1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Following exit from Conventional Reset, devices must be ready within 1 sec 69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 70 * Reset (PCIe r6.0 sec 5.8). 71 */ 72 #define PCI_RESET_WAIT 1000 /* msec */ 73 74 /* 75 * Devices may extend the 1 sec period through Request Retry Status 76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 77 * limit, but 60 sec ought to be enough for any device to become 78 * responsive. 79 */ 80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 81 82 static void pci_dev_d3_sleep(struct pci_dev *dev) 83 { 84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 85 unsigned int upper; 86 87 if (delay_ms) { 88 /* Use a 20% upper bound, 1ms minimum */ 89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 90 usleep_range(delay_ms * USEC_PER_MSEC, 91 (delay_ms + upper) * USEC_PER_MSEC); 92 } 93 } 94 95 bool pci_reset_supported(struct pci_dev *dev) 96 { 97 return dev->reset_methods[0] != 0; 98 } 99 100 #ifdef CONFIG_PCI_DOMAINS 101 int pci_domains_supported = 1; 102 #endif 103 104 #define DEFAULT_CARDBUS_IO_SIZE (256) 105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 109 110 #define DEFAULT_HOTPLUG_IO_SIZE (256) 111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 113 /* hpiosize=nn can override this */ 114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 115 /* 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 118 * pci=hpmemsize=nnM overrides both 119 */ 120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 122 123 #define DEFAULT_HOTPLUG_BUS_SIZE 1 124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 125 126 127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 130 #elif defined CONFIG_PCIE_BUS_SAFE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 134 #elif defined CONFIG_PCIE_BUS_PEER2PEER 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 136 #else 137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 138 #endif 139 140 /* 141 * The default CLS is used if arch didn't set CLS explicitly and not 142 * all pci devices agree on the same value. Arch can override either 143 * the dfl or actual value as it sees fit. Don't forget this is 144 * measured in 32-bit words, not bytes. 145 */ 146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 147 u8 pci_cache_line_size; 148 149 /* 150 * If we set up a device for bus mastering, we need to check the latency 151 * timer as certain BIOSes forget to set it properly. 152 */ 153 unsigned int pcibios_max_latency = 255; 154 155 /* If set, the PCIe ARI capability will not be used. */ 156 static bool pcie_ari_disabled; 157 158 /* If set, the PCIe ATS capability will not be used. */ 159 static bool pcie_ats_disabled; 160 161 /* If set, the PCI config space of each device is printed during boot. */ 162 bool pci_early_dump; 163 164 bool pci_ats_disabled(void) 165 { 166 return pcie_ats_disabled; 167 } 168 EXPORT_SYMBOL_GPL(pci_ats_disabled); 169 170 /* Disable bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_disable; 172 /* Force bridge_d3 for all PCIe ports */ 173 static bool pci_bridge_d3_force; 174 175 static int __init pcie_port_pm_setup(char *str) 176 { 177 if (!strcmp(str, "off")) 178 pci_bridge_d3_disable = true; 179 else if (!strcmp(str, "force")) 180 pci_bridge_d3_force = true; 181 return 1; 182 } 183 __setup("pcie_port_pm=", pcie_port_pm_setup); 184 185 /** 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 187 * @bus: pointer to PCI bus structure to search 188 * 189 * Given a PCI bus, returns the highest PCI bus number present in the set 190 * including the given PCI bus and its list of child PCI buses. 191 */ 192 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 193 { 194 struct pci_bus *tmp; 195 unsigned char max, n; 196 197 max = bus->busn_res.end; 198 list_for_each_entry(tmp, &bus->children, node) { 199 n = pci_bus_max_busnr(tmp); 200 if (n > max) 201 max = n; 202 } 203 return max; 204 } 205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 206 207 /** 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 209 * @pdev: the PCI device 210 * 211 * Returns error bits set in PCI_STATUS and clears them. 212 */ 213 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 214 { 215 u16 status; 216 int ret; 217 218 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 219 if (ret != PCIBIOS_SUCCESSFUL) 220 return -EIO; 221 222 status &= PCI_STATUS_ERROR_BITS; 223 if (status) 224 pci_write_config_word(pdev, PCI_STATUS, status); 225 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 229 230 #ifdef CONFIG_HAS_IOMEM 231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 232 bool write_combine) 233 { 234 struct resource *res = &pdev->resource[bar]; 235 resource_size_t start = res->start; 236 resource_size_t size = resource_size(res); 237 238 /* 239 * Make sure the BAR is actually a memory resource, not an IO resource 240 */ 241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 243 return NULL; 244 } 245 246 if (write_combine) 247 return ioremap_wc(start, size); 248 249 return ioremap(start, size); 250 } 251 252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 253 { 254 return __pci_ioremap_resource(pdev, bar, false); 255 } 256 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 257 258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 259 { 260 return __pci_ioremap_resource(pdev, bar, true); 261 } 262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 263 #endif 264 265 /** 266 * pci_dev_str_match_path - test if a path string matches a device 267 * @dev: the PCI device to test 268 * @path: string to match the device against 269 * @endptr: pointer to the string after the match 270 * 271 * Test if a string (typically from a kernel parameter) formatted as a 272 * path of device/function addresses matches a PCI device. The string must 273 * be of the form: 274 * 275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 276 * 277 * A path for a device can be obtained using 'lspci -t'. Using a path 278 * is more robust against bus renumbering than using only a single bus, 279 * device and function address. 280 * 281 * Returns 1 if the string matches the device, 0 if it does not and 282 * a negative error code if it fails to parse the string. 283 */ 284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 285 const char **endptr) 286 { 287 int ret; 288 unsigned int seg, bus, slot, func; 289 char *wpath, *p; 290 char end; 291 292 *endptr = strchrnul(path, ';'); 293 294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 295 if (!wpath) 296 return -ENOMEM; 297 298 while (1) { 299 p = strrchr(wpath, '/'); 300 if (!p) 301 break; 302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 303 if (ret != 2) { 304 ret = -EINVAL; 305 goto free_and_exit; 306 } 307 308 if (dev->devfn != PCI_DEVFN(slot, func)) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 /* 314 * Note: we don't need to get a reference to the upstream 315 * bridge because we hold a reference to the top level 316 * device which should hold a reference to the bridge, 317 * and so on. 318 */ 319 dev = pci_upstream_bridge(dev); 320 if (!dev) { 321 ret = 0; 322 goto free_and_exit; 323 } 324 325 *p = 0; 326 } 327 328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 329 &func, &end); 330 if (ret != 4) { 331 seg = 0; 332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 333 if (ret != 3) { 334 ret = -EINVAL; 335 goto free_and_exit; 336 } 337 } 338 339 ret = (seg == pci_domain_nr(dev->bus) && 340 bus == dev->bus->number && 341 dev->devfn == PCI_DEVFN(slot, func)); 342 343 free_and_exit: 344 kfree(wpath); 345 return ret; 346 } 347 348 /** 349 * pci_dev_str_match - test if a string matches a device 350 * @dev: the PCI device to test 351 * @p: string to match the device against 352 * @endptr: pointer to the string after the match 353 * 354 * Test if a string (typically from a kernel parameter) matches a specified 355 * PCI device. The string may be of one of the following formats: 356 * 357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 359 * 360 * The first format specifies a PCI bus/device/function address which 361 * may change if new hardware is inserted, if motherboard firmware changes, 362 * or due to changes caused in kernel parameters. If the domain is 363 * left unspecified, it is taken to be 0. In order to be robust against 364 * bus renumbering issues, a path of PCI device/function numbers may be used 365 * to address the specific device. The path for a device can be determined 366 * through the use of 'lspci -t'. 367 * 368 * The second format matches devices using IDs in the configuration 369 * space which may match multiple devices in the system. A value of 0 370 * for any field will match all devices. (Note: this differs from 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 372 * legacy reasons and convenience so users don't have to specify 373 * FFFFFFFFs on the command line.) 374 * 375 * Returns 1 if the string matches the device, 0 if it does not and 376 * a negative error code if the string cannot be parsed. 377 */ 378 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 379 const char **endptr) 380 { 381 int ret; 382 int count; 383 unsigned short vendor, device, subsystem_vendor, subsystem_device; 384 385 if (strncmp(p, "pci:", 4) == 0) { 386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 387 p += 4; 388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 389 &subsystem_vendor, &subsystem_device, &count); 390 if (ret != 4) { 391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 392 if (ret != 2) 393 return -EINVAL; 394 395 subsystem_vendor = 0; 396 subsystem_device = 0; 397 } 398 399 p += count; 400 401 if ((!vendor || vendor == dev->vendor) && 402 (!device || device == dev->device) && 403 (!subsystem_vendor || 404 subsystem_vendor == dev->subsystem_vendor) && 405 (!subsystem_device || 406 subsystem_device == dev->subsystem_device)) 407 goto found; 408 } else { 409 /* 410 * PCI Bus, Device, Function IDs are specified 411 * (optionally, may include a path of devfns following it) 412 */ 413 ret = pci_dev_str_match_path(dev, p, &p); 414 if (ret < 0) 415 return ret; 416 else if (ret) 417 goto found; 418 } 419 420 *endptr = p; 421 return 0; 422 423 found: 424 *endptr = p; 425 return 1; 426 } 427 428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 429 u8 pos, int cap, int *ttl) 430 { 431 u8 id; 432 u16 ent; 433 434 pci_bus_read_config_byte(bus, devfn, pos, &pos); 435 436 while ((*ttl)--) { 437 if (pos < 0x40) 438 break; 439 pos &= ~3; 440 pci_bus_read_config_word(bus, devfn, pos, &ent); 441 442 id = ent & 0xff; 443 if (id == 0xff) 444 break; 445 if (id == cap) 446 return pos; 447 pos = (ent >> 8); 448 } 449 return 0; 450 } 451 452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 453 u8 pos, int cap) 454 { 455 int ttl = PCI_FIND_CAP_TTL; 456 457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 458 } 459 460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 461 { 462 return __pci_find_next_cap(dev->bus, dev->devfn, 463 pos + PCI_CAP_LIST_NEXT, cap); 464 } 465 EXPORT_SYMBOL_GPL(pci_find_next_capability); 466 467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 468 unsigned int devfn, u8 hdr_type) 469 { 470 u16 status; 471 472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 473 if (!(status & PCI_STATUS_CAP_LIST)) 474 return 0; 475 476 switch (hdr_type) { 477 case PCI_HEADER_TYPE_NORMAL: 478 case PCI_HEADER_TYPE_BRIDGE: 479 return PCI_CAPABILITY_LIST; 480 case PCI_HEADER_TYPE_CARDBUS: 481 return PCI_CB_CAPABILITY_LIST; 482 } 483 484 return 0; 485 } 486 487 /** 488 * pci_find_capability - query for devices' capabilities 489 * @dev: PCI device to query 490 * @cap: capability code 491 * 492 * Tell if a device supports a given PCI capability. 493 * Returns the address of the requested capability structure within the 494 * device's PCI configuration space or 0 in case the device does not 495 * support it. Possible values for @cap include: 496 * 497 * %PCI_CAP_ID_PM Power Management 498 * %PCI_CAP_ID_AGP Accelerated Graphics Port 499 * %PCI_CAP_ID_VPD Vital Product Data 500 * %PCI_CAP_ID_SLOTID Slot Identification 501 * %PCI_CAP_ID_MSI Message Signalled Interrupts 502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 503 * %PCI_CAP_ID_PCIX PCI-X 504 * %PCI_CAP_ID_EXP PCI Express 505 */ 506 u8 pci_find_capability(struct pci_dev *dev, int cap) 507 { 508 u8 pos; 509 510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 511 if (pos) 512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 513 514 return pos; 515 } 516 EXPORT_SYMBOL(pci_find_capability); 517 518 /** 519 * pci_bus_find_capability - query for devices' capabilities 520 * @bus: the PCI bus to query 521 * @devfn: PCI device to query 522 * @cap: capability code 523 * 524 * Like pci_find_capability() but works for PCI devices that do not have a 525 * pci_dev structure set up yet. 526 * 527 * Returns the address of the requested capability structure within the 528 * device's PCI configuration space or 0 in case the device does not 529 * support it. 530 */ 531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 532 { 533 u8 hdr_type, pos; 534 535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 536 537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 538 if (pos) 539 pos = __pci_find_next_cap(bus, devfn, pos, cap); 540 541 return pos; 542 } 543 EXPORT_SYMBOL(pci_bus_find_capability); 544 545 /** 546 * pci_find_next_ext_capability - Find an extended capability 547 * @dev: PCI device to query 548 * @start: address at which to start looking (0 to start at beginning of list) 549 * @cap: capability code 550 * 551 * Returns the address of the next matching extended capability structure 552 * within the device's PCI configuration space or 0 if the device does 553 * not support it. Some capabilities can occur several times, e.g., the 554 * vendor-specific capability, and this provides a way to find them all. 555 */ 556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 557 { 558 u32 header; 559 int ttl; 560 u16 pos = PCI_CFG_SPACE_SIZE; 561 562 /* minimum 8 bytes per capability */ 563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 564 565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 566 return 0; 567 568 if (start) 569 pos = start; 570 571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 572 return 0; 573 574 /* 575 * If we have no capabilities, this is indicated by cap ID, 576 * cap version and next pointer all being 0. 577 */ 578 if (header == 0) 579 return 0; 580 581 while (ttl-- > 0) { 582 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 583 return pos; 584 585 pos = PCI_EXT_CAP_NEXT(header); 586 if (pos < PCI_CFG_SPACE_SIZE) 587 break; 588 589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 596 597 /** 598 * pci_find_ext_capability - Find an extended capability 599 * @dev: PCI device to query 600 * @cap: capability code 601 * 602 * Returns the address of the requested extended capability structure 603 * within the device's PCI configuration space or 0 if the device does 604 * not support it. Possible values for @cap include: 605 * 606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 607 * %PCI_EXT_CAP_ID_VC Virtual Channel 608 * %PCI_EXT_CAP_ID_DSN Device Serial Number 609 * %PCI_EXT_CAP_ID_PWR Power Budgeting 610 */ 611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 612 { 613 return pci_find_next_ext_capability(dev, 0, cap); 614 } 615 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 616 617 /** 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number 619 * @dev: PCI device to query 620 * 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 622 * Number. 623 * 624 * Returns the DSN, or zero if the capability does not exist. 625 */ 626 u64 pci_get_dsn(struct pci_dev *dev) 627 { 628 u32 dword; 629 u64 dsn; 630 int pos; 631 632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 633 if (!pos) 634 return 0; 635 636 /* 637 * The Device Serial Number is two dwords offset 4 bytes from the 638 * capability position. The specification says that the first dword is 639 * the lower half, and the second dword is the upper half. 640 */ 641 pos += 4; 642 pci_read_config_dword(dev, pos, &dword); 643 dsn = (u64)dword; 644 pci_read_config_dword(dev, pos + 4, &dword); 645 dsn |= ((u64)dword) << 32; 646 647 return dsn; 648 } 649 EXPORT_SYMBOL_GPL(pci_get_dsn); 650 651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 652 { 653 int rc, ttl = PCI_FIND_CAP_TTL; 654 u8 cap, mask; 655 656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 657 mask = HT_3BIT_CAP_MASK; 658 else 659 mask = HT_5BIT_CAP_MASK; 660 661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 662 PCI_CAP_ID_HT, &ttl); 663 while (pos) { 664 rc = pci_read_config_byte(dev, pos + 3, &cap); 665 if (rc != PCIBIOS_SUCCESSFUL) 666 return 0; 667 668 if ((cap & mask) == ht_cap) 669 return pos; 670 671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 672 pos + PCI_CAP_LIST_NEXT, 673 PCI_CAP_ID_HT, &ttl); 674 } 675 676 return 0; 677 } 678 679 /** 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 681 * @dev: PCI device to query 682 * @pos: Position from which to continue searching 683 * @ht_cap: HyperTransport capability code 684 * 685 * To be used in conjunction with pci_find_ht_capability() to search for 686 * all capabilities matching @ht_cap. @pos should always be a value returned 687 * from pci_find_ht_capability(). 688 * 689 * NB. To be 100% safe against broken PCI devices, the caller should take 690 * steps to avoid an infinite loop. 691 */ 692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 693 { 694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 695 } 696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 697 698 /** 699 * pci_find_ht_capability - query a device's HyperTransport capabilities 700 * @dev: PCI device to query 701 * @ht_cap: HyperTransport capability code 702 * 703 * Tell if a device supports a given HyperTransport capability. 704 * Returns an address within the device's PCI configuration space 705 * or 0 in case the device does not support the request capability. 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 707 * which has a HyperTransport capability matching @ht_cap. 708 */ 709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 710 { 711 u8 pos; 712 713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 714 if (pos) 715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 716 717 return pos; 718 } 719 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 720 721 /** 722 * pci_find_vsec_capability - Find a vendor-specific extended capability 723 * @dev: PCI device to query 724 * @vendor: Vendor ID for which capability is defined 725 * @cap: Vendor-specific capability ID 726 * 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with 728 * VSEC ID @cap. If found, return the capability offset in 729 * config space; otherwise return 0. 730 */ 731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 732 { 733 u16 vsec = 0; 734 u32 header; 735 int ret; 736 737 if (vendor != dev->vendor) 738 return 0; 739 740 while ((vsec = pci_find_next_ext_capability(dev, vsec, 741 PCI_EXT_CAP_ID_VNDR))) { 742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 743 if (ret != PCIBIOS_SUCCESSFUL) 744 continue; 745 746 if (PCI_VNDR_HEADER_ID(header) == cap) 747 return vsec; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 753 754 /** 755 * pci_find_dvsec_capability - Find DVSEC for vendor 756 * @dev: PCI device to query 757 * @vendor: Vendor ID to match for the DVSEC 758 * @dvsec: Designated Vendor-specific capability ID 759 * 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 761 * offset in config space; otherwise return 0. 762 */ 763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 764 { 765 int pos; 766 767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 768 if (!pos) 769 return 0; 770 771 while (pos) { 772 u16 v, id; 773 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 776 if (vendor == v && dvsec == id) 777 return pos; 778 779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 785 786 /** 787 * pci_find_parent_resource - return resource region of parent bus of given 788 * region 789 * @dev: PCI device structure contains resources to be searched 790 * @res: child resource record for which parent is sought 791 * 792 * For given resource region of given device, return the resource region of 793 * parent bus the given region is contained in. 794 */ 795 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 796 struct resource *res) 797 { 798 const struct pci_bus *bus = dev->bus; 799 struct resource *r; 800 801 pci_bus_for_each_resource(bus, r) { 802 if (!r) 803 continue; 804 if (resource_contains(r, res)) { 805 806 /* 807 * If the window is prefetchable but the BAR is 808 * not, the allocator made a mistake. 809 */ 810 if (r->flags & IORESOURCE_PREFETCH && 811 !(res->flags & IORESOURCE_PREFETCH)) 812 return NULL; 813 814 /* 815 * If we're below a transparent bridge, there may 816 * be both a positively-decoded aperture and a 817 * subtractively-decoded region that contain the BAR. 818 * We want the positively-decoded one, so this depends 819 * on pci_bus_for_each_resource() giving us those 820 * first. 821 */ 822 return r; 823 } 824 } 825 return NULL; 826 } 827 EXPORT_SYMBOL(pci_find_parent_resource); 828 829 /** 830 * pci_find_resource - Return matching PCI device resource 831 * @dev: PCI device to query 832 * @res: Resource to look for 833 * 834 * Goes over standard PCI resources (BARs) and checks if the given resource 835 * is partially or fully contained in any of them. In that case the 836 * matching resource is returned, %NULL otherwise. 837 */ 838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 839 { 840 int i; 841 842 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 843 struct resource *r = &dev->resource[i]; 844 845 if (r->start && resource_contains(r, res)) 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(pci_find_resource); 852 853 /** 854 * pci_resource_name - Return the name of the PCI resource 855 * @dev: PCI device to query 856 * @i: index of the resource 857 * 858 * Return the standard PCI resource (BAR) name according to their index. 859 */ 860 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 861 { 862 static const char * const bar_name[] = { 863 "BAR 0", 864 "BAR 1", 865 "BAR 2", 866 "BAR 3", 867 "BAR 4", 868 "BAR 5", 869 "ROM", 870 #ifdef CONFIG_PCI_IOV 871 "VF BAR 0", 872 "VF BAR 1", 873 "VF BAR 2", 874 "VF BAR 3", 875 "VF BAR 4", 876 "VF BAR 5", 877 #endif 878 "bridge window", /* "io" included in %pR */ 879 "bridge window", /* "mem" included in %pR */ 880 "bridge window", /* "mem pref" included in %pR */ 881 }; 882 static const char * const cardbus_name[] = { 883 "BAR 1", 884 "unknown", 885 "unknown", 886 "unknown", 887 "unknown", 888 "unknown", 889 #ifdef CONFIG_PCI_IOV 890 "unknown", 891 "unknown", 892 "unknown", 893 "unknown", 894 "unknown", 895 "unknown", 896 #endif 897 "CardBus bridge window 0", /* I/O */ 898 "CardBus bridge window 1", /* I/O */ 899 "CardBus bridge window 0", /* mem */ 900 "CardBus bridge window 1", /* mem */ 901 }; 902 903 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 904 i < ARRAY_SIZE(cardbus_name)) 905 return cardbus_name[i]; 906 907 if (i < ARRAY_SIZE(bar_name)) 908 return bar_name[i]; 909 910 return "unknown"; 911 } 912 913 /** 914 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 915 * @dev: the PCI device to operate on 916 * @pos: config space offset of status word 917 * @mask: mask of bit(s) to care about in status word 918 * 919 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 920 */ 921 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 922 { 923 int i; 924 925 /* Wait for Transaction Pending bit clean */ 926 for (i = 0; i < 4; i++) { 927 u16 status; 928 if (i) 929 msleep((1 << (i - 1)) * 100); 930 931 pci_read_config_word(dev, pos, &status); 932 if (!(status & mask)) 933 return 1; 934 } 935 936 return 0; 937 } 938 939 static int pci_acs_enable; 940 941 /** 942 * pci_request_acs - ask for ACS to be enabled if supported 943 */ 944 void pci_request_acs(void) 945 { 946 pci_acs_enable = 1; 947 } 948 949 static const char *disable_acs_redir_param; 950 951 /** 952 * pci_disable_acs_redir - disable ACS redirect capabilities 953 * @dev: the PCI device 954 * 955 * For only devices specified in the disable_acs_redir parameter. 956 */ 957 static void pci_disable_acs_redir(struct pci_dev *dev) 958 { 959 int ret = 0; 960 const char *p; 961 int pos; 962 u16 ctrl; 963 964 if (!disable_acs_redir_param) 965 return; 966 967 p = disable_acs_redir_param; 968 while (*p) { 969 ret = pci_dev_str_match(dev, p, &p); 970 if (ret < 0) { 971 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 972 disable_acs_redir_param); 973 974 break; 975 } else if (ret == 1) { 976 /* Found a match */ 977 break; 978 } 979 980 if (*p != ';' && *p != ',') { 981 /* End of param or invalid format */ 982 break; 983 } 984 p++; 985 } 986 987 if (ret != 1) 988 return; 989 990 if (!pci_dev_specific_disable_acs_redir(dev)) 991 return; 992 993 pos = dev->acs_cap; 994 if (!pos) { 995 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 996 return; 997 } 998 999 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 1000 1001 /* P2P Request & Completion Redirect */ 1002 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 1003 1004 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 1005 1006 pci_info(dev, "disabled ACS redirect\n"); 1007 } 1008 1009 /** 1010 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 1011 * @dev: the PCI device 1012 */ 1013 static void pci_std_enable_acs(struct pci_dev *dev) 1014 { 1015 int pos; 1016 u16 cap; 1017 u16 ctrl; 1018 1019 pos = dev->acs_cap; 1020 if (!pos) 1021 return; 1022 1023 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 1024 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 1025 1026 /* Source Validation */ 1027 ctrl |= (cap & PCI_ACS_SV); 1028 1029 /* P2P Request Redirect */ 1030 ctrl |= (cap & PCI_ACS_RR); 1031 1032 /* P2P Completion Redirect */ 1033 ctrl |= (cap & PCI_ACS_CR); 1034 1035 /* Upstream Forwarding */ 1036 ctrl |= (cap & PCI_ACS_UF); 1037 1038 /* Enable Translation Blocking for external devices and noats */ 1039 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1040 ctrl |= (cap & PCI_ACS_TB); 1041 1042 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 1043 } 1044 1045 /** 1046 * pci_enable_acs - enable ACS if hardware support it 1047 * @dev: the PCI device 1048 */ 1049 static void pci_enable_acs(struct pci_dev *dev) 1050 { 1051 if (!pci_acs_enable) 1052 goto disable_acs_redir; 1053 1054 if (!pci_dev_specific_enable_acs(dev)) 1055 goto disable_acs_redir; 1056 1057 pci_std_enable_acs(dev); 1058 1059 disable_acs_redir: 1060 /* 1061 * Note: pci_disable_acs_redir() must be called even if ACS was not 1062 * enabled by the kernel because it may have been enabled by 1063 * platform firmware. So if we are told to disable it, we should 1064 * always disable it after setting the kernel's default 1065 * preferences. 1066 */ 1067 pci_disable_acs_redir(dev); 1068 } 1069 1070 /** 1071 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1072 * @dev: PCI device to have its BARs restored 1073 * 1074 * Restore the BAR values for a given device, so as to make it 1075 * accessible by its driver. 1076 */ 1077 static void pci_restore_bars(struct pci_dev *dev) 1078 { 1079 int i; 1080 1081 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1082 pci_update_resource(dev, i); 1083 } 1084 1085 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1086 { 1087 if (pci_use_mid_pm()) 1088 return true; 1089 1090 return acpi_pci_power_manageable(dev); 1091 } 1092 1093 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1094 pci_power_t t) 1095 { 1096 if (pci_use_mid_pm()) 1097 return mid_pci_set_power_state(dev, t); 1098 1099 return acpi_pci_set_power_state(dev, t); 1100 } 1101 1102 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1103 { 1104 if (pci_use_mid_pm()) 1105 return mid_pci_get_power_state(dev); 1106 1107 return acpi_pci_get_power_state(dev); 1108 } 1109 1110 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1111 { 1112 if (!pci_use_mid_pm()) 1113 acpi_pci_refresh_power_state(dev); 1114 } 1115 1116 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1117 { 1118 if (pci_use_mid_pm()) 1119 return PCI_POWER_ERROR; 1120 1121 return acpi_pci_choose_state(dev); 1122 } 1123 1124 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1125 { 1126 if (pci_use_mid_pm()) 1127 return PCI_POWER_ERROR; 1128 1129 return acpi_pci_wakeup(dev, enable); 1130 } 1131 1132 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1133 { 1134 if (pci_use_mid_pm()) 1135 return false; 1136 1137 return acpi_pci_need_resume(dev); 1138 } 1139 1140 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1141 { 1142 if (pci_use_mid_pm()) 1143 return false; 1144 1145 return acpi_pci_bridge_d3(dev); 1146 } 1147 1148 /** 1149 * pci_update_current_state - Read power state of given device and cache it 1150 * @dev: PCI device to handle. 1151 * @state: State to cache in case the device doesn't have the PM capability 1152 * 1153 * The power state is read from the PMCSR register, which however is 1154 * inaccessible in D3cold. The platform firmware is therefore queried first 1155 * to detect accessibility of the register. In case the platform firmware 1156 * reports an incorrect state or the device isn't power manageable by the 1157 * platform at all, we try to detect D3cold by testing accessibility of the 1158 * vendor ID in config space. 1159 */ 1160 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1161 { 1162 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1163 dev->current_state = PCI_D3cold; 1164 } else if (dev->pm_cap) { 1165 u16 pmcsr; 1166 1167 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1168 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1169 dev->current_state = PCI_D3cold; 1170 return; 1171 } 1172 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1173 } else { 1174 dev->current_state = state; 1175 } 1176 } 1177 1178 /** 1179 * pci_refresh_power_state - Refresh the given device's power state data 1180 * @dev: Target PCI device. 1181 * 1182 * Ask the platform to refresh the devices power state information and invoke 1183 * pci_update_current_state() to update its current PCI power state. 1184 */ 1185 void pci_refresh_power_state(struct pci_dev *dev) 1186 { 1187 platform_pci_refresh_power_state(dev); 1188 pci_update_current_state(dev, dev->current_state); 1189 } 1190 1191 /** 1192 * pci_platform_power_transition - Use platform to change device power state 1193 * @dev: PCI device to handle. 1194 * @state: State to put the device into. 1195 */ 1196 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1197 { 1198 int error; 1199 1200 error = platform_pci_set_power_state(dev, state); 1201 if (!error) 1202 pci_update_current_state(dev, state); 1203 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1204 dev->current_state = PCI_D0; 1205 1206 return error; 1207 } 1208 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1209 1210 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1211 { 1212 pm_request_resume(&pci_dev->dev); 1213 return 0; 1214 } 1215 1216 /** 1217 * pci_resume_bus - Walk given bus and runtime resume devices on it 1218 * @bus: Top bus of the subtree to walk. 1219 */ 1220 void pci_resume_bus(struct pci_bus *bus) 1221 { 1222 if (bus) 1223 pci_walk_bus(bus, pci_resume_one, NULL); 1224 } 1225 1226 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1227 { 1228 int delay = 1; 1229 bool retrain = false; 1230 struct pci_dev *bridge; 1231 1232 if (pci_is_pcie(dev)) { 1233 bridge = pci_upstream_bridge(dev); 1234 if (bridge) 1235 retrain = true; 1236 } 1237 1238 /* 1239 * After reset, the device should not silently discard config 1240 * requests, but it may still indicate that it needs more time by 1241 * responding to them with CRS completions. The Root Port will 1242 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1243 * the read (except when CRS SV is enabled and the read was for the 1244 * Vendor ID; in that case it synthesizes 0x0001 data). 1245 * 1246 * Wait for the device to return a non-CRS completion. Read the 1247 * Command register instead of Vendor ID so we don't have to 1248 * contend with the CRS SV value. 1249 */ 1250 for (;;) { 1251 u32 id; 1252 1253 pci_read_config_dword(dev, PCI_COMMAND, &id); 1254 if (!PCI_POSSIBLE_ERROR(id)) 1255 break; 1256 1257 if (delay > timeout) { 1258 pci_warn(dev, "not ready %dms after %s; giving up\n", 1259 delay - 1, reset_type); 1260 return -ENOTTY; 1261 } 1262 1263 if (delay > PCI_RESET_WAIT) { 1264 if (retrain) { 1265 retrain = false; 1266 if (pcie_failed_link_retrain(bridge)) { 1267 delay = 1; 1268 continue; 1269 } 1270 } 1271 pci_info(dev, "not ready %dms after %s; waiting\n", 1272 delay - 1, reset_type); 1273 } 1274 1275 msleep(delay); 1276 delay *= 2; 1277 } 1278 1279 if (delay > PCI_RESET_WAIT) 1280 pci_info(dev, "ready %dms after %s\n", delay - 1, 1281 reset_type); 1282 else 1283 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1284 reset_type); 1285 1286 return 0; 1287 } 1288 1289 /** 1290 * pci_power_up - Put the given device into D0 1291 * @dev: PCI device to power up 1292 * 1293 * On success, return 0 or 1, depending on whether or not it is necessary to 1294 * restore the device's BARs subsequently (1 is returned in that case). 1295 * 1296 * On failure, return a negative error code. Always return failure if @dev 1297 * lacks a Power Management Capability, even if the platform was able to 1298 * put the device in D0 via non-PCI means. 1299 */ 1300 int pci_power_up(struct pci_dev *dev) 1301 { 1302 bool need_restore; 1303 pci_power_t state; 1304 u16 pmcsr; 1305 1306 platform_pci_set_power_state(dev, PCI_D0); 1307 1308 if (!dev->pm_cap) { 1309 state = platform_pci_get_power_state(dev); 1310 if (state == PCI_UNKNOWN) 1311 dev->current_state = PCI_D0; 1312 else 1313 dev->current_state = state; 1314 1315 return -EIO; 1316 } 1317 1318 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1319 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1320 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1321 pci_power_name(dev->current_state)); 1322 dev->current_state = PCI_D3cold; 1323 return -EIO; 1324 } 1325 1326 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1327 1328 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1329 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1330 1331 if (state == PCI_D0) 1332 goto end; 1333 1334 /* 1335 * Force the entire word to 0. This doesn't affect PME_Status, disables 1336 * PME_En, and sets PowerState to 0. 1337 */ 1338 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1339 1340 /* Mandatory transition delays; see PCI PM 1.2. */ 1341 if (state == PCI_D3hot) 1342 pci_dev_d3_sleep(dev); 1343 else if (state == PCI_D2) 1344 udelay(PCI_PM_D2_DELAY); 1345 1346 end: 1347 dev->current_state = PCI_D0; 1348 if (need_restore) 1349 return 1; 1350 1351 return 0; 1352 } 1353 1354 /** 1355 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1356 * @dev: PCI device to power up 1357 * @locked: whether pci_bus_sem is held 1358 * 1359 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1360 * to confirm the state change, restore its BARs if they might be lost and 1361 * reconfigure ASPM in accordance with the new power state. 1362 * 1363 * If pci_restore_state() is going to be called right after a power state change 1364 * to D0, it is more efficient to use pci_power_up() directly instead of this 1365 * function. 1366 */ 1367 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1368 { 1369 u16 pmcsr; 1370 int ret; 1371 1372 ret = pci_power_up(dev); 1373 if (ret < 0) { 1374 if (dev->current_state == PCI_D0) 1375 return 0; 1376 1377 return ret; 1378 } 1379 1380 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1381 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1382 if (dev->current_state != PCI_D0) { 1383 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1384 pci_power_name(dev->current_state)); 1385 } else if (ret > 0) { 1386 /* 1387 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1388 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1389 * from D3hot to D0 _may_ perform an internal reset, thereby 1390 * going to "D0 Uninitialized" rather than "D0 Initialized". 1391 * For example, at least some versions of the 3c905B and the 1392 * 3c556B exhibit this behaviour. 1393 * 1394 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1395 * devices in a D3hot state at boot. Consequently, we need to 1396 * restore at least the BARs so that the device will be 1397 * accessible to its driver. 1398 */ 1399 pci_restore_bars(dev); 1400 } 1401 1402 if (dev->bus->self) 1403 pcie_aspm_pm_state_change(dev->bus->self, locked); 1404 1405 return 0; 1406 } 1407 1408 /** 1409 * __pci_dev_set_current_state - Set current state of a PCI device 1410 * @dev: Device to handle 1411 * @data: pointer to state to be set 1412 */ 1413 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1414 { 1415 pci_power_t state = *(pci_power_t *)data; 1416 1417 dev->current_state = state; 1418 return 0; 1419 } 1420 1421 /** 1422 * pci_bus_set_current_state - Walk given bus and set current state of devices 1423 * @bus: Top bus of the subtree to walk. 1424 * @state: state to be set 1425 */ 1426 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1427 { 1428 if (bus) 1429 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1430 } 1431 1432 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1433 { 1434 if (!bus) 1435 return; 1436 1437 if (locked) 1438 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1439 else 1440 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1441 } 1442 1443 /** 1444 * pci_set_low_power_state - Put a PCI device into a low-power state. 1445 * @dev: PCI device to handle. 1446 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1447 * @locked: whether pci_bus_sem is held 1448 * 1449 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1450 * 1451 * RETURN VALUE: 1452 * -EINVAL if the requested state is invalid. 1453 * -EIO if device does not support PCI PM or its PM capabilities register has a 1454 * wrong version, or device doesn't support the requested state. 1455 * 0 if device already is in the requested state. 1456 * 0 if device's power state has been successfully changed. 1457 */ 1458 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1459 { 1460 u16 pmcsr; 1461 1462 if (!dev->pm_cap) 1463 return -EIO; 1464 1465 /* 1466 * Validate transition: We can enter D0 from any state, but if 1467 * we're already in a low-power state, we can only go deeper. E.g., 1468 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1469 * we'd have to go from D3 to D0, then to D1. 1470 */ 1471 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1472 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1473 pci_power_name(dev->current_state), 1474 pci_power_name(state)); 1475 return -EINVAL; 1476 } 1477 1478 /* Check if this device supports the desired state */ 1479 if ((state == PCI_D1 && !dev->d1_support) 1480 || (state == PCI_D2 && !dev->d2_support)) 1481 return -EIO; 1482 1483 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1484 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1485 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1486 pci_power_name(dev->current_state), 1487 pci_power_name(state)); 1488 dev->current_state = PCI_D3cold; 1489 return -EIO; 1490 } 1491 1492 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1493 pmcsr |= state; 1494 1495 /* Enter specified state */ 1496 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1497 1498 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1499 if (state == PCI_D3hot) 1500 pci_dev_d3_sleep(dev); 1501 else if (state == PCI_D2) 1502 udelay(PCI_PM_D2_DELAY); 1503 1504 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1505 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1506 if (dev->current_state != state) 1507 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1508 pci_power_name(dev->current_state), 1509 pci_power_name(state)); 1510 1511 if (dev->bus->self) 1512 pcie_aspm_pm_state_change(dev->bus->self, locked); 1513 1514 return 0; 1515 } 1516 1517 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1518 { 1519 int error; 1520 1521 /* Bound the state we're entering */ 1522 if (state > PCI_D3cold) 1523 state = PCI_D3cold; 1524 else if (state < PCI_D0) 1525 state = PCI_D0; 1526 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1527 1528 /* 1529 * If the device or the parent bridge do not support PCI 1530 * PM, ignore the request if we're doing anything other 1531 * than putting it into D0 (which would only happen on 1532 * boot). 1533 */ 1534 return 0; 1535 1536 /* Check if we're already there */ 1537 if (dev->current_state == state) 1538 return 0; 1539 1540 if (state == PCI_D0) 1541 return pci_set_full_power_state(dev, locked); 1542 1543 /* 1544 * This device is quirked not to be put into D3, so don't put it in 1545 * D3 1546 */ 1547 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1548 return 0; 1549 1550 if (state == PCI_D3cold) { 1551 /* 1552 * To put the device in D3cold, put it into D3hot in the native 1553 * way, then put it into D3cold using platform ops. 1554 */ 1555 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1556 1557 if (pci_platform_power_transition(dev, PCI_D3cold)) 1558 return error; 1559 1560 /* Powering off a bridge may power off the whole hierarchy */ 1561 if (dev->current_state == PCI_D3cold) 1562 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1563 } else { 1564 error = pci_set_low_power_state(dev, state, locked); 1565 1566 if (pci_platform_power_transition(dev, state)) 1567 return error; 1568 } 1569 1570 return 0; 1571 } 1572 1573 /** 1574 * pci_set_power_state - Set the power state of a PCI device 1575 * @dev: PCI device to handle. 1576 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1577 * 1578 * Transition a device to a new power state, using the platform firmware and/or 1579 * the device's PCI PM registers. 1580 * 1581 * RETURN VALUE: 1582 * -EINVAL if the requested state is invalid. 1583 * -EIO if device does not support PCI PM or its PM capabilities register has a 1584 * wrong version, or device doesn't support the requested state. 1585 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1586 * 0 if device already is in the requested state. 1587 * 0 if the transition is to D3 but D3 is not supported. 1588 * 0 if device's power state has been successfully changed. 1589 */ 1590 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1591 { 1592 return __pci_set_power_state(dev, state, false); 1593 } 1594 EXPORT_SYMBOL(pci_set_power_state); 1595 1596 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1597 { 1598 lockdep_assert_held(&pci_bus_sem); 1599 1600 return __pci_set_power_state(dev, state, true); 1601 } 1602 EXPORT_SYMBOL(pci_set_power_state_locked); 1603 1604 #define PCI_EXP_SAVE_REGS 7 1605 1606 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1607 u16 cap, bool extended) 1608 { 1609 struct pci_cap_saved_state *tmp; 1610 1611 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1612 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1613 return tmp; 1614 } 1615 return NULL; 1616 } 1617 1618 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1619 { 1620 return _pci_find_saved_cap(dev, cap, false); 1621 } 1622 1623 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1624 { 1625 return _pci_find_saved_cap(dev, cap, true); 1626 } 1627 1628 static int pci_save_pcie_state(struct pci_dev *dev) 1629 { 1630 int i = 0; 1631 struct pci_cap_saved_state *save_state; 1632 u16 *cap; 1633 1634 if (!pci_is_pcie(dev)) 1635 return 0; 1636 1637 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1638 if (!save_state) { 1639 pci_err(dev, "buffer not found in %s\n", __func__); 1640 return -ENOMEM; 1641 } 1642 1643 cap = (u16 *)&save_state->cap.data[0]; 1644 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1645 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1646 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1647 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1648 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1649 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1650 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1651 1652 return 0; 1653 } 1654 1655 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1656 { 1657 #ifdef CONFIG_PCIEASPM 1658 struct pci_dev *bridge; 1659 u32 ctl; 1660 1661 bridge = pci_upstream_bridge(dev); 1662 if (bridge && bridge->ltr_path) { 1663 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1664 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1665 pci_dbg(bridge, "re-enabling LTR\n"); 1666 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1667 PCI_EXP_DEVCTL2_LTR_EN); 1668 } 1669 } 1670 #endif 1671 } 1672 1673 static void pci_restore_pcie_state(struct pci_dev *dev) 1674 { 1675 int i = 0; 1676 struct pci_cap_saved_state *save_state; 1677 u16 *cap; 1678 1679 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1680 if (!save_state) 1681 return; 1682 1683 /* 1684 * Downstream ports reset the LTR enable bit when link goes down. 1685 * Check and re-configure the bit here before restoring device. 1686 * PCIe r5.0, sec 7.5.3.16. 1687 */ 1688 pci_bridge_reconfigure_ltr(dev); 1689 1690 cap = (u16 *)&save_state->cap.data[0]; 1691 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1692 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1693 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1694 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1695 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1696 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1697 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1698 } 1699 1700 static int pci_save_pcix_state(struct pci_dev *dev) 1701 { 1702 int pos; 1703 struct pci_cap_saved_state *save_state; 1704 1705 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1706 if (!pos) 1707 return 0; 1708 1709 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1710 if (!save_state) { 1711 pci_err(dev, "buffer not found in %s\n", __func__); 1712 return -ENOMEM; 1713 } 1714 1715 pci_read_config_word(dev, pos + PCI_X_CMD, 1716 (u16 *)save_state->cap.data); 1717 1718 return 0; 1719 } 1720 1721 static void pci_restore_pcix_state(struct pci_dev *dev) 1722 { 1723 int i = 0, pos; 1724 struct pci_cap_saved_state *save_state; 1725 u16 *cap; 1726 1727 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1728 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1729 if (!save_state || !pos) 1730 return; 1731 cap = (u16 *)&save_state->cap.data[0]; 1732 1733 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1734 } 1735 1736 static void pci_save_ltr_state(struct pci_dev *dev) 1737 { 1738 int ltr; 1739 struct pci_cap_saved_state *save_state; 1740 u32 *cap; 1741 1742 if (!pci_is_pcie(dev)) 1743 return; 1744 1745 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1746 if (!ltr) 1747 return; 1748 1749 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1750 if (!save_state) { 1751 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1752 return; 1753 } 1754 1755 /* Some broken devices only support dword access to LTR */ 1756 cap = &save_state->cap.data[0]; 1757 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1758 } 1759 1760 static void pci_restore_ltr_state(struct pci_dev *dev) 1761 { 1762 struct pci_cap_saved_state *save_state; 1763 int ltr; 1764 u32 *cap; 1765 1766 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1767 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1768 if (!save_state || !ltr) 1769 return; 1770 1771 /* Some broken devices only support dword access to LTR */ 1772 cap = &save_state->cap.data[0]; 1773 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1774 } 1775 1776 /** 1777 * pci_save_state - save the PCI configuration space of a device before 1778 * suspending 1779 * @dev: PCI device that we're dealing with 1780 */ 1781 int pci_save_state(struct pci_dev *dev) 1782 { 1783 int i; 1784 /* XXX: 100% dword access ok here? */ 1785 for (i = 0; i < 16; i++) { 1786 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1787 pci_dbg(dev, "save config %#04x: %#010x\n", 1788 i * 4, dev->saved_config_space[i]); 1789 } 1790 dev->state_saved = true; 1791 1792 i = pci_save_pcie_state(dev); 1793 if (i != 0) 1794 return i; 1795 1796 i = pci_save_pcix_state(dev); 1797 if (i != 0) 1798 return i; 1799 1800 pci_save_ltr_state(dev); 1801 pci_save_dpc_state(dev); 1802 pci_save_aer_state(dev); 1803 pci_save_ptm_state(dev); 1804 return pci_save_vc_state(dev); 1805 } 1806 EXPORT_SYMBOL(pci_save_state); 1807 1808 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1809 u32 saved_val, int retry, bool force) 1810 { 1811 u32 val; 1812 1813 pci_read_config_dword(pdev, offset, &val); 1814 if (!force && val == saved_val) 1815 return; 1816 1817 for (;;) { 1818 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1819 offset, val, saved_val); 1820 pci_write_config_dword(pdev, offset, saved_val); 1821 if (retry-- <= 0) 1822 return; 1823 1824 pci_read_config_dword(pdev, offset, &val); 1825 if (val == saved_val) 1826 return; 1827 1828 mdelay(1); 1829 } 1830 } 1831 1832 static void pci_restore_config_space_range(struct pci_dev *pdev, 1833 int start, int end, int retry, 1834 bool force) 1835 { 1836 int index; 1837 1838 for (index = end; index >= start; index--) 1839 pci_restore_config_dword(pdev, 4 * index, 1840 pdev->saved_config_space[index], 1841 retry, force); 1842 } 1843 1844 static void pci_restore_config_space(struct pci_dev *pdev) 1845 { 1846 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1847 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1848 /* Restore BARs before the command register. */ 1849 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1850 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1851 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1852 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1853 1854 /* 1855 * Force rewriting of prefetch registers to avoid S3 resume 1856 * issues on Intel PCI bridges that occur when these 1857 * registers are not explicitly written. 1858 */ 1859 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1860 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1861 } else { 1862 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1863 } 1864 } 1865 1866 static void pci_restore_rebar_state(struct pci_dev *pdev) 1867 { 1868 unsigned int pos, nbars, i; 1869 u32 ctrl; 1870 1871 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1872 if (!pos) 1873 return; 1874 1875 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1876 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1877 1878 for (i = 0; i < nbars; i++, pos += 8) { 1879 struct resource *res; 1880 int bar_idx, size; 1881 1882 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1883 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1884 res = pdev->resource + bar_idx; 1885 size = pci_rebar_bytes_to_size(resource_size(res)); 1886 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1887 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1888 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1889 } 1890 } 1891 1892 /** 1893 * pci_restore_state - Restore the saved state of a PCI device 1894 * @dev: PCI device that we're dealing with 1895 */ 1896 void pci_restore_state(struct pci_dev *dev) 1897 { 1898 if (!dev->state_saved) 1899 return; 1900 1901 /* 1902 * Restore max latencies (in the LTR capability) before enabling 1903 * LTR itself (in the PCIe capability). 1904 */ 1905 pci_restore_ltr_state(dev); 1906 1907 pci_restore_pcie_state(dev); 1908 pci_restore_pasid_state(dev); 1909 pci_restore_pri_state(dev); 1910 pci_restore_ats_state(dev); 1911 pci_restore_vc_state(dev); 1912 pci_restore_rebar_state(dev); 1913 pci_restore_dpc_state(dev); 1914 pci_restore_ptm_state(dev); 1915 1916 pci_aer_clear_status(dev); 1917 pci_restore_aer_state(dev); 1918 1919 pci_restore_config_space(dev); 1920 1921 pci_restore_pcix_state(dev); 1922 pci_restore_msi_state(dev); 1923 1924 /* Restore ACS and IOV configuration state */ 1925 pci_enable_acs(dev); 1926 pci_restore_iov_state(dev); 1927 1928 dev->state_saved = false; 1929 } 1930 EXPORT_SYMBOL(pci_restore_state); 1931 1932 struct pci_saved_state { 1933 u32 config_space[16]; 1934 struct pci_cap_saved_data cap[]; 1935 }; 1936 1937 /** 1938 * pci_store_saved_state - Allocate and return an opaque struct containing 1939 * the device saved state. 1940 * @dev: PCI device that we're dealing with 1941 * 1942 * Return NULL if no state or error. 1943 */ 1944 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1945 { 1946 struct pci_saved_state *state; 1947 struct pci_cap_saved_state *tmp; 1948 struct pci_cap_saved_data *cap; 1949 size_t size; 1950 1951 if (!dev->state_saved) 1952 return NULL; 1953 1954 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1955 1956 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1957 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1958 1959 state = kzalloc(size, GFP_KERNEL); 1960 if (!state) 1961 return NULL; 1962 1963 memcpy(state->config_space, dev->saved_config_space, 1964 sizeof(state->config_space)); 1965 1966 cap = state->cap; 1967 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1968 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1969 memcpy(cap, &tmp->cap, len); 1970 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1971 } 1972 /* Empty cap_save terminates list */ 1973 1974 return state; 1975 } 1976 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1977 1978 /** 1979 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1980 * @dev: PCI device that we're dealing with 1981 * @state: Saved state returned from pci_store_saved_state() 1982 */ 1983 int pci_load_saved_state(struct pci_dev *dev, 1984 struct pci_saved_state *state) 1985 { 1986 struct pci_cap_saved_data *cap; 1987 1988 dev->state_saved = false; 1989 1990 if (!state) 1991 return 0; 1992 1993 memcpy(dev->saved_config_space, state->config_space, 1994 sizeof(state->config_space)); 1995 1996 cap = state->cap; 1997 while (cap->size) { 1998 struct pci_cap_saved_state *tmp; 1999 2000 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 2001 if (!tmp || tmp->cap.size != cap->size) 2002 return -EINVAL; 2003 2004 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 2005 cap = (struct pci_cap_saved_data *)((u8 *)cap + 2006 sizeof(struct pci_cap_saved_data) + cap->size); 2007 } 2008 2009 dev->state_saved = true; 2010 return 0; 2011 } 2012 EXPORT_SYMBOL_GPL(pci_load_saved_state); 2013 2014 /** 2015 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 2016 * and free the memory allocated for it. 2017 * @dev: PCI device that we're dealing with 2018 * @state: Pointer to saved state returned from pci_store_saved_state() 2019 */ 2020 int pci_load_and_free_saved_state(struct pci_dev *dev, 2021 struct pci_saved_state **state) 2022 { 2023 int ret = pci_load_saved_state(dev, *state); 2024 kfree(*state); 2025 *state = NULL; 2026 return ret; 2027 } 2028 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 2029 2030 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 2031 { 2032 return pci_enable_resources(dev, bars); 2033 } 2034 2035 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2036 { 2037 int err; 2038 struct pci_dev *bridge; 2039 u16 cmd; 2040 u8 pin; 2041 2042 err = pci_set_power_state(dev, PCI_D0); 2043 if (err < 0 && err != -EIO) 2044 return err; 2045 2046 bridge = pci_upstream_bridge(dev); 2047 if (bridge) 2048 pcie_aspm_powersave_config_link(bridge); 2049 2050 err = pcibios_enable_device(dev, bars); 2051 if (err < 0) 2052 return err; 2053 pci_fixup_device(pci_fixup_enable, dev); 2054 2055 if (dev->msi_enabled || dev->msix_enabled) 2056 return 0; 2057 2058 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2059 if (pin) { 2060 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2061 if (cmd & PCI_COMMAND_INTX_DISABLE) 2062 pci_write_config_word(dev, PCI_COMMAND, 2063 cmd & ~PCI_COMMAND_INTX_DISABLE); 2064 } 2065 2066 return 0; 2067 } 2068 2069 /** 2070 * pci_reenable_device - Resume abandoned device 2071 * @dev: PCI device to be resumed 2072 * 2073 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2074 * to be called by normal code, write proper resume handler and use it instead. 2075 */ 2076 int pci_reenable_device(struct pci_dev *dev) 2077 { 2078 if (pci_is_enabled(dev)) 2079 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2080 return 0; 2081 } 2082 EXPORT_SYMBOL(pci_reenable_device); 2083 2084 static void pci_enable_bridge(struct pci_dev *dev) 2085 { 2086 struct pci_dev *bridge; 2087 int retval; 2088 2089 bridge = pci_upstream_bridge(dev); 2090 if (bridge) 2091 pci_enable_bridge(bridge); 2092 2093 if (pci_is_enabled(dev)) { 2094 if (!dev->is_busmaster) 2095 pci_set_master(dev); 2096 return; 2097 } 2098 2099 retval = pci_enable_device(dev); 2100 if (retval) 2101 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2102 retval); 2103 pci_set_master(dev); 2104 } 2105 2106 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2107 { 2108 struct pci_dev *bridge; 2109 int err; 2110 int i, bars = 0; 2111 2112 /* 2113 * Power state could be unknown at this point, either due to a fresh 2114 * boot or a device removal call. So get the current power state 2115 * so that things like MSI message writing will behave as expected 2116 * (e.g. if the device really is in D0 at enable time). 2117 */ 2118 pci_update_current_state(dev, dev->current_state); 2119 2120 if (atomic_inc_return(&dev->enable_cnt) > 1) 2121 return 0; /* already enabled */ 2122 2123 bridge = pci_upstream_bridge(dev); 2124 if (bridge) 2125 pci_enable_bridge(bridge); 2126 2127 /* only skip sriov related */ 2128 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2129 if (dev->resource[i].flags & flags) 2130 bars |= (1 << i); 2131 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2132 if (dev->resource[i].flags & flags) 2133 bars |= (1 << i); 2134 2135 err = do_pci_enable_device(dev, bars); 2136 if (err < 0) 2137 atomic_dec(&dev->enable_cnt); 2138 return err; 2139 } 2140 2141 /** 2142 * pci_enable_device_io - Initialize a device for use with IO space 2143 * @dev: PCI device to be initialized 2144 * 2145 * Initialize device before it's used by a driver. Ask low-level code 2146 * to enable I/O resources. Wake up the device if it was suspended. 2147 * Beware, this function can fail. 2148 */ 2149 int pci_enable_device_io(struct pci_dev *dev) 2150 { 2151 return pci_enable_device_flags(dev, IORESOURCE_IO); 2152 } 2153 EXPORT_SYMBOL(pci_enable_device_io); 2154 2155 /** 2156 * pci_enable_device_mem - Initialize a device for use with Memory space 2157 * @dev: PCI device to be initialized 2158 * 2159 * Initialize device before it's used by a driver. Ask low-level code 2160 * to enable Memory resources. Wake up the device if it was suspended. 2161 * Beware, this function can fail. 2162 */ 2163 int pci_enable_device_mem(struct pci_dev *dev) 2164 { 2165 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2166 } 2167 EXPORT_SYMBOL(pci_enable_device_mem); 2168 2169 /** 2170 * pci_enable_device - Initialize device before it's used by a driver. 2171 * @dev: PCI device to be initialized 2172 * 2173 * Initialize device before it's used by a driver. Ask low-level code 2174 * to enable I/O and memory. Wake up the device if it was suspended. 2175 * Beware, this function can fail. 2176 * 2177 * Note we don't actually enable the device many times if we call 2178 * this function repeatedly (we just increment the count). 2179 */ 2180 int pci_enable_device(struct pci_dev *dev) 2181 { 2182 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2183 } 2184 EXPORT_SYMBOL(pci_enable_device); 2185 2186 /* 2187 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2188 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2189 * there's no need to track it separately. pci_devres is initialized 2190 * when a device is enabled using managed PCI device enable interface. 2191 */ 2192 struct pci_devres { 2193 unsigned int enabled:1; 2194 unsigned int pinned:1; 2195 unsigned int orig_intx:1; 2196 unsigned int restore_intx:1; 2197 unsigned int mwi:1; 2198 u32 region_mask; 2199 }; 2200 2201 static void pcim_release(struct device *gendev, void *res) 2202 { 2203 struct pci_dev *dev = to_pci_dev(gendev); 2204 struct pci_devres *this = res; 2205 int i; 2206 2207 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2208 if (this->region_mask & (1 << i)) 2209 pci_release_region(dev, i); 2210 2211 if (this->mwi) 2212 pci_clear_mwi(dev); 2213 2214 if (this->restore_intx) 2215 pci_intx(dev, this->orig_intx); 2216 2217 if (this->enabled && !this->pinned) 2218 pci_disable_device(dev); 2219 } 2220 2221 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2222 { 2223 struct pci_devres *dr, *new_dr; 2224 2225 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2226 if (dr) 2227 return dr; 2228 2229 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2230 if (!new_dr) 2231 return NULL; 2232 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2233 } 2234 2235 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2236 { 2237 if (pci_is_managed(pdev)) 2238 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2239 return NULL; 2240 } 2241 2242 /** 2243 * pcim_enable_device - Managed pci_enable_device() 2244 * @pdev: PCI device to be initialized 2245 * 2246 * Managed pci_enable_device(). 2247 */ 2248 int pcim_enable_device(struct pci_dev *pdev) 2249 { 2250 struct pci_devres *dr; 2251 int rc; 2252 2253 dr = get_pci_dr(pdev); 2254 if (unlikely(!dr)) 2255 return -ENOMEM; 2256 if (dr->enabled) 2257 return 0; 2258 2259 rc = pci_enable_device(pdev); 2260 if (!rc) { 2261 pdev->is_managed = 1; 2262 dr->enabled = 1; 2263 } 2264 return rc; 2265 } 2266 EXPORT_SYMBOL(pcim_enable_device); 2267 2268 /** 2269 * pcim_pin_device - Pin managed PCI device 2270 * @pdev: PCI device to pin 2271 * 2272 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2273 * driver detach. @pdev must have been enabled with 2274 * pcim_enable_device(). 2275 */ 2276 void pcim_pin_device(struct pci_dev *pdev) 2277 { 2278 struct pci_devres *dr; 2279 2280 dr = find_pci_dr(pdev); 2281 WARN_ON(!dr || !dr->enabled); 2282 if (dr) 2283 dr->pinned = 1; 2284 } 2285 EXPORT_SYMBOL(pcim_pin_device); 2286 2287 /* 2288 * pcibios_device_add - provide arch specific hooks when adding device dev 2289 * @dev: the PCI device being added 2290 * 2291 * Permits the platform to provide architecture specific functionality when 2292 * devices are added. This is the default implementation. Architecture 2293 * implementations can override this. 2294 */ 2295 int __weak pcibios_device_add(struct pci_dev *dev) 2296 { 2297 return 0; 2298 } 2299 2300 /** 2301 * pcibios_release_device - provide arch specific hooks when releasing 2302 * device dev 2303 * @dev: the PCI device being released 2304 * 2305 * Permits the platform to provide architecture specific functionality when 2306 * devices are released. This is the default implementation. Architecture 2307 * implementations can override this. 2308 */ 2309 void __weak pcibios_release_device(struct pci_dev *dev) {} 2310 2311 /** 2312 * pcibios_disable_device - disable arch specific PCI resources for device dev 2313 * @dev: the PCI device to disable 2314 * 2315 * Disables architecture specific PCI resources for the device. This 2316 * is the default implementation. Architecture implementations can 2317 * override this. 2318 */ 2319 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2320 2321 /** 2322 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2323 * @irq: ISA IRQ to penalize 2324 * @active: IRQ active or not 2325 * 2326 * Permits the platform to provide architecture-specific functionality when 2327 * penalizing ISA IRQs. This is the default implementation. Architecture 2328 * implementations can override this. 2329 */ 2330 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2331 2332 static void do_pci_disable_device(struct pci_dev *dev) 2333 { 2334 u16 pci_command; 2335 2336 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2337 if (pci_command & PCI_COMMAND_MASTER) { 2338 pci_command &= ~PCI_COMMAND_MASTER; 2339 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2340 } 2341 2342 pcibios_disable_device(dev); 2343 } 2344 2345 /** 2346 * pci_disable_enabled_device - Disable device without updating enable_cnt 2347 * @dev: PCI device to disable 2348 * 2349 * NOTE: This function is a backend of PCI power management routines and is 2350 * not supposed to be called drivers. 2351 */ 2352 void pci_disable_enabled_device(struct pci_dev *dev) 2353 { 2354 if (pci_is_enabled(dev)) 2355 do_pci_disable_device(dev); 2356 } 2357 2358 /** 2359 * pci_disable_device - Disable PCI device after use 2360 * @dev: PCI device to be disabled 2361 * 2362 * Signal to the system that the PCI device is not in use by the system 2363 * anymore. This only involves disabling PCI bus-mastering, if active. 2364 * 2365 * Note we don't actually disable the device until all callers of 2366 * pci_enable_device() have called pci_disable_device(). 2367 */ 2368 void pci_disable_device(struct pci_dev *dev) 2369 { 2370 struct pci_devres *dr; 2371 2372 dr = find_pci_dr(dev); 2373 if (dr) 2374 dr->enabled = 0; 2375 2376 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2377 "disabling already-disabled device"); 2378 2379 if (atomic_dec_return(&dev->enable_cnt) != 0) 2380 return; 2381 2382 do_pci_disable_device(dev); 2383 2384 dev->is_busmaster = 0; 2385 } 2386 EXPORT_SYMBOL(pci_disable_device); 2387 2388 /** 2389 * pcibios_set_pcie_reset_state - set reset state for device dev 2390 * @dev: the PCIe device reset 2391 * @state: Reset state to enter into 2392 * 2393 * Set the PCIe reset state for the device. This is the default 2394 * implementation. Architecture implementations can override this. 2395 */ 2396 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2397 enum pcie_reset_state state) 2398 { 2399 return -EINVAL; 2400 } 2401 2402 /** 2403 * pci_set_pcie_reset_state - set reset state for device dev 2404 * @dev: the PCIe device reset 2405 * @state: Reset state to enter into 2406 * 2407 * Sets the PCI reset state for the device. 2408 */ 2409 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2410 { 2411 return pcibios_set_pcie_reset_state(dev, state); 2412 } 2413 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2414 2415 #ifdef CONFIG_PCIEAER 2416 void pcie_clear_device_status(struct pci_dev *dev) 2417 { 2418 u16 sta; 2419 2420 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2421 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2422 } 2423 #endif 2424 2425 /** 2426 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2427 * @dev: PCIe root port or event collector. 2428 */ 2429 void pcie_clear_root_pme_status(struct pci_dev *dev) 2430 { 2431 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2432 } 2433 2434 /** 2435 * pci_check_pme_status - Check if given device has generated PME. 2436 * @dev: Device to check. 2437 * 2438 * Check the PME status of the device and if set, clear it and clear PME enable 2439 * (if set). Return 'true' if PME status and PME enable were both set or 2440 * 'false' otherwise. 2441 */ 2442 bool pci_check_pme_status(struct pci_dev *dev) 2443 { 2444 int pmcsr_pos; 2445 u16 pmcsr; 2446 bool ret = false; 2447 2448 if (!dev->pm_cap) 2449 return false; 2450 2451 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2452 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2453 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2454 return false; 2455 2456 /* Clear PME status. */ 2457 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2458 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2459 /* Disable PME to avoid interrupt flood. */ 2460 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2461 ret = true; 2462 } 2463 2464 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2465 2466 return ret; 2467 } 2468 2469 /** 2470 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2471 * @dev: Device to handle. 2472 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2473 * 2474 * Check if @dev has generated PME and queue a resume request for it in that 2475 * case. 2476 */ 2477 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2478 { 2479 if (pme_poll_reset && dev->pme_poll) 2480 dev->pme_poll = false; 2481 2482 if (pci_check_pme_status(dev)) { 2483 pci_wakeup_event(dev); 2484 pm_request_resume(&dev->dev); 2485 } 2486 return 0; 2487 } 2488 2489 /** 2490 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2491 * @bus: Top bus of the subtree to walk. 2492 */ 2493 void pci_pme_wakeup_bus(struct pci_bus *bus) 2494 { 2495 if (bus) 2496 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2497 } 2498 2499 2500 /** 2501 * pci_pme_capable - check the capability of PCI device to generate PME# 2502 * @dev: PCI device to handle. 2503 * @state: PCI state from which device will issue PME#. 2504 */ 2505 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2506 { 2507 if (!dev->pm_cap) 2508 return false; 2509 2510 return !!(dev->pme_support & (1 << state)); 2511 } 2512 EXPORT_SYMBOL(pci_pme_capable); 2513 2514 static void pci_pme_list_scan(struct work_struct *work) 2515 { 2516 struct pci_pme_device *pme_dev, *n; 2517 2518 mutex_lock(&pci_pme_list_mutex); 2519 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2520 struct pci_dev *pdev = pme_dev->dev; 2521 2522 if (pdev->pme_poll) { 2523 struct pci_dev *bridge = pdev->bus->self; 2524 struct device *dev = &pdev->dev; 2525 struct device *bdev = bridge ? &bridge->dev : NULL; 2526 int bref = 0; 2527 2528 /* 2529 * If we have a bridge, it should be in an active/D0 2530 * state or the configuration space of subordinate 2531 * devices may not be accessible or stable over the 2532 * course of the call. 2533 */ 2534 if (bdev) { 2535 bref = pm_runtime_get_if_active(bdev, true); 2536 if (!bref) 2537 continue; 2538 2539 if (bridge->current_state != PCI_D0) 2540 goto put_bridge; 2541 } 2542 2543 /* 2544 * The device itself should be suspended but config 2545 * space must be accessible, therefore it cannot be in 2546 * D3cold. 2547 */ 2548 if (pm_runtime_suspended(dev) && 2549 pdev->current_state != PCI_D3cold) 2550 pci_pme_wakeup(pdev, NULL); 2551 2552 put_bridge: 2553 if (bref > 0) 2554 pm_runtime_put(bdev); 2555 } else { 2556 list_del(&pme_dev->list); 2557 kfree(pme_dev); 2558 } 2559 } 2560 if (!list_empty(&pci_pme_list)) 2561 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2562 msecs_to_jiffies(PME_TIMEOUT)); 2563 mutex_unlock(&pci_pme_list_mutex); 2564 } 2565 2566 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2567 { 2568 u16 pmcsr; 2569 2570 if (!dev->pme_support) 2571 return; 2572 2573 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2574 /* Clear PME_Status by writing 1 to it and enable PME# */ 2575 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2576 if (!enable) 2577 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2578 2579 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2580 } 2581 2582 /** 2583 * pci_pme_restore - Restore PME configuration after config space restore. 2584 * @dev: PCI device to update. 2585 */ 2586 void pci_pme_restore(struct pci_dev *dev) 2587 { 2588 u16 pmcsr; 2589 2590 if (!dev->pme_support) 2591 return; 2592 2593 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2594 if (dev->wakeup_prepared) { 2595 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2596 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2597 } else { 2598 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2599 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2600 } 2601 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2602 } 2603 2604 /** 2605 * pci_pme_active - enable or disable PCI device's PME# function 2606 * @dev: PCI device to handle. 2607 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2608 * 2609 * The caller must verify that the device is capable of generating PME# before 2610 * calling this function with @enable equal to 'true'. 2611 */ 2612 void pci_pme_active(struct pci_dev *dev, bool enable) 2613 { 2614 __pci_pme_active(dev, enable); 2615 2616 /* 2617 * PCI (as opposed to PCIe) PME requires that the device have 2618 * its PME# line hooked up correctly. Not all hardware vendors 2619 * do this, so the PME never gets delivered and the device 2620 * remains asleep. The easiest way around this is to 2621 * periodically walk the list of suspended devices and check 2622 * whether any have their PME flag set. The assumption is that 2623 * we'll wake up often enough anyway that this won't be a huge 2624 * hit, and the power savings from the devices will still be a 2625 * win. 2626 * 2627 * Although PCIe uses in-band PME message instead of PME# line 2628 * to report PME, PME does not work for some PCIe devices in 2629 * reality. For example, there are devices that set their PME 2630 * status bits, but don't really bother to send a PME message; 2631 * there are PCI Express Root Ports that don't bother to 2632 * trigger interrupts when they receive PME messages from the 2633 * devices below. So PME poll is used for PCIe devices too. 2634 */ 2635 2636 if (dev->pme_poll) { 2637 struct pci_pme_device *pme_dev; 2638 if (enable) { 2639 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2640 GFP_KERNEL); 2641 if (!pme_dev) { 2642 pci_warn(dev, "can't enable PME#\n"); 2643 return; 2644 } 2645 pme_dev->dev = dev; 2646 mutex_lock(&pci_pme_list_mutex); 2647 list_add(&pme_dev->list, &pci_pme_list); 2648 if (list_is_singular(&pci_pme_list)) 2649 queue_delayed_work(system_freezable_wq, 2650 &pci_pme_work, 2651 msecs_to_jiffies(PME_TIMEOUT)); 2652 mutex_unlock(&pci_pme_list_mutex); 2653 } else { 2654 mutex_lock(&pci_pme_list_mutex); 2655 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2656 if (pme_dev->dev == dev) { 2657 list_del(&pme_dev->list); 2658 kfree(pme_dev); 2659 break; 2660 } 2661 } 2662 mutex_unlock(&pci_pme_list_mutex); 2663 } 2664 } 2665 2666 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2667 } 2668 EXPORT_SYMBOL(pci_pme_active); 2669 2670 /** 2671 * __pci_enable_wake - enable PCI device as wakeup event source 2672 * @dev: PCI device affected 2673 * @state: PCI state from which device will issue wakeup events 2674 * @enable: True to enable event generation; false to disable 2675 * 2676 * This enables the device as a wakeup event source, or disables it. 2677 * When such events involves platform-specific hooks, those hooks are 2678 * called automatically by this routine. 2679 * 2680 * Devices with legacy power management (no standard PCI PM capabilities) 2681 * always require such platform hooks. 2682 * 2683 * RETURN VALUE: 2684 * 0 is returned on success 2685 * -EINVAL is returned if device is not supposed to wake up the system 2686 * Error code depending on the platform is returned if both the platform and 2687 * the native mechanism fail to enable the generation of wake-up events 2688 */ 2689 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2690 { 2691 int ret = 0; 2692 2693 /* 2694 * Bridges that are not power-manageable directly only signal 2695 * wakeup on behalf of subordinate devices which is set up 2696 * elsewhere, so skip them. However, bridges that are 2697 * power-manageable may signal wakeup for themselves (for example, 2698 * on a hotplug event) and they need to be covered here. 2699 */ 2700 if (!pci_power_manageable(dev)) 2701 return 0; 2702 2703 /* Don't do the same thing twice in a row for one device. */ 2704 if (!!enable == !!dev->wakeup_prepared) 2705 return 0; 2706 2707 /* 2708 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2709 * Anderson we should be doing PME# wake enable followed by ACPI wake 2710 * enable. To disable wake-up we call the platform first, for symmetry. 2711 */ 2712 2713 if (enable) { 2714 int error; 2715 2716 /* 2717 * Enable PME signaling if the device can signal PME from 2718 * D3cold regardless of whether or not it can signal PME from 2719 * the current target state, because that will allow it to 2720 * signal PME when the hierarchy above it goes into D3cold and 2721 * the device itself ends up in D3cold as a result of that. 2722 */ 2723 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2724 pci_pme_active(dev, true); 2725 else 2726 ret = 1; 2727 error = platform_pci_set_wakeup(dev, true); 2728 if (ret) 2729 ret = error; 2730 if (!ret) 2731 dev->wakeup_prepared = true; 2732 } else { 2733 platform_pci_set_wakeup(dev, false); 2734 pci_pme_active(dev, false); 2735 dev->wakeup_prepared = false; 2736 } 2737 2738 return ret; 2739 } 2740 2741 /** 2742 * pci_enable_wake - change wakeup settings for a PCI device 2743 * @pci_dev: Target device 2744 * @state: PCI state from which device will issue wakeup events 2745 * @enable: Whether or not to enable event generation 2746 * 2747 * If @enable is set, check device_may_wakeup() for the device before calling 2748 * __pci_enable_wake() for it. 2749 */ 2750 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2751 { 2752 if (enable && !device_may_wakeup(&pci_dev->dev)) 2753 return -EINVAL; 2754 2755 return __pci_enable_wake(pci_dev, state, enable); 2756 } 2757 EXPORT_SYMBOL(pci_enable_wake); 2758 2759 /** 2760 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2761 * @dev: PCI device to prepare 2762 * @enable: True to enable wake-up event generation; false to disable 2763 * 2764 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2765 * and this function allows them to set that up cleanly - pci_enable_wake() 2766 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2767 * ordering constraints. 2768 * 2769 * This function only returns error code if the device is not allowed to wake 2770 * up the system from sleep or it is not capable of generating PME# from both 2771 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2772 */ 2773 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2774 { 2775 return pci_pme_capable(dev, PCI_D3cold) ? 2776 pci_enable_wake(dev, PCI_D3cold, enable) : 2777 pci_enable_wake(dev, PCI_D3hot, enable); 2778 } 2779 EXPORT_SYMBOL(pci_wake_from_d3); 2780 2781 /** 2782 * pci_target_state - find an appropriate low power state for a given PCI dev 2783 * @dev: PCI device 2784 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2785 * 2786 * Use underlying platform code to find a supported low power state for @dev. 2787 * If the platform can't manage @dev, return the deepest state from which it 2788 * can generate wake events, based on any available PME info. 2789 */ 2790 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2791 { 2792 if (platform_pci_power_manageable(dev)) { 2793 /* 2794 * Call the platform to find the target state for the device. 2795 */ 2796 pci_power_t state = platform_pci_choose_state(dev); 2797 2798 switch (state) { 2799 case PCI_POWER_ERROR: 2800 case PCI_UNKNOWN: 2801 return PCI_D3hot; 2802 2803 case PCI_D1: 2804 case PCI_D2: 2805 if (pci_no_d1d2(dev)) 2806 return PCI_D3hot; 2807 } 2808 2809 return state; 2810 } 2811 2812 /* 2813 * If the device is in D3cold even though it's not power-manageable by 2814 * the platform, it may have been powered down by non-standard means. 2815 * Best to let it slumber. 2816 */ 2817 if (dev->current_state == PCI_D3cold) 2818 return PCI_D3cold; 2819 else if (!dev->pm_cap) 2820 return PCI_D0; 2821 2822 if (wakeup && dev->pme_support) { 2823 pci_power_t state = PCI_D3hot; 2824 2825 /* 2826 * Find the deepest state from which the device can generate 2827 * PME#. 2828 */ 2829 while (state && !(dev->pme_support & (1 << state))) 2830 state--; 2831 2832 if (state) 2833 return state; 2834 else if (dev->pme_support & 1) 2835 return PCI_D0; 2836 } 2837 2838 return PCI_D3hot; 2839 } 2840 2841 /** 2842 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2843 * into a sleep state 2844 * @dev: Device to handle. 2845 * 2846 * Choose the power state appropriate for the device depending on whether 2847 * it can wake up the system and/or is power manageable by the platform 2848 * (PCI_D3hot is the default) and put the device into that state. 2849 */ 2850 int pci_prepare_to_sleep(struct pci_dev *dev) 2851 { 2852 bool wakeup = device_may_wakeup(&dev->dev); 2853 pci_power_t target_state = pci_target_state(dev, wakeup); 2854 int error; 2855 2856 if (target_state == PCI_POWER_ERROR) 2857 return -EIO; 2858 2859 pci_enable_wake(dev, target_state, wakeup); 2860 2861 error = pci_set_power_state(dev, target_state); 2862 2863 if (error) 2864 pci_enable_wake(dev, target_state, false); 2865 2866 return error; 2867 } 2868 EXPORT_SYMBOL(pci_prepare_to_sleep); 2869 2870 /** 2871 * pci_back_from_sleep - turn PCI device on during system-wide transition 2872 * into working state 2873 * @dev: Device to handle. 2874 * 2875 * Disable device's system wake-up capability and put it into D0. 2876 */ 2877 int pci_back_from_sleep(struct pci_dev *dev) 2878 { 2879 int ret = pci_set_power_state(dev, PCI_D0); 2880 2881 if (ret) 2882 return ret; 2883 2884 pci_enable_wake(dev, PCI_D0, false); 2885 return 0; 2886 } 2887 EXPORT_SYMBOL(pci_back_from_sleep); 2888 2889 /** 2890 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2891 * @dev: PCI device being suspended. 2892 * 2893 * Prepare @dev to generate wake-up events at run time and put it into a low 2894 * power state. 2895 */ 2896 int pci_finish_runtime_suspend(struct pci_dev *dev) 2897 { 2898 pci_power_t target_state; 2899 int error; 2900 2901 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2902 if (target_state == PCI_POWER_ERROR) 2903 return -EIO; 2904 2905 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2906 2907 error = pci_set_power_state(dev, target_state); 2908 2909 if (error) 2910 pci_enable_wake(dev, target_state, false); 2911 2912 return error; 2913 } 2914 2915 /** 2916 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2917 * @dev: Device to check. 2918 * 2919 * Return true if the device itself is capable of generating wake-up events 2920 * (through the platform or using the native PCIe PME) or if the device supports 2921 * PME and one of its upstream bridges can generate wake-up events. 2922 */ 2923 bool pci_dev_run_wake(struct pci_dev *dev) 2924 { 2925 struct pci_bus *bus = dev->bus; 2926 2927 if (!dev->pme_support) 2928 return false; 2929 2930 /* PME-capable in principle, but not from the target power state */ 2931 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2932 return false; 2933 2934 if (device_can_wakeup(&dev->dev)) 2935 return true; 2936 2937 while (bus->parent) { 2938 struct pci_dev *bridge = bus->self; 2939 2940 if (device_can_wakeup(&bridge->dev)) 2941 return true; 2942 2943 bus = bus->parent; 2944 } 2945 2946 /* We have reached the root bus. */ 2947 if (bus->bridge) 2948 return device_can_wakeup(bus->bridge); 2949 2950 return false; 2951 } 2952 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2953 2954 /** 2955 * pci_dev_need_resume - Check if it is necessary to resume the device. 2956 * @pci_dev: Device to check. 2957 * 2958 * Return 'true' if the device is not runtime-suspended or it has to be 2959 * reconfigured due to wakeup settings difference between system and runtime 2960 * suspend, or the current power state of it is not suitable for the upcoming 2961 * (system-wide) transition. 2962 */ 2963 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2964 { 2965 struct device *dev = &pci_dev->dev; 2966 pci_power_t target_state; 2967 2968 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2969 return true; 2970 2971 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2972 2973 /* 2974 * If the earlier platform check has not triggered, D3cold is just power 2975 * removal on top of D3hot, so no need to resume the device in that 2976 * case. 2977 */ 2978 return target_state != pci_dev->current_state && 2979 target_state != PCI_D3cold && 2980 pci_dev->current_state != PCI_D3hot; 2981 } 2982 2983 /** 2984 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2985 * @pci_dev: Device to check. 2986 * 2987 * If the device is suspended and it is not configured for system wakeup, 2988 * disable PME for it to prevent it from waking up the system unnecessarily. 2989 * 2990 * Note that if the device's power state is D3cold and the platform check in 2991 * pci_dev_need_resume() has not triggered, the device's configuration need not 2992 * be changed. 2993 */ 2994 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2995 { 2996 struct device *dev = &pci_dev->dev; 2997 2998 spin_lock_irq(&dev->power.lock); 2999 3000 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 3001 pci_dev->current_state < PCI_D3cold) 3002 __pci_pme_active(pci_dev, false); 3003 3004 spin_unlock_irq(&dev->power.lock); 3005 } 3006 3007 /** 3008 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 3009 * @pci_dev: Device to handle. 3010 * 3011 * If the device is runtime suspended and wakeup-capable, enable PME for it as 3012 * it might have been disabled during the prepare phase of system suspend if 3013 * the device was not configured for system wakeup. 3014 */ 3015 void pci_dev_complete_resume(struct pci_dev *pci_dev) 3016 { 3017 struct device *dev = &pci_dev->dev; 3018 3019 if (!pci_dev_run_wake(pci_dev)) 3020 return; 3021 3022 spin_lock_irq(&dev->power.lock); 3023 3024 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 3025 __pci_pme_active(pci_dev, true); 3026 3027 spin_unlock_irq(&dev->power.lock); 3028 } 3029 3030 /** 3031 * pci_choose_state - Choose the power state of a PCI device. 3032 * @dev: Target PCI device. 3033 * @state: Target state for the whole system. 3034 * 3035 * Returns PCI power state suitable for @dev and @state. 3036 */ 3037 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 3038 { 3039 if (state.event == PM_EVENT_ON) 3040 return PCI_D0; 3041 3042 return pci_target_state(dev, false); 3043 } 3044 EXPORT_SYMBOL(pci_choose_state); 3045 3046 void pci_config_pm_runtime_get(struct pci_dev *pdev) 3047 { 3048 struct device *dev = &pdev->dev; 3049 struct device *parent = dev->parent; 3050 3051 if (parent) 3052 pm_runtime_get_sync(parent); 3053 pm_runtime_get_noresume(dev); 3054 /* 3055 * pdev->current_state is set to PCI_D3cold during suspending, 3056 * so wait until suspending completes 3057 */ 3058 pm_runtime_barrier(dev); 3059 /* 3060 * Only need to resume devices in D3cold, because config 3061 * registers are still accessible for devices suspended but 3062 * not in D3cold. 3063 */ 3064 if (pdev->current_state == PCI_D3cold) 3065 pm_runtime_resume(dev); 3066 } 3067 3068 void pci_config_pm_runtime_put(struct pci_dev *pdev) 3069 { 3070 struct device *dev = &pdev->dev; 3071 struct device *parent = dev->parent; 3072 3073 pm_runtime_put(dev); 3074 if (parent) 3075 pm_runtime_put_sync(parent); 3076 } 3077 3078 static const struct dmi_system_id bridge_d3_blacklist[] = { 3079 #ifdef CONFIG_X86 3080 { 3081 /* 3082 * Gigabyte X299 root port is not marked as hotplug capable 3083 * which allows Linux to power manage it. However, this 3084 * confuses the BIOS SMI handler so don't power manage root 3085 * ports on that system. 3086 */ 3087 .ident = "X299 DESIGNARE EX-CF", 3088 .matches = { 3089 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 3090 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 3091 }, 3092 }, 3093 { 3094 /* 3095 * Downstream device is not accessible after putting a root port 3096 * into D3cold and back into D0 on Elo Continental Z2 board 3097 */ 3098 .ident = "Elo Continental Z2", 3099 .matches = { 3100 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3101 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3102 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3103 }, 3104 }, 3105 #endif 3106 { } 3107 }; 3108 3109 /** 3110 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3111 * @bridge: Bridge to check 3112 * 3113 * This function checks if it is possible to move the bridge to D3. 3114 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3115 */ 3116 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3117 { 3118 if (!pci_is_pcie(bridge)) 3119 return false; 3120 3121 switch (pci_pcie_type(bridge)) { 3122 case PCI_EXP_TYPE_ROOT_PORT: 3123 case PCI_EXP_TYPE_UPSTREAM: 3124 case PCI_EXP_TYPE_DOWNSTREAM: 3125 if (pci_bridge_d3_disable) 3126 return false; 3127 3128 /* 3129 * Hotplug ports handled by firmware in System Management Mode 3130 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3131 */ 3132 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3133 return false; 3134 3135 if (pci_bridge_d3_force) 3136 return true; 3137 3138 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3139 if (bridge->is_thunderbolt) 3140 return true; 3141 3142 /* Platform might know better if the bridge supports D3 */ 3143 if (platform_pci_bridge_d3(bridge)) 3144 return true; 3145 3146 /* 3147 * Hotplug ports handled natively by the OS were not validated 3148 * by vendors for runtime D3 at least until 2018 because there 3149 * was no OS support. 3150 */ 3151 if (bridge->is_hotplug_bridge) 3152 return false; 3153 3154 if (dmi_check_system(bridge_d3_blacklist)) 3155 return false; 3156 3157 /* 3158 * It should be safe to put PCIe ports from 2015 or newer 3159 * to D3. 3160 */ 3161 if (dmi_get_bios_year() >= 2015) 3162 return true; 3163 break; 3164 } 3165 3166 return false; 3167 } 3168 3169 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3170 { 3171 bool *d3cold_ok = data; 3172 3173 if (/* The device needs to be allowed to go D3cold ... */ 3174 dev->no_d3cold || !dev->d3cold_allowed || 3175 3176 /* ... and if it is wakeup capable to do so from D3cold. */ 3177 (device_may_wakeup(&dev->dev) && 3178 !pci_pme_capable(dev, PCI_D3cold)) || 3179 3180 /* If it is a bridge it must be allowed to go to D3. */ 3181 !pci_power_manageable(dev)) 3182 3183 *d3cold_ok = false; 3184 3185 return !*d3cold_ok; 3186 } 3187 3188 /* 3189 * pci_bridge_d3_update - Update bridge D3 capabilities 3190 * @dev: PCI device which is changed 3191 * 3192 * Update upstream bridge PM capabilities accordingly depending on if the 3193 * device PM configuration was changed or the device is being removed. The 3194 * change is also propagated upstream. 3195 */ 3196 void pci_bridge_d3_update(struct pci_dev *dev) 3197 { 3198 bool remove = !device_is_registered(&dev->dev); 3199 struct pci_dev *bridge; 3200 bool d3cold_ok = true; 3201 3202 bridge = pci_upstream_bridge(dev); 3203 if (!bridge || !pci_bridge_d3_possible(bridge)) 3204 return; 3205 3206 /* 3207 * If D3 is currently allowed for the bridge, removing one of its 3208 * children won't change that. 3209 */ 3210 if (remove && bridge->bridge_d3) 3211 return; 3212 3213 /* 3214 * If D3 is currently allowed for the bridge and a child is added or 3215 * changed, disallowance of D3 can only be caused by that child, so 3216 * we only need to check that single device, not any of its siblings. 3217 * 3218 * If D3 is currently not allowed for the bridge, checking the device 3219 * first may allow us to skip checking its siblings. 3220 */ 3221 if (!remove) 3222 pci_dev_check_d3cold(dev, &d3cold_ok); 3223 3224 /* 3225 * If D3 is currently not allowed for the bridge, this may be caused 3226 * either by the device being changed/removed or any of its siblings, 3227 * so we need to go through all children to find out if one of them 3228 * continues to block D3. 3229 */ 3230 if (d3cold_ok && !bridge->bridge_d3) 3231 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3232 &d3cold_ok); 3233 3234 if (bridge->bridge_d3 != d3cold_ok) { 3235 bridge->bridge_d3 = d3cold_ok; 3236 /* Propagate change to upstream bridges */ 3237 pci_bridge_d3_update(bridge); 3238 } 3239 } 3240 3241 /** 3242 * pci_d3cold_enable - Enable D3cold for device 3243 * @dev: PCI device to handle 3244 * 3245 * This function can be used in drivers to enable D3cold from the device 3246 * they handle. It also updates upstream PCI bridge PM capabilities 3247 * accordingly. 3248 */ 3249 void pci_d3cold_enable(struct pci_dev *dev) 3250 { 3251 if (dev->no_d3cold) { 3252 dev->no_d3cold = false; 3253 pci_bridge_d3_update(dev); 3254 } 3255 } 3256 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3257 3258 /** 3259 * pci_d3cold_disable - Disable D3cold for device 3260 * @dev: PCI device to handle 3261 * 3262 * This function can be used in drivers to disable D3cold from the device 3263 * they handle. It also updates upstream PCI bridge PM capabilities 3264 * accordingly. 3265 */ 3266 void pci_d3cold_disable(struct pci_dev *dev) 3267 { 3268 if (!dev->no_d3cold) { 3269 dev->no_d3cold = true; 3270 pci_bridge_d3_update(dev); 3271 } 3272 } 3273 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3274 3275 /** 3276 * pci_pm_init - Initialize PM functions of given PCI device 3277 * @dev: PCI device to handle. 3278 */ 3279 void pci_pm_init(struct pci_dev *dev) 3280 { 3281 int pm; 3282 u16 status; 3283 u16 pmc; 3284 3285 pm_runtime_forbid(&dev->dev); 3286 pm_runtime_set_active(&dev->dev); 3287 pm_runtime_enable(&dev->dev); 3288 device_enable_async_suspend(&dev->dev); 3289 dev->wakeup_prepared = false; 3290 3291 dev->pm_cap = 0; 3292 dev->pme_support = 0; 3293 3294 /* find PCI PM capability in list */ 3295 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3296 if (!pm) 3297 return; 3298 /* Check device's ability to generate PME# */ 3299 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3300 3301 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3302 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3303 pmc & PCI_PM_CAP_VER_MASK); 3304 return; 3305 } 3306 3307 dev->pm_cap = pm; 3308 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3309 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3310 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3311 dev->d3cold_allowed = true; 3312 3313 dev->d1_support = false; 3314 dev->d2_support = false; 3315 if (!pci_no_d1d2(dev)) { 3316 if (pmc & PCI_PM_CAP_D1) 3317 dev->d1_support = true; 3318 if (pmc & PCI_PM_CAP_D2) 3319 dev->d2_support = true; 3320 3321 if (dev->d1_support || dev->d2_support) 3322 pci_info(dev, "supports%s%s\n", 3323 dev->d1_support ? " D1" : "", 3324 dev->d2_support ? " D2" : ""); 3325 } 3326 3327 pmc &= PCI_PM_CAP_PME_MASK; 3328 if (pmc) { 3329 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3330 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3331 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3332 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3333 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3334 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3335 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3336 dev->pme_poll = true; 3337 /* 3338 * Make device's PM flags reflect the wake-up capability, but 3339 * let the user space enable it to wake up the system as needed. 3340 */ 3341 device_set_wakeup_capable(&dev->dev, true); 3342 /* Disable the PME# generation functionality */ 3343 pci_pme_active(dev, false); 3344 } 3345 3346 pci_read_config_word(dev, PCI_STATUS, &status); 3347 if (status & PCI_STATUS_IMM_READY) 3348 dev->imm_ready = 1; 3349 } 3350 3351 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3352 { 3353 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3354 3355 switch (prop) { 3356 case PCI_EA_P_MEM: 3357 case PCI_EA_P_VF_MEM: 3358 flags |= IORESOURCE_MEM; 3359 break; 3360 case PCI_EA_P_MEM_PREFETCH: 3361 case PCI_EA_P_VF_MEM_PREFETCH: 3362 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3363 break; 3364 case PCI_EA_P_IO: 3365 flags |= IORESOURCE_IO; 3366 break; 3367 default: 3368 return 0; 3369 } 3370 3371 return flags; 3372 } 3373 3374 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3375 u8 prop) 3376 { 3377 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3378 return &dev->resource[bei]; 3379 #ifdef CONFIG_PCI_IOV 3380 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3381 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3382 return &dev->resource[PCI_IOV_RESOURCES + 3383 bei - PCI_EA_BEI_VF_BAR0]; 3384 #endif 3385 else if (bei == PCI_EA_BEI_ROM) 3386 return &dev->resource[PCI_ROM_RESOURCE]; 3387 else 3388 return NULL; 3389 } 3390 3391 /* Read an Enhanced Allocation (EA) entry */ 3392 static int pci_ea_read(struct pci_dev *dev, int offset) 3393 { 3394 struct resource *res; 3395 const char *res_name; 3396 int ent_size, ent_offset = offset; 3397 resource_size_t start, end; 3398 unsigned long flags; 3399 u32 dw0, bei, base, max_offset; 3400 u8 prop; 3401 bool support_64 = (sizeof(resource_size_t) >= 8); 3402 3403 pci_read_config_dword(dev, ent_offset, &dw0); 3404 ent_offset += 4; 3405 3406 /* Entry size field indicates DWORDs after 1st */ 3407 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3408 3409 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3410 goto out; 3411 3412 bei = FIELD_GET(PCI_EA_BEI, dw0); 3413 prop = FIELD_GET(PCI_EA_PP, dw0); 3414 3415 /* 3416 * If the Property is in the reserved range, try the Secondary 3417 * Property instead. 3418 */ 3419 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3420 prop = FIELD_GET(PCI_EA_SP, dw0); 3421 if (prop > PCI_EA_P_BRIDGE_IO) 3422 goto out; 3423 3424 res = pci_ea_get_resource(dev, bei, prop); 3425 res_name = pci_resource_name(dev, bei); 3426 if (!res) { 3427 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3428 goto out; 3429 } 3430 3431 flags = pci_ea_flags(dev, prop); 3432 if (!flags) { 3433 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3434 goto out; 3435 } 3436 3437 /* Read Base */ 3438 pci_read_config_dword(dev, ent_offset, &base); 3439 start = (base & PCI_EA_FIELD_MASK); 3440 ent_offset += 4; 3441 3442 /* Read MaxOffset */ 3443 pci_read_config_dword(dev, ent_offset, &max_offset); 3444 ent_offset += 4; 3445 3446 /* Read Base MSBs (if 64-bit entry) */ 3447 if (base & PCI_EA_IS_64) { 3448 u32 base_upper; 3449 3450 pci_read_config_dword(dev, ent_offset, &base_upper); 3451 ent_offset += 4; 3452 3453 flags |= IORESOURCE_MEM_64; 3454 3455 /* entry starts above 32-bit boundary, can't use */ 3456 if (!support_64 && base_upper) 3457 goto out; 3458 3459 if (support_64) 3460 start |= ((u64)base_upper << 32); 3461 } 3462 3463 end = start + (max_offset | 0x03); 3464 3465 /* Read MaxOffset MSBs (if 64-bit entry) */ 3466 if (max_offset & PCI_EA_IS_64) { 3467 u32 max_offset_upper; 3468 3469 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3470 ent_offset += 4; 3471 3472 flags |= IORESOURCE_MEM_64; 3473 3474 /* entry too big, can't use */ 3475 if (!support_64 && max_offset_upper) 3476 goto out; 3477 3478 if (support_64) 3479 end += ((u64)max_offset_upper << 32); 3480 } 3481 3482 if (end < start) { 3483 pci_err(dev, "EA Entry crosses address boundary\n"); 3484 goto out; 3485 } 3486 3487 if (ent_size != ent_offset - offset) { 3488 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3489 ent_size, ent_offset - offset); 3490 goto out; 3491 } 3492 3493 res->name = pci_name(dev); 3494 res->start = start; 3495 res->end = end; 3496 res->flags = flags; 3497 3498 if (bei <= PCI_EA_BEI_BAR5) 3499 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3500 res_name, res, prop); 3501 else if (bei == PCI_EA_BEI_ROM) 3502 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3503 res_name, res, prop); 3504 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3505 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3506 res_name, res, prop); 3507 else 3508 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3509 bei, res, prop); 3510 3511 out: 3512 return offset + ent_size; 3513 } 3514 3515 /* Enhanced Allocation Initialization */ 3516 void pci_ea_init(struct pci_dev *dev) 3517 { 3518 int ea; 3519 u8 num_ent; 3520 int offset; 3521 int i; 3522 3523 /* find PCI EA capability in list */ 3524 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3525 if (!ea) 3526 return; 3527 3528 /* determine the number of entries */ 3529 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3530 &num_ent); 3531 num_ent &= PCI_EA_NUM_ENT_MASK; 3532 3533 offset = ea + PCI_EA_FIRST_ENT; 3534 3535 /* Skip DWORD 2 for type 1 functions */ 3536 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3537 offset += 4; 3538 3539 /* parse each EA entry */ 3540 for (i = 0; i < num_ent; ++i) 3541 offset = pci_ea_read(dev, offset); 3542 } 3543 3544 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3545 struct pci_cap_saved_state *new_cap) 3546 { 3547 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3548 } 3549 3550 /** 3551 * _pci_add_cap_save_buffer - allocate buffer for saving given 3552 * capability registers 3553 * @dev: the PCI device 3554 * @cap: the capability to allocate the buffer for 3555 * @extended: Standard or Extended capability ID 3556 * @size: requested size of the buffer 3557 */ 3558 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3559 bool extended, unsigned int size) 3560 { 3561 int pos; 3562 struct pci_cap_saved_state *save_state; 3563 3564 if (extended) 3565 pos = pci_find_ext_capability(dev, cap); 3566 else 3567 pos = pci_find_capability(dev, cap); 3568 3569 if (!pos) 3570 return 0; 3571 3572 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3573 if (!save_state) 3574 return -ENOMEM; 3575 3576 save_state->cap.cap_nr = cap; 3577 save_state->cap.cap_extended = extended; 3578 save_state->cap.size = size; 3579 pci_add_saved_cap(dev, save_state); 3580 3581 return 0; 3582 } 3583 3584 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3585 { 3586 return _pci_add_cap_save_buffer(dev, cap, false, size); 3587 } 3588 3589 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3590 { 3591 return _pci_add_cap_save_buffer(dev, cap, true, size); 3592 } 3593 3594 /** 3595 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3596 * @dev: the PCI device 3597 */ 3598 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3599 { 3600 int error; 3601 3602 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3603 PCI_EXP_SAVE_REGS * sizeof(u16)); 3604 if (error) 3605 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3606 3607 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3608 if (error) 3609 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3610 3611 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3612 2 * sizeof(u16)); 3613 if (error) 3614 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3615 3616 pci_allocate_vc_save_buffers(dev); 3617 } 3618 3619 void pci_free_cap_save_buffers(struct pci_dev *dev) 3620 { 3621 struct pci_cap_saved_state *tmp; 3622 struct hlist_node *n; 3623 3624 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3625 kfree(tmp); 3626 } 3627 3628 /** 3629 * pci_configure_ari - enable or disable ARI forwarding 3630 * @dev: the PCI device 3631 * 3632 * If @dev and its upstream bridge both support ARI, enable ARI in the 3633 * bridge. Otherwise, disable ARI in the bridge. 3634 */ 3635 void pci_configure_ari(struct pci_dev *dev) 3636 { 3637 u32 cap; 3638 struct pci_dev *bridge; 3639 3640 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3641 return; 3642 3643 bridge = dev->bus->self; 3644 if (!bridge) 3645 return; 3646 3647 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3648 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3649 return; 3650 3651 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3652 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3653 PCI_EXP_DEVCTL2_ARI); 3654 bridge->ari_enabled = 1; 3655 } else { 3656 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3657 PCI_EXP_DEVCTL2_ARI); 3658 bridge->ari_enabled = 0; 3659 } 3660 } 3661 3662 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3663 { 3664 int pos; 3665 u16 cap, ctrl; 3666 3667 pos = pdev->acs_cap; 3668 if (!pos) 3669 return false; 3670 3671 /* 3672 * Except for egress control, capabilities are either required 3673 * or only required if controllable. Features missing from the 3674 * capability field can therefore be assumed as hard-wired enabled. 3675 */ 3676 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3677 acs_flags &= (cap | PCI_ACS_EC); 3678 3679 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3680 return (ctrl & acs_flags) == acs_flags; 3681 } 3682 3683 /** 3684 * pci_acs_enabled - test ACS against required flags for a given device 3685 * @pdev: device to test 3686 * @acs_flags: required PCI ACS flags 3687 * 3688 * Return true if the device supports the provided flags. Automatically 3689 * filters out flags that are not implemented on multifunction devices. 3690 * 3691 * Note that this interface checks the effective ACS capabilities of the 3692 * device rather than the actual capabilities. For instance, most single 3693 * function endpoints are not required to support ACS because they have no 3694 * opportunity for peer-to-peer access. We therefore return 'true' 3695 * regardless of whether the device exposes an ACS capability. This makes 3696 * it much easier for callers of this function to ignore the actual type 3697 * or topology of the device when testing ACS support. 3698 */ 3699 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3700 { 3701 int ret; 3702 3703 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3704 if (ret >= 0) 3705 return ret > 0; 3706 3707 /* 3708 * Conventional PCI and PCI-X devices never support ACS, either 3709 * effectively or actually. The shared bus topology implies that 3710 * any device on the bus can receive or snoop DMA. 3711 */ 3712 if (!pci_is_pcie(pdev)) 3713 return false; 3714 3715 switch (pci_pcie_type(pdev)) { 3716 /* 3717 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3718 * but since their primary interface is PCI/X, we conservatively 3719 * handle them as we would a non-PCIe device. 3720 */ 3721 case PCI_EXP_TYPE_PCIE_BRIDGE: 3722 /* 3723 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3724 * applicable... must never implement an ACS Extended Capability...". 3725 * This seems arbitrary, but we take a conservative interpretation 3726 * of this statement. 3727 */ 3728 case PCI_EXP_TYPE_PCI_BRIDGE: 3729 case PCI_EXP_TYPE_RC_EC: 3730 return false; 3731 /* 3732 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3733 * implement ACS in order to indicate their peer-to-peer capabilities, 3734 * regardless of whether they are single- or multi-function devices. 3735 */ 3736 case PCI_EXP_TYPE_DOWNSTREAM: 3737 case PCI_EXP_TYPE_ROOT_PORT: 3738 return pci_acs_flags_enabled(pdev, acs_flags); 3739 /* 3740 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3741 * implemented by the remaining PCIe types to indicate peer-to-peer 3742 * capabilities, but only when they are part of a multifunction 3743 * device. The footnote for section 6.12 indicates the specific 3744 * PCIe types included here. 3745 */ 3746 case PCI_EXP_TYPE_ENDPOINT: 3747 case PCI_EXP_TYPE_UPSTREAM: 3748 case PCI_EXP_TYPE_LEG_END: 3749 case PCI_EXP_TYPE_RC_END: 3750 if (!pdev->multifunction) 3751 break; 3752 3753 return pci_acs_flags_enabled(pdev, acs_flags); 3754 } 3755 3756 /* 3757 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3758 * to single function devices with the exception of downstream ports. 3759 */ 3760 return true; 3761 } 3762 3763 /** 3764 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3765 * @start: starting downstream device 3766 * @end: ending upstream device or NULL to search to the root bus 3767 * @acs_flags: required flags 3768 * 3769 * Walk up a device tree from start to end testing PCI ACS support. If 3770 * any step along the way does not support the required flags, return false. 3771 */ 3772 bool pci_acs_path_enabled(struct pci_dev *start, 3773 struct pci_dev *end, u16 acs_flags) 3774 { 3775 struct pci_dev *pdev, *parent = start; 3776 3777 do { 3778 pdev = parent; 3779 3780 if (!pci_acs_enabled(pdev, acs_flags)) 3781 return false; 3782 3783 if (pci_is_root_bus(pdev->bus)) 3784 return (end == NULL); 3785 3786 parent = pdev->bus->self; 3787 } while (pdev != end); 3788 3789 return true; 3790 } 3791 3792 /** 3793 * pci_acs_init - Initialize ACS if hardware supports it 3794 * @dev: the PCI device 3795 */ 3796 void pci_acs_init(struct pci_dev *dev) 3797 { 3798 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3799 3800 /* 3801 * Attempt to enable ACS regardless of capability because some Root 3802 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3803 * the standard ACS capability but still support ACS via those 3804 * quirks. 3805 */ 3806 pci_enable_acs(dev); 3807 } 3808 3809 /** 3810 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3811 * @pdev: PCI device 3812 * @bar: BAR to find 3813 * 3814 * Helper to find the position of the ctrl register for a BAR. 3815 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3816 * Returns -ENOENT if no ctrl register for the BAR could be found. 3817 */ 3818 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3819 { 3820 unsigned int pos, nbars, i; 3821 u32 ctrl; 3822 3823 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3824 if (!pos) 3825 return -ENOTSUPP; 3826 3827 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3828 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3829 3830 for (i = 0; i < nbars; i++, pos += 8) { 3831 int bar_idx; 3832 3833 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3834 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3835 if (bar_idx == bar) 3836 return pos; 3837 } 3838 3839 return -ENOENT; 3840 } 3841 3842 /** 3843 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3844 * @pdev: PCI device 3845 * @bar: BAR to query 3846 * 3847 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3848 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3849 */ 3850 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3851 { 3852 int pos; 3853 u32 cap; 3854 3855 pos = pci_rebar_find_pos(pdev, bar); 3856 if (pos < 0) 3857 return 0; 3858 3859 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3860 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3861 3862 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3863 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3864 bar == 0 && cap == 0x700) 3865 return 0x3f00; 3866 3867 return cap; 3868 } 3869 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3870 3871 /** 3872 * pci_rebar_get_current_size - get the current size of a BAR 3873 * @pdev: PCI device 3874 * @bar: BAR to set size to 3875 * 3876 * Read the size of a BAR from the resizable BAR config. 3877 * Returns size if found or negative error code. 3878 */ 3879 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3880 { 3881 int pos; 3882 u32 ctrl; 3883 3884 pos = pci_rebar_find_pos(pdev, bar); 3885 if (pos < 0) 3886 return pos; 3887 3888 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3889 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3890 } 3891 3892 /** 3893 * pci_rebar_set_size - set a new size for a BAR 3894 * @pdev: PCI device 3895 * @bar: BAR to set size to 3896 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3897 * 3898 * Set the new size of a BAR as defined in the spec. 3899 * Returns zero if resizing was successful, error code otherwise. 3900 */ 3901 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3902 { 3903 int pos; 3904 u32 ctrl; 3905 3906 pos = pci_rebar_find_pos(pdev, bar); 3907 if (pos < 0) 3908 return pos; 3909 3910 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3911 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3912 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3913 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3914 return 0; 3915 } 3916 3917 /** 3918 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3919 * @dev: the PCI device 3920 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3921 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3922 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3923 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3924 * 3925 * Return 0 if all upstream bridges support AtomicOp routing, egress 3926 * blocking is disabled on all upstream ports, and the root port supports 3927 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3928 * AtomicOp completion), or negative otherwise. 3929 */ 3930 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3931 { 3932 struct pci_bus *bus = dev->bus; 3933 struct pci_dev *bridge; 3934 u32 cap, ctl2; 3935 3936 /* 3937 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3938 * in Device Control 2 is reserved in VFs and the PF value applies 3939 * to all associated VFs. 3940 */ 3941 if (dev->is_virtfn) 3942 return -EINVAL; 3943 3944 if (!pci_is_pcie(dev)) 3945 return -EINVAL; 3946 3947 /* 3948 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3949 * AtomicOp requesters. For now, we only support endpoints as 3950 * requesters and root ports as completers. No endpoints as 3951 * completers, and no peer-to-peer. 3952 */ 3953 3954 switch (pci_pcie_type(dev)) { 3955 case PCI_EXP_TYPE_ENDPOINT: 3956 case PCI_EXP_TYPE_LEG_END: 3957 case PCI_EXP_TYPE_RC_END: 3958 break; 3959 default: 3960 return -EINVAL; 3961 } 3962 3963 while (bus->parent) { 3964 bridge = bus->self; 3965 3966 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3967 3968 switch (pci_pcie_type(bridge)) { 3969 /* Ensure switch ports support AtomicOp routing */ 3970 case PCI_EXP_TYPE_UPSTREAM: 3971 case PCI_EXP_TYPE_DOWNSTREAM: 3972 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3973 return -EINVAL; 3974 break; 3975 3976 /* Ensure root port supports all the sizes we care about */ 3977 case PCI_EXP_TYPE_ROOT_PORT: 3978 if ((cap & cap_mask) != cap_mask) 3979 return -EINVAL; 3980 break; 3981 } 3982 3983 /* Ensure upstream ports don't block AtomicOps on egress */ 3984 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3985 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3986 &ctl2); 3987 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3988 return -EINVAL; 3989 } 3990 3991 bus = bus->parent; 3992 } 3993 3994 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3995 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3996 return 0; 3997 } 3998 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3999 4000 /** 4001 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 4002 * @dev: the PCI device 4003 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 4004 * 4005 * Perform INTx swizzling for a device behind one level of bridge. This is 4006 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 4007 * behind bridges on add-in cards. For devices with ARI enabled, the slot 4008 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 4009 * the PCI Express Base Specification, Revision 2.1) 4010 */ 4011 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 4012 { 4013 int slot; 4014 4015 if (pci_ari_enabled(dev->bus)) 4016 slot = 0; 4017 else 4018 slot = PCI_SLOT(dev->devfn); 4019 4020 return (((pin - 1) + slot) % 4) + 1; 4021 } 4022 4023 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 4024 { 4025 u8 pin; 4026 4027 pin = dev->pin; 4028 if (!pin) 4029 return -1; 4030 4031 while (!pci_is_root_bus(dev->bus)) { 4032 pin = pci_swizzle_interrupt_pin(dev, pin); 4033 dev = dev->bus->self; 4034 } 4035 *bridge = dev; 4036 return pin; 4037 } 4038 4039 /** 4040 * pci_common_swizzle - swizzle INTx all the way to root bridge 4041 * @dev: the PCI device 4042 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 4043 * 4044 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 4045 * bridges all the way up to a PCI root bus. 4046 */ 4047 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 4048 { 4049 u8 pin = *pinp; 4050 4051 while (!pci_is_root_bus(dev->bus)) { 4052 pin = pci_swizzle_interrupt_pin(dev, pin); 4053 dev = dev->bus->self; 4054 } 4055 *pinp = pin; 4056 return PCI_SLOT(dev->devfn); 4057 } 4058 EXPORT_SYMBOL_GPL(pci_common_swizzle); 4059 4060 /** 4061 * pci_release_region - Release a PCI bar 4062 * @pdev: PCI device whose resources were previously reserved by 4063 * pci_request_region() 4064 * @bar: BAR to release 4065 * 4066 * Releases the PCI I/O and memory resources previously reserved by a 4067 * successful call to pci_request_region(). Call this function only 4068 * after all use of the PCI regions has ceased. 4069 */ 4070 void pci_release_region(struct pci_dev *pdev, int bar) 4071 { 4072 struct pci_devres *dr; 4073 4074 if (pci_resource_len(pdev, bar) == 0) 4075 return; 4076 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 4077 release_region(pci_resource_start(pdev, bar), 4078 pci_resource_len(pdev, bar)); 4079 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 4080 release_mem_region(pci_resource_start(pdev, bar), 4081 pci_resource_len(pdev, bar)); 4082 4083 dr = find_pci_dr(pdev); 4084 if (dr) 4085 dr->region_mask &= ~(1 << bar); 4086 } 4087 EXPORT_SYMBOL(pci_release_region); 4088 4089 /** 4090 * __pci_request_region - Reserved PCI I/O and memory resource 4091 * @pdev: PCI device whose resources are to be reserved 4092 * @bar: BAR to be reserved 4093 * @res_name: Name to be associated with resource. 4094 * @exclusive: whether the region access is exclusive or not 4095 * 4096 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4097 * being reserved by owner @res_name. Do not access any 4098 * address inside the PCI regions unless this call returns 4099 * successfully. 4100 * 4101 * If @exclusive is set, then the region is marked so that userspace 4102 * is explicitly not allowed to map the resource via /dev/mem or 4103 * sysfs MMIO access. 4104 * 4105 * Returns 0 on success, or %EBUSY on error. A warning 4106 * message is also printed on failure. 4107 */ 4108 static int __pci_request_region(struct pci_dev *pdev, int bar, 4109 const char *res_name, int exclusive) 4110 { 4111 struct pci_devres *dr; 4112 4113 if (pci_resource_len(pdev, bar) == 0) 4114 return 0; 4115 4116 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 4117 if (!request_region(pci_resource_start(pdev, bar), 4118 pci_resource_len(pdev, bar), res_name)) 4119 goto err_out; 4120 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 4121 if (!__request_mem_region(pci_resource_start(pdev, bar), 4122 pci_resource_len(pdev, bar), res_name, 4123 exclusive)) 4124 goto err_out; 4125 } 4126 4127 dr = find_pci_dr(pdev); 4128 if (dr) 4129 dr->region_mask |= 1 << bar; 4130 4131 return 0; 4132 4133 err_out: 4134 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4135 &pdev->resource[bar]); 4136 return -EBUSY; 4137 } 4138 4139 /** 4140 * pci_request_region - Reserve PCI I/O and memory resource 4141 * @pdev: PCI device whose resources are to be reserved 4142 * @bar: BAR to be reserved 4143 * @res_name: Name to be associated with resource 4144 * 4145 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4146 * being reserved by owner @res_name. Do not access any 4147 * address inside the PCI regions unless this call returns 4148 * successfully. 4149 * 4150 * Returns 0 on success, or %EBUSY on error. A warning 4151 * message is also printed on failure. 4152 */ 4153 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4154 { 4155 return __pci_request_region(pdev, bar, res_name, 0); 4156 } 4157 EXPORT_SYMBOL(pci_request_region); 4158 4159 /** 4160 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4161 * @pdev: PCI device whose resources were previously reserved 4162 * @bars: Bitmask of BARs to be released 4163 * 4164 * Release selected PCI I/O and memory resources previously reserved. 4165 * Call this function only after all use of the PCI regions has ceased. 4166 */ 4167 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4168 { 4169 int i; 4170 4171 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4172 if (bars & (1 << i)) 4173 pci_release_region(pdev, i); 4174 } 4175 EXPORT_SYMBOL(pci_release_selected_regions); 4176 4177 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4178 const char *res_name, int excl) 4179 { 4180 int i; 4181 4182 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4183 if (bars & (1 << i)) 4184 if (__pci_request_region(pdev, i, res_name, excl)) 4185 goto err_out; 4186 return 0; 4187 4188 err_out: 4189 while (--i >= 0) 4190 if (bars & (1 << i)) 4191 pci_release_region(pdev, i); 4192 4193 return -EBUSY; 4194 } 4195 4196 4197 /** 4198 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4199 * @pdev: PCI device whose resources are to be reserved 4200 * @bars: Bitmask of BARs to be requested 4201 * @res_name: Name to be associated with resource 4202 */ 4203 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4204 const char *res_name) 4205 { 4206 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4207 } 4208 EXPORT_SYMBOL(pci_request_selected_regions); 4209 4210 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4211 const char *res_name) 4212 { 4213 return __pci_request_selected_regions(pdev, bars, res_name, 4214 IORESOURCE_EXCLUSIVE); 4215 } 4216 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4217 4218 /** 4219 * pci_release_regions - Release reserved PCI I/O and memory resources 4220 * @pdev: PCI device whose resources were previously reserved by 4221 * pci_request_regions() 4222 * 4223 * Releases all PCI I/O and memory resources previously reserved by a 4224 * successful call to pci_request_regions(). Call this function only 4225 * after all use of the PCI regions has ceased. 4226 */ 4227 4228 void pci_release_regions(struct pci_dev *pdev) 4229 { 4230 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4231 } 4232 EXPORT_SYMBOL(pci_release_regions); 4233 4234 /** 4235 * pci_request_regions - Reserve PCI I/O and memory resources 4236 * @pdev: PCI device whose resources are to be reserved 4237 * @res_name: Name to be associated with resource. 4238 * 4239 * Mark all PCI regions associated with PCI device @pdev as 4240 * being reserved by owner @res_name. Do not access any 4241 * address inside the PCI regions unless this call returns 4242 * successfully. 4243 * 4244 * Returns 0 on success, or %EBUSY on error. A warning 4245 * message is also printed on failure. 4246 */ 4247 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4248 { 4249 return pci_request_selected_regions(pdev, 4250 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4251 } 4252 EXPORT_SYMBOL(pci_request_regions); 4253 4254 /** 4255 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4256 * @pdev: PCI device whose resources are to be reserved 4257 * @res_name: Name to be associated with resource. 4258 * 4259 * Mark all PCI regions associated with PCI device @pdev as being reserved 4260 * by owner @res_name. Do not access any address inside the PCI regions 4261 * unless this call returns successfully. 4262 * 4263 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4264 * and the sysfs MMIO access will not be allowed. 4265 * 4266 * Returns 0 on success, or %EBUSY on error. A warning message is also 4267 * printed on failure. 4268 */ 4269 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4270 { 4271 return pci_request_selected_regions_exclusive(pdev, 4272 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4273 } 4274 EXPORT_SYMBOL(pci_request_regions_exclusive); 4275 4276 /* 4277 * Record the PCI IO range (expressed as CPU physical address + size). 4278 * Return a negative value if an error has occurred, zero otherwise 4279 */ 4280 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4281 resource_size_t size) 4282 { 4283 int ret = 0; 4284 #ifdef PCI_IOBASE 4285 struct logic_pio_hwaddr *range; 4286 4287 if (!size || addr + size < addr) 4288 return -EINVAL; 4289 4290 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4291 if (!range) 4292 return -ENOMEM; 4293 4294 range->fwnode = fwnode; 4295 range->size = size; 4296 range->hw_start = addr; 4297 range->flags = LOGIC_PIO_CPU_MMIO; 4298 4299 ret = logic_pio_register_range(range); 4300 if (ret) 4301 kfree(range); 4302 4303 /* Ignore duplicates due to deferred probing */ 4304 if (ret == -EEXIST) 4305 ret = 0; 4306 #endif 4307 4308 return ret; 4309 } 4310 4311 phys_addr_t pci_pio_to_address(unsigned long pio) 4312 { 4313 #ifdef PCI_IOBASE 4314 if (pio < MMIO_UPPER_LIMIT) 4315 return logic_pio_to_hwaddr(pio); 4316 #endif 4317 4318 return (phys_addr_t) OF_BAD_ADDR; 4319 } 4320 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4321 4322 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4323 { 4324 #ifdef PCI_IOBASE 4325 return logic_pio_trans_cpuaddr(address); 4326 #else 4327 if (address > IO_SPACE_LIMIT) 4328 return (unsigned long)-1; 4329 4330 return (unsigned long) address; 4331 #endif 4332 } 4333 4334 /** 4335 * pci_remap_iospace - Remap the memory mapped I/O space 4336 * @res: Resource describing the I/O space 4337 * @phys_addr: physical address of range to be mapped 4338 * 4339 * Remap the memory mapped I/O space described by the @res and the CPU 4340 * physical address @phys_addr into virtual address space. Only 4341 * architectures that have memory mapped IO functions defined (and the 4342 * PCI_IOBASE value defined) should call this function. 4343 */ 4344 #ifndef pci_remap_iospace 4345 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4346 { 4347 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4348 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4349 4350 if (!(res->flags & IORESOURCE_IO)) 4351 return -EINVAL; 4352 4353 if (res->end > IO_SPACE_LIMIT) 4354 return -EINVAL; 4355 4356 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4357 pgprot_device(PAGE_KERNEL)); 4358 #else 4359 /* 4360 * This architecture does not have memory mapped I/O space, 4361 * so this function should never be called 4362 */ 4363 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4364 return -ENODEV; 4365 #endif 4366 } 4367 EXPORT_SYMBOL(pci_remap_iospace); 4368 #endif 4369 4370 /** 4371 * pci_unmap_iospace - Unmap the memory mapped I/O space 4372 * @res: resource to be unmapped 4373 * 4374 * Unmap the CPU virtual address @res from virtual address space. Only 4375 * architectures that have memory mapped IO functions defined (and the 4376 * PCI_IOBASE value defined) should call this function. 4377 */ 4378 void pci_unmap_iospace(struct resource *res) 4379 { 4380 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4381 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4382 4383 vunmap_range(vaddr, vaddr + resource_size(res)); 4384 #endif 4385 } 4386 EXPORT_SYMBOL(pci_unmap_iospace); 4387 4388 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4389 { 4390 struct resource **res = ptr; 4391 4392 pci_unmap_iospace(*res); 4393 } 4394 4395 /** 4396 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4397 * @dev: Generic device to remap IO address for 4398 * @res: Resource describing the I/O space 4399 * @phys_addr: physical address of range to be mapped 4400 * 4401 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4402 * detach. 4403 */ 4404 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4405 phys_addr_t phys_addr) 4406 { 4407 const struct resource **ptr; 4408 int error; 4409 4410 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4411 if (!ptr) 4412 return -ENOMEM; 4413 4414 error = pci_remap_iospace(res, phys_addr); 4415 if (error) { 4416 devres_free(ptr); 4417 } else { 4418 *ptr = res; 4419 devres_add(dev, ptr); 4420 } 4421 4422 return error; 4423 } 4424 EXPORT_SYMBOL(devm_pci_remap_iospace); 4425 4426 /** 4427 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4428 * @dev: Generic device to remap IO address for 4429 * @offset: Resource address to map 4430 * @size: Size of map 4431 * 4432 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4433 * detach. 4434 */ 4435 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4436 resource_size_t offset, 4437 resource_size_t size) 4438 { 4439 void __iomem **ptr, *addr; 4440 4441 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4442 if (!ptr) 4443 return NULL; 4444 4445 addr = pci_remap_cfgspace(offset, size); 4446 if (addr) { 4447 *ptr = addr; 4448 devres_add(dev, ptr); 4449 } else 4450 devres_free(ptr); 4451 4452 return addr; 4453 } 4454 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4455 4456 /** 4457 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4458 * @dev: generic device to handle the resource for 4459 * @res: configuration space resource to be handled 4460 * 4461 * Checks that a resource is a valid memory region, requests the memory 4462 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4463 * proper PCI configuration space memory attributes are guaranteed. 4464 * 4465 * All operations are managed and will be undone on driver detach. 4466 * 4467 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4468 * on failure. Usage example:: 4469 * 4470 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4471 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4472 * if (IS_ERR(base)) 4473 * return PTR_ERR(base); 4474 */ 4475 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4476 struct resource *res) 4477 { 4478 resource_size_t size; 4479 const char *name; 4480 void __iomem *dest_ptr; 4481 4482 BUG_ON(!dev); 4483 4484 if (!res || resource_type(res) != IORESOURCE_MEM) { 4485 dev_err(dev, "invalid resource\n"); 4486 return IOMEM_ERR_PTR(-EINVAL); 4487 } 4488 4489 size = resource_size(res); 4490 4491 if (res->name) 4492 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4493 res->name); 4494 else 4495 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4496 if (!name) 4497 return IOMEM_ERR_PTR(-ENOMEM); 4498 4499 if (!devm_request_mem_region(dev, res->start, size, name)) { 4500 dev_err(dev, "can't request region for resource %pR\n", res); 4501 return IOMEM_ERR_PTR(-EBUSY); 4502 } 4503 4504 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4505 if (!dest_ptr) { 4506 dev_err(dev, "ioremap failed for resource %pR\n", res); 4507 devm_release_mem_region(dev, res->start, size); 4508 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4509 } 4510 4511 return dest_ptr; 4512 } 4513 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4514 4515 static void __pci_set_master(struct pci_dev *dev, bool enable) 4516 { 4517 u16 old_cmd, cmd; 4518 4519 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4520 if (enable) 4521 cmd = old_cmd | PCI_COMMAND_MASTER; 4522 else 4523 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4524 if (cmd != old_cmd) { 4525 pci_dbg(dev, "%s bus mastering\n", 4526 enable ? "enabling" : "disabling"); 4527 pci_write_config_word(dev, PCI_COMMAND, cmd); 4528 } 4529 dev->is_busmaster = enable; 4530 } 4531 4532 /** 4533 * pcibios_setup - process "pci=" kernel boot arguments 4534 * @str: string used to pass in "pci=" kernel boot arguments 4535 * 4536 * Process kernel boot arguments. This is the default implementation. 4537 * Architecture specific implementations can override this as necessary. 4538 */ 4539 char * __weak __init pcibios_setup(char *str) 4540 { 4541 return str; 4542 } 4543 4544 /** 4545 * pcibios_set_master - enable PCI bus-mastering for device dev 4546 * @dev: the PCI device to enable 4547 * 4548 * Enables PCI bus-mastering for the device. This is the default 4549 * implementation. Architecture specific implementations can override 4550 * this if necessary. 4551 */ 4552 void __weak pcibios_set_master(struct pci_dev *dev) 4553 { 4554 u8 lat; 4555 4556 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4557 if (pci_is_pcie(dev)) 4558 return; 4559 4560 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4561 if (lat < 16) 4562 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4563 else if (lat > pcibios_max_latency) 4564 lat = pcibios_max_latency; 4565 else 4566 return; 4567 4568 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4569 } 4570 4571 /** 4572 * pci_set_master - enables bus-mastering for device dev 4573 * @dev: the PCI device to enable 4574 * 4575 * Enables bus-mastering on the device and calls pcibios_set_master() 4576 * to do the needed arch specific settings. 4577 */ 4578 void pci_set_master(struct pci_dev *dev) 4579 { 4580 __pci_set_master(dev, true); 4581 pcibios_set_master(dev); 4582 } 4583 EXPORT_SYMBOL(pci_set_master); 4584 4585 /** 4586 * pci_clear_master - disables bus-mastering for device dev 4587 * @dev: the PCI device to disable 4588 */ 4589 void pci_clear_master(struct pci_dev *dev) 4590 { 4591 __pci_set_master(dev, false); 4592 } 4593 EXPORT_SYMBOL(pci_clear_master); 4594 4595 /** 4596 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4597 * @dev: the PCI device for which MWI is to be enabled 4598 * 4599 * Helper function for pci_set_mwi. 4600 * Originally copied from drivers/net/acenic.c. 4601 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4602 * 4603 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4604 */ 4605 int pci_set_cacheline_size(struct pci_dev *dev) 4606 { 4607 u8 cacheline_size; 4608 4609 if (!pci_cache_line_size) 4610 return -EINVAL; 4611 4612 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4613 equal to or multiple of the right value. */ 4614 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4615 if (cacheline_size >= pci_cache_line_size && 4616 (cacheline_size % pci_cache_line_size) == 0) 4617 return 0; 4618 4619 /* Write the correct value. */ 4620 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4621 /* Read it back. */ 4622 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4623 if (cacheline_size == pci_cache_line_size) 4624 return 0; 4625 4626 pci_dbg(dev, "cache line size of %d is not supported\n", 4627 pci_cache_line_size << 2); 4628 4629 return -EINVAL; 4630 } 4631 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4632 4633 /** 4634 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4635 * @dev: the PCI device for which MWI is enabled 4636 * 4637 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4638 * 4639 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4640 */ 4641 int pci_set_mwi(struct pci_dev *dev) 4642 { 4643 #ifdef PCI_DISABLE_MWI 4644 return 0; 4645 #else 4646 int rc; 4647 u16 cmd; 4648 4649 rc = pci_set_cacheline_size(dev); 4650 if (rc) 4651 return rc; 4652 4653 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4654 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4655 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4656 cmd |= PCI_COMMAND_INVALIDATE; 4657 pci_write_config_word(dev, PCI_COMMAND, cmd); 4658 } 4659 return 0; 4660 #endif 4661 } 4662 EXPORT_SYMBOL(pci_set_mwi); 4663 4664 /** 4665 * pcim_set_mwi - a device-managed pci_set_mwi() 4666 * @dev: the PCI device for which MWI is enabled 4667 * 4668 * Managed pci_set_mwi(). 4669 * 4670 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4671 */ 4672 int pcim_set_mwi(struct pci_dev *dev) 4673 { 4674 struct pci_devres *dr; 4675 4676 dr = find_pci_dr(dev); 4677 if (!dr) 4678 return -ENOMEM; 4679 4680 dr->mwi = 1; 4681 return pci_set_mwi(dev); 4682 } 4683 EXPORT_SYMBOL(pcim_set_mwi); 4684 4685 /** 4686 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4687 * @dev: the PCI device for which MWI is enabled 4688 * 4689 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4690 * Callers are not required to check the return value. 4691 * 4692 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4693 */ 4694 int pci_try_set_mwi(struct pci_dev *dev) 4695 { 4696 #ifdef PCI_DISABLE_MWI 4697 return 0; 4698 #else 4699 return pci_set_mwi(dev); 4700 #endif 4701 } 4702 EXPORT_SYMBOL(pci_try_set_mwi); 4703 4704 /** 4705 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4706 * @dev: the PCI device to disable 4707 * 4708 * Disables PCI Memory-Write-Invalidate transaction on the device 4709 */ 4710 void pci_clear_mwi(struct pci_dev *dev) 4711 { 4712 #ifndef PCI_DISABLE_MWI 4713 u16 cmd; 4714 4715 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4716 if (cmd & PCI_COMMAND_INVALIDATE) { 4717 cmd &= ~PCI_COMMAND_INVALIDATE; 4718 pci_write_config_word(dev, PCI_COMMAND, cmd); 4719 } 4720 #endif 4721 } 4722 EXPORT_SYMBOL(pci_clear_mwi); 4723 4724 /** 4725 * pci_disable_parity - disable parity checking for device 4726 * @dev: the PCI device to operate on 4727 * 4728 * Disable parity checking for device @dev 4729 */ 4730 void pci_disable_parity(struct pci_dev *dev) 4731 { 4732 u16 cmd; 4733 4734 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4735 if (cmd & PCI_COMMAND_PARITY) { 4736 cmd &= ~PCI_COMMAND_PARITY; 4737 pci_write_config_word(dev, PCI_COMMAND, cmd); 4738 } 4739 } 4740 4741 /** 4742 * pci_intx - enables/disables PCI INTx for device dev 4743 * @pdev: the PCI device to operate on 4744 * @enable: boolean: whether to enable or disable PCI INTx 4745 * 4746 * Enables/disables PCI INTx for device @pdev 4747 */ 4748 void pci_intx(struct pci_dev *pdev, int enable) 4749 { 4750 u16 pci_command, new; 4751 4752 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4753 4754 if (enable) 4755 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4756 else 4757 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4758 4759 if (new != pci_command) { 4760 struct pci_devres *dr; 4761 4762 pci_write_config_word(pdev, PCI_COMMAND, new); 4763 4764 dr = find_pci_dr(pdev); 4765 if (dr && !dr->restore_intx) { 4766 dr->restore_intx = 1; 4767 dr->orig_intx = !enable; 4768 } 4769 } 4770 } 4771 EXPORT_SYMBOL_GPL(pci_intx); 4772 4773 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4774 { 4775 struct pci_bus *bus = dev->bus; 4776 bool mask_updated = true; 4777 u32 cmd_status_dword; 4778 u16 origcmd, newcmd; 4779 unsigned long flags; 4780 bool irq_pending; 4781 4782 /* 4783 * We do a single dword read to retrieve both command and status. 4784 * Document assumptions that make this possible. 4785 */ 4786 BUILD_BUG_ON(PCI_COMMAND % 4); 4787 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4788 4789 raw_spin_lock_irqsave(&pci_lock, flags); 4790 4791 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4792 4793 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4794 4795 /* 4796 * Check interrupt status register to see whether our device 4797 * triggered the interrupt (when masking) or the next IRQ is 4798 * already pending (when unmasking). 4799 */ 4800 if (mask != irq_pending) { 4801 mask_updated = false; 4802 goto done; 4803 } 4804 4805 origcmd = cmd_status_dword; 4806 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4807 if (mask) 4808 newcmd |= PCI_COMMAND_INTX_DISABLE; 4809 if (newcmd != origcmd) 4810 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4811 4812 done: 4813 raw_spin_unlock_irqrestore(&pci_lock, flags); 4814 4815 return mask_updated; 4816 } 4817 4818 /** 4819 * pci_check_and_mask_intx - mask INTx on pending interrupt 4820 * @dev: the PCI device to operate on 4821 * 4822 * Check if the device dev has its INTx line asserted, mask it and return 4823 * true in that case. False is returned if no interrupt was pending. 4824 */ 4825 bool pci_check_and_mask_intx(struct pci_dev *dev) 4826 { 4827 return pci_check_and_set_intx_mask(dev, true); 4828 } 4829 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4830 4831 /** 4832 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4833 * @dev: the PCI device to operate on 4834 * 4835 * Check if the device dev has its INTx line asserted, unmask it if not and 4836 * return true. False is returned and the mask remains active if there was 4837 * still an interrupt pending. 4838 */ 4839 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4840 { 4841 return pci_check_and_set_intx_mask(dev, false); 4842 } 4843 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4844 4845 /** 4846 * pci_wait_for_pending_transaction - wait for pending transaction 4847 * @dev: the PCI device to operate on 4848 * 4849 * Return 0 if transaction is pending 1 otherwise. 4850 */ 4851 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4852 { 4853 if (!pci_is_pcie(dev)) 4854 return 1; 4855 4856 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4857 PCI_EXP_DEVSTA_TRPND); 4858 } 4859 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4860 4861 /** 4862 * pcie_flr - initiate a PCIe function level reset 4863 * @dev: device to reset 4864 * 4865 * Initiate a function level reset unconditionally on @dev without 4866 * checking any flags and DEVCAP 4867 */ 4868 int pcie_flr(struct pci_dev *dev) 4869 { 4870 if (!pci_wait_for_pending_transaction(dev)) 4871 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4872 4873 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4874 4875 if (dev->imm_ready) 4876 return 0; 4877 4878 /* 4879 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4880 * 100ms, but may silently discard requests while the FLR is in 4881 * progress. Wait 100ms before trying to access the device. 4882 */ 4883 msleep(100); 4884 4885 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4886 } 4887 EXPORT_SYMBOL_GPL(pcie_flr); 4888 4889 /** 4890 * pcie_reset_flr - initiate a PCIe function level reset 4891 * @dev: device to reset 4892 * @probe: if true, return 0 if device can be reset this way 4893 * 4894 * Initiate a function level reset on @dev. 4895 */ 4896 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4897 { 4898 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4899 return -ENOTTY; 4900 4901 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4902 return -ENOTTY; 4903 4904 if (probe) 4905 return 0; 4906 4907 return pcie_flr(dev); 4908 } 4909 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4910 4911 static int pci_af_flr(struct pci_dev *dev, bool probe) 4912 { 4913 int pos; 4914 u8 cap; 4915 4916 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4917 if (!pos) 4918 return -ENOTTY; 4919 4920 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4921 return -ENOTTY; 4922 4923 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4924 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4925 return -ENOTTY; 4926 4927 if (probe) 4928 return 0; 4929 4930 /* 4931 * Wait for Transaction Pending bit to clear. A word-aligned test 4932 * is used, so we use the control offset rather than status and shift 4933 * the test bit to match. 4934 */ 4935 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4936 PCI_AF_STATUS_TP << 8)) 4937 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4938 4939 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4940 4941 if (dev->imm_ready) 4942 return 0; 4943 4944 /* 4945 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4946 * updated 27 July 2006; a device must complete an FLR within 4947 * 100ms, but may silently discard requests while the FLR is in 4948 * progress. Wait 100ms before trying to access the device. 4949 */ 4950 msleep(100); 4951 4952 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4953 } 4954 4955 /** 4956 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4957 * @dev: Device to reset. 4958 * @probe: if true, return 0 if the device can be reset this way. 4959 * 4960 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4961 * unset, it will be reinitialized internally when going from PCI_D3hot to 4962 * PCI_D0. If that's the case and the device is not in a low-power state 4963 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4964 * 4965 * NOTE: This causes the caller to sleep for twice the device power transition 4966 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4967 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4968 * Moreover, only devices in D0 can be reset by this function. 4969 */ 4970 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4971 { 4972 u16 csr; 4973 4974 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4975 return -ENOTTY; 4976 4977 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4978 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4979 return -ENOTTY; 4980 4981 if (probe) 4982 return 0; 4983 4984 if (dev->current_state != PCI_D0) 4985 return -EINVAL; 4986 4987 csr &= ~PCI_PM_CTRL_STATE_MASK; 4988 csr |= PCI_D3hot; 4989 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4990 pci_dev_d3_sleep(dev); 4991 4992 csr &= ~PCI_PM_CTRL_STATE_MASK; 4993 csr |= PCI_D0; 4994 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4995 pci_dev_d3_sleep(dev); 4996 4997 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4998 } 4999 5000 /** 5001 * pcie_wait_for_link_status - Wait for link status change 5002 * @pdev: Device whose link to wait for. 5003 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 5004 * @active: Waiting for active or inactive? 5005 * 5006 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 5007 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 5008 */ 5009 static int pcie_wait_for_link_status(struct pci_dev *pdev, 5010 bool use_lt, bool active) 5011 { 5012 u16 lnksta_mask, lnksta_match; 5013 unsigned long end_jiffies; 5014 u16 lnksta; 5015 5016 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 5017 lnksta_match = active ? lnksta_mask : 0; 5018 5019 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 5020 do { 5021 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 5022 if ((lnksta & lnksta_mask) == lnksta_match) 5023 return 0; 5024 msleep(1); 5025 } while (time_before(jiffies, end_jiffies)); 5026 5027 return -ETIMEDOUT; 5028 } 5029 5030 /** 5031 * pcie_retrain_link - Request a link retrain and wait for it to complete 5032 * @pdev: Device whose link to retrain. 5033 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 5034 * 5035 * Retrain completion status is retrieved from the Link Status Register 5036 * according to @use_lt. It is not verified whether the use of the DLLLA 5037 * bit is valid. 5038 * 5039 * Return 0 if successful, or -ETIMEDOUT if training has not completed 5040 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 5041 */ 5042 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 5043 { 5044 int rc; 5045 5046 /* 5047 * Ensure the updated LNKCTL parameters are used during link 5048 * training by checking that there is no ongoing link training to 5049 * avoid LTSSM race as recommended in Implementation Note at the 5050 * end of PCIe r6.0.1 sec 7.5.3.7. 5051 */ 5052 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 5053 if (rc) 5054 return rc; 5055 5056 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 5057 if (pdev->clear_retrain_link) { 5058 /* 5059 * Due to an erratum in some devices the Retrain Link bit 5060 * needs to be cleared again manually to allow the link 5061 * training to succeed. 5062 */ 5063 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 5064 } 5065 5066 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 5067 } 5068 5069 /** 5070 * pcie_wait_for_link_delay - Wait until link is active or inactive 5071 * @pdev: Bridge device 5072 * @active: waiting for active or inactive? 5073 * @delay: Delay to wait after link has become active (in ms) 5074 * 5075 * Use this to wait till link becomes active or inactive. 5076 */ 5077 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 5078 int delay) 5079 { 5080 int rc; 5081 5082 /* 5083 * Some controllers might not implement link active reporting. In this 5084 * case, we wait for 1000 ms + any delay requested by the caller. 5085 */ 5086 if (!pdev->link_active_reporting) { 5087 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 5088 return true; 5089 } 5090 5091 /* 5092 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 5093 * after which we should expect an link active if the reset was 5094 * successful. If so, software must wait a minimum 100ms before sending 5095 * configuration requests to devices downstream this port. 5096 * 5097 * If the link fails to activate, either the device was physically 5098 * removed or the link is permanently failed. 5099 */ 5100 if (active) 5101 msleep(20); 5102 rc = pcie_wait_for_link_status(pdev, false, active); 5103 if (active) { 5104 if (rc) 5105 rc = pcie_failed_link_retrain(pdev); 5106 if (rc) 5107 return false; 5108 5109 msleep(delay); 5110 return true; 5111 } 5112 5113 if (rc) 5114 return false; 5115 5116 return true; 5117 } 5118 5119 /** 5120 * pcie_wait_for_link - Wait until link is active or inactive 5121 * @pdev: Bridge device 5122 * @active: waiting for active or inactive? 5123 * 5124 * Use this to wait till link becomes active or inactive. 5125 */ 5126 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 5127 { 5128 return pcie_wait_for_link_delay(pdev, active, 100); 5129 } 5130 5131 /* 5132 * Find maximum D3cold delay required by all the devices on the bus. The 5133 * spec says 100 ms, but firmware can lower it and we allow drivers to 5134 * increase it as well. 5135 * 5136 * Called with @pci_bus_sem locked for reading. 5137 */ 5138 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 5139 { 5140 const struct pci_dev *pdev; 5141 int min_delay = 100; 5142 int max_delay = 0; 5143 5144 list_for_each_entry(pdev, &bus->devices, bus_list) { 5145 if (pdev->d3cold_delay < min_delay) 5146 min_delay = pdev->d3cold_delay; 5147 if (pdev->d3cold_delay > max_delay) 5148 max_delay = pdev->d3cold_delay; 5149 } 5150 5151 return max(min_delay, max_delay); 5152 } 5153 5154 /** 5155 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 5156 * @dev: PCI bridge 5157 * @reset_type: reset type in human-readable form 5158 * 5159 * Handle necessary delays before access to the devices on the secondary 5160 * side of the bridge are permitted after D3cold to D0 transition 5161 * or Conventional Reset. 5162 * 5163 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 5164 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 5165 * 4.3.2. 5166 * 5167 * Return 0 on success or -ENOTTY if the first device on the secondary bus 5168 * failed to become accessible. 5169 */ 5170 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 5171 { 5172 struct pci_dev *child; 5173 int delay; 5174 5175 if (pci_dev_is_disconnected(dev)) 5176 return 0; 5177 5178 if (!pci_is_bridge(dev)) 5179 return 0; 5180 5181 down_read(&pci_bus_sem); 5182 5183 /* 5184 * We only deal with devices that are present currently on the bus. 5185 * For any hot-added devices the access delay is handled in pciehp 5186 * board_added(). In case of ACPI hotplug the firmware is expected 5187 * to configure the devices before OS is notified. 5188 */ 5189 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 5190 up_read(&pci_bus_sem); 5191 return 0; 5192 } 5193 5194 /* Take d3cold_delay requirements into account */ 5195 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5196 if (!delay) { 5197 up_read(&pci_bus_sem); 5198 return 0; 5199 } 5200 5201 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 5202 bus_list); 5203 up_read(&pci_bus_sem); 5204 5205 /* 5206 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5207 * accessing the device after reset (that is 1000 ms + 100 ms). 5208 */ 5209 if (!pci_is_pcie(dev)) { 5210 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5211 msleep(1000 + delay); 5212 return 0; 5213 } 5214 5215 /* 5216 * For PCIe downstream and root ports that do not support speeds 5217 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5218 * speeds (gen3) we need to wait first for the data link layer to 5219 * become active. 5220 * 5221 * However, 100 ms is the minimum and the PCIe spec says the 5222 * software must allow at least 1s before it can determine that the 5223 * device that did not respond is a broken device. Also device can 5224 * take longer than that to respond if it indicates so through Request 5225 * Retry Status completions. 5226 * 5227 * Therefore we wait for 100 ms and check for the device presence 5228 * until the timeout expires. 5229 */ 5230 if (!pcie_downstream_port(dev)) 5231 return 0; 5232 5233 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5234 u16 status; 5235 5236 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5237 msleep(delay); 5238 5239 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 5240 return 0; 5241 5242 /* 5243 * If the port supports active link reporting we now check 5244 * whether the link is active and if not bail out early with 5245 * the assumption that the device is not present anymore. 5246 */ 5247 if (!dev->link_active_reporting) 5248 return -ENOTTY; 5249 5250 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 5251 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 5252 return -ENOTTY; 5253 5254 return pci_dev_wait(child, reset_type, 5255 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 5256 } 5257 5258 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5259 delay); 5260 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5261 /* Did not train, no need to wait any further */ 5262 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5263 return -ENOTTY; 5264 } 5265 5266 return pci_dev_wait(child, reset_type, 5267 PCIE_RESET_READY_POLL_MS - delay); 5268 } 5269 5270 void pci_reset_secondary_bus(struct pci_dev *dev) 5271 { 5272 u16 ctrl; 5273 5274 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5275 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5276 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5277 5278 /* 5279 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5280 * this to 2ms to ensure that we meet the minimum requirement. 5281 */ 5282 msleep(2); 5283 5284 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5285 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5286 } 5287 5288 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5289 { 5290 pci_reset_secondary_bus(dev); 5291 } 5292 5293 /** 5294 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5295 * @dev: Bridge device 5296 * 5297 * Use the bridge control register to assert reset on the secondary bus. 5298 * Devices on the secondary bus are left in power-on state. 5299 */ 5300 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5301 { 5302 pcibios_reset_secondary_bus(dev); 5303 5304 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5305 } 5306 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5307 5308 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5309 { 5310 struct pci_dev *pdev; 5311 5312 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5313 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5314 return -ENOTTY; 5315 5316 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5317 if (pdev != dev) 5318 return -ENOTTY; 5319 5320 if (probe) 5321 return 0; 5322 5323 return pci_bridge_secondary_bus_reset(dev->bus->self); 5324 } 5325 5326 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5327 { 5328 int rc = -ENOTTY; 5329 5330 if (!hotplug || !try_module_get(hotplug->owner)) 5331 return rc; 5332 5333 if (hotplug->ops->reset_slot) 5334 rc = hotplug->ops->reset_slot(hotplug, probe); 5335 5336 module_put(hotplug->owner); 5337 5338 return rc; 5339 } 5340 5341 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5342 { 5343 if (dev->multifunction || dev->subordinate || !dev->slot || 5344 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5345 return -ENOTTY; 5346 5347 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5348 } 5349 5350 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5351 { 5352 int rc; 5353 5354 rc = pci_dev_reset_slot_function(dev, probe); 5355 if (rc != -ENOTTY) 5356 return rc; 5357 return pci_parent_bus_reset(dev, probe); 5358 } 5359 5360 void pci_dev_lock(struct pci_dev *dev) 5361 { 5362 /* block PM suspend, driver probe, etc. */ 5363 device_lock(&dev->dev); 5364 pci_cfg_access_lock(dev); 5365 } 5366 EXPORT_SYMBOL_GPL(pci_dev_lock); 5367 5368 /* Return 1 on successful lock, 0 on contention */ 5369 int pci_dev_trylock(struct pci_dev *dev) 5370 { 5371 if (device_trylock(&dev->dev)) { 5372 if (pci_cfg_access_trylock(dev)) 5373 return 1; 5374 device_unlock(&dev->dev); 5375 } 5376 5377 return 0; 5378 } 5379 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5380 5381 void pci_dev_unlock(struct pci_dev *dev) 5382 { 5383 pci_cfg_access_unlock(dev); 5384 device_unlock(&dev->dev); 5385 } 5386 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5387 5388 static void pci_dev_save_and_disable(struct pci_dev *dev) 5389 { 5390 const struct pci_error_handlers *err_handler = 5391 dev->driver ? dev->driver->err_handler : NULL; 5392 5393 /* 5394 * dev->driver->err_handler->reset_prepare() is protected against 5395 * races with ->remove() by the device lock, which must be held by 5396 * the caller. 5397 */ 5398 if (err_handler && err_handler->reset_prepare) 5399 err_handler->reset_prepare(dev); 5400 5401 /* 5402 * Wake-up device prior to save. PM registers default to D0 after 5403 * reset and a simple register restore doesn't reliably return 5404 * to a non-D0 state anyway. 5405 */ 5406 pci_set_power_state(dev, PCI_D0); 5407 5408 pci_save_state(dev); 5409 /* 5410 * Disable the device by clearing the Command register, except for 5411 * INTx-disable which is set. This not only disables MMIO and I/O port 5412 * BARs, but also prevents the device from being Bus Master, preventing 5413 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5414 * compliant devices, INTx-disable prevents legacy interrupts. 5415 */ 5416 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5417 } 5418 5419 static void pci_dev_restore(struct pci_dev *dev) 5420 { 5421 const struct pci_error_handlers *err_handler = 5422 dev->driver ? dev->driver->err_handler : NULL; 5423 5424 pci_restore_state(dev); 5425 5426 /* 5427 * dev->driver->err_handler->reset_done() is protected against 5428 * races with ->remove() by the device lock, which must be held by 5429 * the caller. 5430 */ 5431 if (err_handler && err_handler->reset_done) 5432 err_handler->reset_done(dev); 5433 } 5434 5435 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5436 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5437 { }, 5438 { pci_dev_specific_reset, .name = "device_specific" }, 5439 { pci_dev_acpi_reset, .name = "acpi" }, 5440 { pcie_reset_flr, .name = "flr" }, 5441 { pci_af_flr, .name = "af_flr" }, 5442 { pci_pm_reset, .name = "pm" }, 5443 { pci_reset_bus_function, .name = "bus" }, 5444 }; 5445 5446 static ssize_t reset_method_show(struct device *dev, 5447 struct device_attribute *attr, char *buf) 5448 { 5449 struct pci_dev *pdev = to_pci_dev(dev); 5450 ssize_t len = 0; 5451 int i, m; 5452 5453 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5454 m = pdev->reset_methods[i]; 5455 if (!m) 5456 break; 5457 5458 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5459 pci_reset_fn_methods[m].name); 5460 } 5461 5462 if (len) 5463 len += sysfs_emit_at(buf, len, "\n"); 5464 5465 return len; 5466 } 5467 5468 static int reset_method_lookup(const char *name) 5469 { 5470 int m; 5471 5472 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5473 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5474 return m; 5475 } 5476 5477 return 0; /* not found */ 5478 } 5479 5480 static ssize_t reset_method_store(struct device *dev, 5481 struct device_attribute *attr, 5482 const char *buf, size_t count) 5483 { 5484 struct pci_dev *pdev = to_pci_dev(dev); 5485 char *options, *name; 5486 int m, n; 5487 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5488 5489 if (sysfs_streq(buf, "")) { 5490 pdev->reset_methods[0] = 0; 5491 pci_warn(pdev, "All device reset methods disabled by user"); 5492 return count; 5493 } 5494 5495 if (sysfs_streq(buf, "default")) { 5496 pci_init_reset_methods(pdev); 5497 return count; 5498 } 5499 5500 options = kstrndup(buf, count, GFP_KERNEL); 5501 if (!options) 5502 return -ENOMEM; 5503 5504 n = 0; 5505 while ((name = strsep(&options, " ")) != NULL) { 5506 if (sysfs_streq(name, "")) 5507 continue; 5508 5509 name = strim(name); 5510 5511 m = reset_method_lookup(name); 5512 if (!m) { 5513 pci_err(pdev, "Invalid reset method '%s'", name); 5514 goto error; 5515 } 5516 5517 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5518 pci_err(pdev, "Unsupported reset method '%s'", name); 5519 goto error; 5520 } 5521 5522 if (n == PCI_NUM_RESET_METHODS - 1) { 5523 pci_err(pdev, "Too many reset methods\n"); 5524 goto error; 5525 } 5526 5527 reset_methods[n++] = m; 5528 } 5529 5530 reset_methods[n] = 0; 5531 5532 /* Warn if dev-specific supported but not highest priority */ 5533 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5534 reset_methods[0] != 1) 5535 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5536 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5537 kfree(options); 5538 return count; 5539 5540 error: 5541 /* Leave previous methods unchanged */ 5542 kfree(options); 5543 return -EINVAL; 5544 } 5545 static DEVICE_ATTR_RW(reset_method); 5546 5547 static struct attribute *pci_dev_reset_method_attrs[] = { 5548 &dev_attr_reset_method.attr, 5549 NULL, 5550 }; 5551 5552 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5553 struct attribute *a, int n) 5554 { 5555 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5556 5557 if (!pci_reset_supported(pdev)) 5558 return 0; 5559 5560 return a->mode; 5561 } 5562 5563 const struct attribute_group pci_dev_reset_method_attr_group = { 5564 .attrs = pci_dev_reset_method_attrs, 5565 .is_visible = pci_dev_reset_method_attr_is_visible, 5566 }; 5567 5568 /** 5569 * __pci_reset_function_locked - reset a PCI device function while holding 5570 * the @dev mutex lock. 5571 * @dev: PCI device to reset 5572 * 5573 * Some devices allow an individual function to be reset without affecting 5574 * other functions in the same device. The PCI device must be responsive 5575 * to PCI config space in order to use this function. 5576 * 5577 * The device function is presumed to be unused and the caller is holding 5578 * the device mutex lock when this function is called. 5579 * 5580 * Resetting the device will make the contents of PCI configuration space 5581 * random, so any caller of this must be prepared to reinitialise the 5582 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5583 * etc. 5584 * 5585 * Returns 0 if the device function was successfully reset or negative if the 5586 * device doesn't support resetting a single function. 5587 */ 5588 int __pci_reset_function_locked(struct pci_dev *dev) 5589 { 5590 int i, m, rc; 5591 5592 might_sleep(); 5593 5594 /* 5595 * A reset method returns -ENOTTY if it doesn't support this device and 5596 * we should try the next method. 5597 * 5598 * If it returns 0 (success), we're finished. If it returns any other 5599 * error, we're also finished: this indicates that further reset 5600 * mechanisms might be broken on the device. 5601 */ 5602 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5603 m = dev->reset_methods[i]; 5604 if (!m) 5605 return -ENOTTY; 5606 5607 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5608 if (!rc) 5609 return 0; 5610 if (rc != -ENOTTY) 5611 return rc; 5612 } 5613 5614 return -ENOTTY; 5615 } 5616 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5617 5618 /** 5619 * pci_init_reset_methods - check whether device can be safely reset 5620 * and store supported reset mechanisms. 5621 * @dev: PCI device to check for reset mechanisms 5622 * 5623 * Some devices allow an individual function to be reset without affecting 5624 * other functions in the same device. The PCI device must be in D0-D3hot 5625 * state. 5626 * 5627 * Stores reset mechanisms supported by device in reset_methods byte array 5628 * which is a member of struct pci_dev. 5629 */ 5630 void pci_init_reset_methods(struct pci_dev *dev) 5631 { 5632 int m, i, rc; 5633 5634 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5635 5636 might_sleep(); 5637 5638 i = 0; 5639 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5640 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5641 if (!rc) 5642 dev->reset_methods[i++] = m; 5643 else if (rc != -ENOTTY) 5644 break; 5645 } 5646 5647 dev->reset_methods[i] = 0; 5648 } 5649 5650 /** 5651 * pci_reset_function - quiesce and reset a PCI device function 5652 * @dev: PCI device to reset 5653 * 5654 * Some devices allow an individual function to be reset without affecting 5655 * other functions in the same device. The PCI device must be responsive 5656 * to PCI config space in order to use this function. 5657 * 5658 * This function does not just reset the PCI portion of a device, but 5659 * clears all the state associated with the device. This function differs 5660 * from __pci_reset_function_locked() in that it saves and restores device state 5661 * over the reset and takes the PCI device lock. 5662 * 5663 * Returns 0 if the device function was successfully reset or negative if the 5664 * device doesn't support resetting a single function. 5665 */ 5666 int pci_reset_function(struct pci_dev *dev) 5667 { 5668 int rc; 5669 5670 if (!pci_reset_supported(dev)) 5671 return -ENOTTY; 5672 5673 pci_dev_lock(dev); 5674 pci_dev_save_and_disable(dev); 5675 5676 rc = __pci_reset_function_locked(dev); 5677 5678 pci_dev_restore(dev); 5679 pci_dev_unlock(dev); 5680 5681 return rc; 5682 } 5683 EXPORT_SYMBOL_GPL(pci_reset_function); 5684 5685 /** 5686 * pci_reset_function_locked - quiesce and reset a PCI device function 5687 * @dev: PCI device to reset 5688 * 5689 * Some devices allow an individual function to be reset without affecting 5690 * other functions in the same device. The PCI device must be responsive 5691 * to PCI config space in order to use this function. 5692 * 5693 * This function does not just reset the PCI portion of a device, but 5694 * clears all the state associated with the device. This function differs 5695 * from __pci_reset_function_locked() in that it saves and restores device state 5696 * over the reset. It also differs from pci_reset_function() in that it 5697 * requires the PCI device lock to be held. 5698 * 5699 * Returns 0 if the device function was successfully reset or negative if the 5700 * device doesn't support resetting a single function. 5701 */ 5702 int pci_reset_function_locked(struct pci_dev *dev) 5703 { 5704 int rc; 5705 5706 if (!pci_reset_supported(dev)) 5707 return -ENOTTY; 5708 5709 pci_dev_save_and_disable(dev); 5710 5711 rc = __pci_reset_function_locked(dev); 5712 5713 pci_dev_restore(dev); 5714 5715 return rc; 5716 } 5717 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5718 5719 /** 5720 * pci_try_reset_function - quiesce and reset a PCI device function 5721 * @dev: PCI device to reset 5722 * 5723 * Same as above, except return -EAGAIN if unable to lock device. 5724 */ 5725 int pci_try_reset_function(struct pci_dev *dev) 5726 { 5727 int rc; 5728 5729 if (!pci_reset_supported(dev)) 5730 return -ENOTTY; 5731 5732 if (!pci_dev_trylock(dev)) 5733 return -EAGAIN; 5734 5735 pci_dev_save_and_disable(dev); 5736 rc = __pci_reset_function_locked(dev); 5737 pci_dev_restore(dev); 5738 pci_dev_unlock(dev); 5739 5740 return rc; 5741 } 5742 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5743 5744 /* Do any devices on or below this bus prevent a bus reset? */ 5745 static bool pci_bus_resettable(struct pci_bus *bus) 5746 { 5747 struct pci_dev *dev; 5748 5749 5750 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5751 return false; 5752 5753 list_for_each_entry(dev, &bus->devices, bus_list) { 5754 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5755 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5756 return false; 5757 } 5758 5759 return true; 5760 } 5761 5762 /* Lock devices from the top of the tree down */ 5763 static void pci_bus_lock(struct pci_bus *bus) 5764 { 5765 struct pci_dev *dev; 5766 5767 list_for_each_entry(dev, &bus->devices, bus_list) { 5768 pci_dev_lock(dev); 5769 if (dev->subordinate) 5770 pci_bus_lock(dev->subordinate); 5771 } 5772 } 5773 5774 /* Unlock devices from the bottom of the tree up */ 5775 static void pci_bus_unlock(struct pci_bus *bus) 5776 { 5777 struct pci_dev *dev; 5778 5779 list_for_each_entry(dev, &bus->devices, bus_list) { 5780 if (dev->subordinate) 5781 pci_bus_unlock(dev->subordinate); 5782 pci_dev_unlock(dev); 5783 } 5784 } 5785 5786 /* Return 1 on successful lock, 0 on contention */ 5787 static int pci_bus_trylock(struct pci_bus *bus) 5788 { 5789 struct pci_dev *dev; 5790 5791 list_for_each_entry(dev, &bus->devices, bus_list) { 5792 if (!pci_dev_trylock(dev)) 5793 goto unlock; 5794 if (dev->subordinate) { 5795 if (!pci_bus_trylock(dev->subordinate)) { 5796 pci_dev_unlock(dev); 5797 goto unlock; 5798 } 5799 } 5800 } 5801 return 1; 5802 5803 unlock: 5804 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5805 if (dev->subordinate) 5806 pci_bus_unlock(dev->subordinate); 5807 pci_dev_unlock(dev); 5808 } 5809 return 0; 5810 } 5811 5812 /* Do any devices on or below this slot prevent a bus reset? */ 5813 static bool pci_slot_resettable(struct pci_slot *slot) 5814 { 5815 struct pci_dev *dev; 5816 5817 if (slot->bus->self && 5818 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5819 return false; 5820 5821 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5822 if (!dev->slot || dev->slot != slot) 5823 continue; 5824 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5825 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5826 return false; 5827 } 5828 5829 return true; 5830 } 5831 5832 /* Lock devices from the top of the tree down */ 5833 static void pci_slot_lock(struct pci_slot *slot) 5834 { 5835 struct pci_dev *dev; 5836 5837 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5838 if (!dev->slot || dev->slot != slot) 5839 continue; 5840 pci_dev_lock(dev); 5841 if (dev->subordinate) 5842 pci_bus_lock(dev->subordinate); 5843 } 5844 } 5845 5846 /* Unlock devices from the bottom of the tree up */ 5847 static void pci_slot_unlock(struct pci_slot *slot) 5848 { 5849 struct pci_dev *dev; 5850 5851 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5852 if (!dev->slot || dev->slot != slot) 5853 continue; 5854 if (dev->subordinate) 5855 pci_bus_unlock(dev->subordinate); 5856 pci_dev_unlock(dev); 5857 } 5858 } 5859 5860 /* Return 1 on successful lock, 0 on contention */ 5861 static int pci_slot_trylock(struct pci_slot *slot) 5862 { 5863 struct pci_dev *dev; 5864 5865 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5866 if (!dev->slot || dev->slot != slot) 5867 continue; 5868 if (!pci_dev_trylock(dev)) 5869 goto unlock; 5870 if (dev->subordinate) { 5871 if (!pci_bus_trylock(dev->subordinate)) { 5872 pci_dev_unlock(dev); 5873 goto unlock; 5874 } 5875 } 5876 } 5877 return 1; 5878 5879 unlock: 5880 list_for_each_entry_continue_reverse(dev, 5881 &slot->bus->devices, bus_list) { 5882 if (!dev->slot || dev->slot != slot) 5883 continue; 5884 if (dev->subordinate) 5885 pci_bus_unlock(dev->subordinate); 5886 pci_dev_unlock(dev); 5887 } 5888 return 0; 5889 } 5890 5891 /* 5892 * Save and disable devices from the top of the tree down while holding 5893 * the @dev mutex lock for the entire tree. 5894 */ 5895 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5896 { 5897 struct pci_dev *dev; 5898 5899 list_for_each_entry(dev, &bus->devices, bus_list) { 5900 pci_dev_save_and_disable(dev); 5901 if (dev->subordinate) 5902 pci_bus_save_and_disable_locked(dev->subordinate); 5903 } 5904 } 5905 5906 /* 5907 * Restore devices from top of the tree down while holding @dev mutex lock 5908 * for the entire tree. Parent bridges need to be restored before we can 5909 * get to subordinate devices. 5910 */ 5911 static void pci_bus_restore_locked(struct pci_bus *bus) 5912 { 5913 struct pci_dev *dev; 5914 5915 list_for_each_entry(dev, &bus->devices, bus_list) { 5916 pci_dev_restore(dev); 5917 if (dev->subordinate) 5918 pci_bus_restore_locked(dev->subordinate); 5919 } 5920 } 5921 5922 /* 5923 * Save and disable devices from the top of the tree down while holding 5924 * the @dev mutex lock for the entire tree. 5925 */ 5926 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5927 { 5928 struct pci_dev *dev; 5929 5930 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5931 if (!dev->slot || dev->slot != slot) 5932 continue; 5933 pci_dev_save_and_disable(dev); 5934 if (dev->subordinate) 5935 pci_bus_save_and_disable_locked(dev->subordinate); 5936 } 5937 } 5938 5939 /* 5940 * Restore devices from top of the tree down while holding @dev mutex lock 5941 * for the entire tree. Parent bridges need to be restored before we can 5942 * get to subordinate devices. 5943 */ 5944 static void pci_slot_restore_locked(struct pci_slot *slot) 5945 { 5946 struct pci_dev *dev; 5947 5948 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5949 if (!dev->slot || dev->slot != slot) 5950 continue; 5951 pci_dev_restore(dev); 5952 if (dev->subordinate) 5953 pci_bus_restore_locked(dev->subordinate); 5954 } 5955 } 5956 5957 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5958 { 5959 int rc; 5960 5961 if (!slot || !pci_slot_resettable(slot)) 5962 return -ENOTTY; 5963 5964 if (!probe) 5965 pci_slot_lock(slot); 5966 5967 might_sleep(); 5968 5969 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5970 5971 if (!probe) 5972 pci_slot_unlock(slot); 5973 5974 return rc; 5975 } 5976 5977 /** 5978 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5979 * @slot: PCI slot to probe 5980 * 5981 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5982 */ 5983 int pci_probe_reset_slot(struct pci_slot *slot) 5984 { 5985 return pci_slot_reset(slot, PCI_RESET_PROBE); 5986 } 5987 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5988 5989 /** 5990 * __pci_reset_slot - Try to reset a PCI slot 5991 * @slot: PCI slot to reset 5992 * 5993 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5994 * independent of other slots. For instance, some slots may support slot power 5995 * control. In the case of a 1:1 bus to slot architecture, this function may 5996 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5997 * Generally a slot reset should be attempted before a bus reset. All of the 5998 * function of the slot and any subordinate buses behind the slot are reset 5999 * through this function. PCI config space of all devices in the slot and 6000 * behind the slot is saved before and restored after reset. 6001 * 6002 * Same as above except return -EAGAIN if the slot cannot be locked 6003 */ 6004 static int __pci_reset_slot(struct pci_slot *slot) 6005 { 6006 int rc; 6007 6008 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 6009 if (rc) 6010 return rc; 6011 6012 if (pci_slot_trylock(slot)) { 6013 pci_slot_save_and_disable_locked(slot); 6014 might_sleep(); 6015 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 6016 pci_slot_restore_locked(slot); 6017 pci_slot_unlock(slot); 6018 } else 6019 rc = -EAGAIN; 6020 6021 return rc; 6022 } 6023 6024 static int pci_bus_reset(struct pci_bus *bus, bool probe) 6025 { 6026 int ret; 6027 6028 if (!bus->self || !pci_bus_resettable(bus)) 6029 return -ENOTTY; 6030 6031 if (probe) 6032 return 0; 6033 6034 pci_bus_lock(bus); 6035 6036 might_sleep(); 6037 6038 ret = pci_bridge_secondary_bus_reset(bus->self); 6039 6040 pci_bus_unlock(bus); 6041 6042 return ret; 6043 } 6044 6045 /** 6046 * pci_bus_error_reset - reset the bridge's subordinate bus 6047 * @bridge: The parent device that connects to the bus to reset 6048 * 6049 * This function will first try to reset the slots on this bus if the method is 6050 * available. If slot reset fails or is not available, this will fall back to a 6051 * secondary bus reset. 6052 */ 6053 int pci_bus_error_reset(struct pci_dev *bridge) 6054 { 6055 struct pci_bus *bus = bridge->subordinate; 6056 struct pci_slot *slot; 6057 6058 if (!bus) 6059 return -ENOTTY; 6060 6061 mutex_lock(&pci_slot_mutex); 6062 if (list_empty(&bus->slots)) 6063 goto bus_reset; 6064 6065 list_for_each_entry(slot, &bus->slots, list) 6066 if (pci_probe_reset_slot(slot)) 6067 goto bus_reset; 6068 6069 list_for_each_entry(slot, &bus->slots, list) 6070 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 6071 goto bus_reset; 6072 6073 mutex_unlock(&pci_slot_mutex); 6074 return 0; 6075 bus_reset: 6076 mutex_unlock(&pci_slot_mutex); 6077 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 6078 } 6079 6080 /** 6081 * pci_probe_reset_bus - probe whether a PCI bus can be reset 6082 * @bus: PCI bus to probe 6083 * 6084 * Return 0 if bus can be reset, negative if a bus reset is not supported. 6085 */ 6086 int pci_probe_reset_bus(struct pci_bus *bus) 6087 { 6088 return pci_bus_reset(bus, PCI_RESET_PROBE); 6089 } 6090 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 6091 6092 /** 6093 * __pci_reset_bus - Try to reset a PCI bus 6094 * @bus: top level PCI bus to reset 6095 * 6096 * Same as above except return -EAGAIN if the bus cannot be locked 6097 */ 6098 static int __pci_reset_bus(struct pci_bus *bus) 6099 { 6100 int rc; 6101 6102 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 6103 if (rc) 6104 return rc; 6105 6106 if (pci_bus_trylock(bus)) { 6107 pci_bus_save_and_disable_locked(bus); 6108 might_sleep(); 6109 rc = pci_bridge_secondary_bus_reset(bus->self); 6110 pci_bus_restore_locked(bus); 6111 pci_bus_unlock(bus); 6112 } else 6113 rc = -EAGAIN; 6114 6115 return rc; 6116 } 6117 6118 /** 6119 * pci_reset_bus - Try to reset a PCI bus 6120 * @pdev: top level PCI device to reset via slot/bus 6121 * 6122 * Same as above except return -EAGAIN if the bus cannot be locked 6123 */ 6124 int pci_reset_bus(struct pci_dev *pdev) 6125 { 6126 return (!pci_probe_reset_slot(pdev->slot)) ? 6127 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 6128 } 6129 EXPORT_SYMBOL_GPL(pci_reset_bus); 6130 6131 /** 6132 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 6133 * @dev: PCI device to query 6134 * 6135 * Returns mmrbc: maximum designed memory read count in bytes or 6136 * appropriate error value. 6137 */ 6138 int pcix_get_max_mmrbc(struct pci_dev *dev) 6139 { 6140 int cap; 6141 u32 stat; 6142 6143 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6144 if (!cap) 6145 return -EINVAL; 6146 6147 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6148 return -EINVAL; 6149 6150 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 6151 } 6152 EXPORT_SYMBOL(pcix_get_max_mmrbc); 6153 6154 /** 6155 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 6156 * @dev: PCI device to query 6157 * 6158 * Returns mmrbc: maximum memory read count in bytes or appropriate error 6159 * value. 6160 */ 6161 int pcix_get_mmrbc(struct pci_dev *dev) 6162 { 6163 int cap; 6164 u16 cmd; 6165 6166 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6167 if (!cap) 6168 return -EINVAL; 6169 6170 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6171 return -EINVAL; 6172 6173 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6174 } 6175 EXPORT_SYMBOL(pcix_get_mmrbc); 6176 6177 /** 6178 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 6179 * @dev: PCI device to query 6180 * @mmrbc: maximum memory read count in bytes 6181 * valid values are 512, 1024, 2048, 4096 6182 * 6183 * If possible sets maximum memory read byte count, some bridges have errata 6184 * that prevent this. 6185 */ 6186 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 6187 { 6188 int cap; 6189 u32 stat, v, o; 6190 u16 cmd; 6191 6192 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 6193 return -EINVAL; 6194 6195 v = ffs(mmrbc) - 10; 6196 6197 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6198 if (!cap) 6199 return -EINVAL; 6200 6201 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6202 return -EINVAL; 6203 6204 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 6205 return -E2BIG; 6206 6207 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6208 return -EINVAL; 6209 6210 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6211 if (o != v) { 6212 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6213 return -EIO; 6214 6215 cmd &= ~PCI_X_CMD_MAX_READ; 6216 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 6217 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6218 return -EIO; 6219 } 6220 return 0; 6221 } 6222 EXPORT_SYMBOL(pcix_set_mmrbc); 6223 6224 /** 6225 * pcie_get_readrq - get PCI Express read request size 6226 * @dev: PCI device to query 6227 * 6228 * Returns maximum memory read request in bytes or appropriate error value. 6229 */ 6230 int pcie_get_readrq(struct pci_dev *dev) 6231 { 6232 u16 ctl; 6233 6234 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6235 6236 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 6237 } 6238 EXPORT_SYMBOL(pcie_get_readrq); 6239 6240 /** 6241 * pcie_set_readrq - set PCI Express maximum memory read request 6242 * @dev: PCI device to query 6243 * @rq: maximum memory read count in bytes 6244 * valid values are 128, 256, 512, 1024, 2048, 4096 6245 * 6246 * If possible sets maximum memory read request in bytes 6247 */ 6248 int pcie_set_readrq(struct pci_dev *dev, int rq) 6249 { 6250 u16 v; 6251 int ret; 6252 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6253 6254 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6255 return -EINVAL; 6256 6257 /* 6258 * If using the "performance" PCIe config, we clamp the read rq 6259 * size to the max packet size to keep the host bridge from 6260 * generating requests larger than we can cope with. 6261 */ 6262 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6263 int mps = pcie_get_mps(dev); 6264 6265 if (mps < rq) 6266 rq = mps; 6267 } 6268 6269 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 6270 6271 if (bridge->no_inc_mrrs) { 6272 int max_mrrs = pcie_get_readrq(dev); 6273 6274 if (rq > max_mrrs) { 6275 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6276 return -EINVAL; 6277 } 6278 } 6279 6280 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6281 PCI_EXP_DEVCTL_READRQ, v); 6282 6283 return pcibios_err_to_errno(ret); 6284 } 6285 EXPORT_SYMBOL(pcie_set_readrq); 6286 6287 /** 6288 * pcie_get_mps - get PCI Express maximum payload size 6289 * @dev: PCI device to query 6290 * 6291 * Returns maximum payload size in bytes 6292 */ 6293 int pcie_get_mps(struct pci_dev *dev) 6294 { 6295 u16 ctl; 6296 6297 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6298 6299 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 6300 } 6301 EXPORT_SYMBOL(pcie_get_mps); 6302 6303 /** 6304 * pcie_set_mps - set PCI Express maximum payload size 6305 * @dev: PCI device to query 6306 * @mps: maximum payload size in bytes 6307 * valid values are 128, 256, 512, 1024, 2048, 4096 6308 * 6309 * If possible sets maximum payload size 6310 */ 6311 int pcie_set_mps(struct pci_dev *dev, int mps) 6312 { 6313 u16 v; 6314 int ret; 6315 6316 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6317 return -EINVAL; 6318 6319 v = ffs(mps) - 8; 6320 if (v > dev->pcie_mpss) 6321 return -EINVAL; 6322 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 6323 6324 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6325 PCI_EXP_DEVCTL_PAYLOAD, v); 6326 6327 return pcibios_err_to_errno(ret); 6328 } 6329 EXPORT_SYMBOL(pcie_set_mps); 6330 6331 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 6332 { 6333 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 6334 } 6335 6336 int pcie_link_speed_mbps(struct pci_dev *pdev) 6337 { 6338 u16 lnksta; 6339 int err; 6340 6341 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 6342 if (err) 6343 return err; 6344 6345 switch (to_pcie_link_speed(lnksta)) { 6346 case PCIE_SPEED_2_5GT: 6347 return 2500; 6348 case PCIE_SPEED_5_0GT: 6349 return 5000; 6350 case PCIE_SPEED_8_0GT: 6351 return 8000; 6352 case PCIE_SPEED_16_0GT: 6353 return 16000; 6354 case PCIE_SPEED_32_0GT: 6355 return 32000; 6356 case PCIE_SPEED_64_0GT: 6357 return 64000; 6358 default: 6359 break; 6360 } 6361 6362 return -EINVAL; 6363 } 6364 EXPORT_SYMBOL(pcie_link_speed_mbps); 6365 6366 /** 6367 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6368 * device and its bandwidth limitation 6369 * @dev: PCI device to query 6370 * @limiting_dev: storage for device causing the bandwidth limitation 6371 * @speed: storage for speed of limiting device 6372 * @width: storage for width of limiting device 6373 * 6374 * Walk up the PCI device chain and find the point where the minimum 6375 * bandwidth is available. Return the bandwidth available there and (if 6376 * limiting_dev, speed, and width pointers are supplied) information about 6377 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6378 * raw bandwidth. 6379 */ 6380 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6381 enum pci_bus_speed *speed, 6382 enum pcie_link_width *width) 6383 { 6384 u16 lnksta; 6385 enum pci_bus_speed next_speed; 6386 enum pcie_link_width next_width; 6387 u32 bw, next_bw; 6388 6389 if (speed) 6390 *speed = PCI_SPEED_UNKNOWN; 6391 if (width) 6392 *width = PCIE_LNK_WIDTH_UNKNOWN; 6393 6394 bw = 0; 6395 6396 while (dev) { 6397 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6398 6399 next_speed = to_pcie_link_speed(lnksta); 6400 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6401 6402 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6403 6404 /* Check if current device limits the total bandwidth */ 6405 if (!bw || next_bw <= bw) { 6406 bw = next_bw; 6407 6408 if (limiting_dev) 6409 *limiting_dev = dev; 6410 if (speed) 6411 *speed = next_speed; 6412 if (width) 6413 *width = next_width; 6414 } 6415 6416 dev = pci_upstream_bridge(dev); 6417 } 6418 6419 return bw; 6420 } 6421 EXPORT_SYMBOL(pcie_bandwidth_available); 6422 6423 /** 6424 * pcie_get_speed_cap - query for the PCI device's link speed capability 6425 * @dev: PCI device to query 6426 * 6427 * Query the PCI device speed capability. Return the maximum link speed 6428 * supported by the device. 6429 */ 6430 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6431 { 6432 u32 lnkcap2, lnkcap; 6433 6434 /* 6435 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6436 * implementation note there recommends using the Supported Link 6437 * Speeds Vector in Link Capabilities 2 when supported. 6438 * 6439 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6440 * should use the Supported Link Speeds field in Link Capabilities, 6441 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6442 */ 6443 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6444 6445 /* PCIe r3.0-compliant */ 6446 if (lnkcap2) 6447 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6448 6449 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6450 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6451 return PCIE_SPEED_5_0GT; 6452 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6453 return PCIE_SPEED_2_5GT; 6454 6455 return PCI_SPEED_UNKNOWN; 6456 } 6457 EXPORT_SYMBOL(pcie_get_speed_cap); 6458 6459 /** 6460 * pcie_get_width_cap - query for the PCI device's link width capability 6461 * @dev: PCI device to query 6462 * 6463 * Query the PCI device width capability. Return the maximum link width 6464 * supported by the device. 6465 */ 6466 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6467 { 6468 u32 lnkcap; 6469 6470 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6471 if (lnkcap) 6472 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6473 6474 return PCIE_LNK_WIDTH_UNKNOWN; 6475 } 6476 EXPORT_SYMBOL(pcie_get_width_cap); 6477 6478 /** 6479 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6480 * @dev: PCI device 6481 * @speed: storage for link speed 6482 * @width: storage for link width 6483 * 6484 * Calculate a PCI device's link bandwidth by querying for its link speed 6485 * and width, multiplying them, and applying encoding overhead. The result 6486 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6487 */ 6488 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6489 enum pcie_link_width *width) 6490 { 6491 *speed = pcie_get_speed_cap(dev); 6492 *width = pcie_get_width_cap(dev); 6493 6494 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6495 return 0; 6496 6497 return *width * PCIE_SPEED2MBS_ENC(*speed); 6498 } 6499 6500 /** 6501 * __pcie_print_link_status - Report the PCI device's link speed and width 6502 * @dev: PCI device to query 6503 * @verbose: Print info even when enough bandwidth is available 6504 * 6505 * If the available bandwidth at the device is less than the device is 6506 * capable of, report the device's maximum possible bandwidth and the 6507 * upstream link that limits its performance. If @verbose, always print 6508 * the available bandwidth, even if the device isn't constrained. 6509 */ 6510 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6511 { 6512 enum pcie_link_width width, width_cap; 6513 enum pci_bus_speed speed, speed_cap; 6514 struct pci_dev *limiting_dev = NULL; 6515 u32 bw_avail, bw_cap; 6516 6517 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6518 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6519 6520 if (bw_avail >= bw_cap && verbose) 6521 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6522 bw_cap / 1000, bw_cap % 1000, 6523 pci_speed_string(speed_cap), width_cap); 6524 else if (bw_avail < bw_cap) 6525 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6526 bw_avail / 1000, bw_avail % 1000, 6527 pci_speed_string(speed), width, 6528 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6529 bw_cap / 1000, bw_cap % 1000, 6530 pci_speed_string(speed_cap), width_cap); 6531 } 6532 6533 /** 6534 * pcie_print_link_status - Report the PCI device's link speed and width 6535 * @dev: PCI device to query 6536 * 6537 * Report the available bandwidth at the device. 6538 */ 6539 void pcie_print_link_status(struct pci_dev *dev) 6540 { 6541 __pcie_print_link_status(dev, true); 6542 } 6543 EXPORT_SYMBOL(pcie_print_link_status); 6544 6545 /** 6546 * pci_select_bars - Make BAR mask from the type of resource 6547 * @dev: the PCI device for which BAR mask is made 6548 * @flags: resource type mask to be selected 6549 * 6550 * This helper routine makes bar mask from the type of resource. 6551 */ 6552 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6553 { 6554 int i, bars = 0; 6555 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6556 if (pci_resource_flags(dev, i) & flags) 6557 bars |= (1 << i); 6558 return bars; 6559 } 6560 EXPORT_SYMBOL(pci_select_bars); 6561 6562 /* Some architectures require additional programming to enable VGA */ 6563 static arch_set_vga_state_t arch_set_vga_state; 6564 6565 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6566 { 6567 arch_set_vga_state = func; /* NULL disables */ 6568 } 6569 6570 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6571 unsigned int command_bits, u32 flags) 6572 { 6573 if (arch_set_vga_state) 6574 return arch_set_vga_state(dev, decode, command_bits, 6575 flags); 6576 return 0; 6577 } 6578 6579 /** 6580 * pci_set_vga_state - set VGA decode state on device and parents if requested 6581 * @dev: the PCI device 6582 * @decode: true = enable decoding, false = disable decoding 6583 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6584 * @flags: traverse ancestors and change bridges 6585 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6586 */ 6587 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6588 unsigned int command_bits, u32 flags) 6589 { 6590 struct pci_bus *bus; 6591 struct pci_dev *bridge; 6592 u16 cmd; 6593 int rc; 6594 6595 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6596 6597 /* ARCH specific VGA enables */ 6598 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6599 if (rc) 6600 return rc; 6601 6602 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6603 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6604 if (decode) 6605 cmd |= command_bits; 6606 else 6607 cmd &= ~command_bits; 6608 pci_write_config_word(dev, PCI_COMMAND, cmd); 6609 } 6610 6611 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6612 return 0; 6613 6614 bus = dev->bus; 6615 while (bus) { 6616 bridge = bus->self; 6617 if (bridge) { 6618 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6619 &cmd); 6620 if (decode) 6621 cmd |= PCI_BRIDGE_CTL_VGA; 6622 else 6623 cmd &= ~PCI_BRIDGE_CTL_VGA; 6624 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6625 cmd); 6626 } 6627 bus = bus->parent; 6628 } 6629 return 0; 6630 } 6631 6632 #ifdef CONFIG_ACPI 6633 bool pci_pr3_present(struct pci_dev *pdev) 6634 { 6635 struct acpi_device *adev; 6636 6637 if (acpi_disabled) 6638 return false; 6639 6640 adev = ACPI_COMPANION(&pdev->dev); 6641 if (!adev) 6642 return false; 6643 6644 return adev->power.flags.power_resources && 6645 acpi_has_method(adev->handle, "_PR3"); 6646 } 6647 EXPORT_SYMBOL_GPL(pci_pr3_present); 6648 #endif 6649 6650 /** 6651 * pci_add_dma_alias - Add a DMA devfn alias for a device 6652 * @dev: the PCI device for which alias is added 6653 * @devfn_from: alias slot and function 6654 * @nr_devfns: number of subsequent devfns to alias 6655 * 6656 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6657 * which is used to program permissible bus-devfn source addresses for DMA 6658 * requests in an IOMMU. These aliases factor into IOMMU group creation 6659 * and are useful for devices generating DMA requests beyond or different 6660 * from their logical bus-devfn. Examples include device quirks where the 6661 * device simply uses the wrong devfn, as well as non-transparent bridges 6662 * where the alias may be a proxy for devices in another domain. 6663 * 6664 * IOMMU group creation is performed during device discovery or addition, 6665 * prior to any potential DMA mapping and therefore prior to driver probing 6666 * (especially for userspace assigned devices where IOMMU group definition 6667 * cannot be left as a userspace activity). DMA aliases should therefore 6668 * be configured via quirks, such as the PCI fixup header quirk. 6669 */ 6670 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6671 unsigned int nr_devfns) 6672 { 6673 int devfn_to; 6674 6675 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6676 devfn_to = devfn_from + nr_devfns - 1; 6677 6678 if (!dev->dma_alias_mask) 6679 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6680 if (!dev->dma_alias_mask) { 6681 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6682 return; 6683 } 6684 6685 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6686 6687 if (nr_devfns == 1) 6688 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6689 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6690 else if (nr_devfns > 1) 6691 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6692 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6693 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6694 } 6695 6696 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6697 { 6698 return (dev1->dma_alias_mask && 6699 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6700 (dev2->dma_alias_mask && 6701 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6702 pci_real_dma_dev(dev1) == dev2 || 6703 pci_real_dma_dev(dev2) == dev1; 6704 } 6705 6706 bool pci_device_is_present(struct pci_dev *pdev) 6707 { 6708 u32 v; 6709 6710 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6711 pdev = pci_physfn(pdev); 6712 if (pci_dev_is_disconnected(pdev)) 6713 return false; 6714 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6715 } 6716 EXPORT_SYMBOL_GPL(pci_device_is_present); 6717 6718 void pci_ignore_hotplug(struct pci_dev *dev) 6719 { 6720 struct pci_dev *bridge = dev->bus->self; 6721 6722 dev->ignore_hotplug = 1; 6723 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6724 if (bridge) 6725 bridge->ignore_hotplug = 1; 6726 } 6727 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6728 6729 /** 6730 * pci_real_dma_dev - Get PCI DMA device for PCI device 6731 * @dev: the PCI device that may have a PCI DMA alias 6732 * 6733 * Permits the platform to provide architecture-specific functionality to 6734 * devices needing to alias DMA to another PCI device on another PCI bus. If 6735 * the PCI device is on the same bus, it is recommended to use 6736 * pci_add_dma_alias(). This is the default implementation. Architecture 6737 * implementations can override this. 6738 */ 6739 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6740 { 6741 return dev; 6742 } 6743 6744 resource_size_t __weak pcibios_default_alignment(void) 6745 { 6746 return 0; 6747 } 6748 6749 /* 6750 * Arches that don't want to expose struct resource to userland as-is in 6751 * sysfs and /proc can implement their own pci_resource_to_user(). 6752 */ 6753 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6754 const struct resource *rsrc, 6755 resource_size_t *start, resource_size_t *end) 6756 { 6757 *start = rsrc->start; 6758 *end = rsrc->end; 6759 } 6760 6761 static char *resource_alignment_param; 6762 static DEFINE_SPINLOCK(resource_alignment_lock); 6763 6764 /** 6765 * pci_specified_resource_alignment - get resource alignment specified by user. 6766 * @dev: the PCI device to get 6767 * @resize: whether or not to change resources' size when reassigning alignment 6768 * 6769 * RETURNS: Resource alignment if it is specified. 6770 * Zero if it is not specified. 6771 */ 6772 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6773 bool *resize) 6774 { 6775 int align_order, count; 6776 resource_size_t align = pcibios_default_alignment(); 6777 const char *p; 6778 int ret; 6779 6780 spin_lock(&resource_alignment_lock); 6781 p = resource_alignment_param; 6782 if (!p || !*p) 6783 goto out; 6784 if (pci_has_flag(PCI_PROBE_ONLY)) { 6785 align = 0; 6786 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6787 goto out; 6788 } 6789 6790 while (*p) { 6791 count = 0; 6792 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6793 p[count] == '@') { 6794 p += count + 1; 6795 if (align_order > 63) { 6796 pr_err("PCI: Invalid requested alignment (order %d)\n", 6797 align_order); 6798 align_order = PAGE_SHIFT; 6799 } 6800 } else { 6801 align_order = PAGE_SHIFT; 6802 } 6803 6804 ret = pci_dev_str_match(dev, p, &p); 6805 if (ret == 1) { 6806 *resize = true; 6807 align = 1ULL << align_order; 6808 break; 6809 } else if (ret < 0) { 6810 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6811 p); 6812 break; 6813 } 6814 6815 if (*p != ';' && *p != ',') { 6816 /* End of param or invalid format */ 6817 break; 6818 } 6819 p++; 6820 } 6821 out: 6822 spin_unlock(&resource_alignment_lock); 6823 return align; 6824 } 6825 6826 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6827 resource_size_t align, bool resize) 6828 { 6829 struct resource *r = &dev->resource[bar]; 6830 const char *r_name = pci_resource_name(dev, bar); 6831 resource_size_t size; 6832 6833 if (!(r->flags & IORESOURCE_MEM)) 6834 return; 6835 6836 if (r->flags & IORESOURCE_PCI_FIXED) { 6837 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6838 r_name, r, (unsigned long long)align); 6839 return; 6840 } 6841 6842 size = resource_size(r); 6843 if (size >= align) 6844 return; 6845 6846 /* 6847 * Increase the alignment of the resource. There are two ways we 6848 * can do this: 6849 * 6850 * 1) Increase the size of the resource. BARs are aligned on their 6851 * size, so when we reallocate space for this resource, we'll 6852 * allocate it with the larger alignment. This also prevents 6853 * assignment of any other BARs inside the alignment region, so 6854 * if we're requesting page alignment, this means no other BARs 6855 * will share the page. 6856 * 6857 * The disadvantage is that this makes the resource larger than 6858 * the hardware BAR, which may break drivers that compute things 6859 * based on the resource size, e.g., to find registers at a 6860 * fixed offset before the end of the BAR. 6861 * 6862 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6863 * set r->start to the desired alignment. By itself this 6864 * doesn't prevent other BARs being put inside the alignment 6865 * region, but if we realign *every* resource of every device in 6866 * the system, none of them will share an alignment region. 6867 * 6868 * When the user has requested alignment for only some devices via 6869 * the "pci=resource_alignment" argument, "resize" is true and we 6870 * use the first method. Otherwise we assume we're aligning all 6871 * devices and we use the second. 6872 */ 6873 6874 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6875 r_name, r, (unsigned long long)align); 6876 6877 if (resize) { 6878 r->start = 0; 6879 r->end = align - 1; 6880 } else { 6881 r->flags &= ~IORESOURCE_SIZEALIGN; 6882 r->flags |= IORESOURCE_STARTALIGN; 6883 r->start = align; 6884 r->end = r->start + size - 1; 6885 } 6886 r->flags |= IORESOURCE_UNSET; 6887 } 6888 6889 /* 6890 * This function disables memory decoding and releases memory resources 6891 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6892 * It also rounds up size to specified alignment. 6893 * Later on, the kernel will assign page-aligned memory resource back 6894 * to the device. 6895 */ 6896 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6897 { 6898 int i; 6899 struct resource *r; 6900 resource_size_t align; 6901 u16 command; 6902 bool resize = false; 6903 6904 /* 6905 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6906 * 3.4.1.11. Their resources are allocated from the space 6907 * described by the VF BARx register in the PF's SR-IOV capability. 6908 * We can't influence their alignment here. 6909 */ 6910 if (dev->is_virtfn) 6911 return; 6912 6913 /* check if specified PCI is target device to reassign */ 6914 align = pci_specified_resource_alignment(dev, &resize); 6915 if (!align) 6916 return; 6917 6918 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6919 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6920 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6921 return; 6922 } 6923 6924 pci_read_config_word(dev, PCI_COMMAND, &command); 6925 command &= ~PCI_COMMAND_MEMORY; 6926 pci_write_config_word(dev, PCI_COMMAND, command); 6927 6928 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6929 pci_request_resource_alignment(dev, i, align, resize); 6930 6931 /* 6932 * Need to disable bridge's resource window, 6933 * to enable the kernel to reassign new resource 6934 * window later on. 6935 */ 6936 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6937 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6938 r = &dev->resource[i]; 6939 if (!(r->flags & IORESOURCE_MEM)) 6940 continue; 6941 r->flags |= IORESOURCE_UNSET; 6942 r->end = resource_size(r) - 1; 6943 r->start = 0; 6944 } 6945 pci_disable_bridge_window(dev); 6946 } 6947 } 6948 6949 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6950 { 6951 size_t count = 0; 6952 6953 spin_lock(&resource_alignment_lock); 6954 if (resource_alignment_param) 6955 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6956 spin_unlock(&resource_alignment_lock); 6957 6958 return count; 6959 } 6960 6961 static ssize_t resource_alignment_store(const struct bus_type *bus, 6962 const char *buf, size_t count) 6963 { 6964 char *param, *old, *end; 6965 6966 if (count >= (PAGE_SIZE - 1)) 6967 return -EINVAL; 6968 6969 param = kstrndup(buf, count, GFP_KERNEL); 6970 if (!param) 6971 return -ENOMEM; 6972 6973 end = strchr(param, '\n'); 6974 if (end) 6975 *end = '\0'; 6976 6977 spin_lock(&resource_alignment_lock); 6978 old = resource_alignment_param; 6979 if (strlen(param)) { 6980 resource_alignment_param = param; 6981 } else { 6982 kfree(param); 6983 resource_alignment_param = NULL; 6984 } 6985 spin_unlock(&resource_alignment_lock); 6986 6987 kfree(old); 6988 6989 return count; 6990 } 6991 6992 static BUS_ATTR_RW(resource_alignment); 6993 6994 static int __init pci_resource_alignment_sysfs_init(void) 6995 { 6996 return bus_create_file(&pci_bus_type, 6997 &bus_attr_resource_alignment); 6998 } 6999 late_initcall(pci_resource_alignment_sysfs_init); 7000 7001 static void pci_no_domains(void) 7002 { 7003 #ifdef CONFIG_PCI_DOMAINS 7004 pci_domains_supported = 0; 7005 #endif 7006 } 7007 7008 #ifdef CONFIG_PCI_DOMAINS_GENERIC 7009 static DEFINE_IDA(pci_domain_nr_static_ida); 7010 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 7011 7012 static void of_pci_reserve_static_domain_nr(void) 7013 { 7014 struct device_node *np; 7015 int domain_nr; 7016 7017 for_each_node_by_type(np, "pci") { 7018 domain_nr = of_get_pci_domain_nr(np); 7019 if (domain_nr < 0) 7020 continue; 7021 /* 7022 * Permanently allocate domain_nr in dynamic_ida 7023 * to prevent it from dynamic allocation. 7024 */ 7025 ida_alloc_range(&pci_domain_nr_dynamic_ida, 7026 domain_nr, domain_nr, GFP_KERNEL); 7027 } 7028 } 7029 7030 static int of_pci_bus_find_domain_nr(struct device *parent) 7031 { 7032 static bool static_domains_reserved = false; 7033 int domain_nr; 7034 7035 /* On the first call scan device tree for static allocations. */ 7036 if (!static_domains_reserved) { 7037 of_pci_reserve_static_domain_nr(); 7038 static_domains_reserved = true; 7039 } 7040 7041 if (parent) { 7042 /* 7043 * If domain is in DT, allocate it in static IDA. This 7044 * prevents duplicate static allocations in case of errors 7045 * in DT. 7046 */ 7047 domain_nr = of_get_pci_domain_nr(parent->of_node); 7048 if (domain_nr >= 0) 7049 return ida_alloc_range(&pci_domain_nr_static_ida, 7050 domain_nr, domain_nr, 7051 GFP_KERNEL); 7052 } 7053 7054 /* 7055 * If domain was not specified in DT, choose a free ID from dynamic 7056 * allocations. All domain numbers from DT are permanently in 7057 * dynamic allocations to prevent assigning them to other DT nodes 7058 * without static domain. 7059 */ 7060 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 7061 } 7062 7063 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 7064 { 7065 if (bus->domain_nr < 0) 7066 return; 7067 7068 /* Release domain from IDA where it was allocated. */ 7069 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 7070 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 7071 else 7072 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 7073 } 7074 7075 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 7076 { 7077 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 7078 acpi_pci_bus_find_domain_nr(bus); 7079 } 7080 7081 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 7082 { 7083 if (!acpi_disabled) 7084 return; 7085 of_pci_bus_release_domain_nr(bus, parent); 7086 } 7087 #endif 7088 7089 /** 7090 * pci_ext_cfg_avail - can we access extended PCI config space? 7091 * 7092 * Returns 1 if we can access PCI extended config space (offsets 7093 * greater than 0xff). This is the default implementation. Architecture 7094 * implementations can override this. 7095 */ 7096 int __weak pci_ext_cfg_avail(void) 7097 { 7098 return 1; 7099 } 7100 7101 void __weak pci_fixup_cardbus(struct pci_bus *bus) 7102 { 7103 } 7104 EXPORT_SYMBOL(pci_fixup_cardbus); 7105 7106 static int __init pci_setup(char *str) 7107 { 7108 while (str) { 7109 char *k = strchr(str, ','); 7110 if (k) 7111 *k++ = 0; 7112 if (*str && (str = pcibios_setup(str)) && *str) { 7113 if (!strcmp(str, "nomsi")) { 7114 pci_no_msi(); 7115 } else if (!strncmp(str, "noats", 5)) { 7116 pr_info("PCIe: ATS is disabled\n"); 7117 pcie_ats_disabled = true; 7118 } else if (!strcmp(str, "noaer")) { 7119 pci_no_aer(); 7120 } else if (!strcmp(str, "earlydump")) { 7121 pci_early_dump = true; 7122 } else if (!strncmp(str, "realloc=", 8)) { 7123 pci_realloc_get_opt(str + 8); 7124 } else if (!strncmp(str, "realloc", 7)) { 7125 pci_realloc_get_opt("on"); 7126 } else if (!strcmp(str, "nodomains")) { 7127 pci_no_domains(); 7128 } else if (!strncmp(str, "noari", 5)) { 7129 pcie_ari_disabled = true; 7130 } else if (!strncmp(str, "cbiosize=", 9)) { 7131 pci_cardbus_io_size = memparse(str + 9, &str); 7132 } else if (!strncmp(str, "cbmemsize=", 10)) { 7133 pci_cardbus_mem_size = memparse(str + 10, &str); 7134 } else if (!strncmp(str, "resource_alignment=", 19)) { 7135 resource_alignment_param = str + 19; 7136 } else if (!strncmp(str, "ecrc=", 5)) { 7137 pcie_ecrc_get_policy(str + 5); 7138 } else if (!strncmp(str, "hpiosize=", 9)) { 7139 pci_hotplug_io_size = memparse(str + 9, &str); 7140 } else if (!strncmp(str, "hpmmiosize=", 11)) { 7141 pci_hotplug_mmio_size = memparse(str + 11, &str); 7142 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 7143 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 7144 } else if (!strncmp(str, "hpmemsize=", 10)) { 7145 pci_hotplug_mmio_size = memparse(str + 10, &str); 7146 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 7147 } else if (!strncmp(str, "hpbussize=", 10)) { 7148 pci_hotplug_bus_size = 7149 simple_strtoul(str + 10, &str, 0); 7150 if (pci_hotplug_bus_size > 0xff) 7151 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 7152 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 7153 pcie_bus_config = PCIE_BUS_TUNE_OFF; 7154 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 7155 pcie_bus_config = PCIE_BUS_SAFE; 7156 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 7157 pcie_bus_config = PCIE_BUS_PERFORMANCE; 7158 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 7159 pcie_bus_config = PCIE_BUS_PEER2PEER; 7160 } else if (!strncmp(str, "pcie_scan_all", 13)) { 7161 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 7162 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 7163 disable_acs_redir_param = str + 18; 7164 } else { 7165 pr_err("PCI: Unknown option `%s'\n", str); 7166 } 7167 } 7168 str = k; 7169 } 7170 return 0; 7171 } 7172 early_param("pci", pci_setup); 7173 7174 /* 7175 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 7176 * in pci_setup(), above, to point to data in the __initdata section which 7177 * will be freed after the init sequence is complete. We can't allocate memory 7178 * in pci_setup() because some architectures do not have any memory allocation 7179 * service available during an early_param() call. So we allocate memory and 7180 * copy the variable here before the init section is freed. 7181 * 7182 */ 7183 static int __init pci_realloc_setup_params(void) 7184 { 7185 resource_alignment_param = kstrdup(resource_alignment_param, 7186 GFP_KERNEL); 7187 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 7188 7189 return 0; 7190 } 7191 pure_initcall(pci_realloc_setup_params); 7192