xref: /linux/drivers/pci/pci.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm/setup.h>
26 #include "pci.h"
27 
28 const char *pci_power_names[] = {
29 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 };
31 EXPORT_SYMBOL_GPL(pci_power_names);
32 
33 int isa_dma_bridge_buggy;
34 EXPORT_SYMBOL(isa_dma_bridge_buggy);
35 
36 int pci_pci_problems;
37 EXPORT_SYMBOL(pci_pci_problems);
38 
39 unsigned int pci_pm_d3_delay;
40 
41 static void pci_pme_list_scan(struct work_struct *work);
42 
43 static LIST_HEAD(pci_pme_list);
44 static DEFINE_MUTEX(pci_pme_list_mutex);
45 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
46 
47 struct pci_pme_device {
48 	struct list_head list;
49 	struct pci_dev *dev;
50 };
51 
52 #define PME_TIMEOUT 1000 /* How long between PME checks */
53 
54 static void pci_dev_d3_sleep(struct pci_dev *dev)
55 {
56 	unsigned int delay = dev->d3_delay;
57 
58 	if (delay < pci_pm_d3_delay)
59 		delay = pci_pm_d3_delay;
60 
61 	msleep(delay);
62 }
63 
64 #ifdef CONFIG_PCI_DOMAINS
65 int pci_domains_supported = 1;
66 #endif
67 
68 #define DEFAULT_CARDBUS_IO_SIZE		(256)
69 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
70 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
71 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
72 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
73 
74 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
75 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
76 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
77 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
78 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
79 
80 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
81 
82 /*
83  * The default CLS is used if arch didn't set CLS explicitly and not
84  * all pci devices agree on the same value.  Arch can override either
85  * the dfl or actual value as it sees fit.  Don't forget this is
86  * measured in 32-bit words, not bytes.
87  */
88 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
89 u8 pci_cache_line_size;
90 
91 /**
92  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
93  * @bus: pointer to PCI bus structure to search
94  *
95  * Given a PCI bus, returns the highest PCI bus number present in the set
96  * including the given PCI bus and its list of child PCI buses.
97  */
98 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
99 {
100 	struct list_head *tmp;
101 	unsigned char max, n;
102 
103 	max = bus->subordinate;
104 	list_for_each(tmp, &bus->children) {
105 		n = pci_bus_max_busnr(pci_bus_b(tmp));
106 		if(n > max)
107 			max = n;
108 	}
109 	return max;
110 }
111 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
112 
113 #ifdef CONFIG_HAS_IOMEM
114 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
115 {
116 	/*
117 	 * Make sure the BAR is actually a memory resource, not an IO resource
118 	 */
119 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
120 		WARN_ON(1);
121 		return NULL;
122 	}
123 	return ioremap_nocache(pci_resource_start(pdev, bar),
124 				     pci_resource_len(pdev, bar));
125 }
126 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
127 #endif
128 
129 #if 0
130 /**
131  * pci_max_busnr - returns maximum PCI bus number
132  *
133  * Returns the highest PCI bus number present in the system global list of
134  * PCI buses.
135  */
136 unsigned char __devinit
137 pci_max_busnr(void)
138 {
139 	struct pci_bus *bus = NULL;
140 	unsigned char max, n;
141 
142 	max = 0;
143 	while ((bus = pci_find_next_bus(bus)) != NULL) {
144 		n = pci_bus_max_busnr(bus);
145 		if(n > max)
146 			max = n;
147 	}
148 	return max;
149 }
150 
151 #endif  /*  0  */
152 
153 #define PCI_FIND_CAP_TTL	48
154 
155 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
156 				   u8 pos, int cap, int *ttl)
157 {
158 	u8 id;
159 
160 	while ((*ttl)--) {
161 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
162 		if (pos < 0x40)
163 			break;
164 		pos &= ~3;
165 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
166 					 &id);
167 		if (id == 0xff)
168 			break;
169 		if (id == cap)
170 			return pos;
171 		pos += PCI_CAP_LIST_NEXT;
172 	}
173 	return 0;
174 }
175 
176 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
177 			       u8 pos, int cap)
178 {
179 	int ttl = PCI_FIND_CAP_TTL;
180 
181 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
182 }
183 
184 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
185 {
186 	return __pci_find_next_cap(dev->bus, dev->devfn,
187 				   pos + PCI_CAP_LIST_NEXT, cap);
188 }
189 EXPORT_SYMBOL_GPL(pci_find_next_capability);
190 
191 static int __pci_bus_find_cap_start(struct pci_bus *bus,
192 				    unsigned int devfn, u8 hdr_type)
193 {
194 	u16 status;
195 
196 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
197 	if (!(status & PCI_STATUS_CAP_LIST))
198 		return 0;
199 
200 	switch (hdr_type) {
201 	case PCI_HEADER_TYPE_NORMAL:
202 	case PCI_HEADER_TYPE_BRIDGE:
203 		return PCI_CAPABILITY_LIST;
204 	case PCI_HEADER_TYPE_CARDBUS:
205 		return PCI_CB_CAPABILITY_LIST;
206 	default:
207 		return 0;
208 	}
209 
210 	return 0;
211 }
212 
213 /**
214  * pci_find_capability - query for devices' capabilities
215  * @dev: PCI device to query
216  * @cap: capability code
217  *
218  * Tell if a device supports a given PCI capability.
219  * Returns the address of the requested capability structure within the
220  * device's PCI configuration space or 0 in case the device does not
221  * support it.  Possible values for @cap:
222  *
223  *  %PCI_CAP_ID_PM           Power Management
224  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
225  *  %PCI_CAP_ID_VPD          Vital Product Data
226  *  %PCI_CAP_ID_SLOTID       Slot Identification
227  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
228  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
229  *  %PCI_CAP_ID_PCIX         PCI-X
230  *  %PCI_CAP_ID_EXP          PCI Express
231  */
232 int pci_find_capability(struct pci_dev *dev, int cap)
233 {
234 	int pos;
235 
236 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
237 	if (pos)
238 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
239 
240 	return pos;
241 }
242 
243 /**
244  * pci_bus_find_capability - query for devices' capabilities
245  * @bus:   the PCI bus to query
246  * @devfn: PCI device to query
247  * @cap:   capability code
248  *
249  * Like pci_find_capability() but works for pci devices that do not have a
250  * pci_dev structure set up yet.
251  *
252  * Returns the address of the requested capability structure within the
253  * device's PCI configuration space or 0 in case the device does not
254  * support it.
255  */
256 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
257 {
258 	int pos;
259 	u8 hdr_type;
260 
261 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
262 
263 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
264 	if (pos)
265 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
266 
267 	return pos;
268 }
269 
270 /**
271  * pci_find_ext_capability - Find an extended capability
272  * @dev: PCI device to query
273  * @cap: capability code
274  *
275  * Returns the address of the requested extended capability structure
276  * within the device's PCI configuration space or 0 if the device does
277  * not support it.  Possible values for @cap:
278  *
279  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
280  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
281  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
282  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
283  */
284 int pci_find_ext_capability(struct pci_dev *dev, int cap)
285 {
286 	u32 header;
287 	int ttl;
288 	int pos = PCI_CFG_SPACE_SIZE;
289 
290 	/* minimum 8 bytes per capability */
291 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
292 
293 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
294 		return 0;
295 
296 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
297 		return 0;
298 
299 	/*
300 	 * If we have no capabilities, this is indicated by cap ID,
301 	 * cap version and next pointer all being 0.
302 	 */
303 	if (header == 0)
304 		return 0;
305 
306 	while (ttl-- > 0) {
307 		if (PCI_EXT_CAP_ID(header) == cap)
308 			return pos;
309 
310 		pos = PCI_EXT_CAP_NEXT(header);
311 		if (pos < PCI_CFG_SPACE_SIZE)
312 			break;
313 
314 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
315 			break;
316 	}
317 
318 	return 0;
319 }
320 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
321 
322 /**
323  * pci_bus_find_ext_capability - find an extended capability
324  * @bus:   the PCI bus to query
325  * @devfn: PCI device to query
326  * @cap:   capability code
327  *
328  * Like pci_find_ext_capability() but works for pci devices that do not have a
329  * pci_dev structure set up yet.
330  *
331  * Returns the address of the requested capability structure within the
332  * device's PCI configuration space or 0 in case the device does not
333  * support it.
334  */
335 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
336 				int cap)
337 {
338 	u32 header;
339 	int ttl;
340 	int pos = PCI_CFG_SPACE_SIZE;
341 
342 	/* minimum 8 bytes per capability */
343 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
344 
345 	if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
346 		return 0;
347 	if (header == 0xffffffff || header == 0)
348 		return 0;
349 
350 	while (ttl-- > 0) {
351 		if (PCI_EXT_CAP_ID(header) == cap)
352 			return pos;
353 
354 		pos = PCI_EXT_CAP_NEXT(header);
355 		if (pos < PCI_CFG_SPACE_SIZE)
356 			break;
357 
358 		if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
359 			break;
360 	}
361 
362 	return 0;
363 }
364 
365 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
366 {
367 	int rc, ttl = PCI_FIND_CAP_TTL;
368 	u8 cap, mask;
369 
370 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
371 		mask = HT_3BIT_CAP_MASK;
372 	else
373 		mask = HT_5BIT_CAP_MASK;
374 
375 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
376 				      PCI_CAP_ID_HT, &ttl);
377 	while (pos) {
378 		rc = pci_read_config_byte(dev, pos + 3, &cap);
379 		if (rc != PCIBIOS_SUCCESSFUL)
380 			return 0;
381 
382 		if ((cap & mask) == ht_cap)
383 			return pos;
384 
385 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
386 					      pos + PCI_CAP_LIST_NEXT,
387 					      PCI_CAP_ID_HT, &ttl);
388 	}
389 
390 	return 0;
391 }
392 /**
393  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
394  * @dev: PCI device to query
395  * @pos: Position from which to continue searching
396  * @ht_cap: Hypertransport capability code
397  *
398  * To be used in conjunction with pci_find_ht_capability() to search for
399  * all capabilities matching @ht_cap. @pos should always be a value returned
400  * from pci_find_ht_capability().
401  *
402  * NB. To be 100% safe against broken PCI devices, the caller should take
403  * steps to avoid an infinite loop.
404  */
405 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
406 {
407 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
408 }
409 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
410 
411 /**
412  * pci_find_ht_capability - query a device's Hypertransport capabilities
413  * @dev: PCI device to query
414  * @ht_cap: Hypertransport capability code
415  *
416  * Tell if a device supports a given Hypertransport capability.
417  * Returns an address within the device's PCI configuration space
418  * or 0 in case the device does not support the request capability.
419  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
420  * which has a Hypertransport capability matching @ht_cap.
421  */
422 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
423 {
424 	int pos;
425 
426 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
427 	if (pos)
428 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
429 
430 	return pos;
431 }
432 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
433 
434 /**
435  * pci_find_parent_resource - return resource region of parent bus of given region
436  * @dev: PCI device structure contains resources to be searched
437  * @res: child resource record for which parent is sought
438  *
439  *  For given resource region of given device, return the resource
440  *  region of parent bus the given region is contained in or where
441  *  it should be allocated from.
442  */
443 struct resource *
444 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
445 {
446 	const struct pci_bus *bus = dev->bus;
447 	int i;
448 	struct resource *best = NULL, *r;
449 
450 	pci_bus_for_each_resource(bus, r, i) {
451 		if (!r)
452 			continue;
453 		if (res->start && !(res->start >= r->start && res->end <= r->end))
454 			continue;	/* Not contained */
455 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
456 			continue;	/* Wrong type */
457 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
458 			return r;	/* Exact match */
459 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
460 		if (r->flags & IORESOURCE_PREFETCH)
461 			continue;
462 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
463 		if (!best)
464 			best = r;
465 	}
466 	return best;
467 }
468 
469 /**
470  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
471  * @dev: PCI device to have its BARs restored
472  *
473  * Restore the BAR values for a given device, so as to make it
474  * accessible by its driver.
475  */
476 static void
477 pci_restore_bars(struct pci_dev *dev)
478 {
479 	int i;
480 
481 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
482 		pci_update_resource(dev, i);
483 }
484 
485 static struct pci_platform_pm_ops *pci_platform_pm;
486 
487 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
488 {
489 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
490 	    || !ops->sleep_wake || !ops->can_wakeup)
491 		return -EINVAL;
492 	pci_platform_pm = ops;
493 	return 0;
494 }
495 
496 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
497 {
498 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
499 }
500 
501 static inline int platform_pci_set_power_state(struct pci_dev *dev,
502                                                 pci_power_t t)
503 {
504 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
505 }
506 
507 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
508 {
509 	return pci_platform_pm ?
510 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
511 }
512 
513 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
514 {
515 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
516 }
517 
518 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
519 {
520 	return pci_platform_pm ?
521 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
522 }
523 
524 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
525 {
526 	return pci_platform_pm ?
527 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
528 }
529 
530 /**
531  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
532  *                           given PCI device
533  * @dev: PCI device to handle.
534  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
535  *
536  * RETURN VALUE:
537  * -EINVAL if the requested state is invalid.
538  * -EIO if device does not support PCI PM or its PM capabilities register has a
539  * wrong version, or device doesn't support the requested state.
540  * 0 if device already is in the requested state.
541  * 0 if device's power state has been successfully changed.
542  */
543 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
544 {
545 	u16 pmcsr;
546 	bool need_restore = false;
547 
548 	/* Check if we're already there */
549 	if (dev->current_state == state)
550 		return 0;
551 
552 	if (!dev->pm_cap)
553 		return -EIO;
554 
555 	if (state < PCI_D0 || state > PCI_D3hot)
556 		return -EINVAL;
557 
558 	/* Validate current state:
559 	 * Can enter D0 from any state, but if we can only go deeper
560 	 * to sleep if we're already in a low power state
561 	 */
562 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
563 	    && dev->current_state > state) {
564 		dev_err(&dev->dev, "invalid power transition "
565 			"(from state %d to %d)\n", dev->current_state, state);
566 		return -EINVAL;
567 	}
568 
569 	/* check if this device supports the desired state */
570 	if ((state == PCI_D1 && !dev->d1_support)
571 	   || (state == PCI_D2 && !dev->d2_support))
572 		return -EIO;
573 
574 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
575 
576 	/* If we're (effectively) in D3, force entire word to 0.
577 	 * This doesn't affect PME_Status, disables PME_En, and
578 	 * sets PowerState to 0.
579 	 */
580 	switch (dev->current_state) {
581 	case PCI_D0:
582 	case PCI_D1:
583 	case PCI_D2:
584 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
585 		pmcsr |= state;
586 		break;
587 	case PCI_D3hot:
588 	case PCI_D3cold:
589 	case PCI_UNKNOWN: /* Boot-up */
590 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
591 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
592 			need_restore = true;
593 		/* Fall-through: force to D0 */
594 	default:
595 		pmcsr = 0;
596 		break;
597 	}
598 
599 	/* enter specified state */
600 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
601 
602 	/* Mandatory power management transition delays */
603 	/* see PCI PM 1.1 5.6.1 table 18 */
604 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
605 		pci_dev_d3_sleep(dev);
606 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
607 		udelay(PCI_PM_D2_DELAY);
608 
609 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
610 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
611 	if (dev->current_state != state && printk_ratelimit())
612 		dev_info(&dev->dev, "Refused to change power state, "
613 			"currently in D%d\n", dev->current_state);
614 
615 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
616 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
617 	 * from D3hot to D0 _may_ perform an internal reset, thereby
618 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
619 	 * For example, at least some versions of the 3c905B and the
620 	 * 3c556B exhibit this behaviour.
621 	 *
622 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
623 	 * devices in a D3hot state at boot.  Consequently, we need to
624 	 * restore at least the BARs so that the device will be
625 	 * accessible to its driver.
626 	 */
627 	if (need_restore)
628 		pci_restore_bars(dev);
629 
630 	if (dev->bus->self)
631 		pcie_aspm_pm_state_change(dev->bus->self);
632 
633 	return 0;
634 }
635 
636 /**
637  * pci_update_current_state - Read PCI power state of given device from its
638  *                            PCI PM registers and cache it
639  * @dev: PCI device to handle.
640  * @state: State to cache in case the device doesn't have the PM capability
641  */
642 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
643 {
644 	if (dev->pm_cap) {
645 		u16 pmcsr;
646 
647 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
648 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
649 	} else {
650 		dev->current_state = state;
651 	}
652 }
653 
654 /**
655  * pci_platform_power_transition - Use platform to change device power state
656  * @dev: PCI device to handle.
657  * @state: State to put the device into.
658  */
659 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
660 {
661 	int error;
662 
663 	if (platform_pci_power_manageable(dev)) {
664 		error = platform_pci_set_power_state(dev, state);
665 		if (!error)
666 			pci_update_current_state(dev, state);
667 	} else {
668 		error = -ENODEV;
669 		/* Fall back to PCI_D0 if native PM is not supported */
670 		if (!dev->pm_cap)
671 			dev->current_state = PCI_D0;
672 	}
673 
674 	return error;
675 }
676 
677 /**
678  * __pci_start_power_transition - Start power transition of a PCI device
679  * @dev: PCI device to handle.
680  * @state: State to put the device into.
681  */
682 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
683 {
684 	if (state == PCI_D0)
685 		pci_platform_power_transition(dev, PCI_D0);
686 }
687 
688 /**
689  * __pci_complete_power_transition - Complete power transition of a PCI device
690  * @dev: PCI device to handle.
691  * @state: State to put the device into.
692  *
693  * This function should not be called directly by device drivers.
694  */
695 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
696 {
697 	return state >= PCI_D0 ?
698 			pci_platform_power_transition(dev, state) : -EINVAL;
699 }
700 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
701 
702 /**
703  * pci_set_power_state - Set the power state of a PCI device
704  * @dev: PCI device to handle.
705  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
706  *
707  * Transition a device to a new power state, using the platform firmware and/or
708  * the device's PCI PM registers.
709  *
710  * RETURN VALUE:
711  * -EINVAL if the requested state is invalid.
712  * -EIO if device does not support PCI PM or its PM capabilities register has a
713  * wrong version, or device doesn't support the requested state.
714  * 0 if device already is in the requested state.
715  * 0 if device's power state has been successfully changed.
716  */
717 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
718 {
719 	int error;
720 
721 	/* bound the state we're entering */
722 	if (state > PCI_D3hot)
723 		state = PCI_D3hot;
724 	else if (state < PCI_D0)
725 		state = PCI_D0;
726 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
727 		/*
728 		 * If the device or the parent bridge do not support PCI PM,
729 		 * ignore the request if we're doing anything other than putting
730 		 * it into D0 (which would only happen on boot).
731 		 */
732 		return 0;
733 
734 	__pci_start_power_transition(dev, state);
735 
736 	/* This device is quirked not to be put into D3, so
737 	   don't put it in D3 */
738 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
739 		return 0;
740 
741 	error = pci_raw_set_power_state(dev, state);
742 
743 	if (!__pci_complete_power_transition(dev, state))
744 		error = 0;
745 	/*
746 	 * When aspm_policy is "powersave" this call ensures
747 	 * that ASPM is configured.
748 	 */
749 	if (!error && dev->bus->self)
750 		pcie_aspm_powersave_config_link(dev->bus->self);
751 
752 	return error;
753 }
754 
755 /**
756  * pci_choose_state - Choose the power state of a PCI device
757  * @dev: PCI device to be suspended
758  * @state: target sleep state for the whole system. This is the value
759  *	that is passed to suspend() function.
760  *
761  * Returns PCI power state suitable for given device and given system
762  * message.
763  */
764 
765 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
766 {
767 	pci_power_t ret;
768 
769 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
770 		return PCI_D0;
771 
772 	ret = platform_pci_choose_state(dev);
773 	if (ret != PCI_POWER_ERROR)
774 		return ret;
775 
776 	switch (state.event) {
777 	case PM_EVENT_ON:
778 		return PCI_D0;
779 	case PM_EVENT_FREEZE:
780 	case PM_EVENT_PRETHAW:
781 		/* REVISIT both freeze and pre-thaw "should" use D0 */
782 	case PM_EVENT_SUSPEND:
783 	case PM_EVENT_HIBERNATE:
784 		return PCI_D3hot;
785 	default:
786 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
787 			 state.event);
788 		BUG();
789 	}
790 	return PCI_D0;
791 }
792 
793 EXPORT_SYMBOL(pci_choose_state);
794 
795 #define PCI_EXP_SAVE_REGS	7
796 
797 #define pcie_cap_has_devctl(type, flags)	1
798 #define pcie_cap_has_lnkctl(type, flags)		\
799 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
800 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
801 		  type == PCI_EXP_TYPE_ENDPOINT ||	\
802 		  type == PCI_EXP_TYPE_LEG_END))
803 #define pcie_cap_has_sltctl(type, flags)		\
804 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
805 		 ((type == PCI_EXP_TYPE_ROOT_PORT) ||	\
806 		  (type == PCI_EXP_TYPE_DOWNSTREAM &&	\
807 		   (flags & PCI_EXP_FLAGS_SLOT))))
808 #define pcie_cap_has_rtctl(type, flags)			\
809 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
810 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
811 		  type == PCI_EXP_TYPE_RC_EC))
812 #define pcie_cap_has_devctl2(type, flags)		\
813 		((flags & PCI_EXP_FLAGS_VERS) > 1)
814 #define pcie_cap_has_lnkctl2(type, flags)		\
815 		((flags & PCI_EXP_FLAGS_VERS) > 1)
816 #define pcie_cap_has_sltctl2(type, flags)		\
817 		((flags & PCI_EXP_FLAGS_VERS) > 1)
818 
819 static int pci_save_pcie_state(struct pci_dev *dev)
820 {
821 	int pos, i = 0;
822 	struct pci_cap_saved_state *save_state;
823 	u16 *cap;
824 	u16 flags;
825 
826 	pos = pci_pcie_cap(dev);
827 	if (!pos)
828 		return 0;
829 
830 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
831 	if (!save_state) {
832 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
833 		return -ENOMEM;
834 	}
835 	cap = (u16 *)&save_state->cap.data[0];
836 
837 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
838 
839 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
840 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
841 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
842 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
843 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
844 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
845 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
846 		pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
847 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
848 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
849 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
850 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
851 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
852 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
853 
854 	return 0;
855 }
856 
857 static void pci_restore_pcie_state(struct pci_dev *dev)
858 {
859 	int i = 0, pos;
860 	struct pci_cap_saved_state *save_state;
861 	u16 *cap;
862 	u16 flags;
863 
864 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
865 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
866 	if (!save_state || pos <= 0)
867 		return;
868 	cap = (u16 *)&save_state->cap.data[0];
869 
870 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
871 
872 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
873 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
874 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
875 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
876 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
877 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
878 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
879 		pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
880 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
881 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
882 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
883 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
884 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
885 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
886 }
887 
888 
889 static int pci_save_pcix_state(struct pci_dev *dev)
890 {
891 	int pos;
892 	struct pci_cap_saved_state *save_state;
893 
894 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
895 	if (pos <= 0)
896 		return 0;
897 
898 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
899 	if (!save_state) {
900 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
901 		return -ENOMEM;
902 	}
903 
904 	pci_read_config_word(dev, pos + PCI_X_CMD,
905 			     (u16 *)save_state->cap.data);
906 
907 	return 0;
908 }
909 
910 static void pci_restore_pcix_state(struct pci_dev *dev)
911 {
912 	int i = 0, pos;
913 	struct pci_cap_saved_state *save_state;
914 	u16 *cap;
915 
916 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
917 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
918 	if (!save_state || pos <= 0)
919 		return;
920 	cap = (u16 *)&save_state->cap.data[0];
921 
922 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
923 }
924 
925 
926 /**
927  * pci_save_state - save the PCI configuration space of a device before suspending
928  * @dev: - PCI device that we're dealing with
929  */
930 int
931 pci_save_state(struct pci_dev *dev)
932 {
933 	int i;
934 	/* XXX: 100% dword access ok here? */
935 	for (i = 0; i < 16; i++)
936 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
937 	dev->state_saved = true;
938 	if ((i = pci_save_pcie_state(dev)) != 0)
939 		return i;
940 	if ((i = pci_save_pcix_state(dev)) != 0)
941 		return i;
942 	return 0;
943 }
944 
945 /**
946  * pci_restore_state - Restore the saved state of a PCI device
947  * @dev: - PCI device that we're dealing with
948  */
949 void pci_restore_state(struct pci_dev *dev)
950 {
951 	int i;
952 	u32 val;
953 
954 	if (!dev->state_saved)
955 		return;
956 
957 	/* PCI Express register must be restored first */
958 	pci_restore_pcie_state(dev);
959 
960 	/*
961 	 * The Base Address register should be programmed before the command
962 	 * register(s)
963 	 */
964 	for (i = 15; i >= 0; i--) {
965 		pci_read_config_dword(dev, i * 4, &val);
966 		if (val != dev->saved_config_space[i]) {
967 			dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
968 				"space at offset %#x (was %#x, writing %#x)\n",
969 				i, val, (int)dev->saved_config_space[i]);
970 			pci_write_config_dword(dev,i * 4,
971 				dev->saved_config_space[i]);
972 		}
973 	}
974 	pci_restore_pcix_state(dev);
975 	pci_restore_msi_state(dev);
976 	pci_restore_iov_state(dev);
977 
978 	dev->state_saved = false;
979 }
980 
981 struct pci_saved_state {
982 	u32 config_space[16];
983 	struct pci_cap_saved_data cap[0];
984 };
985 
986 /**
987  * pci_store_saved_state - Allocate and return an opaque struct containing
988  *			   the device saved state.
989  * @dev: PCI device that we're dealing with
990  *
991  * Rerturn NULL if no state or error.
992  */
993 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
994 {
995 	struct pci_saved_state *state;
996 	struct pci_cap_saved_state *tmp;
997 	struct pci_cap_saved_data *cap;
998 	struct hlist_node *pos;
999 	size_t size;
1000 
1001 	if (!dev->state_saved)
1002 		return NULL;
1003 
1004 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1005 
1006 	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1007 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1008 
1009 	state = kzalloc(size, GFP_KERNEL);
1010 	if (!state)
1011 		return NULL;
1012 
1013 	memcpy(state->config_space, dev->saved_config_space,
1014 	       sizeof(state->config_space));
1015 
1016 	cap = state->cap;
1017 	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1018 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1019 		memcpy(cap, &tmp->cap, len);
1020 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1021 	}
1022 	/* Empty cap_save terminates list */
1023 
1024 	return state;
1025 }
1026 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1027 
1028 /**
1029  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1030  * @dev: PCI device that we're dealing with
1031  * @state: Saved state returned from pci_store_saved_state()
1032  */
1033 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1034 {
1035 	struct pci_cap_saved_data *cap;
1036 
1037 	dev->state_saved = false;
1038 
1039 	if (!state)
1040 		return 0;
1041 
1042 	memcpy(dev->saved_config_space, state->config_space,
1043 	       sizeof(state->config_space));
1044 
1045 	cap = state->cap;
1046 	while (cap->size) {
1047 		struct pci_cap_saved_state *tmp;
1048 
1049 		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1050 		if (!tmp || tmp->cap.size != cap->size)
1051 			return -EINVAL;
1052 
1053 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1054 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1055 		       sizeof(struct pci_cap_saved_data) + cap->size);
1056 	}
1057 
1058 	dev->state_saved = true;
1059 	return 0;
1060 }
1061 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1062 
1063 /**
1064  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1065  *				   and free the memory allocated for it.
1066  * @dev: PCI device that we're dealing with
1067  * @state: Pointer to saved state returned from pci_store_saved_state()
1068  */
1069 int pci_load_and_free_saved_state(struct pci_dev *dev,
1070 				  struct pci_saved_state **state)
1071 {
1072 	int ret = pci_load_saved_state(dev, *state);
1073 	kfree(*state);
1074 	*state = NULL;
1075 	return ret;
1076 }
1077 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1078 
1079 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1080 {
1081 	int err;
1082 
1083 	err = pci_set_power_state(dev, PCI_D0);
1084 	if (err < 0 && err != -EIO)
1085 		return err;
1086 	err = pcibios_enable_device(dev, bars);
1087 	if (err < 0)
1088 		return err;
1089 	pci_fixup_device(pci_fixup_enable, dev);
1090 
1091 	return 0;
1092 }
1093 
1094 /**
1095  * pci_reenable_device - Resume abandoned device
1096  * @dev: PCI device to be resumed
1097  *
1098  *  Note this function is a backend of pci_default_resume and is not supposed
1099  *  to be called by normal code, write proper resume handler and use it instead.
1100  */
1101 int pci_reenable_device(struct pci_dev *dev)
1102 {
1103 	if (pci_is_enabled(dev))
1104 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1105 	return 0;
1106 }
1107 
1108 static int __pci_enable_device_flags(struct pci_dev *dev,
1109 				     resource_size_t flags)
1110 {
1111 	int err;
1112 	int i, bars = 0;
1113 
1114 	/*
1115 	 * Power state could be unknown at this point, either due to a fresh
1116 	 * boot or a device removal call.  So get the current power state
1117 	 * so that things like MSI message writing will behave as expected
1118 	 * (e.g. if the device really is in D0 at enable time).
1119 	 */
1120 	if (dev->pm_cap) {
1121 		u16 pmcsr;
1122 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1123 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1124 	}
1125 
1126 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
1127 		return 0;		/* already enabled */
1128 
1129 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1130 		if (dev->resource[i].flags & flags)
1131 			bars |= (1 << i);
1132 
1133 	err = do_pci_enable_device(dev, bars);
1134 	if (err < 0)
1135 		atomic_dec(&dev->enable_cnt);
1136 	return err;
1137 }
1138 
1139 /**
1140  * pci_enable_device_io - Initialize a device for use with IO space
1141  * @dev: PCI device to be initialized
1142  *
1143  *  Initialize device before it's used by a driver. Ask low-level code
1144  *  to enable I/O resources. Wake up the device if it was suspended.
1145  *  Beware, this function can fail.
1146  */
1147 int pci_enable_device_io(struct pci_dev *dev)
1148 {
1149 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
1150 }
1151 
1152 /**
1153  * pci_enable_device_mem - Initialize a device for use with Memory space
1154  * @dev: PCI device to be initialized
1155  *
1156  *  Initialize device before it's used by a driver. Ask low-level code
1157  *  to enable Memory resources. Wake up the device if it was suspended.
1158  *  Beware, this function can fail.
1159  */
1160 int pci_enable_device_mem(struct pci_dev *dev)
1161 {
1162 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1163 }
1164 
1165 /**
1166  * pci_enable_device - Initialize device before it's used by a driver.
1167  * @dev: PCI device to be initialized
1168  *
1169  *  Initialize device before it's used by a driver. Ask low-level code
1170  *  to enable I/O and memory. Wake up the device if it was suspended.
1171  *  Beware, this function can fail.
1172  *
1173  *  Note we don't actually enable the device many times if we call
1174  *  this function repeatedly (we just increment the count).
1175  */
1176 int pci_enable_device(struct pci_dev *dev)
1177 {
1178 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1179 }
1180 
1181 /*
1182  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1183  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1184  * there's no need to track it separately.  pci_devres is initialized
1185  * when a device is enabled using managed PCI device enable interface.
1186  */
1187 struct pci_devres {
1188 	unsigned int enabled:1;
1189 	unsigned int pinned:1;
1190 	unsigned int orig_intx:1;
1191 	unsigned int restore_intx:1;
1192 	u32 region_mask;
1193 };
1194 
1195 static void pcim_release(struct device *gendev, void *res)
1196 {
1197 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1198 	struct pci_devres *this = res;
1199 	int i;
1200 
1201 	if (dev->msi_enabled)
1202 		pci_disable_msi(dev);
1203 	if (dev->msix_enabled)
1204 		pci_disable_msix(dev);
1205 
1206 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1207 		if (this->region_mask & (1 << i))
1208 			pci_release_region(dev, i);
1209 
1210 	if (this->restore_intx)
1211 		pci_intx(dev, this->orig_intx);
1212 
1213 	if (this->enabled && !this->pinned)
1214 		pci_disable_device(dev);
1215 }
1216 
1217 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1218 {
1219 	struct pci_devres *dr, *new_dr;
1220 
1221 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1222 	if (dr)
1223 		return dr;
1224 
1225 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1226 	if (!new_dr)
1227 		return NULL;
1228 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1229 }
1230 
1231 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1232 {
1233 	if (pci_is_managed(pdev))
1234 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1235 	return NULL;
1236 }
1237 
1238 /**
1239  * pcim_enable_device - Managed pci_enable_device()
1240  * @pdev: PCI device to be initialized
1241  *
1242  * Managed pci_enable_device().
1243  */
1244 int pcim_enable_device(struct pci_dev *pdev)
1245 {
1246 	struct pci_devres *dr;
1247 	int rc;
1248 
1249 	dr = get_pci_dr(pdev);
1250 	if (unlikely(!dr))
1251 		return -ENOMEM;
1252 	if (dr->enabled)
1253 		return 0;
1254 
1255 	rc = pci_enable_device(pdev);
1256 	if (!rc) {
1257 		pdev->is_managed = 1;
1258 		dr->enabled = 1;
1259 	}
1260 	return rc;
1261 }
1262 
1263 /**
1264  * pcim_pin_device - Pin managed PCI device
1265  * @pdev: PCI device to pin
1266  *
1267  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1268  * driver detach.  @pdev must have been enabled with
1269  * pcim_enable_device().
1270  */
1271 void pcim_pin_device(struct pci_dev *pdev)
1272 {
1273 	struct pci_devres *dr;
1274 
1275 	dr = find_pci_dr(pdev);
1276 	WARN_ON(!dr || !dr->enabled);
1277 	if (dr)
1278 		dr->pinned = 1;
1279 }
1280 
1281 /**
1282  * pcibios_disable_device - disable arch specific PCI resources for device dev
1283  * @dev: the PCI device to disable
1284  *
1285  * Disables architecture specific PCI resources for the device. This
1286  * is the default implementation. Architecture implementations can
1287  * override this.
1288  */
1289 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1290 
1291 static void do_pci_disable_device(struct pci_dev *dev)
1292 {
1293 	u16 pci_command;
1294 
1295 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1296 	if (pci_command & PCI_COMMAND_MASTER) {
1297 		pci_command &= ~PCI_COMMAND_MASTER;
1298 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1299 	}
1300 
1301 	pcibios_disable_device(dev);
1302 }
1303 
1304 /**
1305  * pci_disable_enabled_device - Disable device without updating enable_cnt
1306  * @dev: PCI device to disable
1307  *
1308  * NOTE: This function is a backend of PCI power management routines and is
1309  * not supposed to be called drivers.
1310  */
1311 void pci_disable_enabled_device(struct pci_dev *dev)
1312 {
1313 	if (pci_is_enabled(dev))
1314 		do_pci_disable_device(dev);
1315 }
1316 
1317 /**
1318  * pci_disable_device - Disable PCI device after use
1319  * @dev: PCI device to be disabled
1320  *
1321  * Signal to the system that the PCI device is not in use by the system
1322  * anymore.  This only involves disabling PCI bus-mastering, if active.
1323  *
1324  * Note we don't actually disable the device until all callers of
1325  * pci_enable_device() have called pci_disable_device().
1326  */
1327 void
1328 pci_disable_device(struct pci_dev *dev)
1329 {
1330 	struct pci_devres *dr;
1331 
1332 	dr = find_pci_dr(dev);
1333 	if (dr)
1334 		dr->enabled = 0;
1335 
1336 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1337 		return;
1338 
1339 	do_pci_disable_device(dev);
1340 
1341 	dev->is_busmaster = 0;
1342 }
1343 
1344 /**
1345  * pcibios_set_pcie_reset_state - set reset state for device dev
1346  * @dev: the PCIe device reset
1347  * @state: Reset state to enter into
1348  *
1349  *
1350  * Sets the PCIe reset state for the device. This is the default
1351  * implementation. Architecture implementations can override this.
1352  */
1353 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1354 							enum pcie_reset_state state)
1355 {
1356 	return -EINVAL;
1357 }
1358 
1359 /**
1360  * pci_set_pcie_reset_state - set reset state for device dev
1361  * @dev: the PCIe device reset
1362  * @state: Reset state to enter into
1363  *
1364  *
1365  * Sets the PCI reset state for the device.
1366  */
1367 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1368 {
1369 	return pcibios_set_pcie_reset_state(dev, state);
1370 }
1371 
1372 /**
1373  * pci_check_pme_status - Check if given device has generated PME.
1374  * @dev: Device to check.
1375  *
1376  * Check the PME status of the device and if set, clear it and clear PME enable
1377  * (if set).  Return 'true' if PME status and PME enable were both set or
1378  * 'false' otherwise.
1379  */
1380 bool pci_check_pme_status(struct pci_dev *dev)
1381 {
1382 	int pmcsr_pos;
1383 	u16 pmcsr;
1384 	bool ret = false;
1385 
1386 	if (!dev->pm_cap)
1387 		return false;
1388 
1389 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1390 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1391 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1392 		return false;
1393 
1394 	/* Clear PME status. */
1395 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1396 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1397 		/* Disable PME to avoid interrupt flood. */
1398 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1399 		ret = true;
1400 	}
1401 
1402 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1409  * @dev: Device to handle.
1410  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1411  *
1412  * Check if @dev has generated PME and queue a resume request for it in that
1413  * case.
1414  */
1415 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1416 {
1417 	if (pme_poll_reset && dev->pme_poll)
1418 		dev->pme_poll = false;
1419 
1420 	if (pci_check_pme_status(dev)) {
1421 		pci_wakeup_event(dev);
1422 		pm_request_resume(&dev->dev);
1423 	}
1424 	return 0;
1425 }
1426 
1427 /**
1428  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1429  * @bus: Top bus of the subtree to walk.
1430  */
1431 void pci_pme_wakeup_bus(struct pci_bus *bus)
1432 {
1433 	if (bus)
1434 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1435 }
1436 
1437 /**
1438  * pci_pme_capable - check the capability of PCI device to generate PME#
1439  * @dev: PCI device to handle.
1440  * @state: PCI state from which device will issue PME#.
1441  */
1442 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1443 {
1444 	if (!dev->pm_cap)
1445 		return false;
1446 
1447 	return !!(dev->pme_support & (1 << state));
1448 }
1449 
1450 static void pci_pme_list_scan(struct work_struct *work)
1451 {
1452 	struct pci_pme_device *pme_dev, *n;
1453 
1454 	mutex_lock(&pci_pme_list_mutex);
1455 	if (!list_empty(&pci_pme_list)) {
1456 		list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1457 			if (pme_dev->dev->pme_poll) {
1458 				pci_pme_wakeup(pme_dev->dev, NULL);
1459 			} else {
1460 				list_del(&pme_dev->list);
1461 				kfree(pme_dev);
1462 			}
1463 		}
1464 		if (!list_empty(&pci_pme_list))
1465 			schedule_delayed_work(&pci_pme_work,
1466 					      msecs_to_jiffies(PME_TIMEOUT));
1467 	}
1468 	mutex_unlock(&pci_pme_list_mutex);
1469 }
1470 
1471 /**
1472  * pci_pme_active - enable or disable PCI device's PME# function
1473  * @dev: PCI device to handle.
1474  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1475  *
1476  * The caller must verify that the device is capable of generating PME# before
1477  * calling this function with @enable equal to 'true'.
1478  */
1479 void pci_pme_active(struct pci_dev *dev, bool enable)
1480 {
1481 	u16 pmcsr;
1482 
1483 	if (!dev->pm_cap)
1484 		return;
1485 
1486 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1487 	/* Clear PME_Status by writing 1 to it and enable PME# */
1488 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1489 	if (!enable)
1490 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1491 
1492 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1493 
1494 	/* PCI (as opposed to PCIe) PME requires that the device have
1495 	   its PME# line hooked up correctly. Not all hardware vendors
1496 	   do this, so the PME never gets delivered and the device
1497 	   remains asleep. The easiest way around this is to
1498 	   periodically walk the list of suspended devices and check
1499 	   whether any have their PME flag set. The assumption is that
1500 	   we'll wake up often enough anyway that this won't be a huge
1501 	   hit, and the power savings from the devices will still be a
1502 	   win. */
1503 
1504 	if (dev->pme_poll) {
1505 		struct pci_pme_device *pme_dev;
1506 		if (enable) {
1507 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1508 					  GFP_KERNEL);
1509 			if (!pme_dev)
1510 				goto out;
1511 			pme_dev->dev = dev;
1512 			mutex_lock(&pci_pme_list_mutex);
1513 			list_add(&pme_dev->list, &pci_pme_list);
1514 			if (list_is_singular(&pci_pme_list))
1515 				schedule_delayed_work(&pci_pme_work,
1516 						      msecs_to_jiffies(PME_TIMEOUT));
1517 			mutex_unlock(&pci_pme_list_mutex);
1518 		} else {
1519 			mutex_lock(&pci_pme_list_mutex);
1520 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1521 				if (pme_dev->dev == dev) {
1522 					list_del(&pme_dev->list);
1523 					kfree(pme_dev);
1524 					break;
1525 				}
1526 			}
1527 			mutex_unlock(&pci_pme_list_mutex);
1528 		}
1529 	}
1530 
1531 out:
1532 	dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1533 			enable ? "enabled" : "disabled");
1534 }
1535 
1536 /**
1537  * __pci_enable_wake - enable PCI device as wakeup event source
1538  * @dev: PCI device affected
1539  * @state: PCI state from which device will issue wakeup events
1540  * @runtime: True if the events are to be generated at run time
1541  * @enable: True to enable event generation; false to disable
1542  *
1543  * This enables the device as a wakeup event source, or disables it.
1544  * When such events involves platform-specific hooks, those hooks are
1545  * called automatically by this routine.
1546  *
1547  * Devices with legacy power management (no standard PCI PM capabilities)
1548  * always require such platform hooks.
1549  *
1550  * RETURN VALUE:
1551  * 0 is returned on success
1552  * -EINVAL is returned if device is not supposed to wake up the system
1553  * Error code depending on the platform is returned if both the platform and
1554  * the native mechanism fail to enable the generation of wake-up events
1555  */
1556 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1557 		      bool runtime, bool enable)
1558 {
1559 	int ret = 0;
1560 
1561 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1562 		return -EINVAL;
1563 
1564 	/* Don't do the same thing twice in a row for one device. */
1565 	if (!!enable == !!dev->wakeup_prepared)
1566 		return 0;
1567 
1568 	/*
1569 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1570 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1571 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1572 	 */
1573 
1574 	if (enable) {
1575 		int error;
1576 
1577 		if (pci_pme_capable(dev, state))
1578 			pci_pme_active(dev, true);
1579 		else
1580 			ret = 1;
1581 		error = runtime ? platform_pci_run_wake(dev, true) :
1582 					platform_pci_sleep_wake(dev, true);
1583 		if (ret)
1584 			ret = error;
1585 		if (!ret)
1586 			dev->wakeup_prepared = true;
1587 	} else {
1588 		if (runtime)
1589 			platform_pci_run_wake(dev, false);
1590 		else
1591 			platform_pci_sleep_wake(dev, false);
1592 		pci_pme_active(dev, false);
1593 		dev->wakeup_prepared = false;
1594 	}
1595 
1596 	return ret;
1597 }
1598 EXPORT_SYMBOL(__pci_enable_wake);
1599 
1600 /**
1601  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1602  * @dev: PCI device to prepare
1603  * @enable: True to enable wake-up event generation; false to disable
1604  *
1605  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1606  * and this function allows them to set that up cleanly - pci_enable_wake()
1607  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1608  * ordering constraints.
1609  *
1610  * This function only returns error code if the device is not capable of
1611  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1612  * enable wake-up power for it.
1613  */
1614 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1615 {
1616 	return pci_pme_capable(dev, PCI_D3cold) ?
1617 			pci_enable_wake(dev, PCI_D3cold, enable) :
1618 			pci_enable_wake(dev, PCI_D3hot, enable);
1619 }
1620 
1621 /**
1622  * pci_target_state - find an appropriate low power state for a given PCI dev
1623  * @dev: PCI device
1624  *
1625  * Use underlying platform code to find a supported low power state for @dev.
1626  * If the platform can't manage @dev, return the deepest state from which it
1627  * can generate wake events, based on any available PME info.
1628  */
1629 pci_power_t pci_target_state(struct pci_dev *dev)
1630 {
1631 	pci_power_t target_state = PCI_D3hot;
1632 
1633 	if (platform_pci_power_manageable(dev)) {
1634 		/*
1635 		 * Call the platform to choose the target state of the device
1636 		 * and enable wake-up from this state if supported.
1637 		 */
1638 		pci_power_t state = platform_pci_choose_state(dev);
1639 
1640 		switch (state) {
1641 		case PCI_POWER_ERROR:
1642 		case PCI_UNKNOWN:
1643 			break;
1644 		case PCI_D1:
1645 		case PCI_D2:
1646 			if (pci_no_d1d2(dev))
1647 				break;
1648 		default:
1649 			target_state = state;
1650 		}
1651 	} else if (!dev->pm_cap) {
1652 		target_state = PCI_D0;
1653 	} else if (device_may_wakeup(&dev->dev)) {
1654 		/*
1655 		 * Find the deepest state from which the device can generate
1656 		 * wake-up events, make it the target state and enable device
1657 		 * to generate PME#.
1658 		 */
1659 		if (dev->pme_support) {
1660 			while (target_state
1661 			      && !(dev->pme_support & (1 << target_state)))
1662 				target_state--;
1663 		}
1664 	}
1665 
1666 	return target_state;
1667 }
1668 
1669 /**
1670  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1671  * @dev: Device to handle.
1672  *
1673  * Choose the power state appropriate for the device depending on whether
1674  * it can wake up the system and/or is power manageable by the platform
1675  * (PCI_D3hot is the default) and put the device into that state.
1676  */
1677 int pci_prepare_to_sleep(struct pci_dev *dev)
1678 {
1679 	pci_power_t target_state = pci_target_state(dev);
1680 	int error;
1681 
1682 	if (target_state == PCI_POWER_ERROR)
1683 		return -EIO;
1684 
1685 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1686 
1687 	error = pci_set_power_state(dev, target_state);
1688 
1689 	if (error)
1690 		pci_enable_wake(dev, target_state, false);
1691 
1692 	return error;
1693 }
1694 
1695 /**
1696  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1697  * @dev: Device to handle.
1698  *
1699  * Disable device's system wake-up capability and put it into D0.
1700  */
1701 int pci_back_from_sleep(struct pci_dev *dev)
1702 {
1703 	pci_enable_wake(dev, PCI_D0, false);
1704 	return pci_set_power_state(dev, PCI_D0);
1705 }
1706 
1707 /**
1708  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1709  * @dev: PCI device being suspended.
1710  *
1711  * Prepare @dev to generate wake-up events at run time and put it into a low
1712  * power state.
1713  */
1714 int pci_finish_runtime_suspend(struct pci_dev *dev)
1715 {
1716 	pci_power_t target_state = pci_target_state(dev);
1717 	int error;
1718 
1719 	if (target_state == PCI_POWER_ERROR)
1720 		return -EIO;
1721 
1722 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1723 
1724 	error = pci_set_power_state(dev, target_state);
1725 
1726 	if (error)
1727 		__pci_enable_wake(dev, target_state, true, false);
1728 
1729 	return error;
1730 }
1731 
1732 /**
1733  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1734  * @dev: Device to check.
1735  *
1736  * Return true if the device itself is cabable of generating wake-up events
1737  * (through the platform or using the native PCIe PME) or if the device supports
1738  * PME and one of its upstream bridges can generate wake-up events.
1739  */
1740 bool pci_dev_run_wake(struct pci_dev *dev)
1741 {
1742 	struct pci_bus *bus = dev->bus;
1743 
1744 	if (device_run_wake(&dev->dev))
1745 		return true;
1746 
1747 	if (!dev->pme_support)
1748 		return false;
1749 
1750 	while (bus->parent) {
1751 		struct pci_dev *bridge = bus->self;
1752 
1753 		if (device_run_wake(&bridge->dev))
1754 			return true;
1755 
1756 		bus = bus->parent;
1757 	}
1758 
1759 	/* We have reached the root bus. */
1760 	if (bus->bridge)
1761 		return device_run_wake(bus->bridge);
1762 
1763 	return false;
1764 }
1765 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1766 
1767 /**
1768  * pci_pm_init - Initialize PM functions of given PCI device
1769  * @dev: PCI device to handle.
1770  */
1771 void pci_pm_init(struct pci_dev *dev)
1772 {
1773 	int pm;
1774 	u16 pmc;
1775 
1776 	pm_runtime_forbid(&dev->dev);
1777 	device_enable_async_suspend(&dev->dev);
1778 	dev->wakeup_prepared = false;
1779 
1780 	dev->pm_cap = 0;
1781 
1782 	/* find PCI PM capability in list */
1783 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1784 	if (!pm)
1785 		return;
1786 	/* Check device's ability to generate PME# */
1787 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1788 
1789 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1790 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1791 			pmc & PCI_PM_CAP_VER_MASK);
1792 		return;
1793 	}
1794 
1795 	dev->pm_cap = pm;
1796 	dev->d3_delay = PCI_PM_D3_WAIT;
1797 
1798 	dev->d1_support = false;
1799 	dev->d2_support = false;
1800 	if (!pci_no_d1d2(dev)) {
1801 		if (pmc & PCI_PM_CAP_D1)
1802 			dev->d1_support = true;
1803 		if (pmc & PCI_PM_CAP_D2)
1804 			dev->d2_support = true;
1805 
1806 		if (dev->d1_support || dev->d2_support)
1807 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1808 				   dev->d1_support ? " D1" : "",
1809 				   dev->d2_support ? " D2" : "");
1810 	}
1811 
1812 	pmc &= PCI_PM_CAP_PME_MASK;
1813 	if (pmc) {
1814 		dev_printk(KERN_DEBUG, &dev->dev,
1815 			 "PME# supported from%s%s%s%s%s\n",
1816 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1817 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1818 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1819 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1820 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1821 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1822 		dev->pme_poll = true;
1823 		/*
1824 		 * Make device's PM flags reflect the wake-up capability, but
1825 		 * let the user space enable it to wake up the system as needed.
1826 		 */
1827 		device_set_wakeup_capable(&dev->dev, true);
1828 		/* Disable the PME# generation functionality */
1829 		pci_pme_active(dev, false);
1830 	} else {
1831 		dev->pme_support = 0;
1832 	}
1833 }
1834 
1835 /**
1836  * platform_pci_wakeup_init - init platform wakeup if present
1837  * @dev: PCI device
1838  *
1839  * Some devices don't have PCI PM caps but can still generate wakeup
1840  * events through platform methods (like ACPI events).  If @dev supports
1841  * platform wakeup events, set the device flag to indicate as much.  This
1842  * may be redundant if the device also supports PCI PM caps, but double
1843  * initialization should be safe in that case.
1844  */
1845 void platform_pci_wakeup_init(struct pci_dev *dev)
1846 {
1847 	if (!platform_pci_can_wakeup(dev))
1848 		return;
1849 
1850 	device_set_wakeup_capable(&dev->dev, true);
1851 	platform_pci_sleep_wake(dev, false);
1852 }
1853 
1854 /**
1855  * pci_add_save_buffer - allocate buffer for saving given capability registers
1856  * @dev: the PCI device
1857  * @cap: the capability to allocate the buffer for
1858  * @size: requested size of the buffer
1859  */
1860 static int pci_add_cap_save_buffer(
1861 	struct pci_dev *dev, char cap, unsigned int size)
1862 {
1863 	int pos;
1864 	struct pci_cap_saved_state *save_state;
1865 
1866 	pos = pci_find_capability(dev, cap);
1867 	if (pos <= 0)
1868 		return 0;
1869 
1870 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1871 	if (!save_state)
1872 		return -ENOMEM;
1873 
1874 	save_state->cap.cap_nr = cap;
1875 	save_state->cap.size = size;
1876 	pci_add_saved_cap(dev, save_state);
1877 
1878 	return 0;
1879 }
1880 
1881 /**
1882  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1883  * @dev: the PCI device
1884  */
1885 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1886 {
1887 	int error;
1888 
1889 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1890 					PCI_EXP_SAVE_REGS * sizeof(u16));
1891 	if (error)
1892 		dev_err(&dev->dev,
1893 			"unable to preallocate PCI Express save buffer\n");
1894 
1895 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1896 	if (error)
1897 		dev_err(&dev->dev,
1898 			"unable to preallocate PCI-X save buffer\n");
1899 }
1900 
1901 /**
1902  * pci_enable_ari - enable ARI forwarding if hardware support it
1903  * @dev: the PCI device
1904  */
1905 void pci_enable_ari(struct pci_dev *dev)
1906 {
1907 	int pos;
1908 	u32 cap;
1909 	u16 flags, ctrl;
1910 	struct pci_dev *bridge;
1911 
1912 	if (!pci_is_pcie(dev) || dev->devfn)
1913 		return;
1914 
1915 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1916 	if (!pos)
1917 		return;
1918 
1919 	bridge = dev->bus->self;
1920 	if (!bridge || !pci_is_pcie(bridge))
1921 		return;
1922 
1923 	pos = pci_pcie_cap(bridge);
1924 	if (!pos)
1925 		return;
1926 
1927 	/* ARI is a PCIe v2 feature */
1928 	pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
1929 	if ((flags & PCI_EXP_FLAGS_VERS) < 2)
1930 		return;
1931 
1932 	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1933 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
1934 		return;
1935 
1936 	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1937 	ctrl |= PCI_EXP_DEVCTL2_ARI;
1938 	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1939 
1940 	bridge->ari_enabled = 1;
1941 }
1942 
1943 /**
1944  * pci_enable_ido - enable ID-based ordering on a device
1945  * @dev: the PCI device
1946  * @type: which types of IDO to enable
1947  *
1948  * Enable ID-based ordering on @dev.  @type can contain the bits
1949  * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
1950  * which types of transactions are allowed to be re-ordered.
1951  */
1952 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
1953 {
1954 	int pos;
1955 	u16 ctrl;
1956 
1957 	pos = pci_pcie_cap(dev);
1958 	if (!pos)
1959 		return;
1960 
1961 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1962 	if (type & PCI_EXP_IDO_REQUEST)
1963 		ctrl |= PCI_EXP_IDO_REQ_EN;
1964 	if (type & PCI_EXP_IDO_COMPLETION)
1965 		ctrl |= PCI_EXP_IDO_CMP_EN;
1966 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1967 }
1968 EXPORT_SYMBOL(pci_enable_ido);
1969 
1970 /**
1971  * pci_disable_ido - disable ID-based ordering on a device
1972  * @dev: the PCI device
1973  * @type: which types of IDO to disable
1974  */
1975 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
1976 {
1977 	int pos;
1978 	u16 ctrl;
1979 
1980 	if (!pci_is_pcie(dev))
1981 		return;
1982 
1983 	pos = pci_pcie_cap(dev);
1984 	if (!pos)
1985 		return;
1986 
1987 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1988 	if (type & PCI_EXP_IDO_REQUEST)
1989 		ctrl &= ~PCI_EXP_IDO_REQ_EN;
1990 	if (type & PCI_EXP_IDO_COMPLETION)
1991 		ctrl &= ~PCI_EXP_IDO_CMP_EN;
1992 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1993 }
1994 EXPORT_SYMBOL(pci_disable_ido);
1995 
1996 /**
1997  * pci_enable_obff - enable optimized buffer flush/fill
1998  * @dev: PCI device
1999  * @type: type of signaling to use
2000  *
2001  * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2002  * signaling if possible, falling back to message signaling only if
2003  * WAKE# isn't supported.  @type should indicate whether the PCIe link
2004  * be brought out of L0s or L1 to send the message.  It should be either
2005  * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2006  *
2007  * If your device can benefit from receiving all messages, even at the
2008  * power cost of bringing the link back up from a low power state, use
2009  * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2010  * preferred type).
2011  *
2012  * RETURNS:
2013  * Zero on success, appropriate error number on failure.
2014  */
2015 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2016 {
2017 	int pos;
2018 	u32 cap;
2019 	u16 ctrl;
2020 	int ret;
2021 
2022 	if (!pci_is_pcie(dev))
2023 		return -ENOTSUPP;
2024 
2025 	pos = pci_pcie_cap(dev);
2026 	if (!pos)
2027 		return -ENOTSUPP;
2028 
2029 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2030 	if (!(cap & PCI_EXP_OBFF_MASK))
2031 		return -ENOTSUPP; /* no OBFF support at all */
2032 
2033 	/* Make sure the topology supports OBFF as well */
2034 	if (dev->bus) {
2035 		ret = pci_enable_obff(dev->bus->self, type);
2036 		if (ret)
2037 			return ret;
2038 	}
2039 
2040 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2041 	if (cap & PCI_EXP_OBFF_WAKE)
2042 		ctrl |= PCI_EXP_OBFF_WAKE_EN;
2043 	else {
2044 		switch (type) {
2045 		case PCI_EXP_OBFF_SIGNAL_L0:
2046 			if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2047 				ctrl |= PCI_EXP_OBFF_MSGA_EN;
2048 			break;
2049 		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2050 			ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2051 			ctrl |= PCI_EXP_OBFF_MSGB_EN;
2052 			break;
2053 		default:
2054 			WARN(1, "bad OBFF signal type\n");
2055 			return -ENOTSUPP;
2056 		}
2057 	}
2058 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2059 
2060 	return 0;
2061 }
2062 EXPORT_SYMBOL(pci_enable_obff);
2063 
2064 /**
2065  * pci_disable_obff - disable optimized buffer flush/fill
2066  * @dev: PCI device
2067  *
2068  * Disable OBFF on @dev.
2069  */
2070 void pci_disable_obff(struct pci_dev *dev)
2071 {
2072 	int pos;
2073 	u16 ctrl;
2074 
2075 	if (!pci_is_pcie(dev))
2076 		return;
2077 
2078 	pos = pci_pcie_cap(dev);
2079 	if (!pos)
2080 		return;
2081 
2082 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2083 	ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2084 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2085 }
2086 EXPORT_SYMBOL(pci_disable_obff);
2087 
2088 /**
2089  * pci_ltr_supported - check whether a device supports LTR
2090  * @dev: PCI device
2091  *
2092  * RETURNS:
2093  * True if @dev supports latency tolerance reporting, false otherwise.
2094  */
2095 bool pci_ltr_supported(struct pci_dev *dev)
2096 {
2097 	int pos;
2098 	u32 cap;
2099 
2100 	if (!pci_is_pcie(dev))
2101 		return false;
2102 
2103 	pos = pci_pcie_cap(dev);
2104 	if (!pos)
2105 		return false;
2106 
2107 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2108 
2109 	return cap & PCI_EXP_DEVCAP2_LTR;
2110 }
2111 EXPORT_SYMBOL(pci_ltr_supported);
2112 
2113 /**
2114  * pci_enable_ltr - enable latency tolerance reporting
2115  * @dev: PCI device
2116  *
2117  * Enable LTR on @dev if possible, which means enabling it first on
2118  * upstream ports.
2119  *
2120  * RETURNS:
2121  * Zero on success, errno on failure.
2122  */
2123 int pci_enable_ltr(struct pci_dev *dev)
2124 {
2125 	int pos;
2126 	u16 ctrl;
2127 	int ret;
2128 
2129 	if (!pci_ltr_supported(dev))
2130 		return -ENOTSUPP;
2131 
2132 	pos = pci_pcie_cap(dev);
2133 	if (!pos)
2134 		return -ENOTSUPP;
2135 
2136 	/* Only primary function can enable/disable LTR */
2137 	if (PCI_FUNC(dev->devfn) != 0)
2138 		return -EINVAL;
2139 
2140 	/* Enable upstream ports first */
2141 	if (dev->bus) {
2142 		ret = pci_enable_ltr(dev->bus->self);
2143 		if (ret)
2144 			return ret;
2145 	}
2146 
2147 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2148 	ctrl |= PCI_EXP_LTR_EN;
2149 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2150 
2151 	return 0;
2152 }
2153 EXPORT_SYMBOL(pci_enable_ltr);
2154 
2155 /**
2156  * pci_disable_ltr - disable latency tolerance reporting
2157  * @dev: PCI device
2158  */
2159 void pci_disable_ltr(struct pci_dev *dev)
2160 {
2161 	int pos;
2162 	u16 ctrl;
2163 
2164 	if (!pci_ltr_supported(dev))
2165 		return;
2166 
2167 	pos = pci_pcie_cap(dev);
2168 	if (!pos)
2169 		return;
2170 
2171 	/* Only primary function can enable/disable LTR */
2172 	if (PCI_FUNC(dev->devfn) != 0)
2173 		return;
2174 
2175 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2176 	ctrl &= ~PCI_EXP_LTR_EN;
2177 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2178 }
2179 EXPORT_SYMBOL(pci_disable_ltr);
2180 
2181 static int __pci_ltr_scale(int *val)
2182 {
2183 	int scale = 0;
2184 
2185 	while (*val > 1023) {
2186 		*val = (*val + 31) / 32;
2187 		scale++;
2188 	}
2189 	return scale;
2190 }
2191 
2192 /**
2193  * pci_set_ltr - set LTR latency values
2194  * @dev: PCI device
2195  * @snoop_lat_ns: snoop latency in nanoseconds
2196  * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2197  *
2198  * Figure out the scale and set the LTR values accordingly.
2199  */
2200 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2201 {
2202 	int pos, ret, snoop_scale, nosnoop_scale;
2203 	u16 val;
2204 
2205 	if (!pci_ltr_supported(dev))
2206 		return -ENOTSUPP;
2207 
2208 	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2209 	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2210 
2211 	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2212 	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2213 		return -EINVAL;
2214 
2215 	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2216 	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2217 		return -EINVAL;
2218 
2219 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2220 	if (!pos)
2221 		return -ENOTSUPP;
2222 
2223 	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2224 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2225 	if (ret != 4)
2226 		return -EIO;
2227 
2228 	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2229 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2230 	if (ret != 4)
2231 		return -EIO;
2232 
2233 	return 0;
2234 }
2235 EXPORT_SYMBOL(pci_set_ltr);
2236 
2237 static int pci_acs_enable;
2238 
2239 /**
2240  * pci_request_acs - ask for ACS to be enabled if supported
2241  */
2242 void pci_request_acs(void)
2243 {
2244 	pci_acs_enable = 1;
2245 }
2246 
2247 /**
2248  * pci_enable_acs - enable ACS if hardware support it
2249  * @dev: the PCI device
2250  */
2251 void pci_enable_acs(struct pci_dev *dev)
2252 {
2253 	int pos;
2254 	u16 cap;
2255 	u16 ctrl;
2256 
2257 	if (!pci_acs_enable)
2258 		return;
2259 
2260 	if (!pci_is_pcie(dev))
2261 		return;
2262 
2263 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2264 	if (!pos)
2265 		return;
2266 
2267 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2268 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2269 
2270 	/* Source Validation */
2271 	ctrl |= (cap & PCI_ACS_SV);
2272 
2273 	/* P2P Request Redirect */
2274 	ctrl |= (cap & PCI_ACS_RR);
2275 
2276 	/* P2P Completion Redirect */
2277 	ctrl |= (cap & PCI_ACS_CR);
2278 
2279 	/* Upstream Forwarding */
2280 	ctrl |= (cap & PCI_ACS_UF);
2281 
2282 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2283 }
2284 
2285 /**
2286  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2287  * @dev: the PCI device
2288  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2289  *
2290  * Perform INTx swizzling for a device behind one level of bridge.  This is
2291  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2292  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2293  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2294  * the PCI Express Base Specification, Revision 2.1)
2295  */
2296 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
2297 {
2298 	int slot;
2299 
2300 	if (pci_ari_enabled(dev->bus))
2301 		slot = 0;
2302 	else
2303 		slot = PCI_SLOT(dev->devfn);
2304 
2305 	return (((pin - 1) + slot) % 4) + 1;
2306 }
2307 
2308 int
2309 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2310 {
2311 	u8 pin;
2312 
2313 	pin = dev->pin;
2314 	if (!pin)
2315 		return -1;
2316 
2317 	while (!pci_is_root_bus(dev->bus)) {
2318 		pin = pci_swizzle_interrupt_pin(dev, pin);
2319 		dev = dev->bus->self;
2320 	}
2321 	*bridge = dev;
2322 	return pin;
2323 }
2324 
2325 /**
2326  * pci_common_swizzle - swizzle INTx all the way to root bridge
2327  * @dev: the PCI device
2328  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2329  *
2330  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2331  * bridges all the way up to a PCI root bus.
2332  */
2333 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2334 {
2335 	u8 pin = *pinp;
2336 
2337 	while (!pci_is_root_bus(dev->bus)) {
2338 		pin = pci_swizzle_interrupt_pin(dev, pin);
2339 		dev = dev->bus->self;
2340 	}
2341 	*pinp = pin;
2342 	return PCI_SLOT(dev->devfn);
2343 }
2344 
2345 /**
2346  *	pci_release_region - Release a PCI bar
2347  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2348  *	@bar: BAR to release
2349  *
2350  *	Releases the PCI I/O and memory resources previously reserved by a
2351  *	successful call to pci_request_region.  Call this function only
2352  *	after all use of the PCI regions has ceased.
2353  */
2354 void pci_release_region(struct pci_dev *pdev, int bar)
2355 {
2356 	struct pci_devres *dr;
2357 
2358 	if (pci_resource_len(pdev, bar) == 0)
2359 		return;
2360 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2361 		release_region(pci_resource_start(pdev, bar),
2362 				pci_resource_len(pdev, bar));
2363 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2364 		release_mem_region(pci_resource_start(pdev, bar),
2365 				pci_resource_len(pdev, bar));
2366 
2367 	dr = find_pci_dr(pdev);
2368 	if (dr)
2369 		dr->region_mask &= ~(1 << bar);
2370 }
2371 
2372 /**
2373  *	__pci_request_region - Reserved PCI I/O and memory resource
2374  *	@pdev: PCI device whose resources are to be reserved
2375  *	@bar: BAR to be reserved
2376  *	@res_name: Name to be associated with resource.
2377  *	@exclusive: whether the region access is exclusive or not
2378  *
2379  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2380  *	being reserved by owner @res_name.  Do not access any
2381  *	address inside the PCI regions unless this call returns
2382  *	successfully.
2383  *
2384  *	If @exclusive is set, then the region is marked so that userspace
2385  *	is explicitly not allowed to map the resource via /dev/mem or
2386  * 	sysfs MMIO access.
2387  *
2388  *	Returns 0 on success, or %EBUSY on error.  A warning
2389  *	message is also printed on failure.
2390  */
2391 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2392 									int exclusive)
2393 {
2394 	struct pci_devres *dr;
2395 
2396 	if (pci_resource_len(pdev, bar) == 0)
2397 		return 0;
2398 
2399 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2400 		if (!request_region(pci_resource_start(pdev, bar),
2401 			    pci_resource_len(pdev, bar), res_name))
2402 			goto err_out;
2403 	}
2404 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2405 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2406 					pci_resource_len(pdev, bar), res_name,
2407 					exclusive))
2408 			goto err_out;
2409 	}
2410 
2411 	dr = find_pci_dr(pdev);
2412 	if (dr)
2413 		dr->region_mask |= 1 << bar;
2414 
2415 	return 0;
2416 
2417 err_out:
2418 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2419 		 &pdev->resource[bar]);
2420 	return -EBUSY;
2421 }
2422 
2423 /**
2424  *	pci_request_region - Reserve PCI I/O and memory resource
2425  *	@pdev: PCI device whose resources are to be reserved
2426  *	@bar: BAR to be reserved
2427  *	@res_name: Name to be associated with resource
2428  *
2429  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2430  *	being reserved by owner @res_name.  Do not access any
2431  *	address inside the PCI regions unless this call returns
2432  *	successfully.
2433  *
2434  *	Returns 0 on success, or %EBUSY on error.  A warning
2435  *	message is also printed on failure.
2436  */
2437 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2438 {
2439 	return __pci_request_region(pdev, bar, res_name, 0);
2440 }
2441 
2442 /**
2443  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2444  *	@pdev: PCI device whose resources are to be reserved
2445  *	@bar: BAR to be reserved
2446  *	@res_name: Name to be associated with resource.
2447  *
2448  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2449  *	being reserved by owner @res_name.  Do not access any
2450  *	address inside the PCI regions unless this call returns
2451  *	successfully.
2452  *
2453  *	Returns 0 on success, or %EBUSY on error.  A warning
2454  *	message is also printed on failure.
2455  *
2456  *	The key difference that _exclusive makes it that userspace is
2457  *	explicitly not allowed to map the resource via /dev/mem or
2458  * 	sysfs.
2459  */
2460 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2461 {
2462 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2463 }
2464 /**
2465  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2466  * @pdev: PCI device whose resources were previously reserved
2467  * @bars: Bitmask of BARs to be released
2468  *
2469  * Release selected PCI I/O and memory resources previously reserved.
2470  * Call this function only after all use of the PCI regions has ceased.
2471  */
2472 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2473 {
2474 	int i;
2475 
2476 	for (i = 0; i < 6; i++)
2477 		if (bars & (1 << i))
2478 			pci_release_region(pdev, i);
2479 }
2480 
2481 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2482 				 const char *res_name, int excl)
2483 {
2484 	int i;
2485 
2486 	for (i = 0; i < 6; i++)
2487 		if (bars & (1 << i))
2488 			if (__pci_request_region(pdev, i, res_name, excl))
2489 				goto err_out;
2490 	return 0;
2491 
2492 err_out:
2493 	while(--i >= 0)
2494 		if (bars & (1 << i))
2495 			pci_release_region(pdev, i);
2496 
2497 	return -EBUSY;
2498 }
2499 
2500 
2501 /**
2502  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2503  * @pdev: PCI device whose resources are to be reserved
2504  * @bars: Bitmask of BARs to be requested
2505  * @res_name: Name to be associated with resource
2506  */
2507 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2508 				 const char *res_name)
2509 {
2510 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2511 }
2512 
2513 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2514 				 int bars, const char *res_name)
2515 {
2516 	return __pci_request_selected_regions(pdev, bars, res_name,
2517 			IORESOURCE_EXCLUSIVE);
2518 }
2519 
2520 /**
2521  *	pci_release_regions - Release reserved PCI I/O and memory resources
2522  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2523  *
2524  *	Releases all PCI I/O and memory resources previously reserved by a
2525  *	successful call to pci_request_regions.  Call this function only
2526  *	after all use of the PCI regions has ceased.
2527  */
2528 
2529 void pci_release_regions(struct pci_dev *pdev)
2530 {
2531 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2532 }
2533 
2534 /**
2535  *	pci_request_regions - Reserved PCI I/O and memory resources
2536  *	@pdev: PCI device whose resources are to be reserved
2537  *	@res_name: Name to be associated with resource.
2538  *
2539  *	Mark all PCI regions associated with PCI device @pdev as
2540  *	being reserved by owner @res_name.  Do not access any
2541  *	address inside the PCI regions unless this call returns
2542  *	successfully.
2543  *
2544  *	Returns 0 on success, or %EBUSY on error.  A warning
2545  *	message is also printed on failure.
2546  */
2547 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2548 {
2549 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2550 }
2551 
2552 /**
2553  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2554  *	@pdev: PCI device whose resources are to be reserved
2555  *	@res_name: Name to be associated with resource.
2556  *
2557  *	Mark all PCI regions associated with PCI device @pdev as
2558  *	being reserved by owner @res_name.  Do not access any
2559  *	address inside the PCI regions unless this call returns
2560  *	successfully.
2561  *
2562  *	pci_request_regions_exclusive() will mark the region so that
2563  * 	/dev/mem and the sysfs MMIO access will not be allowed.
2564  *
2565  *	Returns 0 on success, or %EBUSY on error.  A warning
2566  *	message is also printed on failure.
2567  */
2568 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2569 {
2570 	return pci_request_selected_regions_exclusive(pdev,
2571 					((1 << 6) - 1), res_name);
2572 }
2573 
2574 static void __pci_set_master(struct pci_dev *dev, bool enable)
2575 {
2576 	u16 old_cmd, cmd;
2577 
2578 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2579 	if (enable)
2580 		cmd = old_cmd | PCI_COMMAND_MASTER;
2581 	else
2582 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2583 	if (cmd != old_cmd) {
2584 		dev_dbg(&dev->dev, "%s bus mastering\n",
2585 			enable ? "enabling" : "disabling");
2586 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2587 	}
2588 	dev->is_busmaster = enable;
2589 }
2590 
2591 /**
2592  * pci_set_master - enables bus-mastering for device dev
2593  * @dev: the PCI device to enable
2594  *
2595  * Enables bus-mastering on the device and calls pcibios_set_master()
2596  * to do the needed arch specific settings.
2597  */
2598 void pci_set_master(struct pci_dev *dev)
2599 {
2600 	__pci_set_master(dev, true);
2601 	pcibios_set_master(dev);
2602 }
2603 
2604 /**
2605  * pci_clear_master - disables bus-mastering for device dev
2606  * @dev: the PCI device to disable
2607  */
2608 void pci_clear_master(struct pci_dev *dev)
2609 {
2610 	__pci_set_master(dev, false);
2611 }
2612 
2613 /**
2614  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2615  * @dev: the PCI device for which MWI is to be enabled
2616  *
2617  * Helper function for pci_set_mwi.
2618  * Originally copied from drivers/net/acenic.c.
2619  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2620  *
2621  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2622  */
2623 int pci_set_cacheline_size(struct pci_dev *dev)
2624 {
2625 	u8 cacheline_size;
2626 
2627 	if (!pci_cache_line_size)
2628 		return -EINVAL;
2629 
2630 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2631 	   equal to or multiple of the right value. */
2632 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2633 	if (cacheline_size >= pci_cache_line_size &&
2634 	    (cacheline_size % pci_cache_line_size) == 0)
2635 		return 0;
2636 
2637 	/* Write the correct value. */
2638 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2639 	/* Read it back. */
2640 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2641 	if (cacheline_size == pci_cache_line_size)
2642 		return 0;
2643 
2644 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2645 		   "supported\n", pci_cache_line_size << 2);
2646 
2647 	return -EINVAL;
2648 }
2649 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2650 
2651 #ifdef PCI_DISABLE_MWI
2652 int pci_set_mwi(struct pci_dev *dev)
2653 {
2654 	return 0;
2655 }
2656 
2657 int pci_try_set_mwi(struct pci_dev *dev)
2658 {
2659 	return 0;
2660 }
2661 
2662 void pci_clear_mwi(struct pci_dev *dev)
2663 {
2664 }
2665 
2666 #else
2667 
2668 /**
2669  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2670  * @dev: the PCI device for which MWI is enabled
2671  *
2672  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2673  *
2674  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2675  */
2676 int
2677 pci_set_mwi(struct pci_dev *dev)
2678 {
2679 	int rc;
2680 	u16 cmd;
2681 
2682 	rc = pci_set_cacheline_size(dev);
2683 	if (rc)
2684 		return rc;
2685 
2686 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2687 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2688 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2689 		cmd |= PCI_COMMAND_INVALIDATE;
2690 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2691 	}
2692 
2693 	return 0;
2694 }
2695 
2696 /**
2697  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2698  * @dev: the PCI device for which MWI is enabled
2699  *
2700  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2701  * Callers are not required to check the return value.
2702  *
2703  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2704  */
2705 int pci_try_set_mwi(struct pci_dev *dev)
2706 {
2707 	int rc = pci_set_mwi(dev);
2708 	return rc;
2709 }
2710 
2711 /**
2712  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2713  * @dev: the PCI device to disable
2714  *
2715  * Disables PCI Memory-Write-Invalidate transaction on the device
2716  */
2717 void
2718 pci_clear_mwi(struct pci_dev *dev)
2719 {
2720 	u16 cmd;
2721 
2722 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2723 	if (cmd & PCI_COMMAND_INVALIDATE) {
2724 		cmd &= ~PCI_COMMAND_INVALIDATE;
2725 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2726 	}
2727 }
2728 #endif /* ! PCI_DISABLE_MWI */
2729 
2730 /**
2731  * pci_intx - enables/disables PCI INTx for device dev
2732  * @pdev: the PCI device to operate on
2733  * @enable: boolean: whether to enable or disable PCI INTx
2734  *
2735  * Enables/disables PCI INTx for device dev
2736  */
2737 void
2738 pci_intx(struct pci_dev *pdev, int enable)
2739 {
2740 	u16 pci_command, new;
2741 
2742 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2743 
2744 	if (enable) {
2745 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2746 	} else {
2747 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2748 	}
2749 
2750 	if (new != pci_command) {
2751 		struct pci_devres *dr;
2752 
2753 		pci_write_config_word(pdev, PCI_COMMAND, new);
2754 
2755 		dr = find_pci_dr(pdev);
2756 		if (dr && !dr->restore_intx) {
2757 			dr->restore_intx = 1;
2758 			dr->orig_intx = !enable;
2759 		}
2760 	}
2761 }
2762 
2763 /**
2764  * pci_msi_off - disables any msi or msix capabilities
2765  * @dev: the PCI device to operate on
2766  *
2767  * If you want to use msi see pci_enable_msi and friends.
2768  * This is a lower level primitive that allows us to disable
2769  * msi operation at the device level.
2770  */
2771 void pci_msi_off(struct pci_dev *dev)
2772 {
2773 	int pos;
2774 	u16 control;
2775 
2776 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2777 	if (pos) {
2778 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2779 		control &= ~PCI_MSI_FLAGS_ENABLE;
2780 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2781 	}
2782 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2783 	if (pos) {
2784 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2785 		control &= ~PCI_MSIX_FLAGS_ENABLE;
2786 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2787 	}
2788 }
2789 EXPORT_SYMBOL_GPL(pci_msi_off);
2790 
2791 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2792 {
2793 	return dma_set_max_seg_size(&dev->dev, size);
2794 }
2795 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2796 
2797 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2798 {
2799 	return dma_set_seg_boundary(&dev->dev, mask);
2800 }
2801 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2802 
2803 static int pcie_flr(struct pci_dev *dev, int probe)
2804 {
2805 	int i;
2806 	int pos;
2807 	u32 cap;
2808 	u16 status, control;
2809 
2810 	pos = pci_pcie_cap(dev);
2811 	if (!pos)
2812 		return -ENOTTY;
2813 
2814 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2815 	if (!(cap & PCI_EXP_DEVCAP_FLR))
2816 		return -ENOTTY;
2817 
2818 	if (probe)
2819 		return 0;
2820 
2821 	/* Wait for Transaction Pending bit clean */
2822 	for (i = 0; i < 4; i++) {
2823 		if (i)
2824 			msleep((1 << (i - 1)) * 100);
2825 
2826 		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2827 		if (!(status & PCI_EXP_DEVSTA_TRPND))
2828 			goto clear;
2829 	}
2830 
2831 	dev_err(&dev->dev, "transaction is not cleared; "
2832 			"proceeding with reset anyway\n");
2833 
2834 clear:
2835 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2836 	control |= PCI_EXP_DEVCTL_BCR_FLR;
2837 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2838 
2839 	msleep(100);
2840 
2841 	return 0;
2842 }
2843 
2844 static int pci_af_flr(struct pci_dev *dev, int probe)
2845 {
2846 	int i;
2847 	int pos;
2848 	u8 cap;
2849 	u8 status;
2850 
2851 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2852 	if (!pos)
2853 		return -ENOTTY;
2854 
2855 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2856 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2857 		return -ENOTTY;
2858 
2859 	if (probe)
2860 		return 0;
2861 
2862 	/* Wait for Transaction Pending bit clean */
2863 	for (i = 0; i < 4; i++) {
2864 		if (i)
2865 			msleep((1 << (i - 1)) * 100);
2866 
2867 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2868 		if (!(status & PCI_AF_STATUS_TP))
2869 			goto clear;
2870 	}
2871 
2872 	dev_err(&dev->dev, "transaction is not cleared; "
2873 			"proceeding with reset anyway\n");
2874 
2875 clear:
2876 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2877 	msleep(100);
2878 
2879 	return 0;
2880 }
2881 
2882 /**
2883  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
2884  * @dev: Device to reset.
2885  * @probe: If set, only check if the device can be reset this way.
2886  *
2887  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
2888  * unset, it will be reinitialized internally when going from PCI_D3hot to
2889  * PCI_D0.  If that's the case and the device is not in a low-power state
2890  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
2891  *
2892  * NOTE: This causes the caller to sleep for twice the device power transition
2893  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
2894  * by devault (i.e. unless the @dev's d3_delay field has a different value).
2895  * Moreover, only devices in D0 can be reset by this function.
2896  */
2897 static int pci_pm_reset(struct pci_dev *dev, int probe)
2898 {
2899 	u16 csr;
2900 
2901 	if (!dev->pm_cap)
2902 		return -ENOTTY;
2903 
2904 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2905 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2906 		return -ENOTTY;
2907 
2908 	if (probe)
2909 		return 0;
2910 
2911 	if (dev->current_state != PCI_D0)
2912 		return -EINVAL;
2913 
2914 	csr &= ~PCI_PM_CTRL_STATE_MASK;
2915 	csr |= PCI_D3hot;
2916 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2917 	pci_dev_d3_sleep(dev);
2918 
2919 	csr &= ~PCI_PM_CTRL_STATE_MASK;
2920 	csr |= PCI_D0;
2921 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2922 	pci_dev_d3_sleep(dev);
2923 
2924 	return 0;
2925 }
2926 
2927 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2928 {
2929 	u16 ctrl;
2930 	struct pci_dev *pdev;
2931 
2932 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2933 		return -ENOTTY;
2934 
2935 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2936 		if (pdev != dev)
2937 			return -ENOTTY;
2938 
2939 	if (probe)
2940 		return 0;
2941 
2942 	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2943 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2944 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2945 	msleep(100);
2946 
2947 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2948 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2949 	msleep(100);
2950 
2951 	return 0;
2952 }
2953 
2954 static int pci_dev_reset(struct pci_dev *dev, int probe)
2955 {
2956 	int rc;
2957 
2958 	might_sleep();
2959 
2960 	if (!probe) {
2961 		pci_block_user_cfg_access(dev);
2962 		/* block PM suspend, driver probe, etc. */
2963 		device_lock(&dev->dev);
2964 	}
2965 
2966 	rc = pci_dev_specific_reset(dev, probe);
2967 	if (rc != -ENOTTY)
2968 		goto done;
2969 
2970 	rc = pcie_flr(dev, probe);
2971 	if (rc != -ENOTTY)
2972 		goto done;
2973 
2974 	rc = pci_af_flr(dev, probe);
2975 	if (rc != -ENOTTY)
2976 		goto done;
2977 
2978 	rc = pci_pm_reset(dev, probe);
2979 	if (rc != -ENOTTY)
2980 		goto done;
2981 
2982 	rc = pci_parent_bus_reset(dev, probe);
2983 done:
2984 	if (!probe) {
2985 		device_unlock(&dev->dev);
2986 		pci_unblock_user_cfg_access(dev);
2987 	}
2988 
2989 	return rc;
2990 }
2991 
2992 /**
2993  * __pci_reset_function - reset a PCI device function
2994  * @dev: PCI device to reset
2995  *
2996  * Some devices allow an individual function to be reset without affecting
2997  * other functions in the same device.  The PCI device must be responsive
2998  * to PCI config space in order to use this function.
2999  *
3000  * The device function is presumed to be unused when this function is called.
3001  * Resetting the device will make the contents of PCI configuration space
3002  * random, so any caller of this must be prepared to reinitialise the
3003  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3004  * etc.
3005  *
3006  * Returns 0 if the device function was successfully reset or negative if the
3007  * device doesn't support resetting a single function.
3008  */
3009 int __pci_reset_function(struct pci_dev *dev)
3010 {
3011 	return pci_dev_reset(dev, 0);
3012 }
3013 EXPORT_SYMBOL_GPL(__pci_reset_function);
3014 
3015 /**
3016  * pci_probe_reset_function - check whether the device can be safely reset
3017  * @dev: PCI device to reset
3018  *
3019  * Some devices allow an individual function to be reset without affecting
3020  * other functions in the same device.  The PCI device must be responsive
3021  * to PCI config space in order to use this function.
3022  *
3023  * Returns 0 if the device function can be reset or negative if the
3024  * device doesn't support resetting a single function.
3025  */
3026 int pci_probe_reset_function(struct pci_dev *dev)
3027 {
3028 	return pci_dev_reset(dev, 1);
3029 }
3030 
3031 /**
3032  * pci_reset_function - quiesce and reset a PCI device function
3033  * @dev: PCI device to reset
3034  *
3035  * Some devices allow an individual function to be reset without affecting
3036  * other functions in the same device.  The PCI device must be responsive
3037  * to PCI config space in order to use this function.
3038  *
3039  * This function does not just reset the PCI portion of a device, but
3040  * clears all the state associated with the device.  This function differs
3041  * from __pci_reset_function in that it saves and restores device state
3042  * over the reset.
3043  *
3044  * Returns 0 if the device function was successfully reset or negative if the
3045  * device doesn't support resetting a single function.
3046  */
3047 int pci_reset_function(struct pci_dev *dev)
3048 {
3049 	int rc;
3050 
3051 	rc = pci_dev_reset(dev, 1);
3052 	if (rc)
3053 		return rc;
3054 
3055 	pci_save_state(dev);
3056 
3057 	/*
3058 	 * both INTx and MSI are disabled after the Interrupt Disable bit
3059 	 * is set and the Bus Master bit is cleared.
3060 	 */
3061 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3062 
3063 	rc = pci_dev_reset(dev, 0);
3064 
3065 	pci_restore_state(dev);
3066 
3067 	return rc;
3068 }
3069 EXPORT_SYMBOL_GPL(pci_reset_function);
3070 
3071 /**
3072  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3073  * @dev: PCI device to query
3074  *
3075  * Returns mmrbc: maximum designed memory read count in bytes
3076  *    or appropriate error value.
3077  */
3078 int pcix_get_max_mmrbc(struct pci_dev *dev)
3079 {
3080 	int cap;
3081 	u32 stat;
3082 
3083 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3084 	if (!cap)
3085 		return -EINVAL;
3086 
3087 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3088 		return -EINVAL;
3089 
3090 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3091 }
3092 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3093 
3094 /**
3095  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3096  * @dev: PCI device to query
3097  *
3098  * Returns mmrbc: maximum memory read count in bytes
3099  *    or appropriate error value.
3100  */
3101 int pcix_get_mmrbc(struct pci_dev *dev)
3102 {
3103 	int cap;
3104 	u16 cmd;
3105 
3106 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3107 	if (!cap)
3108 		return -EINVAL;
3109 
3110 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3111 		return -EINVAL;
3112 
3113 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3114 }
3115 EXPORT_SYMBOL(pcix_get_mmrbc);
3116 
3117 /**
3118  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3119  * @dev: PCI device to query
3120  * @mmrbc: maximum memory read count in bytes
3121  *    valid values are 512, 1024, 2048, 4096
3122  *
3123  * If possible sets maximum memory read byte count, some bridges have erratas
3124  * that prevent this.
3125  */
3126 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3127 {
3128 	int cap;
3129 	u32 stat, v, o;
3130 	u16 cmd;
3131 
3132 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3133 		return -EINVAL;
3134 
3135 	v = ffs(mmrbc) - 10;
3136 
3137 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3138 	if (!cap)
3139 		return -EINVAL;
3140 
3141 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3142 		return -EINVAL;
3143 
3144 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3145 		return -E2BIG;
3146 
3147 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3148 		return -EINVAL;
3149 
3150 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3151 	if (o != v) {
3152 		if (v > o && dev->bus &&
3153 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3154 			return -EIO;
3155 
3156 		cmd &= ~PCI_X_CMD_MAX_READ;
3157 		cmd |= v << 2;
3158 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3159 			return -EIO;
3160 	}
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL(pcix_set_mmrbc);
3164 
3165 /**
3166  * pcie_get_readrq - get PCI Express read request size
3167  * @dev: PCI device to query
3168  *
3169  * Returns maximum memory read request in bytes
3170  *    or appropriate error value.
3171  */
3172 int pcie_get_readrq(struct pci_dev *dev)
3173 {
3174 	int ret, cap;
3175 	u16 ctl;
3176 
3177 	cap = pci_pcie_cap(dev);
3178 	if (!cap)
3179 		return -EINVAL;
3180 
3181 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3182 	if (!ret)
3183 		ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3184 
3185 	return ret;
3186 }
3187 EXPORT_SYMBOL(pcie_get_readrq);
3188 
3189 /**
3190  * pcie_set_readrq - set PCI Express maximum memory read request
3191  * @dev: PCI device to query
3192  * @rq: maximum memory read count in bytes
3193  *    valid values are 128, 256, 512, 1024, 2048, 4096
3194  *
3195  * If possible sets maximum memory read request in bytes
3196  */
3197 int pcie_set_readrq(struct pci_dev *dev, int rq)
3198 {
3199 	int cap, err = -EINVAL;
3200 	u16 ctl, v;
3201 
3202 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3203 		goto out;
3204 
3205 	cap = pci_pcie_cap(dev);
3206 	if (!cap)
3207 		goto out;
3208 
3209 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3210 	if (err)
3211 		goto out;
3212 	/*
3213 	 * If using the "performance" PCIe config, we clamp the
3214 	 * read rq size to the max packet size to prevent the
3215 	 * host bridge generating requests larger than we can
3216 	 * cope with
3217 	 */
3218 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3219 		int mps = pcie_get_mps(dev);
3220 
3221 		if (mps < 0)
3222 			return mps;
3223 		if (mps < rq)
3224 			rq = mps;
3225 	}
3226 
3227 	v = (ffs(rq) - 8) << 12;
3228 
3229 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3230 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
3231 		ctl |= v;
3232 		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3233 	}
3234 
3235 out:
3236 	return err;
3237 }
3238 EXPORT_SYMBOL(pcie_set_readrq);
3239 
3240 /**
3241  * pcie_get_mps - get PCI Express maximum payload size
3242  * @dev: PCI device to query
3243  *
3244  * Returns maximum payload size in bytes
3245  *    or appropriate error value.
3246  */
3247 int pcie_get_mps(struct pci_dev *dev)
3248 {
3249 	int ret, cap;
3250 	u16 ctl;
3251 
3252 	cap = pci_pcie_cap(dev);
3253 	if (!cap)
3254 		return -EINVAL;
3255 
3256 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3257 	if (!ret)
3258 		ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3259 
3260 	return ret;
3261 }
3262 
3263 /**
3264  * pcie_set_mps - set PCI Express maximum payload size
3265  * @dev: PCI device to query
3266  * @mps: maximum payload size in bytes
3267  *    valid values are 128, 256, 512, 1024, 2048, 4096
3268  *
3269  * If possible sets maximum payload size
3270  */
3271 int pcie_set_mps(struct pci_dev *dev, int mps)
3272 {
3273 	int cap, err = -EINVAL;
3274 	u16 ctl, v;
3275 
3276 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3277 		goto out;
3278 
3279 	v = ffs(mps) - 8;
3280 	if (v > dev->pcie_mpss)
3281 		goto out;
3282 	v <<= 5;
3283 
3284 	cap = pci_pcie_cap(dev);
3285 	if (!cap)
3286 		goto out;
3287 
3288 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3289 	if (err)
3290 		goto out;
3291 
3292 	if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3293 		ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3294 		ctl |= v;
3295 		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3296 	}
3297 out:
3298 	return err;
3299 }
3300 
3301 /**
3302  * pci_select_bars - Make BAR mask from the type of resource
3303  * @dev: the PCI device for which BAR mask is made
3304  * @flags: resource type mask to be selected
3305  *
3306  * This helper routine makes bar mask from the type of resource.
3307  */
3308 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3309 {
3310 	int i, bars = 0;
3311 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
3312 		if (pci_resource_flags(dev, i) & flags)
3313 			bars |= (1 << i);
3314 	return bars;
3315 }
3316 
3317 /**
3318  * pci_resource_bar - get position of the BAR associated with a resource
3319  * @dev: the PCI device
3320  * @resno: the resource number
3321  * @type: the BAR type to be filled in
3322  *
3323  * Returns BAR position in config space, or 0 if the BAR is invalid.
3324  */
3325 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3326 {
3327 	int reg;
3328 
3329 	if (resno < PCI_ROM_RESOURCE) {
3330 		*type = pci_bar_unknown;
3331 		return PCI_BASE_ADDRESS_0 + 4 * resno;
3332 	} else if (resno == PCI_ROM_RESOURCE) {
3333 		*type = pci_bar_mem32;
3334 		return dev->rom_base_reg;
3335 	} else if (resno < PCI_BRIDGE_RESOURCES) {
3336 		/* device specific resource */
3337 		reg = pci_iov_resource_bar(dev, resno, type);
3338 		if (reg)
3339 			return reg;
3340 	}
3341 
3342 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3343 	return 0;
3344 }
3345 
3346 /* Some architectures require additional programming to enable VGA */
3347 static arch_set_vga_state_t arch_set_vga_state;
3348 
3349 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3350 {
3351 	arch_set_vga_state = func;	/* NULL disables */
3352 }
3353 
3354 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3355 		      unsigned int command_bits, u32 flags)
3356 {
3357 	if (arch_set_vga_state)
3358 		return arch_set_vga_state(dev, decode, command_bits,
3359 						flags);
3360 	return 0;
3361 }
3362 
3363 /**
3364  * pci_set_vga_state - set VGA decode state on device and parents if requested
3365  * @dev: the PCI device
3366  * @decode: true = enable decoding, false = disable decoding
3367  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3368  * @flags: traverse ancestors and change bridges
3369  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3370  */
3371 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3372 		      unsigned int command_bits, u32 flags)
3373 {
3374 	struct pci_bus *bus;
3375 	struct pci_dev *bridge;
3376 	u16 cmd;
3377 	int rc;
3378 
3379 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3380 
3381 	/* ARCH specific VGA enables */
3382 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3383 	if (rc)
3384 		return rc;
3385 
3386 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3387 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
3388 		if (decode == true)
3389 			cmd |= command_bits;
3390 		else
3391 			cmd &= ~command_bits;
3392 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3393 	}
3394 
3395 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3396 		return 0;
3397 
3398 	bus = dev->bus;
3399 	while (bus) {
3400 		bridge = bus->self;
3401 		if (bridge) {
3402 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3403 					     &cmd);
3404 			if (decode == true)
3405 				cmd |= PCI_BRIDGE_CTL_VGA;
3406 			else
3407 				cmd &= ~PCI_BRIDGE_CTL_VGA;
3408 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3409 					      cmd);
3410 		}
3411 		bus = bus->parent;
3412 	}
3413 	return 0;
3414 }
3415 
3416 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3417 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3418 static DEFINE_SPINLOCK(resource_alignment_lock);
3419 
3420 /**
3421  * pci_specified_resource_alignment - get resource alignment specified by user.
3422  * @dev: the PCI device to get
3423  *
3424  * RETURNS: Resource alignment if it is specified.
3425  *          Zero if it is not specified.
3426  */
3427 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3428 {
3429 	int seg, bus, slot, func, align_order, count;
3430 	resource_size_t align = 0;
3431 	char *p;
3432 
3433 	spin_lock(&resource_alignment_lock);
3434 	p = resource_alignment_param;
3435 	while (*p) {
3436 		count = 0;
3437 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3438 							p[count] == '@') {
3439 			p += count + 1;
3440 		} else {
3441 			align_order = -1;
3442 		}
3443 		if (sscanf(p, "%x:%x:%x.%x%n",
3444 			&seg, &bus, &slot, &func, &count) != 4) {
3445 			seg = 0;
3446 			if (sscanf(p, "%x:%x.%x%n",
3447 					&bus, &slot, &func, &count) != 3) {
3448 				/* Invalid format */
3449 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3450 					p);
3451 				break;
3452 			}
3453 		}
3454 		p += count;
3455 		if (seg == pci_domain_nr(dev->bus) &&
3456 			bus == dev->bus->number &&
3457 			slot == PCI_SLOT(dev->devfn) &&
3458 			func == PCI_FUNC(dev->devfn)) {
3459 			if (align_order == -1) {
3460 				align = PAGE_SIZE;
3461 			} else {
3462 				align = 1 << align_order;
3463 			}
3464 			/* Found */
3465 			break;
3466 		}
3467 		if (*p != ';' && *p != ',') {
3468 			/* End of param or invalid format */
3469 			break;
3470 		}
3471 		p++;
3472 	}
3473 	spin_unlock(&resource_alignment_lock);
3474 	return align;
3475 }
3476 
3477 /**
3478  * pci_is_reassigndev - check if specified PCI is target device to reassign
3479  * @dev: the PCI device to check
3480  *
3481  * RETURNS: non-zero for PCI device is a target device to reassign,
3482  *          or zero is not.
3483  */
3484 int pci_is_reassigndev(struct pci_dev *dev)
3485 {
3486 	return (pci_specified_resource_alignment(dev) != 0);
3487 }
3488 
3489 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3490 {
3491 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3492 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3493 	spin_lock(&resource_alignment_lock);
3494 	strncpy(resource_alignment_param, buf, count);
3495 	resource_alignment_param[count] = '\0';
3496 	spin_unlock(&resource_alignment_lock);
3497 	return count;
3498 }
3499 
3500 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3501 {
3502 	size_t count;
3503 	spin_lock(&resource_alignment_lock);
3504 	count = snprintf(buf, size, "%s", resource_alignment_param);
3505 	spin_unlock(&resource_alignment_lock);
3506 	return count;
3507 }
3508 
3509 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3510 {
3511 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3512 }
3513 
3514 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3515 					const char *buf, size_t count)
3516 {
3517 	return pci_set_resource_alignment_param(buf, count);
3518 }
3519 
3520 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3521 					pci_resource_alignment_store);
3522 
3523 static int __init pci_resource_alignment_sysfs_init(void)
3524 {
3525 	return bus_create_file(&pci_bus_type,
3526 					&bus_attr_resource_alignment);
3527 }
3528 
3529 late_initcall(pci_resource_alignment_sysfs_init);
3530 
3531 static void __devinit pci_no_domains(void)
3532 {
3533 #ifdef CONFIG_PCI_DOMAINS
3534 	pci_domains_supported = 0;
3535 #endif
3536 }
3537 
3538 /**
3539  * pci_ext_cfg_enabled - can we access extended PCI config space?
3540  * @dev: The PCI device of the root bridge.
3541  *
3542  * Returns 1 if we can access PCI extended config space (offsets
3543  * greater than 0xff). This is the default implementation. Architecture
3544  * implementations can override this.
3545  */
3546 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3547 {
3548 	return 1;
3549 }
3550 
3551 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3552 {
3553 }
3554 EXPORT_SYMBOL(pci_fixup_cardbus);
3555 
3556 static int __init pci_setup(char *str)
3557 {
3558 	while (str) {
3559 		char *k = strchr(str, ',');
3560 		if (k)
3561 			*k++ = 0;
3562 		if (*str && (str = pcibios_setup(str)) && *str) {
3563 			if (!strcmp(str, "nomsi")) {
3564 				pci_no_msi();
3565 			} else if (!strcmp(str, "noaer")) {
3566 				pci_no_aer();
3567 			} else if (!strncmp(str, "realloc", 7)) {
3568 				pci_realloc();
3569 			} else if (!strcmp(str, "nodomains")) {
3570 				pci_no_domains();
3571 			} else if (!strncmp(str, "cbiosize=", 9)) {
3572 				pci_cardbus_io_size = memparse(str + 9, &str);
3573 			} else if (!strncmp(str, "cbmemsize=", 10)) {
3574 				pci_cardbus_mem_size = memparse(str + 10, &str);
3575 			} else if (!strncmp(str, "resource_alignment=", 19)) {
3576 				pci_set_resource_alignment_param(str + 19,
3577 							strlen(str + 19));
3578 			} else if (!strncmp(str, "ecrc=", 5)) {
3579 				pcie_ecrc_get_policy(str + 5);
3580 			} else if (!strncmp(str, "hpiosize=", 9)) {
3581 				pci_hotplug_io_size = memparse(str + 9, &str);
3582 			} else if (!strncmp(str, "hpmemsize=", 10)) {
3583 				pci_hotplug_mem_size = memparse(str + 10, &str);
3584 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3585 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
3586 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
3587 				pcie_bus_config = PCIE_BUS_SAFE;
3588 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
3589 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
3590 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3591 				pcie_bus_config = PCIE_BUS_PEER2PEER;
3592 			} else {
3593 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3594 						str);
3595 			}
3596 		}
3597 		str = k;
3598 	}
3599 	return 0;
3600 }
3601 early_param("pci", pci_setup);
3602 
3603 EXPORT_SYMBOL(pci_reenable_device);
3604 EXPORT_SYMBOL(pci_enable_device_io);
3605 EXPORT_SYMBOL(pci_enable_device_mem);
3606 EXPORT_SYMBOL(pci_enable_device);
3607 EXPORT_SYMBOL(pcim_enable_device);
3608 EXPORT_SYMBOL(pcim_pin_device);
3609 EXPORT_SYMBOL(pci_disable_device);
3610 EXPORT_SYMBOL(pci_find_capability);
3611 EXPORT_SYMBOL(pci_bus_find_capability);
3612 EXPORT_SYMBOL(pci_release_regions);
3613 EXPORT_SYMBOL(pci_request_regions);
3614 EXPORT_SYMBOL(pci_request_regions_exclusive);
3615 EXPORT_SYMBOL(pci_release_region);
3616 EXPORT_SYMBOL(pci_request_region);
3617 EXPORT_SYMBOL(pci_request_region_exclusive);
3618 EXPORT_SYMBOL(pci_release_selected_regions);
3619 EXPORT_SYMBOL(pci_request_selected_regions);
3620 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3621 EXPORT_SYMBOL(pci_set_master);
3622 EXPORT_SYMBOL(pci_clear_master);
3623 EXPORT_SYMBOL(pci_set_mwi);
3624 EXPORT_SYMBOL(pci_try_set_mwi);
3625 EXPORT_SYMBOL(pci_clear_mwi);
3626 EXPORT_SYMBOL_GPL(pci_intx);
3627 EXPORT_SYMBOL(pci_assign_resource);
3628 EXPORT_SYMBOL(pci_find_parent_resource);
3629 EXPORT_SYMBOL(pci_select_bars);
3630 
3631 EXPORT_SYMBOL(pci_set_power_state);
3632 EXPORT_SYMBOL(pci_save_state);
3633 EXPORT_SYMBOL(pci_restore_state);
3634 EXPORT_SYMBOL(pci_pme_capable);
3635 EXPORT_SYMBOL(pci_pme_active);
3636 EXPORT_SYMBOL(pci_wake_from_d3);
3637 EXPORT_SYMBOL(pci_target_state);
3638 EXPORT_SYMBOL(pci_prepare_to_sleep);
3639 EXPORT_SYMBOL(pci_back_from_sleep);
3640 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3641