xref: /linux/drivers/pci/pci.c (revision f220d3ebba8343dcbd8c83e4bb4fa6fbcfc616c6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48 
49 unsigned int pci_pm_d3_delay;
50 
51 static void pci_pme_list_scan(struct work_struct *work);
52 
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56 
57 struct pci_pme_device {
58 	struct list_head list;
59 	struct pci_dev *dev;
60 };
61 
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63 
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 	unsigned int delay = dev->d3_delay;
67 
68 	if (delay < pci_pm_d3_delay)
69 		delay = pci_pm_d3_delay;
70 
71 	if (delay)
72 		msleep(delay);
73 }
74 
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78 
79 #define DEFAULT_CARDBUS_IO_SIZE		(256)
80 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84 
85 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
86 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
87 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
88 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
89 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
90 
91 #define DEFAULT_HOTPLUG_BUS_SIZE	1
92 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
93 
94 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
95 
96 /*
97  * The default CLS is used if arch didn't set CLS explicitly and not
98  * all pci devices agree on the same value.  Arch can override either
99  * the dfl or actual value as it sees fit.  Don't forget this is
100  * measured in 32-bit words, not bytes.
101  */
102 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
103 u8 pci_cache_line_size;
104 
105 /*
106  * If we set up a device for bus mastering, we need to check the latency
107  * timer as certain BIOSes forget to set it properly.
108  */
109 unsigned int pcibios_max_latency = 255;
110 
111 /* If set, the PCIe ARI capability will not be used. */
112 static bool pcie_ari_disabled;
113 
114 /* If set, the PCIe ATS capability will not be used. */
115 static bool pcie_ats_disabled;
116 
117 /* If set, the PCI config space of each device is printed during boot. */
118 bool pci_early_dump;
119 
120 bool pci_ats_disabled(void)
121 {
122 	return pcie_ats_disabled;
123 }
124 
125 /* Disable bridge_d3 for all PCIe ports */
126 static bool pci_bridge_d3_disable;
127 /* Force bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_force;
129 
130 static int __init pcie_port_pm_setup(char *str)
131 {
132 	if (!strcmp(str, "off"))
133 		pci_bridge_d3_disable = true;
134 	else if (!strcmp(str, "force"))
135 		pci_bridge_d3_force = true;
136 	return 1;
137 }
138 __setup("pcie_port_pm=", pcie_port_pm_setup);
139 
140 /* Time to wait after a reset for device to become responsive */
141 #define PCIE_RESET_READY_POLL_MS 60000
142 
143 /**
144  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
145  * @bus: pointer to PCI bus structure to search
146  *
147  * Given a PCI bus, returns the highest PCI bus number present in the set
148  * including the given PCI bus and its list of child PCI buses.
149  */
150 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
151 {
152 	struct pci_bus *tmp;
153 	unsigned char max, n;
154 
155 	max = bus->busn_res.end;
156 	list_for_each_entry(tmp, &bus->children, node) {
157 		n = pci_bus_max_busnr(tmp);
158 		if (n > max)
159 			max = n;
160 	}
161 	return max;
162 }
163 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
164 
165 #ifdef CONFIG_HAS_IOMEM
166 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
167 {
168 	struct resource *res = &pdev->resource[bar];
169 
170 	/*
171 	 * Make sure the BAR is actually a memory resource, not an IO resource
172 	 */
173 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
174 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
175 		return NULL;
176 	}
177 	return ioremap_nocache(res->start, resource_size(res));
178 }
179 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
180 
181 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
182 {
183 	/*
184 	 * Make sure the BAR is actually a memory resource, not an IO resource
185 	 */
186 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
187 		WARN_ON(1);
188 		return NULL;
189 	}
190 	return ioremap_wc(pci_resource_start(pdev, bar),
191 			  pci_resource_len(pdev, bar));
192 }
193 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
194 #endif
195 
196 /**
197  * pci_dev_str_match_path - test if a path string matches a device
198  * @dev:    the PCI device to test
199  * @p:      string to match the device against
200  * @endptr: pointer to the string after the match
201  *
202  * Test if a string (typically from a kernel parameter) formatted as a
203  * path of device/function addresses matches a PCI device. The string must
204  * be of the form:
205  *
206  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
207  *
208  * A path for a device can be obtained using 'lspci -t'.  Using a path
209  * is more robust against bus renumbering than using only a single bus,
210  * device and function address.
211  *
212  * Returns 1 if the string matches the device, 0 if it does not and
213  * a negative error code if it fails to parse the string.
214  */
215 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
216 				  const char **endptr)
217 {
218 	int ret;
219 	int seg, bus, slot, func;
220 	char *wpath, *p;
221 	char end;
222 
223 	*endptr = strchrnul(path, ';');
224 
225 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
226 	if (!wpath)
227 		return -ENOMEM;
228 
229 	while (1) {
230 		p = strrchr(wpath, '/');
231 		if (!p)
232 			break;
233 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
234 		if (ret != 2) {
235 			ret = -EINVAL;
236 			goto free_and_exit;
237 		}
238 
239 		if (dev->devfn != PCI_DEVFN(slot, func)) {
240 			ret = 0;
241 			goto free_and_exit;
242 		}
243 
244 		/*
245 		 * Note: we don't need to get a reference to the upstream
246 		 * bridge because we hold a reference to the top level
247 		 * device which should hold a reference to the bridge,
248 		 * and so on.
249 		 */
250 		dev = pci_upstream_bridge(dev);
251 		if (!dev) {
252 			ret = 0;
253 			goto free_and_exit;
254 		}
255 
256 		*p = 0;
257 	}
258 
259 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
260 		     &func, &end);
261 	if (ret != 4) {
262 		seg = 0;
263 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
264 		if (ret != 3) {
265 			ret = -EINVAL;
266 			goto free_and_exit;
267 		}
268 	}
269 
270 	ret = (seg == pci_domain_nr(dev->bus) &&
271 	       bus == dev->bus->number &&
272 	       dev->devfn == PCI_DEVFN(slot, func));
273 
274 free_and_exit:
275 	kfree(wpath);
276 	return ret;
277 }
278 
279 /**
280  * pci_dev_str_match - test if a string matches a device
281  * @dev:    the PCI device to test
282  * @p:      string to match the device against
283  * @endptr: pointer to the string after the match
284  *
285  * Test if a string (typically from a kernel parameter) matches a specified
286  * PCI device. The string may be of one of the following formats:
287  *
288  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
289  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
290  *
291  * The first format specifies a PCI bus/device/function address which
292  * may change if new hardware is inserted, if motherboard firmware changes,
293  * or due to changes caused in kernel parameters. If the domain is
294  * left unspecified, it is taken to be 0.  In order to be robust against
295  * bus renumbering issues, a path of PCI device/function numbers may be used
296  * to address the specific device.  The path for a device can be determined
297  * through the use of 'lspci -t'.
298  *
299  * The second format matches devices using IDs in the configuration
300  * space which may match multiple devices in the system. A value of 0
301  * for any field will match all devices. (Note: this differs from
302  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
303  * legacy reasons and convenience so users don't have to specify
304  * FFFFFFFFs on the command line.)
305  *
306  * Returns 1 if the string matches the device, 0 if it does not and
307  * a negative error code if the string cannot be parsed.
308  */
309 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
310 			     const char **endptr)
311 {
312 	int ret;
313 	int count;
314 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
315 
316 	if (strncmp(p, "pci:", 4) == 0) {
317 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
318 		p += 4;
319 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
320 			     &subsystem_vendor, &subsystem_device, &count);
321 		if (ret != 4) {
322 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
323 			if (ret != 2)
324 				return -EINVAL;
325 
326 			subsystem_vendor = 0;
327 			subsystem_device = 0;
328 		}
329 
330 		p += count;
331 
332 		if ((!vendor || vendor == dev->vendor) &&
333 		    (!device || device == dev->device) &&
334 		    (!subsystem_vendor ||
335 			    subsystem_vendor == dev->subsystem_vendor) &&
336 		    (!subsystem_device ||
337 			    subsystem_device == dev->subsystem_device))
338 			goto found;
339 	} else {
340 		/*
341 		 * PCI Bus, Device, Function IDs are specified
342 		 *  (optionally, may include a path of devfns following it)
343 		 */
344 		ret = pci_dev_str_match_path(dev, p, &p);
345 		if (ret < 0)
346 			return ret;
347 		else if (ret)
348 			goto found;
349 	}
350 
351 	*endptr = p;
352 	return 0;
353 
354 found:
355 	*endptr = p;
356 	return 1;
357 }
358 
359 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
360 				   u8 pos, int cap, int *ttl)
361 {
362 	u8 id;
363 	u16 ent;
364 
365 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
366 
367 	while ((*ttl)--) {
368 		if (pos < 0x40)
369 			break;
370 		pos &= ~3;
371 		pci_bus_read_config_word(bus, devfn, pos, &ent);
372 
373 		id = ent & 0xff;
374 		if (id == 0xff)
375 			break;
376 		if (id == cap)
377 			return pos;
378 		pos = (ent >> 8);
379 	}
380 	return 0;
381 }
382 
383 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
384 			       u8 pos, int cap)
385 {
386 	int ttl = PCI_FIND_CAP_TTL;
387 
388 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
389 }
390 
391 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
392 {
393 	return __pci_find_next_cap(dev->bus, dev->devfn,
394 				   pos + PCI_CAP_LIST_NEXT, cap);
395 }
396 EXPORT_SYMBOL_GPL(pci_find_next_capability);
397 
398 static int __pci_bus_find_cap_start(struct pci_bus *bus,
399 				    unsigned int devfn, u8 hdr_type)
400 {
401 	u16 status;
402 
403 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
404 	if (!(status & PCI_STATUS_CAP_LIST))
405 		return 0;
406 
407 	switch (hdr_type) {
408 	case PCI_HEADER_TYPE_NORMAL:
409 	case PCI_HEADER_TYPE_BRIDGE:
410 		return PCI_CAPABILITY_LIST;
411 	case PCI_HEADER_TYPE_CARDBUS:
412 		return PCI_CB_CAPABILITY_LIST;
413 	}
414 
415 	return 0;
416 }
417 
418 /**
419  * pci_find_capability - query for devices' capabilities
420  * @dev: PCI device to query
421  * @cap: capability code
422  *
423  * Tell if a device supports a given PCI capability.
424  * Returns the address of the requested capability structure within the
425  * device's PCI configuration space or 0 in case the device does not
426  * support it.  Possible values for @cap:
427  *
428  *  %PCI_CAP_ID_PM           Power Management
429  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
430  *  %PCI_CAP_ID_VPD          Vital Product Data
431  *  %PCI_CAP_ID_SLOTID       Slot Identification
432  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
433  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
434  *  %PCI_CAP_ID_PCIX         PCI-X
435  *  %PCI_CAP_ID_EXP          PCI Express
436  */
437 int pci_find_capability(struct pci_dev *dev, int cap)
438 {
439 	int pos;
440 
441 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
442 	if (pos)
443 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
444 
445 	return pos;
446 }
447 EXPORT_SYMBOL(pci_find_capability);
448 
449 /**
450  * pci_bus_find_capability - query for devices' capabilities
451  * @bus:   the PCI bus to query
452  * @devfn: PCI device to query
453  * @cap:   capability code
454  *
455  * Like pci_find_capability() but works for pci devices that do not have a
456  * pci_dev structure set up yet.
457  *
458  * Returns the address of the requested capability structure within the
459  * device's PCI configuration space or 0 in case the device does not
460  * support it.
461  */
462 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
463 {
464 	int pos;
465 	u8 hdr_type;
466 
467 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
468 
469 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
470 	if (pos)
471 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
472 
473 	return pos;
474 }
475 EXPORT_SYMBOL(pci_bus_find_capability);
476 
477 /**
478  * pci_find_next_ext_capability - Find an extended capability
479  * @dev: PCI device to query
480  * @start: address at which to start looking (0 to start at beginning of list)
481  * @cap: capability code
482  *
483  * Returns the address of the next matching extended capability structure
484  * within the device's PCI configuration space or 0 if the device does
485  * not support it.  Some capabilities can occur several times, e.g., the
486  * vendor-specific capability, and this provides a way to find them all.
487  */
488 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
489 {
490 	u32 header;
491 	int ttl;
492 	int pos = PCI_CFG_SPACE_SIZE;
493 
494 	/* minimum 8 bytes per capability */
495 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
496 
497 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
498 		return 0;
499 
500 	if (start)
501 		pos = start;
502 
503 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
504 		return 0;
505 
506 	/*
507 	 * If we have no capabilities, this is indicated by cap ID,
508 	 * cap version and next pointer all being 0.
509 	 */
510 	if (header == 0)
511 		return 0;
512 
513 	while (ttl-- > 0) {
514 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
515 			return pos;
516 
517 		pos = PCI_EXT_CAP_NEXT(header);
518 		if (pos < PCI_CFG_SPACE_SIZE)
519 			break;
520 
521 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
522 			break;
523 	}
524 
525 	return 0;
526 }
527 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
528 
529 /**
530  * pci_find_ext_capability - Find an extended capability
531  * @dev: PCI device to query
532  * @cap: capability code
533  *
534  * Returns the address of the requested extended capability structure
535  * within the device's PCI configuration space or 0 if the device does
536  * not support it.  Possible values for @cap:
537  *
538  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
539  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
540  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
541  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
542  */
543 int pci_find_ext_capability(struct pci_dev *dev, int cap)
544 {
545 	return pci_find_next_ext_capability(dev, 0, cap);
546 }
547 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
548 
549 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
550 {
551 	int rc, ttl = PCI_FIND_CAP_TTL;
552 	u8 cap, mask;
553 
554 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
555 		mask = HT_3BIT_CAP_MASK;
556 	else
557 		mask = HT_5BIT_CAP_MASK;
558 
559 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
560 				      PCI_CAP_ID_HT, &ttl);
561 	while (pos) {
562 		rc = pci_read_config_byte(dev, pos + 3, &cap);
563 		if (rc != PCIBIOS_SUCCESSFUL)
564 			return 0;
565 
566 		if ((cap & mask) == ht_cap)
567 			return pos;
568 
569 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
570 					      pos + PCI_CAP_LIST_NEXT,
571 					      PCI_CAP_ID_HT, &ttl);
572 	}
573 
574 	return 0;
575 }
576 /**
577  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
578  * @dev: PCI device to query
579  * @pos: Position from which to continue searching
580  * @ht_cap: Hypertransport capability code
581  *
582  * To be used in conjunction with pci_find_ht_capability() to search for
583  * all capabilities matching @ht_cap. @pos should always be a value returned
584  * from pci_find_ht_capability().
585  *
586  * NB. To be 100% safe against broken PCI devices, the caller should take
587  * steps to avoid an infinite loop.
588  */
589 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
590 {
591 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
592 }
593 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
594 
595 /**
596  * pci_find_ht_capability - query a device's Hypertransport capabilities
597  * @dev: PCI device to query
598  * @ht_cap: Hypertransport capability code
599  *
600  * Tell if a device supports a given Hypertransport capability.
601  * Returns an address within the device's PCI configuration space
602  * or 0 in case the device does not support the request capability.
603  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
604  * which has a Hypertransport capability matching @ht_cap.
605  */
606 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
607 {
608 	int pos;
609 
610 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
611 	if (pos)
612 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
613 
614 	return pos;
615 }
616 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
617 
618 /**
619  * pci_find_parent_resource - return resource region of parent bus of given region
620  * @dev: PCI device structure contains resources to be searched
621  * @res: child resource record for which parent is sought
622  *
623  *  For given resource region of given device, return the resource
624  *  region of parent bus the given region is contained in.
625  */
626 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
627 					  struct resource *res)
628 {
629 	const struct pci_bus *bus = dev->bus;
630 	struct resource *r;
631 	int i;
632 
633 	pci_bus_for_each_resource(bus, r, i) {
634 		if (!r)
635 			continue;
636 		if (resource_contains(r, res)) {
637 
638 			/*
639 			 * If the window is prefetchable but the BAR is
640 			 * not, the allocator made a mistake.
641 			 */
642 			if (r->flags & IORESOURCE_PREFETCH &&
643 			    !(res->flags & IORESOURCE_PREFETCH))
644 				return NULL;
645 
646 			/*
647 			 * If we're below a transparent bridge, there may
648 			 * be both a positively-decoded aperture and a
649 			 * subtractively-decoded region that contain the BAR.
650 			 * We want the positively-decoded one, so this depends
651 			 * on pci_bus_for_each_resource() giving us those
652 			 * first.
653 			 */
654 			return r;
655 		}
656 	}
657 	return NULL;
658 }
659 EXPORT_SYMBOL(pci_find_parent_resource);
660 
661 /**
662  * pci_find_resource - Return matching PCI device resource
663  * @dev: PCI device to query
664  * @res: Resource to look for
665  *
666  * Goes over standard PCI resources (BARs) and checks if the given resource
667  * is partially or fully contained in any of them. In that case the
668  * matching resource is returned, %NULL otherwise.
669  */
670 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
671 {
672 	int i;
673 
674 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
675 		struct resource *r = &dev->resource[i];
676 
677 		if (r->start && resource_contains(r, res))
678 			return r;
679 	}
680 
681 	return NULL;
682 }
683 EXPORT_SYMBOL(pci_find_resource);
684 
685 /**
686  * pci_find_pcie_root_port - return PCIe Root Port
687  * @dev: PCI device to query
688  *
689  * Traverse up the parent chain and return the PCIe Root Port PCI Device
690  * for a given PCI Device.
691  */
692 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
693 {
694 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
695 
696 	bridge = pci_upstream_bridge(dev);
697 	while (bridge && pci_is_pcie(bridge)) {
698 		highest_pcie_bridge = bridge;
699 		bridge = pci_upstream_bridge(bridge);
700 	}
701 
702 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
703 		return NULL;
704 
705 	return highest_pcie_bridge;
706 }
707 EXPORT_SYMBOL(pci_find_pcie_root_port);
708 
709 /**
710  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
711  * @dev: the PCI device to operate on
712  * @pos: config space offset of status word
713  * @mask: mask of bit(s) to care about in status word
714  *
715  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
716  */
717 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
718 {
719 	int i;
720 
721 	/* Wait for Transaction Pending bit clean */
722 	for (i = 0; i < 4; i++) {
723 		u16 status;
724 		if (i)
725 			msleep((1 << (i - 1)) * 100);
726 
727 		pci_read_config_word(dev, pos, &status);
728 		if (!(status & mask))
729 			return 1;
730 	}
731 
732 	return 0;
733 }
734 
735 /**
736  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
737  * @dev: PCI device to have its BARs restored
738  *
739  * Restore the BAR values for a given device, so as to make it
740  * accessible by its driver.
741  */
742 static void pci_restore_bars(struct pci_dev *dev)
743 {
744 	int i;
745 
746 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
747 		pci_update_resource(dev, i);
748 }
749 
750 static const struct pci_platform_pm_ops *pci_platform_pm;
751 
752 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
753 {
754 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
755 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
756 		return -EINVAL;
757 	pci_platform_pm = ops;
758 	return 0;
759 }
760 
761 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
762 {
763 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
764 }
765 
766 static inline int platform_pci_set_power_state(struct pci_dev *dev,
767 					       pci_power_t t)
768 {
769 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
770 }
771 
772 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
773 {
774 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
775 }
776 
777 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
778 {
779 	return pci_platform_pm ?
780 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
781 }
782 
783 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
784 {
785 	return pci_platform_pm ?
786 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
787 }
788 
789 static inline bool platform_pci_need_resume(struct pci_dev *dev)
790 {
791 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
792 }
793 
794 /**
795  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
796  *                           given PCI device
797  * @dev: PCI device to handle.
798  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
799  *
800  * RETURN VALUE:
801  * -EINVAL if the requested state is invalid.
802  * -EIO if device does not support PCI PM or its PM capabilities register has a
803  * wrong version, or device doesn't support the requested state.
804  * 0 if device already is in the requested state.
805  * 0 if device's power state has been successfully changed.
806  */
807 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
808 {
809 	u16 pmcsr;
810 	bool need_restore = false;
811 
812 	/* Check if we're already there */
813 	if (dev->current_state == state)
814 		return 0;
815 
816 	if (!dev->pm_cap)
817 		return -EIO;
818 
819 	if (state < PCI_D0 || state > PCI_D3hot)
820 		return -EINVAL;
821 
822 	/* Validate current state:
823 	 * Can enter D0 from any state, but if we can only go deeper
824 	 * to sleep if we're already in a low power state
825 	 */
826 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
827 	    && dev->current_state > state) {
828 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
829 			dev->current_state, state);
830 		return -EINVAL;
831 	}
832 
833 	/* check if this device supports the desired state */
834 	if ((state == PCI_D1 && !dev->d1_support)
835 	   || (state == PCI_D2 && !dev->d2_support))
836 		return -EIO;
837 
838 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
839 
840 	/* If we're (effectively) in D3, force entire word to 0.
841 	 * This doesn't affect PME_Status, disables PME_En, and
842 	 * sets PowerState to 0.
843 	 */
844 	switch (dev->current_state) {
845 	case PCI_D0:
846 	case PCI_D1:
847 	case PCI_D2:
848 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
849 		pmcsr |= state;
850 		break;
851 	case PCI_D3hot:
852 	case PCI_D3cold:
853 	case PCI_UNKNOWN: /* Boot-up */
854 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
855 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
856 			need_restore = true;
857 		/* Fall-through: force to D0 */
858 	default:
859 		pmcsr = 0;
860 		break;
861 	}
862 
863 	/* enter specified state */
864 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
865 
866 	/* Mandatory power management transition delays */
867 	/* see PCI PM 1.1 5.6.1 table 18 */
868 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
869 		pci_dev_d3_sleep(dev);
870 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
871 		udelay(PCI_PM_D2_DELAY);
872 
873 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
874 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
875 	if (dev->current_state != state && printk_ratelimit())
876 		pci_info(dev, "Refused to change power state, currently in D%d\n",
877 			 dev->current_state);
878 
879 	/*
880 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
881 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
882 	 * from D3hot to D0 _may_ perform an internal reset, thereby
883 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
884 	 * For example, at least some versions of the 3c905B and the
885 	 * 3c556B exhibit this behaviour.
886 	 *
887 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
888 	 * devices in a D3hot state at boot.  Consequently, we need to
889 	 * restore at least the BARs so that the device will be
890 	 * accessible to its driver.
891 	 */
892 	if (need_restore)
893 		pci_restore_bars(dev);
894 
895 	if (dev->bus->self)
896 		pcie_aspm_pm_state_change(dev->bus->self);
897 
898 	return 0;
899 }
900 
901 /**
902  * pci_update_current_state - Read power state of given device and cache it
903  * @dev: PCI device to handle.
904  * @state: State to cache in case the device doesn't have the PM capability
905  *
906  * The power state is read from the PMCSR register, which however is
907  * inaccessible in D3cold.  The platform firmware is therefore queried first
908  * to detect accessibility of the register.  In case the platform firmware
909  * reports an incorrect state or the device isn't power manageable by the
910  * platform at all, we try to detect D3cold by testing accessibility of the
911  * vendor ID in config space.
912  */
913 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
914 {
915 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
916 	    !pci_device_is_present(dev)) {
917 		dev->current_state = PCI_D3cold;
918 	} else if (dev->pm_cap) {
919 		u16 pmcsr;
920 
921 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
922 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
923 	} else {
924 		dev->current_state = state;
925 	}
926 }
927 
928 /**
929  * pci_power_up - Put the given device into D0 forcibly
930  * @dev: PCI device to power up
931  */
932 void pci_power_up(struct pci_dev *dev)
933 {
934 	if (platform_pci_power_manageable(dev))
935 		platform_pci_set_power_state(dev, PCI_D0);
936 
937 	pci_raw_set_power_state(dev, PCI_D0);
938 	pci_update_current_state(dev, PCI_D0);
939 }
940 
941 /**
942  * pci_platform_power_transition - Use platform to change device power state
943  * @dev: PCI device to handle.
944  * @state: State to put the device into.
945  */
946 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
947 {
948 	int error;
949 
950 	if (platform_pci_power_manageable(dev)) {
951 		error = platform_pci_set_power_state(dev, state);
952 		if (!error)
953 			pci_update_current_state(dev, state);
954 	} else
955 		error = -ENODEV;
956 
957 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
958 		dev->current_state = PCI_D0;
959 
960 	return error;
961 }
962 
963 /**
964  * pci_wakeup - Wake up a PCI device
965  * @pci_dev: Device to handle.
966  * @ign: ignored parameter
967  */
968 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
969 {
970 	pci_wakeup_event(pci_dev);
971 	pm_request_resume(&pci_dev->dev);
972 	return 0;
973 }
974 
975 /**
976  * pci_wakeup_bus - Walk given bus and wake up devices on it
977  * @bus: Top bus of the subtree to walk.
978  */
979 void pci_wakeup_bus(struct pci_bus *bus)
980 {
981 	if (bus)
982 		pci_walk_bus(bus, pci_wakeup, NULL);
983 }
984 
985 /**
986  * __pci_start_power_transition - Start power transition of a PCI device
987  * @dev: PCI device to handle.
988  * @state: State to put the device into.
989  */
990 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
991 {
992 	if (state == PCI_D0) {
993 		pci_platform_power_transition(dev, PCI_D0);
994 		/*
995 		 * Mandatory power management transition delays, see
996 		 * PCI Express Base Specification Revision 2.0 Section
997 		 * 6.6.1: Conventional Reset.  Do not delay for
998 		 * devices powered on/off by corresponding bridge,
999 		 * because have already delayed for the bridge.
1000 		 */
1001 		if (dev->runtime_d3cold) {
1002 			if (dev->d3cold_delay)
1003 				msleep(dev->d3cold_delay);
1004 			/*
1005 			 * When powering on a bridge from D3cold, the
1006 			 * whole hierarchy may be powered on into
1007 			 * D0uninitialized state, resume them to give
1008 			 * them a chance to suspend again
1009 			 */
1010 			pci_wakeup_bus(dev->subordinate);
1011 		}
1012 	}
1013 }
1014 
1015 /**
1016  * __pci_dev_set_current_state - Set current state of a PCI device
1017  * @dev: Device to handle
1018  * @data: pointer to state to be set
1019  */
1020 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1021 {
1022 	pci_power_t state = *(pci_power_t *)data;
1023 
1024 	dev->current_state = state;
1025 	return 0;
1026 }
1027 
1028 /**
1029  * pci_bus_set_current_state - Walk given bus and set current state of devices
1030  * @bus: Top bus of the subtree to walk.
1031  * @state: state to be set
1032  */
1033 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1034 {
1035 	if (bus)
1036 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1037 }
1038 
1039 /**
1040  * __pci_complete_power_transition - Complete power transition of a PCI device
1041  * @dev: PCI device to handle.
1042  * @state: State to put the device into.
1043  *
1044  * This function should not be called directly by device drivers.
1045  */
1046 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1047 {
1048 	int ret;
1049 
1050 	if (state <= PCI_D0)
1051 		return -EINVAL;
1052 	ret = pci_platform_power_transition(dev, state);
1053 	/* Power off the bridge may power off the whole hierarchy */
1054 	if (!ret && state == PCI_D3cold)
1055 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1056 	return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1059 
1060 /**
1061  * pci_set_power_state - Set the power state of a PCI device
1062  * @dev: PCI device to handle.
1063  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1064  *
1065  * Transition a device to a new power state, using the platform firmware and/or
1066  * the device's PCI PM registers.
1067  *
1068  * RETURN VALUE:
1069  * -EINVAL if the requested state is invalid.
1070  * -EIO if device does not support PCI PM or its PM capabilities register has a
1071  * wrong version, or device doesn't support the requested state.
1072  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1073  * 0 if device already is in the requested state.
1074  * 0 if the transition is to D3 but D3 is not supported.
1075  * 0 if device's power state has been successfully changed.
1076  */
1077 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1078 {
1079 	int error;
1080 
1081 	/* bound the state we're entering */
1082 	if (state > PCI_D3cold)
1083 		state = PCI_D3cold;
1084 	else if (state < PCI_D0)
1085 		state = PCI_D0;
1086 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1087 		/*
1088 		 * If the device or the parent bridge do not support PCI PM,
1089 		 * ignore the request if we're doing anything other than putting
1090 		 * it into D0 (which would only happen on boot).
1091 		 */
1092 		return 0;
1093 
1094 	/* Check if we're already there */
1095 	if (dev->current_state == state)
1096 		return 0;
1097 
1098 	__pci_start_power_transition(dev, state);
1099 
1100 	/* This device is quirked not to be put into D3, so
1101 	   don't put it in D3 */
1102 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1103 		return 0;
1104 
1105 	/*
1106 	 * To put device in D3cold, we put device into D3hot in native
1107 	 * way, then put device into D3cold with platform ops
1108 	 */
1109 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1110 					PCI_D3hot : state);
1111 
1112 	if (!__pci_complete_power_transition(dev, state))
1113 		error = 0;
1114 
1115 	return error;
1116 }
1117 EXPORT_SYMBOL(pci_set_power_state);
1118 
1119 /**
1120  * pci_choose_state - Choose the power state of a PCI device
1121  * @dev: PCI device to be suspended
1122  * @state: target sleep state for the whole system. This is the value
1123  *	that is passed to suspend() function.
1124  *
1125  * Returns PCI power state suitable for given device and given system
1126  * message.
1127  */
1128 
1129 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1130 {
1131 	pci_power_t ret;
1132 
1133 	if (!dev->pm_cap)
1134 		return PCI_D0;
1135 
1136 	ret = platform_pci_choose_state(dev);
1137 	if (ret != PCI_POWER_ERROR)
1138 		return ret;
1139 
1140 	switch (state.event) {
1141 	case PM_EVENT_ON:
1142 		return PCI_D0;
1143 	case PM_EVENT_FREEZE:
1144 	case PM_EVENT_PRETHAW:
1145 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1146 	case PM_EVENT_SUSPEND:
1147 	case PM_EVENT_HIBERNATE:
1148 		return PCI_D3hot;
1149 	default:
1150 		pci_info(dev, "unrecognized suspend event %d\n",
1151 			 state.event);
1152 		BUG();
1153 	}
1154 	return PCI_D0;
1155 }
1156 EXPORT_SYMBOL(pci_choose_state);
1157 
1158 #define PCI_EXP_SAVE_REGS	7
1159 
1160 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1161 						       u16 cap, bool extended)
1162 {
1163 	struct pci_cap_saved_state *tmp;
1164 
1165 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1166 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1167 			return tmp;
1168 	}
1169 	return NULL;
1170 }
1171 
1172 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1173 {
1174 	return _pci_find_saved_cap(dev, cap, false);
1175 }
1176 
1177 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1178 {
1179 	return _pci_find_saved_cap(dev, cap, true);
1180 }
1181 
1182 static int pci_save_pcie_state(struct pci_dev *dev)
1183 {
1184 	int i = 0;
1185 	struct pci_cap_saved_state *save_state;
1186 	u16 *cap;
1187 
1188 	if (!pci_is_pcie(dev))
1189 		return 0;
1190 
1191 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1192 	if (!save_state) {
1193 		pci_err(dev, "buffer not found in %s\n", __func__);
1194 		return -ENOMEM;
1195 	}
1196 
1197 	cap = (u16 *)&save_state->cap.data[0];
1198 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1199 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1200 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1201 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1202 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1203 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1204 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1205 
1206 	return 0;
1207 }
1208 
1209 static void pci_restore_pcie_state(struct pci_dev *dev)
1210 {
1211 	int i = 0;
1212 	struct pci_cap_saved_state *save_state;
1213 	u16 *cap;
1214 
1215 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1216 	if (!save_state)
1217 		return;
1218 
1219 	cap = (u16 *)&save_state->cap.data[0];
1220 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1221 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1222 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1223 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1224 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1225 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1226 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1227 }
1228 
1229 
1230 static int pci_save_pcix_state(struct pci_dev *dev)
1231 {
1232 	int pos;
1233 	struct pci_cap_saved_state *save_state;
1234 
1235 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1236 	if (!pos)
1237 		return 0;
1238 
1239 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1240 	if (!save_state) {
1241 		pci_err(dev, "buffer not found in %s\n", __func__);
1242 		return -ENOMEM;
1243 	}
1244 
1245 	pci_read_config_word(dev, pos + PCI_X_CMD,
1246 			     (u16 *)save_state->cap.data);
1247 
1248 	return 0;
1249 }
1250 
1251 static void pci_restore_pcix_state(struct pci_dev *dev)
1252 {
1253 	int i = 0, pos;
1254 	struct pci_cap_saved_state *save_state;
1255 	u16 *cap;
1256 
1257 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1258 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1259 	if (!save_state || !pos)
1260 		return;
1261 	cap = (u16 *)&save_state->cap.data[0];
1262 
1263 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1264 }
1265 
1266 
1267 /**
1268  * pci_save_state - save the PCI configuration space of a device before suspending
1269  * @dev: - PCI device that we're dealing with
1270  */
1271 int pci_save_state(struct pci_dev *dev)
1272 {
1273 	int i;
1274 	/* XXX: 100% dword access ok here? */
1275 	for (i = 0; i < 16; i++)
1276 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1277 	dev->state_saved = true;
1278 
1279 	i = pci_save_pcie_state(dev);
1280 	if (i != 0)
1281 		return i;
1282 
1283 	i = pci_save_pcix_state(dev);
1284 	if (i != 0)
1285 		return i;
1286 
1287 	return pci_save_vc_state(dev);
1288 }
1289 EXPORT_SYMBOL(pci_save_state);
1290 
1291 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1292 				     u32 saved_val, int retry)
1293 {
1294 	u32 val;
1295 
1296 	pci_read_config_dword(pdev, offset, &val);
1297 	if (val == saved_val)
1298 		return;
1299 
1300 	for (;;) {
1301 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1302 			offset, val, saved_val);
1303 		pci_write_config_dword(pdev, offset, saved_val);
1304 		if (retry-- <= 0)
1305 			return;
1306 
1307 		pci_read_config_dword(pdev, offset, &val);
1308 		if (val == saved_val)
1309 			return;
1310 
1311 		mdelay(1);
1312 	}
1313 }
1314 
1315 static void pci_restore_config_space_range(struct pci_dev *pdev,
1316 					   int start, int end, int retry)
1317 {
1318 	int index;
1319 
1320 	for (index = end; index >= start; index--)
1321 		pci_restore_config_dword(pdev, 4 * index,
1322 					 pdev->saved_config_space[index],
1323 					 retry);
1324 }
1325 
1326 static void pci_restore_config_space(struct pci_dev *pdev)
1327 {
1328 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1329 		pci_restore_config_space_range(pdev, 10, 15, 0);
1330 		/* Restore BARs before the command register. */
1331 		pci_restore_config_space_range(pdev, 4, 9, 10);
1332 		pci_restore_config_space_range(pdev, 0, 3, 0);
1333 	} else {
1334 		pci_restore_config_space_range(pdev, 0, 15, 0);
1335 	}
1336 }
1337 
1338 static void pci_restore_rebar_state(struct pci_dev *pdev)
1339 {
1340 	unsigned int pos, nbars, i;
1341 	u32 ctrl;
1342 
1343 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1344 	if (!pos)
1345 		return;
1346 
1347 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1348 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1349 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1350 
1351 	for (i = 0; i < nbars; i++, pos += 8) {
1352 		struct resource *res;
1353 		int bar_idx, size;
1354 
1355 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1356 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1357 		res = pdev->resource + bar_idx;
1358 		size = order_base_2((resource_size(res) >> 20) | 1) - 1;
1359 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1360 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1361 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1362 	}
1363 }
1364 
1365 /**
1366  * pci_restore_state - Restore the saved state of a PCI device
1367  * @dev: - PCI device that we're dealing with
1368  */
1369 void pci_restore_state(struct pci_dev *dev)
1370 {
1371 	if (!dev->state_saved)
1372 		return;
1373 
1374 	/* PCI Express register must be restored first */
1375 	pci_restore_pcie_state(dev);
1376 	pci_restore_pasid_state(dev);
1377 	pci_restore_pri_state(dev);
1378 	pci_restore_ats_state(dev);
1379 	pci_restore_vc_state(dev);
1380 	pci_restore_rebar_state(dev);
1381 
1382 	pci_cleanup_aer_error_status_regs(dev);
1383 
1384 	pci_restore_config_space(dev);
1385 
1386 	pci_restore_pcix_state(dev);
1387 	pci_restore_msi_state(dev);
1388 
1389 	/* Restore ACS and IOV configuration state */
1390 	pci_enable_acs(dev);
1391 	pci_restore_iov_state(dev);
1392 
1393 	dev->state_saved = false;
1394 }
1395 EXPORT_SYMBOL(pci_restore_state);
1396 
1397 struct pci_saved_state {
1398 	u32 config_space[16];
1399 	struct pci_cap_saved_data cap[0];
1400 };
1401 
1402 /**
1403  * pci_store_saved_state - Allocate and return an opaque struct containing
1404  *			   the device saved state.
1405  * @dev: PCI device that we're dealing with
1406  *
1407  * Return NULL if no state or error.
1408  */
1409 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1410 {
1411 	struct pci_saved_state *state;
1412 	struct pci_cap_saved_state *tmp;
1413 	struct pci_cap_saved_data *cap;
1414 	size_t size;
1415 
1416 	if (!dev->state_saved)
1417 		return NULL;
1418 
1419 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1420 
1421 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1422 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1423 
1424 	state = kzalloc(size, GFP_KERNEL);
1425 	if (!state)
1426 		return NULL;
1427 
1428 	memcpy(state->config_space, dev->saved_config_space,
1429 	       sizeof(state->config_space));
1430 
1431 	cap = state->cap;
1432 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1433 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1434 		memcpy(cap, &tmp->cap, len);
1435 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1436 	}
1437 	/* Empty cap_save terminates list */
1438 
1439 	return state;
1440 }
1441 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1442 
1443 /**
1444  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1445  * @dev: PCI device that we're dealing with
1446  * @state: Saved state returned from pci_store_saved_state()
1447  */
1448 int pci_load_saved_state(struct pci_dev *dev,
1449 			 struct pci_saved_state *state)
1450 {
1451 	struct pci_cap_saved_data *cap;
1452 
1453 	dev->state_saved = false;
1454 
1455 	if (!state)
1456 		return 0;
1457 
1458 	memcpy(dev->saved_config_space, state->config_space,
1459 	       sizeof(state->config_space));
1460 
1461 	cap = state->cap;
1462 	while (cap->size) {
1463 		struct pci_cap_saved_state *tmp;
1464 
1465 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1466 		if (!tmp || tmp->cap.size != cap->size)
1467 			return -EINVAL;
1468 
1469 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1470 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1471 		       sizeof(struct pci_cap_saved_data) + cap->size);
1472 	}
1473 
1474 	dev->state_saved = true;
1475 	return 0;
1476 }
1477 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1478 
1479 /**
1480  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1481  *				   and free the memory allocated for it.
1482  * @dev: PCI device that we're dealing with
1483  * @state: Pointer to saved state returned from pci_store_saved_state()
1484  */
1485 int pci_load_and_free_saved_state(struct pci_dev *dev,
1486 				  struct pci_saved_state **state)
1487 {
1488 	int ret = pci_load_saved_state(dev, *state);
1489 	kfree(*state);
1490 	*state = NULL;
1491 	return ret;
1492 }
1493 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1494 
1495 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1496 {
1497 	return pci_enable_resources(dev, bars);
1498 }
1499 
1500 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1501 {
1502 	int err;
1503 	struct pci_dev *bridge;
1504 	u16 cmd;
1505 	u8 pin;
1506 
1507 	err = pci_set_power_state(dev, PCI_D0);
1508 	if (err < 0 && err != -EIO)
1509 		return err;
1510 
1511 	bridge = pci_upstream_bridge(dev);
1512 	if (bridge)
1513 		pcie_aspm_powersave_config_link(bridge);
1514 
1515 	err = pcibios_enable_device(dev, bars);
1516 	if (err < 0)
1517 		return err;
1518 	pci_fixup_device(pci_fixup_enable, dev);
1519 
1520 	if (dev->msi_enabled || dev->msix_enabled)
1521 		return 0;
1522 
1523 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1524 	if (pin) {
1525 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1526 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1527 			pci_write_config_word(dev, PCI_COMMAND,
1528 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 /**
1535  * pci_reenable_device - Resume abandoned device
1536  * @dev: PCI device to be resumed
1537  *
1538  *  Note this function is a backend of pci_default_resume and is not supposed
1539  *  to be called by normal code, write proper resume handler and use it instead.
1540  */
1541 int pci_reenable_device(struct pci_dev *dev)
1542 {
1543 	if (pci_is_enabled(dev))
1544 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1545 	return 0;
1546 }
1547 EXPORT_SYMBOL(pci_reenable_device);
1548 
1549 static void pci_enable_bridge(struct pci_dev *dev)
1550 {
1551 	struct pci_dev *bridge;
1552 	int retval;
1553 
1554 	bridge = pci_upstream_bridge(dev);
1555 	if (bridge)
1556 		pci_enable_bridge(bridge);
1557 
1558 	if (pci_is_enabled(dev)) {
1559 		if (!dev->is_busmaster)
1560 			pci_set_master(dev);
1561 		return;
1562 	}
1563 
1564 	retval = pci_enable_device(dev);
1565 	if (retval)
1566 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1567 			retval);
1568 	pci_set_master(dev);
1569 }
1570 
1571 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1572 {
1573 	struct pci_dev *bridge;
1574 	int err;
1575 	int i, bars = 0;
1576 
1577 	/*
1578 	 * Power state could be unknown at this point, either due to a fresh
1579 	 * boot or a device removal call.  So get the current power state
1580 	 * so that things like MSI message writing will behave as expected
1581 	 * (e.g. if the device really is in D0 at enable time).
1582 	 */
1583 	if (dev->pm_cap) {
1584 		u16 pmcsr;
1585 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1586 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1587 	}
1588 
1589 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1590 		return 0;		/* already enabled */
1591 
1592 	bridge = pci_upstream_bridge(dev);
1593 	if (bridge)
1594 		pci_enable_bridge(bridge);
1595 
1596 	/* only skip sriov related */
1597 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1598 		if (dev->resource[i].flags & flags)
1599 			bars |= (1 << i);
1600 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1601 		if (dev->resource[i].flags & flags)
1602 			bars |= (1 << i);
1603 
1604 	err = do_pci_enable_device(dev, bars);
1605 	if (err < 0)
1606 		atomic_dec(&dev->enable_cnt);
1607 	return err;
1608 }
1609 
1610 /**
1611  * pci_enable_device_io - Initialize a device for use with IO space
1612  * @dev: PCI device to be initialized
1613  *
1614  *  Initialize device before it's used by a driver. Ask low-level code
1615  *  to enable I/O resources. Wake up the device if it was suspended.
1616  *  Beware, this function can fail.
1617  */
1618 int pci_enable_device_io(struct pci_dev *dev)
1619 {
1620 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1621 }
1622 EXPORT_SYMBOL(pci_enable_device_io);
1623 
1624 /**
1625  * pci_enable_device_mem - Initialize a device for use with Memory space
1626  * @dev: PCI device to be initialized
1627  *
1628  *  Initialize device before it's used by a driver. Ask low-level code
1629  *  to enable Memory resources. Wake up the device if it was suspended.
1630  *  Beware, this function can fail.
1631  */
1632 int pci_enable_device_mem(struct pci_dev *dev)
1633 {
1634 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1635 }
1636 EXPORT_SYMBOL(pci_enable_device_mem);
1637 
1638 /**
1639  * pci_enable_device - Initialize device before it's used by a driver.
1640  * @dev: PCI device to be initialized
1641  *
1642  *  Initialize device before it's used by a driver. Ask low-level code
1643  *  to enable I/O and memory. Wake up the device if it was suspended.
1644  *  Beware, this function can fail.
1645  *
1646  *  Note we don't actually enable the device many times if we call
1647  *  this function repeatedly (we just increment the count).
1648  */
1649 int pci_enable_device(struct pci_dev *dev)
1650 {
1651 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1652 }
1653 EXPORT_SYMBOL(pci_enable_device);
1654 
1655 /*
1656  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1657  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1658  * there's no need to track it separately.  pci_devres is initialized
1659  * when a device is enabled using managed PCI device enable interface.
1660  */
1661 struct pci_devres {
1662 	unsigned int enabled:1;
1663 	unsigned int pinned:1;
1664 	unsigned int orig_intx:1;
1665 	unsigned int restore_intx:1;
1666 	unsigned int mwi:1;
1667 	u32 region_mask;
1668 };
1669 
1670 static void pcim_release(struct device *gendev, void *res)
1671 {
1672 	struct pci_dev *dev = to_pci_dev(gendev);
1673 	struct pci_devres *this = res;
1674 	int i;
1675 
1676 	if (dev->msi_enabled)
1677 		pci_disable_msi(dev);
1678 	if (dev->msix_enabled)
1679 		pci_disable_msix(dev);
1680 
1681 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1682 		if (this->region_mask & (1 << i))
1683 			pci_release_region(dev, i);
1684 
1685 	if (this->mwi)
1686 		pci_clear_mwi(dev);
1687 
1688 	if (this->restore_intx)
1689 		pci_intx(dev, this->orig_intx);
1690 
1691 	if (this->enabled && !this->pinned)
1692 		pci_disable_device(dev);
1693 }
1694 
1695 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1696 {
1697 	struct pci_devres *dr, *new_dr;
1698 
1699 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1700 	if (dr)
1701 		return dr;
1702 
1703 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1704 	if (!new_dr)
1705 		return NULL;
1706 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1707 }
1708 
1709 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1710 {
1711 	if (pci_is_managed(pdev))
1712 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1713 	return NULL;
1714 }
1715 
1716 /**
1717  * pcim_enable_device - Managed pci_enable_device()
1718  * @pdev: PCI device to be initialized
1719  *
1720  * Managed pci_enable_device().
1721  */
1722 int pcim_enable_device(struct pci_dev *pdev)
1723 {
1724 	struct pci_devres *dr;
1725 	int rc;
1726 
1727 	dr = get_pci_dr(pdev);
1728 	if (unlikely(!dr))
1729 		return -ENOMEM;
1730 	if (dr->enabled)
1731 		return 0;
1732 
1733 	rc = pci_enable_device(pdev);
1734 	if (!rc) {
1735 		pdev->is_managed = 1;
1736 		dr->enabled = 1;
1737 	}
1738 	return rc;
1739 }
1740 EXPORT_SYMBOL(pcim_enable_device);
1741 
1742 /**
1743  * pcim_pin_device - Pin managed PCI device
1744  * @pdev: PCI device to pin
1745  *
1746  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1747  * driver detach.  @pdev must have been enabled with
1748  * pcim_enable_device().
1749  */
1750 void pcim_pin_device(struct pci_dev *pdev)
1751 {
1752 	struct pci_devres *dr;
1753 
1754 	dr = find_pci_dr(pdev);
1755 	WARN_ON(!dr || !dr->enabled);
1756 	if (dr)
1757 		dr->pinned = 1;
1758 }
1759 EXPORT_SYMBOL(pcim_pin_device);
1760 
1761 /*
1762  * pcibios_add_device - provide arch specific hooks when adding device dev
1763  * @dev: the PCI device being added
1764  *
1765  * Permits the platform to provide architecture specific functionality when
1766  * devices are added. This is the default implementation. Architecture
1767  * implementations can override this.
1768  */
1769 int __weak pcibios_add_device(struct pci_dev *dev)
1770 {
1771 	return 0;
1772 }
1773 
1774 /**
1775  * pcibios_release_device - provide arch specific hooks when releasing device dev
1776  * @dev: the PCI device being released
1777  *
1778  * Permits the platform to provide architecture specific functionality when
1779  * devices are released. This is the default implementation. Architecture
1780  * implementations can override this.
1781  */
1782 void __weak pcibios_release_device(struct pci_dev *dev) {}
1783 
1784 /**
1785  * pcibios_disable_device - disable arch specific PCI resources for device dev
1786  * @dev: the PCI device to disable
1787  *
1788  * Disables architecture specific PCI resources for the device. This
1789  * is the default implementation. Architecture implementations can
1790  * override this.
1791  */
1792 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1793 
1794 /**
1795  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1796  * @irq: ISA IRQ to penalize
1797  * @active: IRQ active or not
1798  *
1799  * Permits the platform to provide architecture-specific functionality when
1800  * penalizing ISA IRQs. This is the default implementation. Architecture
1801  * implementations can override this.
1802  */
1803 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1804 
1805 static void do_pci_disable_device(struct pci_dev *dev)
1806 {
1807 	u16 pci_command;
1808 
1809 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1810 	if (pci_command & PCI_COMMAND_MASTER) {
1811 		pci_command &= ~PCI_COMMAND_MASTER;
1812 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1813 	}
1814 
1815 	pcibios_disable_device(dev);
1816 }
1817 
1818 /**
1819  * pci_disable_enabled_device - Disable device without updating enable_cnt
1820  * @dev: PCI device to disable
1821  *
1822  * NOTE: This function is a backend of PCI power management routines and is
1823  * not supposed to be called drivers.
1824  */
1825 void pci_disable_enabled_device(struct pci_dev *dev)
1826 {
1827 	if (pci_is_enabled(dev))
1828 		do_pci_disable_device(dev);
1829 }
1830 
1831 /**
1832  * pci_disable_device - Disable PCI device after use
1833  * @dev: PCI device to be disabled
1834  *
1835  * Signal to the system that the PCI device is not in use by the system
1836  * anymore.  This only involves disabling PCI bus-mastering, if active.
1837  *
1838  * Note we don't actually disable the device until all callers of
1839  * pci_enable_device() have called pci_disable_device().
1840  */
1841 void pci_disable_device(struct pci_dev *dev)
1842 {
1843 	struct pci_devres *dr;
1844 
1845 	dr = find_pci_dr(dev);
1846 	if (dr)
1847 		dr->enabled = 0;
1848 
1849 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1850 		      "disabling already-disabled device");
1851 
1852 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1853 		return;
1854 
1855 	do_pci_disable_device(dev);
1856 
1857 	dev->is_busmaster = 0;
1858 }
1859 EXPORT_SYMBOL(pci_disable_device);
1860 
1861 /**
1862  * pcibios_set_pcie_reset_state - set reset state for device dev
1863  * @dev: the PCIe device reset
1864  * @state: Reset state to enter into
1865  *
1866  *
1867  * Sets the PCIe reset state for the device. This is the default
1868  * implementation. Architecture implementations can override this.
1869  */
1870 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1871 					enum pcie_reset_state state)
1872 {
1873 	return -EINVAL;
1874 }
1875 
1876 /**
1877  * pci_set_pcie_reset_state - set reset state for device dev
1878  * @dev: the PCIe device reset
1879  * @state: Reset state to enter into
1880  *
1881  *
1882  * Sets the PCI reset state for the device.
1883  */
1884 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1885 {
1886 	return pcibios_set_pcie_reset_state(dev, state);
1887 }
1888 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1889 
1890 /**
1891  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1892  * @dev: PCIe root port or event collector.
1893  */
1894 void pcie_clear_root_pme_status(struct pci_dev *dev)
1895 {
1896 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1897 }
1898 
1899 /**
1900  * pci_check_pme_status - Check if given device has generated PME.
1901  * @dev: Device to check.
1902  *
1903  * Check the PME status of the device and if set, clear it and clear PME enable
1904  * (if set).  Return 'true' if PME status and PME enable were both set or
1905  * 'false' otherwise.
1906  */
1907 bool pci_check_pme_status(struct pci_dev *dev)
1908 {
1909 	int pmcsr_pos;
1910 	u16 pmcsr;
1911 	bool ret = false;
1912 
1913 	if (!dev->pm_cap)
1914 		return false;
1915 
1916 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1917 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1918 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1919 		return false;
1920 
1921 	/* Clear PME status. */
1922 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1923 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1924 		/* Disable PME to avoid interrupt flood. */
1925 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1926 		ret = true;
1927 	}
1928 
1929 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1930 
1931 	return ret;
1932 }
1933 
1934 /**
1935  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1936  * @dev: Device to handle.
1937  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1938  *
1939  * Check if @dev has generated PME and queue a resume request for it in that
1940  * case.
1941  */
1942 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1943 {
1944 	if (pme_poll_reset && dev->pme_poll)
1945 		dev->pme_poll = false;
1946 
1947 	if (pci_check_pme_status(dev)) {
1948 		pci_wakeup_event(dev);
1949 		pm_request_resume(&dev->dev);
1950 	}
1951 	return 0;
1952 }
1953 
1954 /**
1955  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1956  * @bus: Top bus of the subtree to walk.
1957  */
1958 void pci_pme_wakeup_bus(struct pci_bus *bus)
1959 {
1960 	if (bus)
1961 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1962 }
1963 
1964 
1965 /**
1966  * pci_pme_capable - check the capability of PCI device to generate PME#
1967  * @dev: PCI device to handle.
1968  * @state: PCI state from which device will issue PME#.
1969  */
1970 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1971 {
1972 	if (!dev->pm_cap)
1973 		return false;
1974 
1975 	return !!(dev->pme_support & (1 << state));
1976 }
1977 EXPORT_SYMBOL(pci_pme_capable);
1978 
1979 static void pci_pme_list_scan(struct work_struct *work)
1980 {
1981 	struct pci_pme_device *pme_dev, *n;
1982 
1983 	mutex_lock(&pci_pme_list_mutex);
1984 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1985 		if (pme_dev->dev->pme_poll) {
1986 			struct pci_dev *bridge;
1987 
1988 			bridge = pme_dev->dev->bus->self;
1989 			/*
1990 			 * If bridge is in low power state, the
1991 			 * configuration space of subordinate devices
1992 			 * may be not accessible
1993 			 */
1994 			if (bridge && bridge->current_state != PCI_D0)
1995 				continue;
1996 			pci_pme_wakeup(pme_dev->dev, NULL);
1997 		} else {
1998 			list_del(&pme_dev->list);
1999 			kfree(pme_dev);
2000 		}
2001 	}
2002 	if (!list_empty(&pci_pme_list))
2003 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2004 				   msecs_to_jiffies(PME_TIMEOUT));
2005 	mutex_unlock(&pci_pme_list_mutex);
2006 }
2007 
2008 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2009 {
2010 	u16 pmcsr;
2011 
2012 	if (!dev->pme_support)
2013 		return;
2014 
2015 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2016 	/* Clear PME_Status by writing 1 to it and enable PME# */
2017 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2018 	if (!enable)
2019 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2020 
2021 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2022 }
2023 
2024 /**
2025  * pci_pme_restore - Restore PME configuration after config space restore.
2026  * @dev: PCI device to update.
2027  */
2028 void pci_pme_restore(struct pci_dev *dev)
2029 {
2030 	u16 pmcsr;
2031 
2032 	if (!dev->pme_support)
2033 		return;
2034 
2035 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2036 	if (dev->wakeup_prepared) {
2037 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2038 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2039 	} else {
2040 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2041 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2042 	}
2043 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2044 }
2045 
2046 /**
2047  * pci_pme_active - enable or disable PCI device's PME# function
2048  * @dev: PCI device to handle.
2049  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2050  *
2051  * The caller must verify that the device is capable of generating PME# before
2052  * calling this function with @enable equal to 'true'.
2053  */
2054 void pci_pme_active(struct pci_dev *dev, bool enable)
2055 {
2056 	__pci_pme_active(dev, enable);
2057 
2058 	/*
2059 	 * PCI (as opposed to PCIe) PME requires that the device have
2060 	 * its PME# line hooked up correctly. Not all hardware vendors
2061 	 * do this, so the PME never gets delivered and the device
2062 	 * remains asleep. The easiest way around this is to
2063 	 * periodically walk the list of suspended devices and check
2064 	 * whether any have their PME flag set. The assumption is that
2065 	 * we'll wake up often enough anyway that this won't be a huge
2066 	 * hit, and the power savings from the devices will still be a
2067 	 * win.
2068 	 *
2069 	 * Although PCIe uses in-band PME message instead of PME# line
2070 	 * to report PME, PME does not work for some PCIe devices in
2071 	 * reality.  For example, there are devices that set their PME
2072 	 * status bits, but don't really bother to send a PME message;
2073 	 * there are PCI Express Root Ports that don't bother to
2074 	 * trigger interrupts when they receive PME messages from the
2075 	 * devices below.  So PME poll is used for PCIe devices too.
2076 	 */
2077 
2078 	if (dev->pme_poll) {
2079 		struct pci_pme_device *pme_dev;
2080 		if (enable) {
2081 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2082 					  GFP_KERNEL);
2083 			if (!pme_dev) {
2084 				pci_warn(dev, "can't enable PME#\n");
2085 				return;
2086 			}
2087 			pme_dev->dev = dev;
2088 			mutex_lock(&pci_pme_list_mutex);
2089 			list_add(&pme_dev->list, &pci_pme_list);
2090 			if (list_is_singular(&pci_pme_list))
2091 				queue_delayed_work(system_freezable_wq,
2092 						   &pci_pme_work,
2093 						   msecs_to_jiffies(PME_TIMEOUT));
2094 			mutex_unlock(&pci_pme_list_mutex);
2095 		} else {
2096 			mutex_lock(&pci_pme_list_mutex);
2097 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2098 				if (pme_dev->dev == dev) {
2099 					list_del(&pme_dev->list);
2100 					kfree(pme_dev);
2101 					break;
2102 				}
2103 			}
2104 			mutex_unlock(&pci_pme_list_mutex);
2105 		}
2106 	}
2107 
2108 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2109 }
2110 EXPORT_SYMBOL(pci_pme_active);
2111 
2112 /**
2113  * __pci_enable_wake - enable PCI device as wakeup event source
2114  * @dev: PCI device affected
2115  * @state: PCI state from which device will issue wakeup events
2116  * @enable: True to enable event generation; false to disable
2117  *
2118  * This enables the device as a wakeup event source, or disables it.
2119  * When such events involves platform-specific hooks, those hooks are
2120  * called automatically by this routine.
2121  *
2122  * Devices with legacy power management (no standard PCI PM capabilities)
2123  * always require such platform hooks.
2124  *
2125  * RETURN VALUE:
2126  * 0 is returned on success
2127  * -EINVAL is returned if device is not supposed to wake up the system
2128  * Error code depending on the platform is returned if both the platform and
2129  * the native mechanism fail to enable the generation of wake-up events
2130  */
2131 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2132 {
2133 	int ret = 0;
2134 
2135 	/*
2136 	 * Bridges can only signal wakeup on behalf of subordinate devices,
2137 	 * but that is set up elsewhere, so skip them.
2138 	 */
2139 	if (pci_has_subordinate(dev))
2140 		return 0;
2141 
2142 	/* Don't do the same thing twice in a row for one device. */
2143 	if (!!enable == !!dev->wakeup_prepared)
2144 		return 0;
2145 
2146 	/*
2147 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2148 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2149 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2150 	 */
2151 
2152 	if (enable) {
2153 		int error;
2154 
2155 		if (pci_pme_capable(dev, state))
2156 			pci_pme_active(dev, true);
2157 		else
2158 			ret = 1;
2159 		error = platform_pci_set_wakeup(dev, true);
2160 		if (ret)
2161 			ret = error;
2162 		if (!ret)
2163 			dev->wakeup_prepared = true;
2164 	} else {
2165 		platform_pci_set_wakeup(dev, false);
2166 		pci_pme_active(dev, false);
2167 		dev->wakeup_prepared = false;
2168 	}
2169 
2170 	return ret;
2171 }
2172 
2173 /**
2174  * pci_enable_wake - change wakeup settings for a PCI device
2175  * @pci_dev: Target device
2176  * @state: PCI state from which device will issue wakeup events
2177  * @enable: Whether or not to enable event generation
2178  *
2179  * If @enable is set, check device_may_wakeup() for the device before calling
2180  * __pci_enable_wake() for it.
2181  */
2182 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2183 {
2184 	if (enable && !device_may_wakeup(&pci_dev->dev))
2185 		return -EINVAL;
2186 
2187 	return __pci_enable_wake(pci_dev, state, enable);
2188 }
2189 EXPORT_SYMBOL(pci_enable_wake);
2190 
2191 /**
2192  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2193  * @dev: PCI device to prepare
2194  * @enable: True to enable wake-up event generation; false to disable
2195  *
2196  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2197  * and this function allows them to set that up cleanly - pci_enable_wake()
2198  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2199  * ordering constraints.
2200  *
2201  * This function only returns error code if the device is not allowed to wake
2202  * up the system from sleep or it is not capable of generating PME# from both
2203  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2204  */
2205 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2206 {
2207 	return pci_pme_capable(dev, PCI_D3cold) ?
2208 			pci_enable_wake(dev, PCI_D3cold, enable) :
2209 			pci_enable_wake(dev, PCI_D3hot, enable);
2210 }
2211 EXPORT_SYMBOL(pci_wake_from_d3);
2212 
2213 /**
2214  * pci_target_state - find an appropriate low power state for a given PCI dev
2215  * @dev: PCI device
2216  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2217  *
2218  * Use underlying platform code to find a supported low power state for @dev.
2219  * If the platform can't manage @dev, return the deepest state from which it
2220  * can generate wake events, based on any available PME info.
2221  */
2222 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2223 {
2224 	pci_power_t target_state = PCI_D3hot;
2225 
2226 	if (platform_pci_power_manageable(dev)) {
2227 		/*
2228 		 * Call the platform to find the target state for the device.
2229 		 */
2230 		pci_power_t state = platform_pci_choose_state(dev);
2231 
2232 		switch (state) {
2233 		case PCI_POWER_ERROR:
2234 		case PCI_UNKNOWN:
2235 			break;
2236 		case PCI_D1:
2237 		case PCI_D2:
2238 			if (pci_no_d1d2(dev))
2239 				break;
2240 			/* else: fall through */
2241 		default:
2242 			target_state = state;
2243 		}
2244 
2245 		return target_state;
2246 	}
2247 
2248 	if (!dev->pm_cap)
2249 		target_state = PCI_D0;
2250 
2251 	/*
2252 	 * If the device is in D3cold even though it's not power-manageable by
2253 	 * the platform, it may have been powered down by non-standard means.
2254 	 * Best to let it slumber.
2255 	 */
2256 	if (dev->current_state == PCI_D3cold)
2257 		target_state = PCI_D3cold;
2258 
2259 	if (wakeup) {
2260 		/*
2261 		 * Find the deepest state from which the device can generate
2262 		 * PME#.
2263 		 */
2264 		if (dev->pme_support) {
2265 			while (target_state
2266 			      && !(dev->pme_support & (1 << target_state)))
2267 				target_state--;
2268 		}
2269 	}
2270 
2271 	return target_state;
2272 }
2273 
2274 /**
2275  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2276  * @dev: Device to handle.
2277  *
2278  * Choose the power state appropriate for the device depending on whether
2279  * it can wake up the system and/or is power manageable by the platform
2280  * (PCI_D3hot is the default) and put the device into that state.
2281  */
2282 int pci_prepare_to_sleep(struct pci_dev *dev)
2283 {
2284 	bool wakeup = device_may_wakeup(&dev->dev);
2285 	pci_power_t target_state = pci_target_state(dev, wakeup);
2286 	int error;
2287 
2288 	if (target_state == PCI_POWER_ERROR)
2289 		return -EIO;
2290 
2291 	pci_enable_wake(dev, target_state, wakeup);
2292 
2293 	error = pci_set_power_state(dev, target_state);
2294 
2295 	if (error)
2296 		pci_enable_wake(dev, target_state, false);
2297 
2298 	return error;
2299 }
2300 EXPORT_SYMBOL(pci_prepare_to_sleep);
2301 
2302 /**
2303  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2304  * @dev: Device to handle.
2305  *
2306  * Disable device's system wake-up capability and put it into D0.
2307  */
2308 int pci_back_from_sleep(struct pci_dev *dev)
2309 {
2310 	pci_enable_wake(dev, PCI_D0, false);
2311 	return pci_set_power_state(dev, PCI_D0);
2312 }
2313 EXPORT_SYMBOL(pci_back_from_sleep);
2314 
2315 /**
2316  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2317  * @dev: PCI device being suspended.
2318  *
2319  * Prepare @dev to generate wake-up events at run time and put it into a low
2320  * power state.
2321  */
2322 int pci_finish_runtime_suspend(struct pci_dev *dev)
2323 {
2324 	pci_power_t target_state;
2325 	int error;
2326 
2327 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2328 	if (target_state == PCI_POWER_ERROR)
2329 		return -EIO;
2330 
2331 	dev->runtime_d3cold = target_state == PCI_D3cold;
2332 
2333 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2334 
2335 	error = pci_set_power_state(dev, target_state);
2336 
2337 	if (error) {
2338 		pci_enable_wake(dev, target_state, false);
2339 		dev->runtime_d3cold = false;
2340 	}
2341 
2342 	return error;
2343 }
2344 
2345 /**
2346  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2347  * @dev: Device to check.
2348  *
2349  * Return true if the device itself is capable of generating wake-up events
2350  * (through the platform or using the native PCIe PME) or if the device supports
2351  * PME and one of its upstream bridges can generate wake-up events.
2352  */
2353 bool pci_dev_run_wake(struct pci_dev *dev)
2354 {
2355 	struct pci_bus *bus = dev->bus;
2356 
2357 	if (!dev->pme_support)
2358 		return false;
2359 
2360 	/* PME-capable in principle, but not from the target power state */
2361 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2362 		return false;
2363 
2364 	if (device_can_wakeup(&dev->dev))
2365 		return true;
2366 
2367 	while (bus->parent) {
2368 		struct pci_dev *bridge = bus->self;
2369 
2370 		if (device_can_wakeup(&bridge->dev))
2371 			return true;
2372 
2373 		bus = bus->parent;
2374 	}
2375 
2376 	/* We have reached the root bus. */
2377 	if (bus->bridge)
2378 		return device_can_wakeup(bus->bridge);
2379 
2380 	return false;
2381 }
2382 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2383 
2384 /**
2385  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2386  * @pci_dev: Device to check.
2387  *
2388  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2389  * reconfigured due to wakeup settings difference between system and runtime
2390  * suspend and the current power state of it is suitable for the upcoming
2391  * (system) transition.
2392  *
2393  * If the device is not configured for system wakeup, disable PME for it before
2394  * returning 'true' to prevent it from waking up the system unnecessarily.
2395  */
2396 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2397 {
2398 	struct device *dev = &pci_dev->dev;
2399 	bool wakeup = device_may_wakeup(dev);
2400 
2401 	if (!pm_runtime_suspended(dev)
2402 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2403 	    || platform_pci_need_resume(pci_dev))
2404 		return false;
2405 
2406 	/*
2407 	 * At this point the device is good to go unless it's been configured
2408 	 * to generate PME at the runtime suspend time, but it is not supposed
2409 	 * to wake up the system.  In that case, simply disable PME for it
2410 	 * (it will have to be re-enabled on exit from system resume).
2411 	 *
2412 	 * If the device's power state is D3cold and the platform check above
2413 	 * hasn't triggered, the device's configuration is suitable and we don't
2414 	 * need to manipulate it at all.
2415 	 */
2416 	spin_lock_irq(&dev->power.lock);
2417 
2418 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2419 	    !wakeup)
2420 		__pci_pme_active(pci_dev, false);
2421 
2422 	spin_unlock_irq(&dev->power.lock);
2423 	return true;
2424 }
2425 
2426 /**
2427  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2428  * @pci_dev: Device to handle.
2429  *
2430  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2431  * it might have been disabled during the prepare phase of system suspend if
2432  * the device was not configured for system wakeup.
2433  */
2434 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2435 {
2436 	struct device *dev = &pci_dev->dev;
2437 
2438 	if (!pci_dev_run_wake(pci_dev))
2439 		return;
2440 
2441 	spin_lock_irq(&dev->power.lock);
2442 
2443 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2444 		__pci_pme_active(pci_dev, true);
2445 
2446 	spin_unlock_irq(&dev->power.lock);
2447 }
2448 
2449 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2450 {
2451 	struct device *dev = &pdev->dev;
2452 	struct device *parent = dev->parent;
2453 
2454 	if (parent)
2455 		pm_runtime_get_sync(parent);
2456 	pm_runtime_get_noresume(dev);
2457 	/*
2458 	 * pdev->current_state is set to PCI_D3cold during suspending,
2459 	 * so wait until suspending completes
2460 	 */
2461 	pm_runtime_barrier(dev);
2462 	/*
2463 	 * Only need to resume devices in D3cold, because config
2464 	 * registers are still accessible for devices suspended but
2465 	 * not in D3cold.
2466 	 */
2467 	if (pdev->current_state == PCI_D3cold)
2468 		pm_runtime_resume(dev);
2469 }
2470 
2471 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2472 {
2473 	struct device *dev = &pdev->dev;
2474 	struct device *parent = dev->parent;
2475 
2476 	pm_runtime_put(dev);
2477 	if (parent)
2478 		pm_runtime_put_sync(parent);
2479 }
2480 
2481 /**
2482  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2483  * @bridge: Bridge to check
2484  *
2485  * This function checks if it is possible to move the bridge to D3.
2486  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2487  */
2488 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2489 {
2490 	if (!pci_is_pcie(bridge))
2491 		return false;
2492 
2493 	switch (pci_pcie_type(bridge)) {
2494 	case PCI_EXP_TYPE_ROOT_PORT:
2495 	case PCI_EXP_TYPE_UPSTREAM:
2496 	case PCI_EXP_TYPE_DOWNSTREAM:
2497 		if (pci_bridge_d3_disable)
2498 			return false;
2499 
2500 		/*
2501 		 * Hotplug ports handled by firmware in System Management Mode
2502 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2503 		 */
2504 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2505 			return false;
2506 
2507 		if (pci_bridge_d3_force)
2508 			return true;
2509 
2510 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2511 		if (bridge->is_thunderbolt)
2512 			return true;
2513 
2514 		/*
2515 		 * Hotplug ports handled natively by the OS were not validated
2516 		 * by vendors for runtime D3 at least until 2018 because there
2517 		 * was no OS support.
2518 		 */
2519 		if (bridge->is_hotplug_bridge)
2520 			return false;
2521 
2522 		/*
2523 		 * It should be safe to put PCIe ports from 2015 or newer
2524 		 * to D3.
2525 		 */
2526 		if (dmi_get_bios_year() >= 2015)
2527 			return true;
2528 		break;
2529 	}
2530 
2531 	return false;
2532 }
2533 
2534 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2535 {
2536 	bool *d3cold_ok = data;
2537 
2538 	if (/* The device needs to be allowed to go D3cold ... */
2539 	    dev->no_d3cold || !dev->d3cold_allowed ||
2540 
2541 	    /* ... and if it is wakeup capable to do so from D3cold. */
2542 	    (device_may_wakeup(&dev->dev) &&
2543 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2544 
2545 	    /* If it is a bridge it must be allowed to go to D3. */
2546 	    !pci_power_manageable(dev))
2547 
2548 		*d3cold_ok = false;
2549 
2550 	return !*d3cold_ok;
2551 }
2552 
2553 /*
2554  * pci_bridge_d3_update - Update bridge D3 capabilities
2555  * @dev: PCI device which is changed
2556  *
2557  * Update upstream bridge PM capabilities accordingly depending on if the
2558  * device PM configuration was changed or the device is being removed.  The
2559  * change is also propagated upstream.
2560  */
2561 void pci_bridge_d3_update(struct pci_dev *dev)
2562 {
2563 	bool remove = !device_is_registered(&dev->dev);
2564 	struct pci_dev *bridge;
2565 	bool d3cold_ok = true;
2566 
2567 	bridge = pci_upstream_bridge(dev);
2568 	if (!bridge || !pci_bridge_d3_possible(bridge))
2569 		return;
2570 
2571 	/*
2572 	 * If D3 is currently allowed for the bridge, removing one of its
2573 	 * children won't change that.
2574 	 */
2575 	if (remove && bridge->bridge_d3)
2576 		return;
2577 
2578 	/*
2579 	 * If D3 is currently allowed for the bridge and a child is added or
2580 	 * changed, disallowance of D3 can only be caused by that child, so
2581 	 * we only need to check that single device, not any of its siblings.
2582 	 *
2583 	 * If D3 is currently not allowed for the bridge, checking the device
2584 	 * first may allow us to skip checking its siblings.
2585 	 */
2586 	if (!remove)
2587 		pci_dev_check_d3cold(dev, &d3cold_ok);
2588 
2589 	/*
2590 	 * If D3 is currently not allowed for the bridge, this may be caused
2591 	 * either by the device being changed/removed or any of its siblings,
2592 	 * so we need to go through all children to find out if one of them
2593 	 * continues to block D3.
2594 	 */
2595 	if (d3cold_ok && !bridge->bridge_d3)
2596 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2597 			     &d3cold_ok);
2598 
2599 	if (bridge->bridge_d3 != d3cold_ok) {
2600 		bridge->bridge_d3 = d3cold_ok;
2601 		/* Propagate change to upstream bridges */
2602 		pci_bridge_d3_update(bridge);
2603 	}
2604 }
2605 
2606 /**
2607  * pci_d3cold_enable - Enable D3cold for device
2608  * @dev: PCI device to handle
2609  *
2610  * This function can be used in drivers to enable D3cold from the device
2611  * they handle.  It also updates upstream PCI bridge PM capabilities
2612  * accordingly.
2613  */
2614 void pci_d3cold_enable(struct pci_dev *dev)
2615 {
2616 	if (dev->no_d3cold) {
2617 		dev->no_d3cold = false;
2618 		pci_bridge_d3_update(dev);
2619 	}
2620 }
2621 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2622 
2623 /**
2624  * pci_d3cold_disable - Disable D3cold for device
2625  * @dev: PCI device to handle
2626  *
2627  * This function can be used in drivers to disable D3cold from the device
2628  * they handle.  It also updates upstream PCI bridge PM capabilities
2629  * accordingly.
2630  */
2631 void pci_d3cold_disable(struct pci_dev *dev)
2632 {
2633 	if (!dev->no_d3cold) {
2634 		dev->no_d3cold = true;
2635 		pci_bridge_d3_update(dev);
2636 	}
2637 }
2638 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2639 
2640 /**
2641  * pci_pm_init - Initialize PM functions of given PCI device
2642  * @dev: PCI device to handle.
2643  */
2644 void pci_pm_init(struct pci_dev *dev)
2645 {
2646 	int pm;
2647 	u16 pmc;
2648 
2649 	pm_runtime_forbid(&dev->dev);
2650 	pm_runtime_set_active(&dev->dev);
2651 	pm_runtime_enable(&dev->dev);
2652 	device_enable_async_suspend(&dev->dev);
2653 	dev->wakeup_prepared = false;
2654 
2655 	dev->pm_cap = 0;
2656 	dev->pme_support = 0;
2657 
2658 	/* find PCI PM capability in list */
2659 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2660 	if (!pm)
2661 		return;
2662 	/* Check device's ability to generate PME# */
2663 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2664 
2665 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2666 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2667 			pmc & PCI_PM_CAP_VER_MASK);
2668 		return;
2669 	}
2670 
2671 	dev->pm_cap = pm;
2672 	dev->d3_delay = PCI_PM_D3_WAIT;
2673 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2674 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2675 	dev->d3cold_allowed = true;
2676 
2677 	dev->d1_support = false;
2678 	dev->d2_support = false;
2679 	if (!pci_no_d1d2(dev)) {
2680 		if (pmc & PCI_PM_CAP_D1)
2681 			dev->d1_support = true;
2682 		if (pmc & PCI_PM_CAP_D2)
2683 			dev->d2_support = true;
2684 
2685 		if (dev->d1_support || dev->d2_support)
2686 			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2687 				   dev->d1_support ? " D1" : "",
2688 				   dev->d2_support ? " D2" : "");
2689 	}
2690 
2691 	pmc &= PCI_PM_CAP_PME_MASK;
2692 	if (pmc) {
2693 		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2694 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2695 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2696 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2697 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2698 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2699 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2700 		dev->pme_poll = true;
2701 		/*
2702 		 * Make device's PM flags reflect the wake-up capability, but
2703 		 * let the user space enable it to wake up the system as needed.
2704 		 */
2705 		device_set_wakeup_capable(&dev->dev, true);
2706 		/* Disable the PME# generation functionality */
2707 		pci_pme_active(dev, false);
2708 	}
2709 }
2710 
2711 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2712 {
2713 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2714 
2715 	switch (prop) {
2716 	case PCI_EA_P_MEM:
2717 	case PCI_EA_P_VF_MEM:
2718 		flags |= IORESOURCE_MEM;
2719 		break;
2720 	case PCI_EA_P_MEM_PREFETCH:
2721 	case PCI_EA_P_VF_MEM_PREFETCH:
2722 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2723 		break;
2724 	case PCI_EA_P_IO:
2725 		flags |= IORESOURCE_IO;
2726 		break;
2727 	default:
2728 		return 0;
2729 	}
2730 
2731 	return flags;
2732 }
2733 
2734 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2735 					    u8 prop)
2736 {
2737 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2738 		return &dev->resource[bei];
2739 #ifdef CONFIG_PCI_IOV
2740 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2741 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2742 		return &dev->resource[PCI_IOV_RESOURCES +
2743 				      bei - PCI_EA_BEI_VF_BAR0];
2744 #endif
2745 	else if (bei == PCI_EA_BEI_ROM)
2746 		return &dev->resource[PCI_ROM_RESOURCE];
2747 	else
2748 		return NULL;
2749 }
2750 
2751 /* Read an Enhanced Allocation (EA) entry */
2752 static int pci_ea_read(struct pci_dev *dev, int offset)
2753 {
2754 	struct resource *res;
2755 	int ent_size, ent_offset = offset;
2756 	resource_size_t start, end;
2757 	unsigned long flags;
2758 	u32 dw0, bei, base, max_offset;
2759 	u8 prop;
2760 	bool support_64 = (sizeof(resource_size_t) >= 8);
2761 
2762 	pci_read_config_dword(dev, ent_offset, &dw0);
2763 	ent_offset += 4;
2764 
2765 	/* Entry size field indicates DWORDs after 1st */
2766 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2767 
2768 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2769 		goto out;
2770 
2771 	bei = (dw0 & PCI_EA_BEI) >> 4;
2772 	prop = (dw0 & PCI_EA_PP) >> 8;
2773 
2774 	/*
2775 	 * If the Property is in the reserved range, try the Secondary
2776 	 * Property instead.
2777 	 */
2778 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2779 		prop = (dw0 & PCI_EA_SP) >> 16;
2780 	if (prop > PCI_EA_P_BRIDGE_IO)
2781 		goto out;
2782 
2783 	res = pci_ea_get_resource(dev, bei, prop);
2784 	if (!res) {
2785 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2786 		goto out;
2787 	}
2788 
2789 	flags = pci_ea_flags(dev, prop);
2790 	if (!flags) {
2791 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2792 		goto out;
2793 	}
2794 
2795 	/* Read Base */
2796 	pci_read_config_dword(dev, ent_offset, &base);
2797 	start = (base & PCI_EA_FIELD_MASK);
2798 	ent_offset += 4;
2799 
2800 	/* Read MaxOffset */
2801 	pci_read_config_dword(dev, ent_offset, &max_offset);
2802 	ent_offset += 4;
2803 
2804 	/* Read Base MSBs (if 64-bit entry) */
2805 	if (base & PCI_EA_IS_64) {
2806 		u32 base_upper;
2807 
2808 		pci_read_config_dword(dev, ent_offset, &base_upper);
2809 		ent_offset += 4;
2810 
2811 		flags |= IORESOURCE_MEM_64;
2812 
2813 		/* entry starts above 32-bit boundary, can't use */
2814 		if (!support_64 && base_upper)
2815 			goto out;
2816 
2817 		if (support_64)
2818 			start |= ((u64)base_upper << 32);
2819 	}
2820 
2821 	end = start + (max_offset | 0x03);
2822 
2823 	/* Read MaxOffset MSBs (if 64-bit entry) */
2824 	if (max_offset & PCI_EA_IS_64) {
2825 		u32 max_offset_upper;
2826 
2827 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2828 		ent_offset += 4;
2829 
2830 		flags |= IORESOURCE_MEM_64;
2831 
2832 		/* entry too big, can't use */
2833 		if (!support_64 && max_offset_upper)
2834 			goto out;
2835 
2836 		if (support_64)
2837 			end += ((u64)max_offset_upper << 32);
2838 	}
2839 
2840 	if (end < start) {
2841 		pci_err(dev, "EA Entry crosses address boundary\n");
2842 		goto out;
2843 	}
2844 
2845 	if (ent_size != ent_offset - offset) {
2846 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2847 			ent_size, ent_offset - offset);
2848 		goto out;
2849 	}
2850 
2851 	res->name = pci_name(dev);
2852 	res->start = start;
2853 	res->end = end;
2854 	res->flags = flags;
2855 
2856 	if (bei <= PCI_EA_BEI_BAR5)
2857 		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2858 			   bei, res, prop);
2859 	else if (bei == PCI_EA_BEI_ROM)
2860 		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2861 			   res, prop);
2862 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2863 		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2864 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2865 	else
2866 		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2867 			   bei, res, prop);
2868 
2869 out:
2870 	return offset + ent_size;
2871 }
2872 
2873 /* Enhanced Allocation Initialization */
2874 void pci_ea_init(struct pci_dev *dev)
2875 {
2876 	int ea;
2877 	u8 num_ent;
2878 	int offset;
2879 	int i;
2880 
2881 	/* find PCI EA capability in list */
2882 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2883 	if (!ea)
2884 		return;
2885 
2886 	/* determine the number of entries */
2887 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2888 					&num_ent);
2889 	num_ent &= PCI_EA_NUM_ENT_MASK;
2890 
2891 	offset = ea + PCI_EA_FIRST_ENT;
2892 
2893 	/* Skip DWORD 2 for type 1 functions */
2894 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2895 		offset += 4;
2896 
2897 	/* parse each EA entry */
2898 	for (i = 0; i < num_ent; ++i)
2899 		offset = pci_ea_read(dev, offset);
2900 }
2901 
2902 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2903 	struct pci_cap_saved_state *new_cap)
2904 {
2905 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2906 }
2907 
2908 /**
2909  * _pci_add_cap_save_buffer - allocate buffer for saving given
2910  *                            capability registers
2911  * @dev: the PCI device
2912  * @cap: the capability to allocate the buffer for
2913  * @extended: Standard or Extended capability ID
2914  * @size: requested size of the buffer
2915  */
2916 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2917 				    bool extended, unsigned int size)
2918 {
2919 	int pos;
2920 	struct pci_cap_saved_state *save_state;
2921 
2922 	if (extended)
2923 		pos = pci_find_ext_capability(dev, cap);
2924 	else
2925 		pos = pci_find_capability(dev, cap);
2926 
2927 	if (!pos)
2928 		return 0;
2929 
2930 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2931 	if (!save_state)
2932 		return -ENOMEM;
2933 
2934 	save_state->cap.cap_nr = cap;
2935 	save_state->cap.cap_extended = extended;
2936 	save_state->cap.size = size;
2937 	pci_add_saved_cap(dev, save_state);
2938 
2939 	return 0;
2940 }
2941 
2942 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2943 {
2944 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2945 }
2946 
2947 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2948 {
2949 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2950 }
2951 
2952 /**
2953  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2954  * @dev: the PCI device
2955  */
2956 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2957 {
2958 	int error;
2959 
2960 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2961 					PCI_EXP_SAVE_REGS * sizeof(u16));
2962 	if (error)
2963 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2964 
2965 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2966 	if (error)
2967 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2968 
2969 	pci_allocate_vc_save_buffers(dev);
2970 }
2971 
2972 void pci_free_cap_save_buffers(struct pci_dev *dev)
2973 {
2974 	struct pci_cap_saved_state *tmp;
2975 	struct hlist_node *n;
2976 
2977 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2978 		kfree(tmp);
2979 }
2980 
2981 /**
2982  * pci_configure_ari - enable or disable ARI forwarding
2983  * @dev: the PCI device
2984  *
2985  * If @dev and its upstream bridge both support ARI, enable ARI in the
2986  * bridge.  Otherwise, disable ARI in the bridge.
2987  */
2988 void pci_configure_ari(struct pci_dev *dev)
2989 {
2990 	u32 cap;
2991 	struct pci_dev *bridge;
2992 
2993 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2994 		return;
2995 
2996 	bridge = dev->bus->self;
2997 	if (!bridge)
2998 		return;
2999 
3000 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3001 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3002 		return;
3003 
3004 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3005 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3006 					 PCI_EXP_DEVCTL2_ARI);
3007 		bridge->ari_enabled = 1;
3008 	} else {
3009 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3010 					   PCI_EXP_DEVCTL2_ARI);
3011 		bridge->ari_enabled = 0;
3012 	}
3013 }
3014 
3015 static int pci_acs_enable;
3016 
3017 /**
3018  * pci_request_acs - ask for ACS to be enabled if supported
3019  */
3020 void pci_request_acs(void)
3021 {
3022 	pci_acs_enable = 1;
3023 }
3024 
3025 static const char *disable_acs_redir_param;
3026 
3027 /**
3028  * pci_disable_acs_redir - disable ACS redirect capabilities
3029  * @dev: the PCI device
3030  *
3031  * For only devices specified in the disable_acs_redir parameter.
3032  */
3033 static void pci_disable_acs_redir(struct pci_dev *dev)
3034 {
3035 	int ret = 0;
3036 	const char *p;
3037 	int pos;
3038 	u16 ctrl;
3039 
3040 	if (!disable_acs_redir_param)
3041 		return;
3042 
3043 	p = disable_acs_redir_param;
3044 	while (*p) {
3045 		ret = pci_dev_str_match(dev, p, &p);
3046 		if (ret < 0) {
3047 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3048 				     disable_acs_redir_param);
3049 
3050 			break;
3051 		} else if (ret == 1) {
3052 			/* Found a match */
3053 			break;
3054 		}
3055 
3056 		if (*p != ';' && *p != ',') {
3057 			/* End of param or invalid format */
3058 			break;
3059 		}
3060 		p++;
3061 	}
3062 
3063 	if (ret != 1)
3064 		return;
3065 
3066 	if (!pci_dev_specific_disable_acs_redir(dev))
3067 		return;
3068 
3069 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3070 	if (!pos) {
3071 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3072 		return;
3073 	}
3074 
3075 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3076 
3077 	/* P2P Request & Completion Redirect */
3078 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3079 
3080 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3081 
3082 	pci_info(dev, "disabled ACS redirect\n");
3083 }
3084 
3085 /**
3086  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
3087  * @dev: the PCI device
3088  */
3089 static void pci_std_enable_acs(struct pci_dev *dev)
3090 {
3091 	int pos;
3092 	u16 cap;
3093 	u16 ctrl;
3094 
3095 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3096 	if (!pos)
3097 		return;
3098 
3099 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3100 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3101 
3102 	/* Source Validation */
3103 	ctrl |= (cap & PCI_ACS_SV);
3104 
3105 	/* P2P Request Redirect */
3106 	ctrl |= (cap & PCI_ACS_RR);
3107 
3108 	/* P2P Completion Redirect */
3109 	ctrl |= (cap & PCI_ACS_CR);
3110 
3111 	/* Upstream Forwarding */
3112 	ctrl |= (cap & PCI_ACS_UF);
3113 
3114 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3115 }
3116 
3117 /**
3118  * pci_enable_acs - enable ACS if hardware support it
3119  * @dev: the PCI device
3120  */
3121 void pci_enable_acs(struct pci_dev *dev)
3122 {
3123 	if (!pci_acs_enable)
3124 		goto disable_acs_redir;
3125 
3126 	if (!pci_dev_specific_enable_acs(dev))
3127 		goto disable_acs_redir;
3128 
3129 	pci_std_enable_acs(dev);
3130 
3131 disable_acs_redir:
3132 	/*
3133 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3134 	 * enabled by the kernel because it may have been enabled by
3135 	 * platform firmware.  So if we are told to disable it, we should
3136 	 * always disable it after setting the kernel's default
3137 	 * preferences.
3138 	 */
3139 	pci_disable_acs_redir(dev);
3140 }
3141 
3142 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3143 {
3144 	int pos;
3145 	u16 cap, ctrl;
3146 
3147 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3148 	if (!pos)
3149 		return false;
3150 
3151 	/*
3152 	 * Except for egress control, capabilities are either required
3153 	 * or only required if controllable.  Features missing from the
3154 	 * capability field can therefore be assumed as hard-wired enabled.
3155 	 */
3156 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3157 	acs_flags &= (cap | PCI_ACS_EC);
3158 
3159 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3160 	return (ctrl & acs_flags) == acs_flags;
3161 }
3162 
3163 /**
3164  * pci_acs_enabled - test ACS against required flags for a given device
3165  * @pdev: device to test
3166  * @acs_flags: required PCI ACS flags
3167  *
3168  * Return true if the device supports the provided flags.  Automatically
3169  * filters out flags that are not implemented on multifunction devices.
3170  *
3171  * Note that this interface checks the effective ACS capabilities of the
3172  * device rather than the actual capabilities.  For instance, most single
3173  * function endpoints are not required to support ACS because they have no
3174  * opportunity for peer-to-peer access.  We therefore return 'true'
3175  * regardless of whether the device exposes an ACS capability.  This makes
3176  * it much easier for callers of this function to ignore the actual type
3177  * or topology of the device when testing ACS support.
3178  */
3179 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3180 {
3181 	int ret;
3182 
3183 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3184 	if (ret >= 0)
3185 		return ret > 0;
3186 
3187 	/*
3188 	 * Conventional PCI and PCI-X devices never support ACS, either
3189 	 * effectively or actually.  The shared bus topology implies that
3190 	 * any device on the bus can receive or snoop DMA.
3191 	 */
3192 	if (!pci_is_pcie(pdev))
3193 		return false;
3194 
3195 	switch (pci_pcie_type(pdev)) {
3196 	/*
3197 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3198 	 * but since their primary interface is PCI/X, we conservatively
3199 	 * handle them as we would a non-PCIe device.
3200 	 */
3201 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3202 	/*
3203 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3204 	 * applicable... must never implement an ACS Extended Capability...".
3205 	 * This seems arbitrary, but we take a conservative interpretation
3206 	 * of this statement.
3207 	 */
3208 	case PCI_EXP_TYPE_PCI_BRIDGE:
3209 	case PCI_EXP_TYPE_RC_EC:
3210 		return false;
3211 	/*
3212 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3213 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3214 	 * regardless of whether they are single- or multi-function devices.
3215 	 */
3216 	case PCI_EXP_TYPE_DOWNSTREAM:
3217 	case PCI_EXP_TYPE_ROOT_PORT:
3218 		return pci_acs_flags_enabled(pdev, acs_flags);
3219 	/*
3220 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3221 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3222 	 * capabilities, but only when they are part of a multifunction
3223 	 * device.  The footnote for section 6.12 indicates the specific
3224 	 * PCIe types included here.
3225 	 */
3226 	case PCI_EXP_TYPE_ENDPOINT:
3227 	case PCI_EXP_TYPE_UPSTREAM:
3228 	case PCI_EXP_TYPE_LEG_END:
3229 	case PCI_EXP_TYPE_RC_END:
3230 		if (!pdev->multifunction)
3231 			break;
3232 
3233 		return pci_acs_flags_enabled(pdev, acs_flags);
3234 	}
3235 
3236 	/*
3237 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3238 	 * to single function devices with the exception of downstream ports.
3239 	 */
3240 	return true;
3241 }
3242 
3243 /**
3244  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3245  * @start: starting downstream device
3246  * @end: ending upstream device or NULL to search to the root bus
3247  * @acs_flags: required flags
3248  *
3249  * Walk up a device tree from start to end testing PCI ACS support.  If
3250  * any step along the way does not support the required flags, return false.
3251  */
3252 bool pci_acs_path_enabled(struct pci_dev *start,
3253 			  struct pci_dev *end, u16 acs_flags)
3254 {
3255 	struct pci_dev *pdev, *parent = start;
3256 
3257 	do {
3258 		pdev = parent;
3259 
3260 		if (!pci_acs_enabled(pdev, acs_flags))
3261 			return false;
3262 
3263 		if (pci_is_root_bus(pdev->bus))
3264 			return (end == NULL);
3265 
3266 		parent = pdev->bus->self;
3267 	} while (pdev != end);
3268 
3269 	return true;
3270 }
3271 
3272 /**
3273  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3274  * @pdev: PCI device
3275  * @bar: BAR to find
3276  *
3277  * Helper to find the position of the ctrl register for a BAR.
3278  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3279  * Returns -ENOENT if no ctrl register for the BAR could be found.
3280  */
3281 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3282 {
3283 	unsigned int pos, nbars, i;
3284 	u32 ctrl;
3285 
3286 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3287 	if (!pos)
3288 		return -ENOTSUPP;
3289 
3290 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3291 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3292 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3293 
3294 	for (i = 0; i < nbars; i++, pos += 8) {
3295 		int bar_idx;
3296 
3297 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3298 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3299 		if (bar_idx == bar)
3300 			return pos;
3301 	}
3302 
3303 	return -ENOENT;
3304 }
3305 
3306 /**
3307  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3308  * @pdev: PCI device
3309  * @bar: BAR to query
3310  *
3311  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3312  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3313  */
3314 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3315 {
3316 	int pos;
3317 	u32 cap;
3318 
3319 	pos = pci_rebar_find_pos(pdev, bar);
3320 	if (pos < 0)
3321 		return 0;
3322 
3323 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3324 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3325 }
3326 
3327 /**
3328  * pci_rebar_get_current_size - get the current size of a BAR
3329  * @pdev: PCI device
3330  * @bar: BAR to set size to
3331  *
3332  * Read the size of a BAR from the resizable BAR config.
3333  * Returns size if found or negative error code.
3334  */
3335 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3336 {
3337 	int pos;
3338 	u32 ctrl;
3339 
3340 	pos = pci_rebar_find_pos(pdev, bar);
3341 	if (pos < 0)
3342 		return pos;
3343 
3344 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3345 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3346 }
3347 
3348 /**
3349  * pci_rebar_set_size - set a new size for a BAR
3350  * @pdev: PCI device
3351  * @bar: BAR to set size to
3352  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3353  *
3354  * Set the new size of a BAR as defined in the spec.
3355  * Returns zero if resizing was successful, error code otherwise.
3356  */
3357 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3358 {
3359 	int pos;
3360 	u32 ctrl;
3361 
3362 	pos = pci_rebar_find_pos(pdev, bar);
3363 	if (pos < 0)
3364 		return pos;
3365 
3366 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3367 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3368 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3369 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3370 	return 0;
3371 }
3372 
3373 /**
3374  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3375  * @dev: the PCI device
3376  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3377  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3378  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3379  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3380  *
3381  * Return 0 if all upstream bridges support AtomicOp routing, egress
3382  * blocking is disabled on all upstream ports, and the root port supports
3383  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3384  * AtomicOp completion), or negative otherwise.
3385  */
3386 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3387 {
3388 	struct pci_bus *bus = dev->bus;
3389 	struct pci_dev *bridge;
3390 	u32 cap, ctl2;
3391 
3392 	if (!pci_is_pcie(dev))
3393 		return -EINVAL;
3394 
3395 	/*
3396 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3397 	 * AtomicOp requesters.  For now, we only support endpoints as
3398 	 * requesters and root ports as completers.  No endpoints as
3399 	 * completers, and no peer-to-peer.
3400 	 */
3401 
3402 	switch (pci_pcie_type(dev)) {
3403 	case PCI_EXP_TYPE_ENDPOINT:
3404 	case PCI_EXP_TYPE_LEG_END:
3405 	case PCI_EXP_TYPE_RC_END:
3406 		break;
3407 	default:
3408 		return -EINVAL;
3409 	}
3410 
3411 	while (bus->parent) {
3412 		bridge = bus->self;
3413 
3414 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3415 
3416 		switch (pci_pcie_type(bridge)) {
3417 		/* Ensure switch ports support AtomicOp routing */
3418 		case PCI_EXP_TYPE_UPSTREAM:
3419 		case PCI_EXP_TYPE_DOWNSTREAM:
3420 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3421 				return -EINVAL;
3422 			break;
3423 
3424 		/* Ensure root port supports all the sizes we care about */
3425 		case PCI_EXP_TYPE_ROOT_PORT:
3426 			if ((cap & cap_mask) != cap_mask)
3427 				return -EINVAL;
3428 			break;
3429 		}
3430 
3431 		/* Ensure upstream ports don't block AtomicOps on egress */
3432 		if (!bridge->has_secondary_link) {
3433 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3434 						   &ctl2);
3435 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3436 				return -EINVAL;
3437 		}
3438 
3439 		bus = bus->parent;
3440 	}
3441 
3442 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3443 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3444 	return 0;
3445 }
3446 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3447 
3448 /**
3449  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3450  * @dev: the PCI device
3451  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3452  *
3453  * Perform INTx swizzling for a device behind one level of bridge.  This is
3454  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3455  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3456  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3457  * the PCI Express Base Specification, Revision 2.1)
3458  */
3459 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3460 {
3461 	int slot;
3462 
3463 	if (pci_ari_enabled(dev->bus))
3464 		slot = 0;
3465 	else
3466 		slot = PCI_SLOT(dev->devfn);
3467 
3468 	return (((pin - 1) + slot) % 4) + 1;
3469 }
3470 
3471 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3472 {
3473 	u8 pin;
3474 
3475 	pin = dev->pin;
3476 	if (!pin)
3477 		return -1;
3478 
3479 	while (!pci_is_root_bus(dev->bus)) {
3480 		pin = pci_swizzle_interrupt_pin(dev, pin);
3481 		dev = dev->bus->self;
3482 	}
3483 	*bridge = dev;
3484 	return pin;
3485 }
3486 
3487 /**
3488  * pci_common_swizzle - swizzle INTx all the way to root bridge
3489  * @dev: the PCI device
3490  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3491  *
3492  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3493  * bridges all the way up to a PCI root bus.
3494  */
3495 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3496 {
3497 	u8 pin = *pinp;
3498 
3499 	while (!pci_is_root_bus(dev->bus)) {
3500 		pin = pci_swizzle_interrupt_pin(dev, pin);
3501 		dev = dev->bus->self;
3502 	}
3503 	*pinp = pin;
3504 	return PCI_SLOT(dev->devfn);
3505 }
3506 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3507 
3508 /**
3509  *	pci_release_region - Release a PCI bar
3510  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3511  *	@bar: BAR to release
3512  *
3513  *	Releases the PCI I/O and memory resources previously reserved by a
3514  *	successful call to pci_request_region.  Call this function only
3515  *	after all use of the PCI regions has ceased.
3516  */
3517 void pci_release_region(struct pci_dev *pdev, int bar)
3518 {
3519 	struct pci_devres *dr;
3520 
3521 	if (pci_resource_len(pdev, bar) == 0)
3522 		return;
3523 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3524 		release_region(pci_resource_start(pdev, bar),
3525 				pci_resource_len(pdev, bar));
3526 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3527 		release_mem_region(pci_resource_start(pdev, bar),
3528 				pci_resource_len(pdev, bar));
3529 
3530 	dr = find_pci_dr(pdev);
3531 	if (dr)
3532 		dr->region_mask &= ~(1 << bar);
3533 }
3534 EXPORT_SYMBOL(pci_release_region);
3535 
3536 /**
3537  *	__pci_request_region - Reserved PCI I/O and memory resource
3538  *	@pdev: PCI device whose resources are to be reserved
3539  *	@bar: BAR to be reserved
3540  *	@res_name: Name to be associated with resource.
3541  *	@exclusive: whether the region access is exclusive or not
3542  *
3543  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3544  *	being reserved by owner @res_name.  Do not access any
3545  *	address inside the PCI regions unless this call returns
3546  *	successfully.
3547  *
3548  *	If @exclusive is set, then the region is marked so that userspace
3549  *	is explicitly not allowed to map the resource via /dev/mem or
3550  *	sysfs MMIO access.
3551  *
3552  *	Returns 0 on success, or %EBUSY on error.  A warning
3553  *	message is also printed on failure.
3554  */
3555 static int __pci_request_region(struct pci_dev *pdev, int bar,
3556 				const char *res_name, int exclusive)
3557 {
3558 	struct pci_devres *dr;
3559 
3560 	if (pci_resource_len(pdev, bar) == 0)
3561 		return 0;
3562 
3563 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3564 		if (!request_region(pci_resource_start(pdev, bar),
3565 			    pci_resource_len(pdev, bar), res_name))
3566 			goto err_out;
3567 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3568 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3569 					pci_resource_len(pdev, bar), res_name,
3570 					exclusive))
3571 			goto err_out;
3572 	}
3573 
3574 	dr = find_pci_dr(pdev);
3575 	if (dr)
3576 		dr->region_mask |= 1 << bar;
3577 
3578 	return 0;
3579 
3580 err_out:
3581 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3582 		 &pdev->resource[bar]);
3583 	return -EBUSY;
3584 }
3585 
3586 /**
3587  *	pci_request_region - Reserve PCI I/O and memory resource
3588  *	@pdev: PCI device whose resources are to be reserved
3589  *	@bar: BAR to be reserved
3590  *	@res_name: Name to be associated with resource
3591  *
3592  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3593  *	being reserved by owner @res_name.  Do not access any
3594  *	address inside the PCI regions unless this call returns
3595  *	successfully.
3596  *
3597  *	Returns 0 on success, or %EBUSY on error.  A warning
3598  *	message is also printed on failure.
3599  */
3600 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3601 {
3602 	return __pci_request_region(pdev, bar, res_name, 0);
3603 }
3604 EXPORT_SYMBOL(pci_request_region);
3605 
3606 /**
3607  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3608  *	@pdev: PCI device whose resources are to be reserved
3609  *	@bar: BAR to be reserved
3610  *	@res_name: Name to be associated with resource.
3611  *
3612  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3613  *	being reserved by owner @res_name.  Do not access any
3614  *	address inside the PCI regions unless this call returns
3615  *	successfully.
3616  *
3617  *	Returns 0 on success, or %EBUSY on error.  A warning
3618  *	message is also printed on failure.
3619  *
3620  *	The key difference that _exclusive makes it that userspace is
3621  *	explicitly not allowed to map the resource via /dev/mem or
3622  *	sysfs.
3623  */
3624 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3625 				 const char *res_name)
3626 {
3627 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3628 }
3629 EXPORT_SYMBOL(pci_request_region_exclusive);
3630 
3631 /**
3632  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3633  * @pdev: PCI device whose resources were previously reserved
3634  * @bars: Bitmask of BARs to be released
3635  *
3636  * Release selected PCI I/O and memory resources previously reserved.
3637  * Call this function only after all use of the PCI regions has ceased.
3638  */
3639 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3640 {
3641 	int i;
3642 
3643 	for (i = 0; i < 6; i++)
3644 		if (bars & (1 << i))
3645 			pci_release_region(pdev, i);
3646 }
3647 EXPORT_SYMBOL(pci_release_selected_regions);
3648 
3649 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3650 					  const char *res_name, int excl)
3651 {
3652 	int i;
3653 
3654 	for (i = 0; i < 6; i++)
3655 		if (bars & (1 << i))
3656 			if (__pci_request_region(pdev, i, res_name, excl))
3657 				goto err_out;
3658 	return 0;
3659 
3660 err_out:
3661 	while (--i >= 0)
3662 		if (bars & (1 << i))
3663 			pci_release_region(pdev, i);
3664 
3665 	return -EBUSY;
3666 }
3667 
3668 
3669 /**
3670  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3671  * @pdev: PCI device whose resources are to be reserved
3672  * @bars: Bitmask of BARs to be requested
3673  * @res_name: Name to be associated with resource
3674  */
3675 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3676 				 const char *res_name)
3677 {
3678 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3679 }
3680 EXPORT_SYMBOL(pci_request_selected_regions);
3681 
3682 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3683 					   const char *res_name)
3684 {
3685 	return __pci_request_selected_regions(pdev, bars, res_name,
3686 			IORESOURCE_EXCLUSIVE);
3687 }
3688 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3689 
3690 /**
3691  *	pci_release_regions - Release reserved PCI I/O and memory resources
3692  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3693  *
3694  *	Releases all PCI I/O and memory resources previously reserved by a
3695  *	successful call to pci_request_regions.  Call this function only
3696  *	after all use of the PCI regions has ceased.
3697  */
3698 
3699 void pci_release_regions(struct pci_dev *pdev)
3700 {
3701 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3702 }
3703 EXPORT_SYMBOL(pci_release_regions);
3704 
3705 /**
3706  *	pci_request_regions - Reserved PCI I/O and memory resources
3707  *	@pdev: PCI device whose resources are to be reserved
3708  *	@res_name: Name to be associated with resource.
3709  *
3710  *	Mark all PCI regions associated with PCI device @pdev as
3711  *	being reserved by owner @res_name.  Do not access any
3712  *	address inside the PCI regions unless this call returns
3713  *	successfully.
3714  *
3715  *	Returns 0 on success, or %EBUSY on error.  A warning
3716  *	message is also printed on failure.
3717  */
3718 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3719 {
3720 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3721 }
3722 EXPORT_SYMBOL(pci_request_regions);
3723 
3724 /**
3725  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3726  *	@pdev: PCI device whose resources are to be reserved
3727  *	@res_name: Name to be associated with resource.
3728  *
3729  *	Mark all PCI regions associated with PCI device @pdev as
3730  *	being reserved by owner @res_name.  Do not access any
3731  *	address inside the PCI regions unless this call returns
3732  *	successfully.
3733  *
3734  *	pci_request_regions_exclusive() will mark the region so that
3735  *	/dev/mem and the sysfs MMIO access will not be allowed.
3736  *
3737  *	Returns 0 on success, or %EBUSY on error.  A warning
3738  *	message is also printed on failure.
3739  */
3740 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3741 {
3742 	return pci_request_selected_regions_exclusive(pdev,
3743 					((1 << 6) - 1), res_name);
3744 }
3745 EXPORT_SYMBOL(pci_request_regions_exclusive);
3746 
3747 /*
3748  * Record the PCI IO range (expressed as CPU physical address + size).
3749  * Return a negative value if an error has occured, zero otherwise
3750  */
3751 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3752 			resource_size_t	size)
3753 {
3754 	int ret = 0;
3755 #ifdef PCI_IOBASE
3756 	struct logic_pio_hwaddr *range;
3757 
3758 	if (!size || addr + size < addr)
3759 		return -EINVAL;
3760 
3761 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3762 	if (!range)
3763 		return -ENOMEM;
3764 
3765 	range->fwnode = fwnode;
3766 	range->size = size;
3767 	range->hw_start = addr;
3768 	range->flags = LOGIC_PIO_CPU_MMIO;
3769 
3770 	ret = logic_pio_register_range(range);
3771 	if (ret)
3772 		kfree(range);
3773 #endif
3774 
3775 	return ret;
3776 }
3777 
3778 phys_addr_t pci_pio_to_address(unsigned long pio)
3779 {
3780 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3781 
3782 #ifdef PCI_IOBASE
3783 	if (pio >= MMIO_UPPER_LIMIT)
3784 		return address;
3785 
3786 	address = logic_pio_to_hwaddr(pio);
3787 #endif
3788 
3789 	return address;
3790 }
3791 
3792 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3793 {
3794 #ifdef PCI_IOBASE
3795 	return logic_pio_trans_cpuaddr(address);
3796 #else
3797 	if (address > IO_SPACE_LIMIT)
3798 		return (unsigned long)-1;
3799 
3800 	return (unsigned long) address;
3801 #endif
3802 }
3803 
3804 /**
3805  *	pci_remap_iospace - Remap the memory mapped I/O space
3806  *	@res: Resource describing the I/O space
3807  *	@phys_addr: physical address of range to be mapped
3808  *
3809  *	Remap the memory mapped I/O space described by the @res
3810  *	and the CPU physical address @phys_addr into virtual address space.
3811  *	Only architectures that have memory mapped IO functions defined
3812  *	(and the PCI_IOBASE value defined) should call this function.
3813  */
3814 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3815 {
3816 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3817 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3818 
3819 	if (!(res->flags & IORESOURCE_IO))
3820 		return -EINVAL;
3821 
3822 	if (res->end > IO_SPACE_LIMIT)
3823 		return -EINVAL;
3824 
3825 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3826 				  pgprot_device(PAGE_KERNEL));
3827 #else
3828 	/* this architecture does not have memory mapped I/O space,
3829 	   so this function should never be called */
3830 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3831 	return -ENODEV;
3832 #endif
3833 }
3834 EXPORT_SYMBOL(pci_remap_iospace);
3835 
3836 /**
3837  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3838  *	@res: resource to be unmapped
3839  *
3840  *	Unmap the CPU virtual address @res from virtual address space.
3841  *	Only architectures that have memory mapped IO functions defined
3842  *	(and the PCI_IOBASE value defined) should call this function.
3843  */
3844 void pci_unmap_iospace(struct resource *res)
3845 {
3846 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3847 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3848 
3849 	unmap_kernel_range(vaddr, resource_size(res));
3850 #endif
3851 }
3852 EXPORT_SYMBOL(pci_unmap_iospace);
3853 
3854 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3855 {
3856 	struct resource **res = ptr;
3857 
3858 	pci_unmap_iospace(*res);
3859 }
3860 
3861 /**
3862  * devm_pci_remap_iospace - Managed pci_remap_iospace()
3863  * @dev: Generic device to remap IO address for
3864  * @res: Resource describing the I/O space
3865  * @phys_addr: physical address of range to be mapped
3866  *
3867  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3868  * detach.
3869  */
3870 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3871 			   phys_addr_t phys_addr)
3872 {
3873 	const struct resource **ptr;
3874 	int error;
3875 
3876 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3877 	if (!ptr)
3878 		return -ENOMEM;
3879 
3880 	error = pci_remap_iospace(res, phys_addr);
3881 	if (error) {
3882 		devres_free(ptr);
3883 	} else	{
3884 		*ptr = res;
3885 		devres_add(dev, ptr);
3886 	}
3887 
3888 	return error;
3889 }
3890 EXPORT_SYMBOL(devm_pci_remap_iospace);
3891 
3892 /**
3893  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3894  * @dev: Generic device to remap IO address for
3895  * @offset: Resource address to map
3896  * @size: Size of map
3897  *
3898  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3899  * detach.
3900  */
3901 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3902 				      resource_size_t offset,
3903 				      resource_size_t size)
3904 {
3905 	void __iomem **ptr, *addr;
3906 
3907 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3908 	if (!ptr)
3909 		return NULL;
3910 
3911 	addr = pci_remap_cfgspace(offset, size);
3912 	if (addr) {
3913 		*ptr = addr;
3914 		devres_add(dev, ptr);
3915 	} else
3916 		devres_free(ptr);
3917 
3918 	return addr;
3919 }
3920 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3921 
3922 /**
3923  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3924  * @dev: generic device to handle the resource for
3925  * @res: configuration space resource to be handled
3926  *
3927  * Checks that a resource is a valid memory region, requests the memory
3928  * region and ioremaps with pci_remap_cfgspace() API that ensures the
3929  * proper PCI configuration space memory attributes are guaranteed.
3930  *
3931  * All operations are managed and will be undone on driver detach.
3932  *
3933  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3934  * on failure. Usage example::
3935  *
3936  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3937  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3938  *	if (IS_ERR(base))
3939  *		return PTR_ERR(base);
3940  */
3941 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3942 					  struct resource *res)
3943 {
3944 	resource_size_t size;
3945 	const char *name;
3946 	void __iomem *dest_ptr;
3947 
3948 	BUG_ON(!dev);
3949 
3950 	if (!res || resource_type(res) != IORESOURCE_MEM) {
3951 		dev_err(dev, "invalid resource\n");
3952 		return IOMEM_ERR_PTR(-EINVAL);
3953 	}
3954 
3955 	size = resource_size(res);
3956 	name = res->name ?: dev_name(dev);
3957 
3958 	if (!devm_request_mem_region(dev, res->start, size, name)) {
3959 		dev_err(dev, "can't request region for resource %pR\n", res);
3960 		return IOMEM_ERR_PTR(-EBUSY);
3961 	}
3962 
3963 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3964 	if (!dest_ptr) {
3965 		dev_err(dev, "ioremap failed for resource %pR\n", res);
3966 		devm_release_mem_region(dev, res->start, size);
3967 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3968 	}
3969 
3970 	return dest_ptr;
3971 }
3972 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3973 
3974 static void __pci_set_master(struct pci_dev *dev, bool enable)
3975 {
3976 	u16 old_cmd, cmd;
3977 
3978 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3979 	if (enable)
3980 		cmd = old_cmd | PCI_COMMAND_MASTER;
3981 	else
3982 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3983 	if (cmd != old_cmd) {
3984 		pci_dbg(dev, "%s bus mastering\n",
3985 			enable ? "enabling" : "disabling");
3986 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3987 	}
3988 	dev->is_busmaster = enable;
3989 }
3990 
3991 /**
3992  * pcibios_setup - process "pci=" kernel boot arguments
3993  * @str: string used to pass in "pci=" kernel boot arguments
3994  *
3995  * Process kernel boot arguments.  This is the default implementation.
3996  * Architecture specific implementations can override this as necessary.
3997  */
3998 char * __weak __init pcibios_setup(char *str)
3999 {
4000 	return str;
4001 }
4002 
4003 /**
4004  * pcibios_set_master - enable PCI bus-mastering for device dev
4005  * @dev: the PCI device to enable
4006  *
4007  * Enables PCI bus-mastering for the device.  This is the default
4008  * implementation.  Architecture specific implementations can override
4009  * this if necessary.
4010  */
4011 void __weak pcibios_set_master(struct pci_dev *dev)
4012 {
4013 	u8 lat;
4014 
4015 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4016 	if (pci_is_pcie(dev))
4017 		return;
4018 
4019 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4020 	if (lat < 16)
4021 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4022 	else if (lat > pcibios_max_latency)
4023 		lat = pcibios_max_latency;
4024 	else
4025 		return;
4026 
4027 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4028 }
4029 
4030 /**
4031  * pci_set_master - enables bus-mastering for device dev
4032  * @dev: the PCI device to enable
4033  *
4034  * Enables bus-mastering on the device and calls pcibios_set_master()
4035  * to do the needed arch specific settings.
4036  */
4037 void pci_set_master(struct pci_dev *dev)
4038 {
4039 	__pci_set_master(dev, true);
4040 	pcibios_set_master(dev);
4041 }
4042 EXPORT_SYMBOL(pci_set_master);
4043 
4044 /**
4045  * pci_clear_master - disables bus-mastering for device dev
4046  * @dev: the PCI device to disable
4047  */
4048 void pci_clear_master(struct pci_dev *dev)
4049 {
4050 	__pci_set_master(dev, false);
4051 }
4052 EXPORT_SYMBOL(pci_clear_master);
4053 
4054 /**
4055  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4056  * @dev: the PCI device for which MWI is to be enabled
4057  *
4058  * Helper function for pci_set_mwi.
4059  * Originally copied from drivers/net/acenic.c.
4060  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4061  *
4062  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4063  */
4064 int pci_set_cacheline_size(struct pci_dev *dev)
4065 {
4066 	u8 cacheline_size;
4067 
4068 	if (!pci_cache_line_size)
4069 		return -EINVAL;
4070 
4071 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4072 	   equal to or multiple of the right value. */
4073 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4074 	if (cacheline_size >= pci_cache_line_size &&
4075 	    (cacheline_size % pci_cache_line_size) == 0)
4076 		return 0;
4077 
4078 	/* Write the correct value. */
4079 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4080 	/* Read it back. */
4081 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4082 	if (cacheline_size == pci_cache_line_size)
4083 		return 0;
4084 
4085 	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
4086 		   pci_cache_line_size << 2);
4087 
4088 	return -EINVAL;
4089 }
4090 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4091 
4092 /**
4093  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4094  * @dev: the PCI device for which MWI is enabled
4095  *
4096  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4097  *
4098  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4099  */
4100 int pci_set_mwi(struct pci_dev *dev)
4101 {
4102 #ifdef PCI_DISABLE_MWI
4103 	return 0;
4104 #else
4105 	int rc;
4106 	u16 cmd;
4107 
4108 	rc = pci_set_cacheline_size(dev);
4109 	if (rc)
4110 		return rc;
4111 
4112 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4113 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4114 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4115 		cmd |= PCI_COMMAND_INVALIDATE;
4116 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4117 	}
4118 	return 0;
4119 #endif
4120 }
4121 EXPORT_SYMBOL(pci_set_mwi);
4122 
4123 /**
4124  * pcim_set_mwi - a device-managed pci_set_mwi()
4125  * @dev: the PCI device for which MWI is enabled
4126  *
4127  * Managed pci_set_mwi().
4128  *
4129  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4130  */
4131 int pcim_set_mwi(struct pci_dev *dev)
4132 {
4133 	struct pci_devres *dr;
4134 
4135 	dr = find_pci_dr(dev);
4136 	if (!dr)
4137 		return -ENOMEM;
4138 
4139 	dr->mwi = 1;
4140 	return pci_set_mwi(dev);
4141 }
4142 EXPORT_SYMBOL(pcim_set_mwi);
4143 
4144 /**
4145  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4146  * @dev: the PCI device for which MWI is enabled
4147  *
4148  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4149  * Callers are not required to check the return value.
4150  *
4151  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4152  */
4153 int pci_try_set_mwi(struct pci_dev *dev)
4154 {
4155 #ifdef PCI_DISABLE_MWI
4156 	return 0;
4157 #else
4158 	return pci_set_mwi(dev);
4159 #endif
4160 }
4161 EXPORT_SYMBOL(pci_try_set_mwi);
4162 
4163 /**
4164  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4165  * @dev: the PCI device to disable
4166  *
4167  * Disables PCI Memory-Write-Invalidate transaction on the device
4168  */
4169 void pci_clear_mwi(struct pci_dev *dev)
4170 {
4171 #ifndef PCI_DISABLE_MWI
4172 	u16 cmd;
4173 
4174 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4175 	if (cmd & PCI_COMMAND_INVALIDATE) {
4176 		cmd &= ~PCI_COMMAND_INVALIDATE;
4177 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4178 	}
4179 #endif
4180 }
4181 EXPORT_SYMBOL(pci_clear_mwi);
4182 
4183 /**
4184  * pci_intx - enables/disables PCI INTx for device dev
4185  * @pdev: the PCI device to operate on
4186  * @enable: boolean: whether to enable or disable PCI INTx
4187  *
4188  * Enables/disables PCI INTx for device dev
4189  */
4190 void pci_intx(struct pci_dev *pdev, int enable)
4191 {
4192 	u16 pci_command, new;
4193 
4194 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4195 
4196 	if (enable)
4197 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4198 	else
4199 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4200 
4201 	if (new != pci_command) {
4202 		struct pci_devres *dr;
4203 
4204 		pci_write_config_word(pdev, PCI_COMMAND, new);
4205 
4206 		dr = find_pci_dr(pdev);
4207 		if (dr && !dr->restore_intx) {
4208 			dr->restore_intx = 1;
4209 			dr->orig_intx = !enable;
4210 		}
4211 	}
4212 }
4213 EXPORT_SYMBOL_GPL(pci_intx);
4214 
4215 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4216 {
4217 	struct pci_bus *bus = dev->bus;
4218 	bool mask_updated = true;
4219 	u32 cmd_status_dword;
4220 	u16 origcmd, newcmd;
4221 	unsigned long flags;
4222 	bool irq_pending;
4223 
4224 	/*
4225 	 * We do a single dword read to retrieve both command and status.
4226 	 * Document assumptions that make this possible.
4227 	 */
4228 	BUILD_BUG_ON(PCI_COMMAND % 4);
4229 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4230 
4231 	raw_spin_lock_irqsave(&pci_lock, flags);
4232 
4233 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4234 
4235 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4236 
4237 	/*
4238 	 * Check interrupt status register to see whether our device
4239 	 * triggered the interrupt (when masking) or the next IRQ is
4240 	 * already pending (when unmasking).
4241 	 */
4242 	if (mask != irq_pending) {
4243 		mask_updated = false;
4244 		goto done;
4245 	}
4246 
4247 	origcmd = cmd_status_dword;
4248 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4249 	if (mask)
4250 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4251 	if (newcmd != origcmd)
4252 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4253 
4254 done:
4255 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4256 
4257 	return mask_updated;
4258 }
4259 
4260 /**
4261  * pci_check_and_mask_intx - mask INTx on pending interrupt
4262  * @dev: the PCI device to operate on
4263  *
4264  * Check if the device dev has its INTx line asserted, mask it and
4265  * return true in that case. False is returned if no interrupt was
4266  * pending.
4267  */
4268 bool pci_check_and_mask_intx(struct pci_dev *dev)
4269 {
4270 	return pci_check_and_set_intx_mask(dev, true);
4271 }
4272 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4273 
4274 /**
4275  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4276  * @dev: the PCI device to operate on
4277  *
4278  * Check if the device dev has its INTx line asserted, unmask it if not
4279  * and return true. False is returned and the mask remains active if
4280  * there was still an interrupt pending.
4281  */
4282 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4283 {
4284 	return pci_check_and_set_intx_mask(dev, false);
4285 }
4286 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4287 
4288 /**
4289  * pci_wait_for_pending_transaction - waits for pending transaction
4290  * @dev: the PCI device to operate on
4291  *
4292  * Return 0 if transaction is pending 1 otherwise.
4293  */
4294 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4295 {
4296 	if (!pci_is_pcie(dev))
4297 		return 1;
4298 
4299 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4300 				    PCI_EXP_DEVSTA_TRPND);
4301 }
4302 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4303 
4304 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4305 {
4306 	int delay = 1;
4307 	u32 id;
4308 
4309 	/*
4310 	 * After reset, the device should not silently discard config
4311 	 * requests, but it may still indicate that it needs more time by
4312 	 * responding to them with CRS completions.  The Root Port will
4313 	 * generally synthesize ~0 data to complete the read (except when
4314 	 * CRS SV is enabled and the read was for the Vendor ID; in that
4315 	 * case it synthesizes 0x0001 data).
4316 	 *
4317 	 * Wait for the device to return a non-CRS completion.  Read the
4318 	 * Command register instead of Vendor ID so we don't have to
4319 	 * contend with the CRS SV value.
4320 	 */
4321 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4322 	while (id == ~0) {
4323 		if (delay > timeout) {
4324 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4325 				 delay - 1, reset_type);
4326 			return -ENOTTY;
4327 		}
4328 
4329 		if (delay > 1000)
4330 			pci_info(dev, "not ready %dms after %s; waiting\n",
4331 				 delay - 1, reset_type);
4332 
4333 		msleep(delay);
4334 		delay *= 2;
4335 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4336 	}
4337 
4338 	if (delay > 1000)
4339 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4340 			 reset_type);
4341 
4342 	return 0;
4343 }
4344 
4345 /**
4346  * pcie_has_flr - check if a device supports function level resets
4347  * @dev:	device to check
4348  *
4349  * Returns true if the device advertises support for PCIe function level
4350  * resets.
4351  */
4352 bool pcie_has_flr(struct pci_dev *dev)
4353 {
4354 	u32 cap;
4355 
4356 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4357 		return false;
4358 
4359 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4360 	return cap & PCI_EXP_DEVCAP_FLR;
4361 }
4362 EXPORT_SYMBOL_GPL(pcie_has_flr);
4363 
4364 /**
4365  * pcie_flr - initiate a PCIe function level reset
4366  * @dev:	device to reset
4367  *
4368  * Initiate a function level reset on @dev.  The caller should ensure the
4369  * device supports FLR before calling this function, e.g. by using the
4370  * pcie_has_flr() helper.
4371  */
4372 int pcie_flr(struct pci_dev *dev)
4373 {
4374 	if (!pci_wait_for_pending_transaction(dev))
4375 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4376 
4377 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4378 
4379 	/*
4380 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4381 	 * 100ms, but may silently discard requests while the FLR is in
4382 	 * progress.  Wait 100ms before trying to access the device.
4383 	 */
4384 	msleep(100);
4385 
4386 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4387 }
4388 EXPORT_SYMBOL_GPL(pcie_flr);
4389 
4390 static int pci_af_flr(struct pci_dev *dev, int probe)
4391 {
4392 	int pos;
4393 	u8 cap;
4394 
4395 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4396 	if (!pos)
4397 		return -ENOTTY;
4398 
4399 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4400 		return -ENOTTY;
4401 
4402 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4403 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4404 		return -ENOTTY;
4405 
4406 	if (probe)
4407 		return 0;
4408 
4409 	/*
4410 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4411 	 * is used, so we use the conrol offset rather than status and shift
4412 	 * the test bit to match.
4413 	 */
4414 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4415 				 PCI_AF_STATUS_TP << 8))
4416 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4417 
4418 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4419 
4420 	/*
4421 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4422 	 * updated 27 July 2006; a device must complete an FLR within
4423 	 * 100ms, but may silently discard requests while the FLR is in
4424 	 * progress.  Wait 100ms before trying to access the device.
4425 	 */
4426 	msleep(100);
4427 
4428 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4429 }
4430 
4431 /**
4432  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4433  * @dev: Device to reset.
4434  * @probe: If set, only check if the device can be reset this way.
4435  *
4436  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4437  * unset, it will be reinitialized internally when going from PCI_D3hot to
4438  * PCI_D0.  If that's the case and the device is not in a low-power state
4439  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4440  *
4441  * NOTE: This causes the caller to sleep for twice the device power transition
4442  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4443  * by default (i.e. unless the @dev's d3_delay field has a different value).
4444  * Moreover, only devices in D0 can be reset by this function.
4445  */
4446 static int pci_pm_reset(struct pci_dev *dev, int probe)
4447 {
4448 	u16 csr;
4449 
4450 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4451 		return -ENOTTY;
4452 
4453 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4454 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4455 		return -ENOTTY;
4456 
4457 	if (probe)
4458 		return 0;
4459 
4460 	if (dev->current_state != PCI_D0)
4461 		return -EINVAL;
4462 
4463 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4464 	csr |= PCI_D3hot;
4465 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4466 	pci_dev_d3_sleep(dev);
4467 
4468 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4469 	csr |= PCI_D0;
4470 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4471 	pci_dev_d3_sleep(dev);
4472 
4473 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4474 }
4475 /**
4476  * pcie_wait_for_link - Wait until link is active or inactive
4477  * @pdev: Bridge device
4478  * @active: waiting for active or inactive?
4479  *
4480  * Use this to wait till link becomes active or inactive.
4481  */
4482 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4483 {
4484 	int timeout = 1000;
4485 	bool ret;
4486 	u16 lnk_status;
4487 
4488 	for (;;) {
4489 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4490 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4491 		if (ret == active)
4492 			return true;
4493 		if (timeout <= 0)
4494 			break;
4495 		msleep(10);
4496 		timeout -= 10;
4497 	}
4498 
4499 	pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4500 		 active ? "set" : "cleared");
4501 
4502 	return false;
4503 }
4504 
4505 void pci_reset_secondary_bus(struct pci_dev *dev)
4506 {
4507 	u16 ctrl;
4508 
4509 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4510 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4511 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4512 
4513 	/*
4514 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4515 	 * this to 2ms to ensure that we meet the minimum requirement.
4516 	 */
4517 	msleep(2);
4518 
4519 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4520 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4521 
4522 	/*
4523 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4524 	 * Assuming a minimum 33MHz clock this results in a 1s
4525 	 * delay before we can consider subordinate devices to
4526 	 * be re-initialized.  PCIe has some ways to shorten this,
4527 	 * but we don't make use of them yet.
4528 	 */
4529 	ssleep(1);
4530 }
4531 
4532 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4533 {
4534 	pci_reset_secondary_bus(dev);
4535 }
4536 
4537 /**
4538  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4539  * @dev: Bridge device
4540  *
4541  * Use the bridge control register to assert reset on the secondary bus.
4542  * Devices on the secondary bus are left in power-on state.
4543  */
4544 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4545 {
4546 	pcibios_reset_secondary_bus(dev);
4547 
4548 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4549 }
4550 
4551 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4552 {
4553 	struct pci_dev *pdev;
4554 
4555 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4556 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4557 		return -ENOTTY;
4558 
4559 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4560 		if (pdev != dev)
4561 			return -ENOTTY;
4562 
4563 	if (probe)
4564 		return 0;
4565 
4566 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4567 }
4568 
4569 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4570 {
4571 	int rc = -ENOTTY;
4572 
4573 	if (!hotplug || !try_module_get(hotplug->ops->owner))
4574 		return rc;
4575 
4576 	if (hotplug->ops->reset_slot)
4577 		rc = hotplug->ops->reset_slot(hotplug, probe);
4578 
4579 	module_put(hotplug->ops->owner);
4580 
4581 	return rc;
4582 }
4583 
4584 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4585 {
4586 	struct pci_dev *pdev;
4587 
4588 	if (dev->subordinate || !dev->slot ||
4589 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4590 		return -ENOTTY;
4591 
4592 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4593 		if (pdev != dev && pdev->slot == dev->slot)
4594 			return -ENOTTY;
4595 
4596 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4597 }
4598 
4599 static void pci_dev_lock(struct pci_dev *dev)
4600 {
4601 	pci_cfg_access_lock(dev);
4602 	/* block PM suspend, driver probe, etc. */
4603 	device_lock(&dev->dev);
4604 }
4605 
4606 /* Return 1 on successful lock, 0 on contention */
4607 static int pci_dev_trylock(struct pci_dev *dev)
4608 {
4609 	if (pci_cfg_access_trylock(dev)) {
4610 		if (device_trylock(&dev->dev))
4611 			return 1;
4612 		pci_cfg_access_unlock(dev);
4613 	}
4614 
4615 	return 0;
4616 }
4617 
4618 static void pci_dev_unlock(struct pci_dev *dev)
4619 {
4620 	device_unlock(&dev->dev);
4621 	pci_cfg_access_unlock(dev);
4622 }
4623 
4624 static void pci_dev_save_and_disable(struct pci_dev *dev)
4625 {
4626 	const struct pci_error_handlers *err_handler =
4627 			dev->driver ? dev->driver->err_handler : NULL;
4628 
4629 	/*
4630 	 * dev->driver->err_handler->reset_prepare() is protected against
4631 	 * races with ->remove() by the device lock, which must be held by
4632 	 * the caller.
4633 	 */
4634 	if (err_handler && err_handler->reset_prepare)
4635 		err_handler->reset_prepare(dev);
4636 
4637 	/*
4638 	 * Wake-up device prior to save.  PM registers default to D0 after
4639 	 * reset and a simple register restore doesn't reliably return
4640 	 * to a non-D0 state anyway.
4641 	 */
4642 	pci_set_power_state(dev, PCI_D0);
4643 
4644 	pci_save_state(dev);
4645 	/*
4646 	 * Disable the device by clearing the Command register, except for
4647 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4648 	 * BARs, but also prevents the device from being Bus Master, preventing
4649 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4650 	 * compliant devices, INTx-disable prevents legacy interrupts.
4651 	 */
4652 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4653 }
4654 
4655 static void pci_dev_restore(struct pci_dev *dev)
4656 {
4657 	const struct pci_error_handlers *err_handler =
4658 			dev->driver ? dev->driver->err_handler : NULL;
4659 
4660 	pci_restore_state(dev);
4661 
4662 	/*
4663 	 * dev->driver->err_handler->reset_done() is protected against
4664 	 * races with ->remove() by the device lock, which must be held by
4665 	 * the caller.
4666 	 */
4667 	if (err_handler && err_handler->reset_done)
4668 		err_handler->reset_done(dev);
4669 }
4670 
4671 /**
4672  * __pci_reset_function_locked - reset a PCI device function while holding
4673  * the @dev mutex lock.
4674  * @dev: PCI device to reset
4675  *
4676  * Some devices allow an individual function to be reset without affecting
4677  * other functions in the same device.  The PCI device must be responsive
4678  * to PCI config space in order to use this function.
4679  *
4680  * The device function is presumed to be unused and the caller is holding
4681  * the device mutex lock when this function is called.
4682  * Resetting the device will make the contents of PCI configuration space
4683  * random, so any caller of this must be prepared to reinitialise the
4684  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4685  * etc.
4686  *
4687  * Returns 0 if the device function was successfully reset or negative if the
4688  * device doesn't support resetting a single function.
4689  */
4690 int __pci_reset_function_locked(struct pci_dev *dev)
4691 {
4692 	int rc;
4693 
4694 	might_sleep();
4695 
4696 	/*
4697 	 * A reset method returns -ENOTTY if it doesn't support this device
4698 	 * and we should try the next method.
4699 	 *
4700 	 * If it returns 0 (success), we're finished.  If it returns any
4701 	 * other error, we're also finished: this indicates that further
4702 	 * reset mechanisms might be broken on the device.
4703 	 */
4704 	rc = pci_dev_specific_reset(dev, 0);
4705 	if (rc != -ENOTTY)
4706 		return rc;
4707 	if (pcie_has_flr(dev)) {
4708 		rc = pcie_flr(dev);
4709 		if (rc != -ENOTTY)
4710 			return rc;
4711 	}
4712 	rc = pci_af_flr(dev, 0);
4713 	if (rc != -ENOTTY)
4714 		return rc;
4715 	rc = pci_pm_reset(dev, 0);
4716 	if (rc != -ENOTTY)
4717 		return rc;
4718 	rc = pci_dev_reset_slot_function(dev, 0);
4719 	if (rc != -ENOTTY)
4720 		return rc;
4721 	return pci_parent_bus_reset(dev, 0);
4722 }
4723 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4724 
4725 /**
4726  * pci_probe_reset_function - check whether the device can be safely reset
4727  * @dev: PCI device to reset
4728  *
4729  * Some devices allow an individual function to be reset without affecting
4730  * other functions in the same device.  The PCI device must be responsive
4731  * to PCI config space in order to use this function.
4732  *
4733  * Returns 0 if the device function can be reset or negative if the
4734  * device doesn't support resetting a single function.
4735  */
4736 int pci_probe_reset_function(struct pci_dev *dev)
4737 {
4738 	int rc;
4739 
4740 	might_sleep();
4741 
4742 	rc = pci_dev_specific_reset(dev, 1);
4743 	if (rc != -ENOTTY)
4744 		return rc;
4745 	if (pcie_has_flr(dev))
4746 		return 0;
4747 	rc = pci_af_flr(dev, 1);
4748 	if (rc != -ENOTTY)
4749 		return rc;
4750 	rc = pci_pm_reset(dev, 1);
4751 	if (rc != -ENOTTY)
4752 		return rc;
4753 	rc = pci_dev_reset_slot_function(dev, 1);
4754 	if (rc != -ENOTTY)
4755 		return rc;
4756 
4757 	return pci_parent_bus_reset(dev, 1);
4758 }
4759 
4760 /**
4761  * pci_reset_function - quiesce and reset a PCI device function
4762  * @dev: PCI device to reset
4763  *
4764  * Some devices allow an individual function to be reset without affecting
4765  * other functions in the same device.  The PCI device must be responsive
4766  * to PCI config space in order to use this function.
4767  *
4768  * This function does not just reset the PCI portion of a device, but
4769  * clears all the state associated with the device.  This function differs
4770  * from __pci_reset_function_locked() in that it saves and restores device state
4771  * over the reset and takes the PCI device lock.
4772  *
4773  * Returns 0 if the device function was successfully reset or negative if the
4774  * device doesn't support resetting a single function.
4775  */
4776 int pci_reset_function(struct pci_dev *dev)
4777 {
4778 	int rc;
4779 
4780 	if (!dev->reset_fn)
4781 		return -ENOTTY;
4782 
4783 	pci_dev_lock(dev);
4784 	pci_dev_save_and_disable(dev);
4785 
4786 	rc = __pci_reset_function_locked(dev);
4787 
4788 	pci_dev_restore(dev);
4789 	pci_dev_unlock(dev);
4790 
4791 	return rc;
4792 }
4793 EXPORT_SYMBOL_GPL(pci_reset_function);
4794 
4795 /**
4796  * pci_reset_function_locked - quiesce and reset a PCI device function
4797  * @dev: PCI device to reset
4798  *
4799  * Some devices allow an individual function to be reset without affecting
4800  * other functions in the same device.  The PCI device must be responsive
4801  * to PCI config space in order to use this function.
4802  *
4803  * This function does not just reset the PCI portion of a device, but
4804  * clears all the state associated with the device.  This function differs
4805  * from __pci_reset_function_locked() in that it saves and restores device state
4806  * over the reset.  It also differs from pci_reset_function() in that it
4807  * requires the PCI device lock to be held.
4808  *
4809  * Returns 0 if the device function was successfully reset or negative if the
4810  * device doesn't support resetting a single function.
4811  */
4812 int pci_reset_function_locked(struct pci_dev *dev)
4813 {
4814 	int rc;
4815 
4816 	if (!dev->reset_fn)
4817 		return -ENOTTY;
4818 
4819 	pci_dev_save_and_disable(dev);
4820 
4821 	rc = __pci_reset_function_locked(dev);
4822 
4823 	pci_dev_restore(dev);
4824 
4825 	return rc;
4826 }
4827 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4828 
4829 /**
4830  * pci_try_reset_function - quiesce and reset a PCI device function
4831  * @dev: PCI device to reset
4832  *
4833  * Same as above, except return -EAGAIN if unable to lock device.
4834  */
4835 int pci_try_reset_function(struct pci_dev *dev)
4836 {
4837 	int rc;
4838 
4839 	if (!dev->reset_fn)
4840 		return -ENOTTY;
4841 
4842 	if (!pci_dev_trylock(dev))
4843 		return -EAGAIN;
4844 
4845 	pci_dev_save_and_disable(dev);
4846 	rc = __pci_reset_function_locked(dev);
4847 	pci_dev_restore(dev);
4848 	pci_dev_unlock(dev);
4849 
4850 	return rc;
4851 }
4852 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4853 
4854 /* Do any devices on or below this bus prevent a bus reset? */
4855 static bool pci_bus_resetable(struct pci_bus *bus)
4856 {
4857 	struct pci_dev *dev;
4858 
4859 
4860 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4861 		return false;
4862 
4863 	list_for_each_entry(dev, &bus->devices, bus_list) {
4864 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4865 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4866 			return false;
4867 	}
4868 
4869 	return true;
4870 }
4871 
4872 /* Lock devices from the top of the tree down */
4873 static void pci_bus_lock(struct pci_bus *bus)
4874 {
4875 	struct pci_dev *dev;
4876 
4877 	list_for_each_entry(dev, &bus->devices, bus_list) {
4878 		pci_dev_lock(dev);
4879 		if (dev->subordinate)
4880 			pci_bus_lock(dev->subordinate);
4881 	}
4882 }
4883 
4884 /* Unlock devices from the bottom of the tree up */
4885 static void pci_bus_unlock(struct pci_bus *bus)
4886 {
4887 	struct pci_dev *dev;
4888 
4889 	list_for_each_entry(dev, &bus->devices, bus_list) {
4890 		if (dev->subordinate)
4891 			pci_bus_unlock(dev->subordinate);
4892 		pci_dev_unlock(dev);
4893 	}
4894 }
4895 
4896 /* Return 1 on successful lock, 0 on contention */
4897 static int pci_bus_trylock(struct pci_bus *bus)
4898 {
4899 	struct pci_dev *dev;
4900 
4901 	list_for_each_entry(dev, &bus->devices, bus_list) {
4902 		if (!pci_dev_trylock(dev))
4903 			goto unlock;
4904 		if (dev->subordinate) {
4905 			if (!pci_bus_trylock(dev->subordinate)) {
4906 				pci_dev_unlock(dev);
4907 				goto unlock;
4908 			}
4909 		}
4910 	}
4911 	return 1;
4912 
4913 unlock:
4914 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4915 		if (dev->subordinate)
4916 			pci_bus_unlock(dev->subordinate);
4917 		pci_dev_unlock(dev);
4918 	}
4919 	return 0;
4920 }
4921 
4922 /* Do any devices on or below this slot prevent a bus reset? */
4923 static bool pci_slot_resetable(struct pci_slot *slot)
4924 {
4925 	struct pci_dev *dev;
4926 
4927 	if (slot->bus->self &&
4928 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4929 		return false;
4930 
4931 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4932 		if (!dev->slot || dev->slot != slot)
4933 			continue;
4934 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4935 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4936 			return false;
4937 	}
4938 
4939 	return true;
4940 }
4941 
4942 /* Lock devices from the top of the tree down */
4943 static void pci_slot_lock(struct pci_slot *slot)
4944 {
4945 	struct pci_dev *dev;
4946 
4947 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4948 		if (!dev->slot || dev->slot != slot)
4949 			continue;
4950 		pci_dev_lock(dev);
4951 		if (dev->subordinate)
4952 			pci_bus_lock(dev->subordinate);
4953 	}
4954 }
4955 
4956 /* Unlock devices from the bottom of the tree up */
4957 static void pci_slot_unlock(struct pci_slot *slot)
4958 {
4959 	struct pci_dev *dev;
4960 
4961 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4962 		if (!dev->slot || dev->slot != slot)
4963 			continue;
4964 		if (dev->subordinate)
4965 			pci_bus_unlock(dev->subordinate);
4966 		pci_dev_unlock(dev);
4967 	}
4968 }
4969 
4970 /* Return 1 on successful lock, 0 on contention */
4971 static int pci_slot_trylock(struct pci_slot *slot)
4972 {
4973 	struct pci_dev *dev;
4974 
4975 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4976 		if (!dev->slot || dev->slot != slot)
4977 			continue;
4978 		if (!pci_dev_trylock(dev))
4979 			goto unlock;
4980 		if (dev->subordinate) {
4981 			if (!pci_bus_trylock(dev->subordinate)) {
4982 				pci_dev_unlock(dev);
4983 				goto unlock;
4984 			}
4985 		}
4986 	}
4987 	return 1;
4988 
4989 unlock:
4990 	list_for_each_entry_continue_reverse(dev,
4991 					     &slot->bus->devices, bus_list) {
4992 		if (!dev->slot || dev->slot != slot)
4993 			continue;
4994 		if (dev->subordinate)
4995 			pci_bus_unlock(dev->subordinate);
4996 		pci_dev_unlock(dev);
4997 	}
4998 	return 0;
4999 }
5000 
5001 /* Save and disable devices from the top of the tree down */
5002 static void pci_bus_save_and_disable(struct pci_bus *bus)
5003 {
5004 	struct pci_dev *dev;
5005 
5006 	list_for_each_entry(dev, &bus->devices, bus_list) {
5007 		pci_dev_lock(dev);
5008 		pci_dev_save_and_disable(dev);
5009 		pci_dev_unlock(dev);
5010 		if (dev->subordinate)
5011 			pci_bus_save_and_disable(dev->subordinate);
5012 	}
5013 }
5014 
5015 /*
5016  * Restore devices from top of the tree down - parent bridges need to be
5017  * restored before we can get to subordinate devices.
5018  */
5019 static void pci_bus_restore(struct pci_bus *bus)
5020 {
5021 	struct pci_dev *dev;
5022 
5023 	list_for_each_entry(dev, &bus->devices, bus_list) {
5024 		pci_dev_lock(dev);
5025 		pci_dev_restore(dev);
5026 		pci_dev_unlock(dev);
5027 		if (dev->subordinate)
5028 			pci_bus_restore(dev->subordinate);
5029 	}
5030 }
5031 
5032 /* Save and disable devices from the top of the tree down */
5033 static void pci_slot_save_and_disable(struct pci_slot *slot)
5034 {
5035 	struct pci_dev *dev;
5036 
5037 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5038 		if (!dev->slot || dev->slot != slot)
5039 			continue;
5040 		pci_dev_save_and_disable(dev);
5041 		if (dev->subordinate)
5042 			pci_bus_save_and_disable(dev->subordinate);
5043 	}
5044 }
5045 
5046 /*
5047  * Restore devices from top of the tree down - parent bridges need to be
5048  * restored before we can get to subordinate devices.
5049  */
5050 static void pci_slot_restore(struct pci_slot *slot)
5051 {
5052 	struct pci_dev *dev;
5053 
5054 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5055 		if (!dev->slot || dev->slot != slot)
5056 			continue;
5057 		pci_dev_lock(dev);
5058 		pci_dev_restore(dev);
5059 		pci_dev_unlock(dev);
5060 		if (dev->subordinate)
5061 			pci_bus_restore(dev->subordinate);
5062 	}
5063 }
5064 
5065 static int pci_slot_reset(struct pci_slot *slot, int probe)
5066 {
5067 	int rc;
5068 
5069 	if (!slot || !pci_slot_resetable(slot))
5070 		return -ENOTTY;
5071 
5072 	if (!probe)
5073 		pci_slot_lock(slot);
5074 
5075 	might_sleep();
5076 
5077 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5078 
5079 	if (!probe)
5080 		pci_slot_unlock(slot);
5081 
5082 	return rc;
5083 }
5084 
5085 /**
5086  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5087  * @slot: PCI slot to probe
5088  *
5089  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5090  */
5091 int pci_probe_reset_slot(struct pci_slot *slot)
5092 {
5093 	return pci_slot_reset(slot, 1);
5094 }
5095 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5096 
5097 /**
5098  * __pci_reset_slot - Try to reset a PCI slot
5099  * @slot: PCI slot to reset
5100  *
5101  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5102  * independent of other slots.  For instance, some slots may support slot power
5103  * control.  In the case of a 1:1 bus to slot architecture, this function may
5104  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5105  * Generally a slot reset should be attempted before a bus reset.  All of the
5106  * function of the slot and any subordinate buses behind the slot are reset
5107  * through this function.  PCI config space of all devices in the slot and
5108  * behind the slot is saved before and restored after reset.
5109  *
5110  * Same as above except return -EAGAIN if the slot cannot be locked
5111  */
5112 static int __pci_reset_slot(struct pci_slot *slot)
5113 {
5114 	int rc;
5115 
5116 	rc = pci_slot_reset(slot, 1);
5117 	if (rc)
5118 		return rc;
5119 
5120 	pci_slot_save_and_disable(slot);
5121 
5122 	if (pci_slot_trylock(slot)) {
5123 		might_sleep();
5124 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5125 		pci_slot_unlock(slot);
5126 	} else
5127 		rc = -EAGAIN;
5128 
5129 	pci_slot_restore(slot);
5130 
5131 	return rc;
5132 }
5133 
5134 static int pci_bus_reset(struct pci_bus *bus, int probe)
5135 {
5136 	int ret;
5137 
5138 	if (!bus->self || !pci_bus_resetable(bus))
5139 		return -ENOTTY;
5140 
5141 	if (probe)
5142 		return 0;
5143 
5144 	pci_bus_lock(bus);
5145 
5146 	might_sleep();
5147 
5148 	ret = pci_bridge_secondary_bus_reset(bus->self);
5149 
5150 	pci_bus_unlock(bus);
5151 
5152 	return ret;
5153 }
5154 
5155 /**
5156  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5157  * @bus: PCI bus to probe
5158  *
5159  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5160  */
5161 int pci_probe_reset_bus(struct pci_bus *bus)
5162 {
5163 	return pci_bus_reset(bus, 1);
5164 }
5165 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5166 
5167 /**
5168  * __pci_reset_bus - Try to reset a PCI bus
5169  * @bus: top level PCI bus to reset
5170  *
5171  * Same as above except return -EAGAIN if the bus cannot be locked
5172  */
5173 static int __pci_reset_bus(struct pci_bus *bus)
5174 {
5175 	int rc;
5176 
5177 	rc = pci_bus_reset(bus, 1);
5178 	if (rc)
5179 		return rc;
5180 
5181 	pci_bus_save_and_disable(bus);
5182 
5183 	if (pci_bus_trylock(bus)) {
5184 		might_sleep();
5185 		rc = pci_bridge_secondary_bus_reset(bus->self);
5186 		pci_bus_unlock(bus);
5187 	} else
5188 		rc = -EAGAIN;
5189 
5190 	pci_bus_restore(bus);
5191 
5192 	return rc;
5193 }
5194 
5195 /**
5196  * pci_reset_bus - Try to reset a PCI bus
5197  * @pdev: top level PCI device to reset via slot/bus
5198  *
5199  * Same as above except return -EAGAIN if the bus cannot be locked
5200  */
5201 int pci_reset_bus(struct pci_dev *pdev)
5202 {
5203 	return pci_probe_reset_slot(pdev->slot) ?
5204 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5205 }
5206 EXPORT_SYMBOL_GPL(pci_reset_bus);
5207 
5208 /**
5209  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5210  * @dev: PCI device to query
5211  *
5212  * Returns mmrbc: maximum designed memory read count in bytes
5213  *    or appropriate error value.
5214  */
5215 int pcix_get_max_mmrbc(struct pci_dev *dev)
5216 {
5217 	int cap;
5218 	u32 stat;
5219 
5220 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5221 	if (!cap)
5222 		return -EINVAL;
5223 
5224 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5225 		return -EINVAL;
5226 
5227 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5228 }
5229 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5230 
5231 /**
5232  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5233  * @dev: PCI device to query
5234  *
5235  * Returns mmrbc: maximum memory read count in bytes
5236  *    or appropriate error value.
5237  */
5238 int pcix_get_mmrbc(struct pci_dev *dev)
5239 {
5240 	int cap;
5241 	u16 cmd;
5242 
5243 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5244 	if (!cap)
5245 		return -EINVAL;
5246 
5247 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5248 		return -EINVAL;
5249 
5250 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5251 }
5252 EXPORT_SYMBOL(pcix_get_mmrbc);
5253 
5254 /**
5255  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5256  * @dev: PCI device to query
5257  * @mmrbc: maximum memory read count in bytes
5258  *    valid values are 512, 1024, 2048, 4096
5259  *
5260  * If possible sets maximum memory read byte count, some bridges have erratas
5261  * that prevent this.
5262  */
5263 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5264 {
5265 	int cap;
5266 	u32 stat, v, o;
5267 	u16 cmd;
5268 
5269 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5270 		return -EINVAL;
5271 
5272 	v = ffs(mmrbc) - 10;
5273 
5274 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5275 	if (!cap)
5276 		return -EINVAL;
5277 
5278 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5279 		return -EINVAL;
5280 
5281 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5282 		return -E2BIG;
5283 
5284 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5285 		return -EINVAL;
5286 
5287 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5288 	if (o != v) {
5289 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5290 			return -EIO;
5291 
5292 		cmd &= ~PCI_X_CMD_MAX_READ;
5293 		cmd |= v << 2;
5294 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5295 			return -EIO;
5296 	}
5297 	return 0;
5298 }
5299 EXPORT_SYMBOL(pcix_set_mmrbc);
5300 
5301 /**
5302  * pcie_get_readrq - get PCI Express read request size
5303  * @dev: PCI device to query
5304  *
5305  * Returns maximum memory read request in bytes
5306  *    or appropriate error value.
5307  */
5308 int pcie_get_readrq(struct pci_dev *dev)
5309 {
5310 	u16 ctl;
5311 
5312 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5313 
5314 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5315 }
5316 EXPORT_SYMBOL(pcie_get_readrq);
5317 
5318 /**
5319  * pcie_set_readrq - set PCI Express maximum memory read request
5320  * @dev: PCI device to query
5321  * @rq: maximum memory read count in bytes
5322  *    valid values are 128, 256, 512, 1024, 2048, 4096
5323  *
5324  * If possible sets maximum memory read request in bytes
5325  */
5326 int pcie_set_readrq(struct pci_dev *dev, int rq)
5327 {
5328 	u16 v;
5329 
5330 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5331 		return -EINVAL;
5332 
5333 	/*
5334 	 * If using the "performance" PCIe config, we clamp the
5335 	 * read rq size to the max packet size to prevent the
5336 	 * host bridge generating requests larger than we can
5337 	 * cope with
5338 	 */
5339 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5340 		int mps = pcie_get_mps(dev);
5341 
5342 		if (mps < rq)
5343 			rq = mps;
5344 	}
5345 
5346 	v = (ffs(rq) - 8) << 12;
5347 
5348 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5349 						  PCI_EXP_DEVCTL_READRQ, v);
5350 }
5351 EXPORT_SYMBOL(pcie_set_readrq);
5352 
5353 /**
5354  * pcie_get_mps - get PCI Express maximum payload size
5355  * @dev: PCI device to query
5356  *
5357  * Returns maximum payload size in bytes
5358  */
5359 int pcie_get_mps(struct pci_dev *dev)
5360 {
5361 	u16 ctl;
5362 
5363 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5364 
5365 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5366 }
5367 EXPORT_SYMBOL(pcie_get_mps);
5368 
5369 /**
5370  * pcie_set_mps - set PCI Express maximum payload size
5371  * @dev: PCI device to query
5372  * @mps: maximum payload size in bytes
5373  *    valid values are 128, 256, 512, 1024, 2048, 4096
5374  *
5375  * If possible sets maximum payload size
5376  */
5377 int pcie_set_mps(struct pci_dev *dev, int mps)
5378 {
5379 	u16 v;
5380 
5381 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5382 		return -EINVAL;
5383 
5384 	v = ffs(mps) - 8;
5385 	if (v > dev->pcie_mpss)
5386 		return -EINVAL;
5387 	v <<= 5;
5388 
5389 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5390 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5391 }
5392 EXPORT_SYMBOL(pcie_set_mps);
5393 
5394 /**
5395  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5396  *			      device and its bandwidth limitation
5397  * @dev: PCI device to query
5398  * @limiting_dev: storage for device causing the bandwidth limitation
5399  * @speed: storage for speed of limiting device
5400  * @width: storage for width of limiting device
5401  *
5402  * Walk up the PCI device chain and find the point where the minimum
5403  * bandwidth is available.  Return the bandwidth available there and (if
5404  * limiting_dev, speed, and width pointers are supplied) information about
5405  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5406  * raw bandwidth.
5407  */
5408 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5409 			     enum pci_bus_speed *speed,
5410 			     enum pcie_link_width *width)
5411 {
5412 	u16 lnksta;
5413 	enum pci_bus_speed next_speed;
5414 	enum pcie_link_width next_width;
5415 	u32 bw, next_bw;
5416 
5417 	if (speed)
5418 		*speed = PCI_SPEED_UNKNOWN;
5419 	if (width)
5420 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5421 
5422 	bw = 0;
5423 
5424 	while (dev) {
5425 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5426 
5427 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5428 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5429 			PCI_EXP_LNKSTA_NLW_SHIFT;
5430 
5431 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5432 
5433 		/* Check if current device limits the total bandwidth */
5434 		if (!bw || next_bw <= bw) {
5435 			bw = next_bw;
5436 
5437 			if (limiting_dev)
5438 				*limiting_dev = dev;
5439 			if (speed)
5440 				*speed = next_speed;
5441 			if (width)
5442 				*width = next_width;
5443 		}
5444 
5445 		dev = pci_upstream_bridge(dev);
5446 	}
5447 
5448 	return bw;
5449 }
5450 EXPORT_SYMBOL(pcie_bandwidth_available);
5451 
5452 /**
5453  * pcie_get_speed_cap - query for the PCI device's link speed capability
5454  * @dev: PCI device to query
5455  *
5456  * Query the PCI device speed capability.  Return the maximum link speed
5457  * supported by the device.
5458  */
5459 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5460 {
5461 	u32 lnkcap2, lnkcap;
5462 
5463 	/*
5464 	 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5465 	 * Speeds Vector in Link Capabilities 2 when supported, falling
5466 	 * back to Max Link Speed in Link Capabilities otherwise.
5467 	 */
5468 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5469 	if (lnkcap2) { /* PCIe r3.0-compliant */
5470 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5471 			return PCIE_SPEED_16_0GT;
5472 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5473 			return PCIE_SPEED_8_0GT;
5474 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5475 			return PCIE_SPEED_5_0GT;
5476 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5477 			return PCIE_SPEED_2_5GT;
5478 		return PCI_SPEED_UNKNOWN;
5479 	}
5480 
5481 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5482 	if (lnkcap) {
5483 		if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5484 			return PCIE_SPEED_16_0GT;
5485 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5486 			return PCIE_SPEED_8_0GT;
5487 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5488 			return PCIE_SPEED_5_0GT;
5489 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5490 			return PCIE_SPEED_2_5GT;
5491 	}
5492 
5493 	return PCI_SPEED_UNKNOWN;
5494 }
5495 EXPORT_SYMBOL(pcie_get_speed_cap);
5496 
5497 /**
5498  * pcie_get_width_cap - query for the PCI device's link width capability
5499  * @dev: PCI device to query
5500  *
5501  * Query the PCI device width capability.  Return the maximum link width
5502  * supported by the device.
5503  */
5504 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5505 {
5506 	u32 lnkcap;
5507 
5508 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5509 	if (lnkcap)
5510 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5511 
5512 	return PCIE_LNK_WIDTH_UNKNOWN;
5513 }
5514 EXPORT_SYMBOL(pcie_get_width_cap);
5515 
5516 /**
5517  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5518  * @dev: PCI device
5519  * @speed: storage for link speed
5520  * @width: storage for link width
5521  *
5522  * Calculate a PCI device's link bandwidth by querying for its link speed
5523  * and width, multiplying them, and applying encoding overhead.  The result
5524  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5525  */
5526 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5527 			   enum pcie_link_width *width)
5528 {
5529 	*speed = pcie_get_speed_cap(dev);
5530 	*width = pcie_get_width_cap(dev);
5531 
5532 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5533 		return 0;
5534 
5535 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5536 }
5537 
5538 /**
5539  * __pcie_print_link_status - Report the PCI device's link speed and width
5540  * @dev: PCI device to query
5541  * @verbose: Print info even when enough bandwidth is available
5542  *
5543  * If the available bandwidth at the device is less than the device is
5544  * capable of, report the device's maximum possible bandwidth and the
5545  * upstream link that limits its performance.  If @verbose, always print
5546  * the available bandwidth, even if the device isn't constrained.
5547  */
5548 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5549 {
5550 	enum pcie_link_width width, width_cap;
5551 	enum pci_bus_speed speed, speed_cap;
5552 	struct pci_dev *limiting_dev = NULL;
5553 	u32 bw_avail, bw_cap;
5554 
5555 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5556 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5557 
5558 	if (bw_avail >= bw_cap && verbose)
5559 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5560 			 bw_cap / 1000, bw_cap % 1000,
5561 			 PCIE_SPEED2STR(speed_cap), width_cap);
5562 	else if (bw_avail < bw_cap)
5563 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5564 			 bw_avail / 1000, bw_avail % 1000,
5565 			 PCIE_SPEED2STR(speed), width,
5566 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5567 			 bw_cap / 1000, bw_cap % 1000,
5568 			 PCIE_SPEED2STR(speed_cap), width_cap);
5569 }
5570 
5571 /**
5572  * pcie_print_link_status - Report the PCI device's link speed and width
5573  * @dev: PCI device to query
5574  *
5575  * Report the available bandwidth at the device.
5576  */
5577 void pcie_print_link_status(struct pci_dev *dev)
5578 {
5579 	__pcie_print_link_status(dev, true);
5580 }
5581 EXPORT_SYMBOL(pcie_print_link_status);
5582 
5583 /**
5584  * pci_select_bars - Make BAR mask from the type of resource
5585  * @dev: the PCI device for which BAR mask is made
5586  * @flags: resource type mask to be selected
5587  *
5588  * This helper routine makes bar mask from the type of resource.
5589  */
5590 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5591 {
5592 	int i, bars = 0;
5593 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5594 		if (pci_resource_flags(dev, i) & flags)
5595 			bars |= (1 << i);
5596 	return bars;
5597 }
5598 EXPORT_SYMBOL(pci_select_bars);
5599 
5600 /* Some architectures require additional programming to enable VGA */
5601 static arch_set_vga_state_t arch_set_vga_state;
5602 
5603 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5604 {
5605 	arch_set_vga_state = func;	/* NULL disables */
5606 }
5607 
5608 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5609 				  unsigned int command_bits, u32 flags)
5610 {
5611 	if (arch_set_vga_state)
5612 		return arch_set_vga_state(dev, decode, command_bits,
5613 						flags);
5614 	return 0;
5615 }
5616 
5617 /**
5618  * pci_set_vga_state - set VGA decode state on device and parents if requested
5619  * @dev: the PCI device
5620  * @decode: true = enable decoding, false = disable decoding
5621  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5622  * @flags: traverse ancestors and change bridges
5623  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5624  */
5625 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5626 		      unsigned int command_bits, u32 flags)
5627 {
5628 	struct pci_bus *bus;
5629 	struct pci_dev *bridge;
5630 	u16 cmd;
5631 	int rc;
5632 
5633 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5634 
5635 	/* ARCH specific VGA enables */
5636 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5637 	if (rc)
5638 		return rc;
5639 
5640 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5641 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5642 		if (decode == true)
5643 			cmd |= command_bits;
5644 		else
5645 			cmd &= ~command_bits;
5646 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5647 	}
5648 
5649 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5650 		return 0;
5651 
5652 	bus = dev->bus;
5653 	while (bus) {
5654 		bridge = bus->self;
5655 		if (bridge) {
5656 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5657 					     &cmd);
5658 			if (decode == true)
5659 				cmd |= PCI_BRIDGE_CTL_VGA;
5660 			else
5661 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5662 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5663 					      cmd);
5664 		}
5665 		bus = bus->parent;
5666 	}
5667 	return 0;
5668 }
5669 
5670 /**
5671  * pci_add_dma_alias - Add a DMA devfn alias for a device
5672  * @dev: the PCI device for which alias is added
5673  * @devfn: alias slot and function
5674  *
5675  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5676  * which is used to program permissible bus-devfn source addresses for DMA
5677  * requests in an IOMMU.  These aliases factor into IOMMU group creation
5678  * and are useful for devices generating DMA requests beyond or different
5679  * from their logical bus-devfn.  Examples include device quirks where the
5680  * device simply uses the wrong devfn, as well as non-transparent bridges
5681  * where the alias may be a proxy for devices in another domain.
5682  *
5683  * IOMMU group creation is performed during device discovery or addition,
5684  * prior to any potential DMA mapping and therefore prior to driver probing
5685  * (especially for userspace assigned devices where IOMMU group definition
5686  * cannot be left as a userspace activity).  DMA aliases should therefore
5687  * be configured via quirks, such as the PCI fixup header quirk.
5688  */
5689 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5690 {
5691 	if (!dev->dma_alias_mask)
5692 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5693 					      sizeof(long), GFP_KERNEL);
5694 	if (!dev->dma_alias_mask) {
5695 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5696 		return;
5697 	}
5698 
5699 	set_bit(devfn, dev->dma_alias_mask);
5700 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5701 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5702 }
5703 
5704 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5705 {
5706 	return (dev1->dma_alias_mask &&
5707 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5708 	       (dev2->dma_alias_mask &&
5709 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5710 }
5711 
5712 bool pci_device_is_present(struct pci_dev *pdev)
5713 {
5714 	u32 v;
5715 
5716 	if (pci_dev_is_disconnected(pdev))
5717 		return false;
5718 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5719 }
5720 EXPORT_SYMBOL_GPL(pci_device_is_present);
5721 
5722 void pci_ignore_hotplug(struct pci_dev *dev)
5723 {
5724 	struct pci_dev *bridge = dev->bus->self;
5725 
5726 	dev->ignore_hotplug = 1;
5727 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5728 	if (bridge)
5729 		bridge->ignore_hotplug = 1;
5730 }
5731 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5732 
5733 resource_size_t __weak pcibios_default_alignment(void)
5734 {
5735 	return 0;
5736 }
5737 
5738 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5739 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5740 static DEFINE_SPINLOCK(resource_alignment_lock);
5741 
5742 /**
5743  * pci_specified_resource_alignment - get resource alignment specified by user.
5744  * @dev: the PCI device to get
5745  * @resize: whether or not to change resources' size when reassigning alignment
5746  *
5747  * RETURNS: Resource alignment if it is specified.
5748  *          Zero if it is not specified.
5749  */
5750 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5751 							bool *resize)
5752 {
5753 	int align_order, count;
5754 	resource_size_t align = pcibios_default_alignment();
5755 	const char *p;
5756 	int ret;
5757 
5758 	spin_lock(&resource_alignment_lock);
5759 	p = resource_alignment_param;
5760 	if (!*p && !align)
5761 		goto out;
5762 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5763 		align = 0;
5764 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5765 		goto out;
5766 	}
5767 
5768 	while (*p) {
5769 		count = 0;
5770 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5771 							p[count] == '@') {
5772 			p += count + 1;
5773 		} else {
5774 			align_order = -1;
5775 		}
5776 
5777 		ret = pci_dev_str_match(dev, p, &p);
5778 		if (ret == 1) {
5779 			*resize = true;
5780 			if (align_order == -1)
5781 				align = PAGE_SIZE;
5782 			else
5783 				align = 1 << align_order;
5784 			break;
5785 		} else if (ret < 0) {
5786 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5787 			       p);
5788 			break;
5789 		}
5790 
5791 		if (*p != ';' && *p != ',') {
5792 			/* End of param or invalid format */
5793 			break;
5794 		}
5795 		p++;
5796 	}
5797 out:
5798 	spin_unlock(&resource_alignment_lock);
5799 	return align;
5800 }
5801 
5802 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5803 					   resource_size_t align, bool resize)
5804 {
5805 	struct resource *r = &dev->resource[bar];
5806 	resource_size_t size;
5807 
5808 	if (!(r->flags & IORESOURCE_MEM))
5809 		return;
5810 
5811 	if (r->flags & IORESOURCE_PCI_FIXED) {
5812 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5813 			 bar, r, (unsigned long long)align);
5814 		return;
5815 	}
5816 
5817 	size = resource_size(r);
5818 	if (size >= align)
5819 		return;
5820 
5821 	/*
5822 	 * Increase the alignment of the resource.  There are two ways we
5823 	 * can do this:
5824 	 *
5825 	 * 1) Increase the size of the resource.  BARs are aligned on their
5826 	 *    size, so when we reallocate space for this resource, we'll
5827 	 *    allocate it with the larger alignment.  This also prevents
5828 	 *    assignment of any other BARs inside the alignment region, so
5829 	 *    if we're requesting page alignment, this means no other BARs
5830 	 *    will share the page.
5831 	 *
5832 	 *    The disadvantage is that this makes the resource larger than
5833 	 *    the hardware BAR, which may break drivers that compute things
5834 	 *    based on the resource size, e.g., to find registers at a
5835 	 *    fixed offset before the end of the BAR.
5836 	 *
5837 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5838 	 *    set r->start to the desired alignment.  By itself this
5839 	 *    doesn't prevent other BARs being put inside the alignment
5840 	 *    region, but if we realign *every* resource of every device in
5841 	 *    the system, none of them will share an alignment region.
5842 	 *
5843 	 * When the user has requested alignment for only some devices via
5844 	 * the "pci=resource_alignment" argument, "resize" is true and we
5845 	 * use the first method.  Otherwise we assume we're aligning all
5846 	 * devices and we use the second.
5847 	 */
5848 
5849 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5850 		 bar, r, (unsigned long long)align);
5851 
5852 	if (resize) {
5853 		r->start = 0;
5854 		r->end = align - 1;
5855 	} else {
5856 		r->flags &= ~IORESOURCE_SIZEALIGN;
5857 		r->flags |= IORESOURCE_STARTALIGN;
5858 		r->start = align;
5859 		r->end = r->start + size - 1;
5860 	}
5861 	r->flags |= IORESOURCE_UNSET;
5862 }
5863 
5864 /*
5865  * This function disables memory decoding and releases memory resources
5866  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5867  * It also rounds up size to specified alignment.
5868  * Later on, the kernel will assign page-aligned memory resource back
5869  * to the device.
5870  */
5871 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5872 {
5873 	int i;
5874 	struct resource *r;
5875 	resource_size_t align;
5876 	u16 command;
5877 	bool resize = false;
5878 
5879 	/*
5880 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5881 	 * 3.4.1.11.  Their resources are allocated from the space
5882 	 * described by the VF BARx register in the PF's SR-IOV capability.
5883 	 * We can't influence their alignment here.
5884 	 */
5885 	if (dev->is_virtfn)
5886 		return;
5887 
5888 	/* check if specified PCI is target device to reassign */
5889 	align = pci_specified_resource_alignment(dev, &resize);
5890 	if (!align)
5891 		return;
5892 
5893 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5894 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5895 		pci_warn(dev, "Can't reassign resources to host bridge\n");
5896 		return;
5897 	}
5898 
5899 	pci_read_config_word(dev, PCI_COMMAND, &command);
5900 	command &= ~PCI_COMMAND_MEMORY;
5901 	pci_write_config_word(dev, PCI_COMMAND, command);
5902 
5903 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5904 		pci_request_resource_alignment(dev, i, align, resize);
5905 
5906 	/*
5907 	 * Need to disable bridge's resource window,
5908 	 * to enable the kernel to reassign new resource
5909 	 * window later on.
5910 	 */
5911 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5912 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5913 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5914 			r = &dev->resource[i];
5915 			if (!(r->flags & IORESOURCE_MEM))
5916 				continue;
5917 			r->flags |= IORESOURCE_UNSET;
5918 			r->end = resource_size(r) - 1;
5919 			r->start = 0;
5920 		}
5921 		pci_disable_bridge_window(dev);
5922 	}
5923 }
5924 
5925 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5926 {
5927 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5928 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5929 	spin_lock(&resource_alignment_lock);
5930 	strncpy(resource_alignment_param, buf, count);
5931 	resource_alignment_param[count] = '\0';
5932 	spin_unlock(&resource_alignment_lock);
5933 	return count;
5934 }
5935 
5936 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5937 {
5938 	size_t count;
5939 	spin_lock(&resource_alignment_lock);
5940 	count = snprintf(buf, size, "%s", resource_alignment_param);
5941 	spin_unlock(&resource_alignment_lock);
5942 	return count;
5943 }
5944 
5945 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5946 {
5947 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5948 }
5949 
5950 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5951 					const char *buf, size_t count)
5952 {
5953 	return pci_set_resource_alignment_param(buf, count);
5954 }
5955 
5956 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5957 					pci_resource_alignment_store);
5958 
5959 static int __init pci_resource_alignment_sysfs_init(void)
5960 {
5961 	return bus_create_file(&pci_bus_type,
5962 					&bus_attr_resource_alignment);
5963 }
5964 late_initcall(pci_resource_alignment_sysfs_init);
5965 
5966 static void pci_no_domains(void)
5967 {
5968 #ifdef CONFIG_PCI_DOMAINS
5969 	pci_domains_supported = 0;
5970 #endif
5971 }
5972 
5973 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5974 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5975 
5976 static int pci_get_new_domain_nr(void)
5977 {
5978 	return atomic_inc_return(&__domain_nr);
5979 }
5980 
5981 static int of_pci_bus_find_domain_nr(struct device *parent)
5982 {
5983 	static int use_dt_domains = -1;
5984 	int domain = -1;
5985 
5986 	if (parent)
5987 		domain = of_get_pci_domain_nr(parent->of_node);
5988 	/*
5989 	 * Check DT domain and use_dt_domains values.
5990 	 *
5991 	 * If DT domain property is valid (domain >= 0) and
5992 	 * use_dt_domains != 0, the DT assignment is valid since this means
5993 	 * we have not previously allocated a domain number by using
5994 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5995 	 * 1, to indicate that we have just assigned a domain number from
5996 	 * DT.
5997 	 *
5998 	 * If DT domain property value is not valid (ie domain < 0), and we
5999 	 * have not previously assigned a domain number from DT
6000 	 * (use_dt_domains != 1) we should assign a domain number by
6001 	 * using the:
6002 	 *
6003 	 * pci_get_new_domain_nr()
6004 	 *
6005 	 * API and update the use_dt_domains value to keep track of method we
6006 	 * are using to assign domain numbers (use_dt_domains = 0).
6007 	 *
6008 	 * All other combinations imply we have a platform that is trying
6009 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6010 	 * which is a recipe for domain mishandling and it is prevented by
6011 	 * invalidating the domain value (domain = -1) and printing a
6012 	 * corresponding error.
6013 	 */
6014 	if (domain >= 0 && use_dt_domains) {
6015 		use_dt_domains = 1;
6016 	} else if (domain < 0 && use_dt_domains != 1) {
6017 		use_dt_domains = 0;
6018 		domain = pci_get_new_domain_nr();
6019 	} else {
6020 		if (parent)
6021 			pr_err("Node %pOF has ", parent->of_node);
6022 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6023 		domain = -1;
6024 	}
6025 
6026 	return domain;
6027 }
6028 
6029 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6030 {
6031 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6032 			       acpi_pci_bus_find_domain_nr(bus);
6033 }
6034 #endif
6035 
6036 /**
6037  * pci_ext_cfg_avail - can we access extended PCI config space?
6038  *
6039  * Returns 1 if we can access PCI extended config space (offsets
6040  * greater than 0xff). This is the default implementation. Architecture
6041  * implementations can override this.
6042  */
6043 int __weak pci_ext_cfg_avail(void)
6044 {
6045 	return 1;
6046 }
6047 
6048 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6049 {
6050 }
6051 EXPORT_SYMBOL(pci_fixup_cardbus);
6052 
6053 static int __init pci_setup(char *str)
6054 {
6055 	while (str) {
6056 		char *k = strchr(str, ',');
6057 		if (k)
6058 			*k++ = 0;
6059 		if (*str && (str = pcibios_setup(str)) && *str) {
6060 			if (!strcmp(str, "nomsi")) {
6061 				pci_no_msi();
6062 			} else if (!strncmp(str, "noats", 5)) {
6063 				pr_info("PCIe: ATS is disabled\n");
6064 				pcie_ats_disabled = true;
6065 			} else if (!strcmp(str, "noaer")) {
6066 				pci_no_aer();
6067 			} else if (!strcmp(str, "earlydump")) {
6068 				pci_early_dump = true;
6069 			} else if (!strncmp(str, "realloc=", 8)) {
6070 				pci_realloc_get_opt(str + 8);
6071 			} else if (!strncmp(str, "realloc", 7)) {
6072 				pci_realloc_get_opt("on");
6073 			} else if (!strcmp(str, "nodomains")) {
6074 				pci_no_domains();
6075 			} else if (!strncmp(str, "noari", 5)) {
6076 				pcie_ari_disabled = true;
6077 			} else if (!strncmp(str, "cbiosize=", 9)) {
6078 				pci_cardbus_io_size = memparse(str + 9, &str);
6079 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6080 				pci_cardbus_mem_size = memparse(str + 10, &str);
6081 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6082 				pci_set_resource_alignment_param(str + 19,
6083 							strlen(str + 19));
6084 			} else if (!strncmp(str, "ecrc=", 5)) {
6085 				pcie_ecrc_get_policy(str + 5);
6086 			} else if (!strncmp(str, "hpiosize=", 9)) {
6087 				pci_hotplug_io_size = memparse(str + 9, &str);
6088 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6089 				pci_hotplug_mem_size = memparse(str + 10, &str);
6090 			} else if (!strncmp(str, "hpbussize=", 10)) {
6091 				pci_hotplug_bus_size =
6092 					simple_strtoul(str + 10, &str, 0);
6093 				if (pci_hotplug_bus_size > 0xff)
6094 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6095 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6096 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6097 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6098 				pcie_bus_config = PCIE_BUS_SAFE;
6099 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6100 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6101 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6102 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6103 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6104 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6105 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6106 				disable_acs_redir_param = str + 18;
6107 			} else {
6108 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
6109 						str);
6110 			}
6111 		}
6112 		str = k;
6113 	}
6114 	return 0;
6115 }
6116 early_param("pci", pci_setup);
6117