended PCI config space?
5537  *
5538  * Returns 1 if we can access PCI extended config space (offsets
5539  * greater than 0xff). This is the default implementation. Architecture
5540  * implementations can override this.
5541  */
5542 int __weak pci_ext_cfg_avail(void)
5543 {
5544 	return 1;
5545 }
5546 
5547 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5548 {
5549 }
5550 EXPORT_SYMBOL(pci_fixup_cardbus);
5551 
5552 static int __init pci_setup(char *str)
5553 {
5554 	while (str) {
5555 		char *k = strchr(str, ',');
5556 		if (k)
5557 			*k++ = 0;
5558 		if (*str && (str = pcibios_setup(str)) && *str) {
5559 			if (!strcmp(str, "nomsi")) {
5560 				pci_no_msi();
5561 			} else if (!strcmp(str, "noaer")) {
5562 				pci_no_aer();
5563 			} else if (!strncmp(str, "realloc=", 8)) {
5564 				pci_realloc_get_opt(str + 8);
5565 			} else if (!strncmp(str, "realloc", 7)) {
5566 				pci_realloc_get_opt("on");
5567 			} else if (!strcmp(str, "nodomains")) {
5568 				pci_no_domains();
5569 			} else if (!strncmp(str, "noari", 5)) {
5570 				pcie_ari_disabled = true;
5571 			} else if (!strncmp(str, "cbiosize=", 9)) {
5572 				pci_cardbus_io_size = memparse(str + 9, &str);
5573 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5574 				pci_cardbus_mem_size = memparse(str + 10, &str);
5575 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5576 				pci_set_resource_alignment_param(str + 19,
5577 							strlen(str + 19));
5578 			} else if (!strncmp(str, "ecrc=", 5)) {
5579 				pcie_ecrc_get_policy(str + 5);
5580 			} else if (!strncmp(str, "hpiosize=", 9)) {
5581 				pci_hotplug_io_size = memparse(str + 9, &str);
5582 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5583 				pci_hotplug_mem_size = memparse(str + 10, &str);
5584 			} else if (!strncmp(str, "hpbussize=", 10)) {
5585 				pci_hotplug_bus_size =
5586 					simple_strtoul(str + 10, &str, 0);
5587 				if (pci_hotplug_bus_size > 0xff)
5588 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5589 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5590 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5591 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5592 				pcie_bus_config = PCIE_BUS_SAFE;
5593 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5594 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5595 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5596 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5597 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5598 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5599 			} else {
5600 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5601 						str);
5602 			}
5603 		}
5604 		str = k;
5605 	}
5606 	return 0;
5607 }
5608 early_param("pci", pci_setup);
5609