1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <linux/pci-ats.h> 33 #include <asm/setup.h> 34 #include <asm/dma.h> 35 #include <linux/aer.h> 36 #include "pci.h" 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 46 int pci_pci_problems; 47 EXPORT_SYMBOL(pci_pci_problems); 48 49 unsigned int pci_pm_d3_delay; 50 51 static void pci_pme_list_scan(struct work_struct *work); 52 53 static LIST_HEAD(pci_pme_list); 54 static DEFINE_MUTEX(pci_pme_list_mutex); 55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 56 57 struct pci_pme_device { 58 struct list_head list; 59 struct pci_dev *dev; 60 }; 61 62 #define PME_TIMEOUT 1000 /* How long between PME checks */ 63 64 static void pci_dev_d3_sleep(struct pci_dev *dev) 65 { 66 unsigned int delay = dev->d3_delay; 67 68 if (delay < pci_pm_d3_delay) 69 delay = pci_pm_d3_delay; 70 71 if (delay) 72 msleep(delay); 73 } 74 75 #ifdef CONFIG_PCI_DOMAINS 76 int pci_domains_supported = 1; 77 #endif 78 79 #define DEFAULT_CARDBUS_IO_SIZE (256) 80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 84 85 #define DEFAULT_HOTPLUG_IO_SIZE (256) 86 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 87 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 88 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 89 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 90 91 #define DEFAULT_HOTPLUG_BUS_SIZE 1 92 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 93 94 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 95 96 /* 97 * The default CLS is used if arch didn't set CLS explicitly and not 98 * all pci devices agree on the same value. Arch can override either 99 * the dfl or actual value as it sees fit. Don't forget this is 100 * measured in 32-bit words, not bytes. 101 */ 102 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 103 u8 pci_cache_line_size; 104 105 /* 106 * If we set up a device for bus mastering, we need to check the latency 107 * timer as certain BIOSes forget to set it properly. 108 */ 109 unsigned int pcibios_max_latency = 255; 110 111 /* If set, the PCIe ARI capability will not be used. */ 112 static bool pcie_ari_disabled; 113 114 /* If set, the PCIe ATS capability will not be used. */ 115 static bool pcie_ats_disabled; 116 117 /* If set, the PCI config space of each device is printed during boot. */ 118 bool pci_early_dump; 119 120 bool pci_ats_disabled(void) 121 { 122 return pcie_ats_disabled; 123 } 124 125 /* Disable bridge_d3 for all PCIe ports */ 126 static bool pci_bridge_d3_disable; 127 /* Force bridge_d3 for all PCIe ports */ 128 static bool pci_bridge_d3_force; 129 130 static int __init pcie_port_pm_setup(char *str) 131 { 132 if (!strcmp(str, "off")) 133 pci_bridge_d3_disable = true; 134 else if (!strcmp(str, "force")) 135 pci_bridge_d3_force = true; 136 return 1; 137 } 138 __setup("pcie_port_pm=", pcie_port_pm_setup); 139 140 /* Time to wait after a reset for device to become responsive */ 141 #define PCIE_RESET_READY_POLL_MS 60000 142 143 /** 144 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 145 * @bus: pointer to PCI bus structure to search 146 * 147 * Given a PCI bus, returns the highest PCI bus number present in the set 148 * including the given PCI bus and its list of child PCI buses. 149 */ 150 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 151 { 152 struct pci_bus *tmp; 153 unsigned char max, n; 154 155 max = bus->busn_res.end; 156 list_for_each_entry(tmp, &bus->children, node) { 157 n = pci_bus_max_busnr(tmp); 158 if (n > max) 159 max = n; 160 } 161 return max; 162 } 163 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 164 165 #ifdef CONFIG_HAS_IOMEM 166 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 167 { 168 struct resource *res = &pdev->resource[bar]; 169 170 /* 171 * Make sure the BAR is actually a memory resource, not an IO resource 172 */ 173 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 174 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 175 return NULL; 176 } 177 return ioremap_nocache(res->start, resource_size(res)); 178 } 179 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 180 181 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 182 { 183 /* 184 * Make sure the BAR is actually a memory resource, not an IO resource 185 */ 186 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 187 WARN_ON(1); 188 return NULL; 189 } 190 return ioremap_wc(pci_resource_start(pdev, bar), 191 pci_resource_len(pdev, bar)); 192 } 193 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 194 #endif 195 196 /** 197 * pci_dev_str_match_path - test if a path string matches a device 198 * @dev: the PCI device to test 199 * @p: string to match the device against 200 * @endptr: pointer to the string after the match 201 * 202 * Test if a string (typically from a kernel parameter) formatted as a 203 * path of device/function addresses matches a PCI device. The string must 204 * be of the form: 205 * 206 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 207 * 208 * A path for a device can be obtained using 'lspci -t'. Using a path 209 * is more robust against bus renumbering than using only a single bus, 210 * device and function address. 211 * 212 * Returns 1 if the string matches the device, 0 if it does not and 213 * a negative error code if it fails to parse the string. 214 */ 215 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 216 const char **endptr) 217 { 218 int ret; 219 int seg, bus, slot, func; 220 char *wpath, *p; 221 char end; 222 223 *endptr = strchrnul(path, ';'); 224 225 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 226 if (!wpath) 227 return -ENOMEM; 228 229 while (1) { 230 p = strrchr(wpath, '/'); 231 if (!p) 232 break; 233 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 234 if (ret != 2) { 235 ret = -EINVAL; 236 goto free_and_exit; 237 } 238 239 if (dev->devfn != PCI_DEVFN(slot, func)) { 240 ret = 0; 241 goto free_and_exit; 242 } 243 244 /* 245 * Note: we don't need to get a reference to the upstream 246 * bridge because we hold a reference to the top level 247 * device which should hold a reference to the bridge, 248 * and so on. 249 */ 250 dev = pci_upstream_bridge(dev); 251 if (!dev) { 252 ret = 0; 253 goto free_and_exit; 254 } 255 256 *p = 0; 257 } 258 259 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 260 &func, &end); 261 if (ret != 4) { 262 seg = 0; 263 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 264 if (ret != 3) { 265 ret = -EINVAL; 266 goto free_and_exit; 267 } 268 } 269 270 ret = (seg == pci_domain_nr(dev->bus) && 271 bus == dev->bus->number && 272 dev->devfn == PCI_DEVFN(slot, func)); 273 274 free_and_exit: 275 kfree(wpath); 276 return ret; 277 } 278 279 /** 280 * pci_dev_str_match - test if a string matches a device 281 * @dev: the PCI device to test 282 * @p: string to match the device against 283 * @endptr: pointer to the string after the match 284 * 285 * Test if a string (typically from a kernel parameter) matches a specified 286 * PCI device. The string may be of one of the following formats: 287 * 288 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 289 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 290 * 291 * The first format specifies a PCI bus/device/function address which 292 * may change if new hardware is inserted, if motherboard firmware changes, 293 * or due to changes caused in kernel parameters. If the domain is 294 * left unspecified, it is taken to be 0. In order to be robust against 295 * bus renumbering issues, a path of PCI device/function numbers may be used 296 * to address the specific device. The path for a device can be determined 297 * through the use of 'lspci -t'. 298 * 299 * The second format matches devices using IDs in the configuration 300 * space which may match multiple devices in the system. A value of 0 301 * for any field will match all devices. (Note: this differs from 302 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 303 * legacy reasons and convenience so users don't have to specify 304 * FFFFFFFFs on the command line.) 305 * 306 * Returns 1 if the string matches the device, 0 if it does not and 307 * a negative error code if the string cannot be parsed. 308 */ 309 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 310 const char **endptr) 311 { 312 int ret; 313 int count; 314 unsigned short vendor, device, subsystem_vendor, subsystem_device; 315 316 if (strncmp(p, "pci:", 4) == 0) { 317 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 318 p += 4; 319 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 320 &subsystem_vendor, &subsystem_device, &count); 321 if (ret != 4) { 322 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 323 if (ret != 2) 324 return -EINVAL; 325 326 subsystem_vendor = 0; 327 subsystem_device = 0; 328 } 329 330 p += count; 331 332 if ((!vendor || vendor == dev->vendor) && 333 (!device || device == dev->device) && 334 (!subsystem_vendor || 335 subsystem_vendor == dev->subsystem_vendor) && 336 (!subsystem_device || 337 subsystem_device == dev->subsystem_device)) 338 goto found; 339 } else { 340 /* 341 * PCI Bus, Device, Function IDs are specified 342 * (optionally, may include a path of devfns following it) 343 */ 344 ret = pci_dev_str_match_path(dev, p, &p); 345 if (ret < 0) 346 return ret; 347 else if (ret) 348 goto found; 349 } 350 351 *endptr = p; 352 return 0; 353 354 found: 355 *endptr = p; 356 return 1; 357 } 358 359 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 360 u8 pos, int cap, int *ttl) 361 { 362 u8 id; 363 u16 ent; 364 365 pci_bus_read_config_byte(bus, devfn, pos, &pos); 366 367 while ((*ttl)--) { 368 if (pos < 0x40) 369 break; 370 pos &= ~3; 371 pci_bus_read_config_word(bus, devfn, pos, &ent); 372 373 id = ent & 0xff; 374 if (id == 0xff) 375 break; 376 if (id == cap) 377 return pos; 378 pos = (ent >> 8); 379 } 380 return 0; 381 } 382 383 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 384 u8 pos, int cap) 385 { 386 int ttl = PCI_FIND_CAP_TTL; 387 388 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 389 } 390 391 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 392 { 393 return __pci_find_next_cap(dev->bus, dev->devfn, 394 pos + PCI_CAP_LIST_NEXT, cap); 395 } 396 EXPORT_SYMBOL_GPL(pci_find_next_capability); 397 398 static int __pci_bus_find_cap_start(struct pci_bus *bus, 399 unsigned int devfn, u8 hdr_type) 400 { 401 u16 status; 402 403 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 404 if (!(status & PCI_STATUS_CAP_LIST)) 405 return 0; 406 407 switch (hdr_type) { 408 case PCI_HEADER_TYPE_NORMAL: 409 case PCI_HEADER_TYPE_BRIDGE: 410 return PCI_CAPABILITY_LIST; 411 case PCI_HEADER_TYPE_CARDBUS: 412 return PCI_CB_CAPABILITY_LIST; 413 } 414 415 return 0; 416 } 417 418 /** 419 * pci_find_capability - query for devices' capabilities 420 * @dev: PCI device to query 421 * @cap: capability code 422 * 423 * Tell if a device supports a given PCI capability. 424 * Returns the address of the requested capability structure within the 425 * device's PCI configuration space or 0 in case the device does not 426 * support it. Possible values for @cap: 427 * 428 * %PCI_CAP_ID_PM Power Management 429 * %PCI_CAP_ID_AGP Accelerated Graphics Port 430 * %PCI_CAP_ID_VPD Vital Product Data 431 * %PCI_CAP_ID_SLOTID Slot Identification 432 * %PCI_CAP_ID_MSI Message Signalled Interrupts 433 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 434 * %PCI_CAP_ID_PCIX PCI-X 435 * %PCI_CAP_ID_EXP PCI Express 436 */ 437 int pci_find_capability(struct pci_dev *dev, int cap) 438 { 439 int pos; 440 441 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 442 if (pos) 443 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 444 445 return pos; 446 } 447 EXPORT_SYMBOL(pci_find_capability); 448 449 /** 450 * pci_bus_find_capability - query for devices' capabilities 451 * @bus: the PCI bus to query 452 * @devfn: PCI device to query 453 * @cap: capability code 454 * 455 * Like pci_find_capability() but works for pci devices that do not have a 456 * pci_dev structure set up yet. 457 * 458 * Returns the address of the requested capability structure within the 459 * device's PCI configuration space or 0 in case the device does not 460 * support it. 461 */ 462 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 463 { 464 int pos; 465 u8 hdr_type; 466 467 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 468 469 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 470 if (pos) 471 pos = __pci_find_next_cap(bus, devfn, pos, cap); 472 473 return pos; 474 } 475 EXPORT_SYMBOL(pci_bus_find_capability); 476 477 /** 478 * pci_find_next_ext_capability - Find an extended capability 479 * @dev: PCI device to query 480 * @start: address at which to start looking (0 to start at beginning of list) 481 * @cap: capability code 482 * 483 * Returns the address of the next matching extended capability structure 484 * within the device's PCI configuration space or 0 if the device does 485 * not support it. Some capabilities can occur several times, e.g., the 486 * vendor-specific capability, and this provides a way to find them all. 487 */ 488 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 489 { 490 u32 header; 491 int ttl; 492 int pos = PCI_CFG_SPACE_SIZE; 493 494 /* minimum 8 bytes per capability */ 495 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 496 497 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 498 return 0; 499 500 if (start) 501 pos = start; 502 503 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 504 return 0; 505 506 /* 507 * If we have no capabilities, this is indicated by cap ID, 508 * cap version and next pointer all being 0. 509 */ 510 if (header == 0) 511 return 0; 512 513 while (ttl-- > 0) { 514 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 515 return pos; 516 517 pos = PCI_EXT_CAP_NEXT(header); 518 if (pos < PCI_CFG_SPACE_SIZE) 519 break; 520 521 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 522 break; 523 } 524 525 return 0; 526 } 527 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 528 529 /** 530 * pci_find_ext_capability - Find an extended capability 531 * @dev: PCI device to query 532 * @cap: capability code 533 * 534 * Returns the address of the requested extended capability structure 535 * within the device's PCI configuration space or 0 if the device does 536 * not support it. Possible values for @cap: 537 * 538 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 539 * %PCI_EXT_CAP_ID_VC Virtual Channel 540 * %PCI_EXT_CAP_ID_DSN Device Serial Number 541 * %PCI_EXT_CAP_ID_PWR Power Budgeting 542 */ 543 int pci_find_ext_capability(struct pci_dev *dev, int cap) 544 { 545 return pci_find_next_ext_capability(dev, 0, cap); 546 } 547 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 548 549 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 550 { 551 int rc, ttl = PCI_FIND_CAP_TTL; 552 u8 cap, mask; 553 554 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 555 mask = HT_3BIT_CAP_MASK; 556 else 557 mask = HT_5BIT_CAP_MASK; 558 559 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 560 PCI_CAP_ID_HT, &ttl); 561 while (pos) { 562 rc = pci_read_config_byte(dev, pos + 3, &cap); 563 if (rc != PCIBIOS_SUCCESSFUL) 564 return 0; 565 566 if ((cap & mask) == ht_cap) 567 return pos; 568 569 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 570 pos + PCI_CAP_LIST_NEXT, 571 PCI_CAP_ID_HT, &ttl); 572 } 573 574 return 0; 575 } 576 /** 577 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 578 * @dev: PCI device to query 579 * @pos: Position from which to continue searching 580 * @ht_cap: Hypertransport capability code 581 * 582 * To be used in conjunction with pci_find_ht_capability() to search for 583 * all capabilities matching @ht_cap. @pos should always be a value returned 584 * from pci_find_ht_capability(). 585 * 586 * NB. To be 100% safe against broken PCI devices, the caller should take 587 * steps to avoid an infinite loop. 588 */ 589 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 590 { 591 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 592 } 593 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 594 595 /** 596 * pci_find_ht_capability - query a device's Hypertransport capabilities 597 * @dev: PCI device to query 598 * @ht_cap: Hypertransport capability code 599 * 600 * Tell if a device supports a given Hypertransport capability. 601 * Returns an address within the device's PCI configuration space 602 * or 0 in case the device does not support the request capability. 603 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 604 * which has a Hypertransport capability matching @ht_cap. 605 */ 606 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 607 { 608 int pos; 609 610 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 611 if (pos) 612 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 613 614 return pos; 615 } 616 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 617 618 /** 619 * pci_find_parent_resource - return resource region of parent bus of given region 620 * @dev: PCI device structure contains resources to be searched 621 * @res: child resource record for which parent is sought 622 * 623 * For given resource region of given device, return the resource 624 * region of parent bus the given region is contained in. 625 */ 626 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 627 struct resource *res) 628 { 629 const struct pci_bus *bus = dev->bus; 630 struct resource *r; 631 int i; 632 633 pci_bus_for_each_resource(bus, r, i) { 634 if (!r) 635 continue; 636 if (resource_contains(r, res)) { 637 638 /* 639 * If the window is prefetchable but the BAR is 640 * not, the allocator made a mistake. 641 */ 642 if (r->flags & IORESOURCE_PREFETCH && 643 !(res->flags & IORESOURCE_PREFETCH)) 644 return NULL; 645 646 /* 647 * If we're below a transparent bridge, there may 648 * be both a positively-decoded aperture and a 649 * subtractively-decoded region that contain the BAR. 650 * We want the positively-decoded one, so this depends 651 * on pci_bus_for_each_resource() giving us those 652 * first. 653 */ 654 return r; 655 } 656 } 657 return NULL; 658 } 659 EXPORT_SYMBOL(pci_find_parent_resource); 660 661 /** 662 * pci_find_resource - Return matching PCI device resource 663 * @dev: PCI device to query 664 * @res: Resource to look for 665 * 666 * Goes over standard PCI resources (BARs) and checks if the given resource 667 * is partially or fully contained in any of them. In that case the 668 * matching resource is returned, %NULL otherwise. 669 */ 670 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 671 { 672 int i; 673 674 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 675 struct resource *r = &dev->resource[i]; 676 677 if (r->start && resource_contains(r, res)) 678 return r; 679 } 680 681 return NULL; 682 } 683 EXPORT_SYMBOL(pci_find_resource); 684 685 /** 686 * pci_find_pcie_root_port - return PCIe Root Port 687 * @dev: PCI device to query 688 * 689 * Traverse up the parent chain and return the PCIe Root Port PCI Device 690 * for a given PCI Device. 691 */ 692 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 693 { 694 struct pci_dev *bridge, *highest_pcie_bridge = dev; 695 696 bridge = pci_upstream_bridge(dev); 697 while (bridge && pci_is_pcie(bridge)) { 698 highest_pcie_bridge = bridge; 699 bridge = pci_upstream_bridge(bridge); 700 } 701 702 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 703 return NULL; 704 705 return highest_pcie_bridge; 706 } 707 EXPORT_SYMBOL(pci_find_pcie_root_port); 708 709 /** 710 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 711 * @dev: the PCI device to operate on 712 * @pos: config space offset of status word 713 * @mask: mask of bit(s) to care about in status word 714 * 715 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 716 */ 717 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 718 { 719 int i; 720 721 /* Wait for Transaction Pending bit clean */ 722 for (i = 0; i < 4; i++) { 723 u16 status; 724 if (i) 725 msleep((1 << (i - 1)) * 100); 726 727 pci_read_config_word(dev, pos, &status); 728 if (!(status & mask)) 729 return 1; 730 } 731 732 return 0; 733 } 734 735 /** 736 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 737 * @dev: PCI device to have its BARs restored 738 * 739 * Restore the BAR values for a given device, so as to make it 740 * accessible by its driver. 741 */ 742 static void pci_restore_bars(struct pci_dev *dev) 743 { 744 int i; 745 746 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 747 pci_update_resource(dev, i); 748 } 749 750 static const struct pci_platform_pm_ops *pci_platform_pm; 751 752 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 753 { 754 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 755 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 756 return -EINVAL; 757 pci_platform_pm = ops; 758 return 0; 759 } 760 761 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 762 { 763 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 764 } 765 766 static inline int platform_pci_set_power_state(struct pci_dev *dev, 767 pci_power_t t) 768 { 769 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 770 } 771 772 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 773 { 774 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 775 } 776 777 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 778 { 779 return pci_platform_pm ? 780 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 781 } 782 783 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 784 { 785 return pci_platform_pm ? 786 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 787 } 788 789 static inline bool platform_pci_need_resume(struct pci_dev *dev) 790 { 791 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 792 } 793 794 /** 795 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 796 * given PCI device 797 * @dev: PCI device to handle. 798 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 799 * 800 * RETURN VALUE: 801 * -EINVAL if the requested state is invalid. 802 * -EIO if device does not support PCI PM or its PM capabilities register has a 803 * wrong version, or device doesn't support the requested state. 804 * 0 if device already is in the requested state. 805 * 0 if device's power state has been successfully changed. 806 */ 807 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 808 { 809 u16 pmcsr; 810 bool need_restore = false; 811 812 /* Check if we're already there */ 813 if (dev->current_state == state) 814 return 0; 815 816 if (!dev->pm_cap) 817 return -EIO; 818 819 if (state < PCI_D0 || state > PCI_D3hot) 820 return -EINVAL; 821 822 /* Validate current state: 823 * Can enter D0 from any state, but if we can only go deeper 824 * to sleep if we're already in a low power state 825 */ 826 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 827 && dev->current_state > state) { 828 pci_err(dev, "invalid power transition (from state %d to %d)\n", 829 dev->current_state, state); 830 return -EINVAL; 831 } 832 833 /* check if this device supports the desired state */ 834 if ((state == PCI_D1 && !dev->d1_support) 835 || (state == PCI_D2 && !dev->d2_support)) 836 return -EIO; 837 838 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 839 840 /* If we're (effectively) in D3, force entire word to 0. 841 * This doesn't affect PME_Status, disables PME_En, and 842 * sets PowerState to 0. 843 */ 844 switch (dev->current_state) { 845 case PCI_D0: 846 case PCI_D1: 847 case PCI_D2: 848 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 849 pmcsr |= state; 850 break; 851 case PCI_D3hot: 852 case PCI_D3cold: 853 case PCI_UNKNOWN: /* Boot-up */ 854 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 855 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 856 need_restore = true; 857 /* Fall-through: force to D0 */ 858 default: 859 pmcsr = 0; 860 break; 861 } 862 863 /* enter specified state */ 864 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 865 866 /* Mandatory power management transition delays */ 867 /* see PCI PM 1.1 5.6.1 table 18 */ 868 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 869 pci_dev_d3_sleep(dev); 870 else if (state == PCI_D2 || dev->current_state == PCI_D2) 871 udelay(PCI_PM_D2_DELAY); 872 873 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 874 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 875 if (dev->current_state != state && printk_ratelimit()) 876 pci_info(dev, "Refused to change power state, currently in D%d\n", 877 dev->current_state); 878 879 /* 880 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 881 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 882 * from D3hot to D0 _may_ perform an internal reset, thereby 883 * going to "D0 Uninitialized" rather than "D0 Initialized". 884 * For example, at least some versions of the 3c905B and the 885 * 3c556B exhibit this behaviour. 886 * 887 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 888 * devices in a D3hot state at boot. Consequently, we need to 889 * restore at least the BARs so that the device will be 890 * accessible to its driver. 891 */ 892 if (need_restore) 893 pci_restore_bars(dev); 894 895 if (dev->bus->self) 896 pcie_aspm_pm_state_change(dev->bus->self); 897 898 return 0; 899 } 900 901 /** 902 * pci_update_current_state - Read power state of given device and cache it 903 * @dev: PCI device to handle. 904 * @state: State to cache in case the device doesn't have the PM capability 905 * 906 * The power state is read from the PMCSR register, which however is 907 * inaccessible in D3cold. The platform firmware is therefore queried first 908 * to detect accessibility of the register. In case the platform firmware 909 * reports an incorrect state or the device isn't power manageable by the 910 * platform at all, we try to detect D3cold by testing accessibility of the 911 * vendor ID in config space. 912 */ 913 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 914 { 915 if (platform_pci_get_power_state(dev) == PCI_D3cold || 916 !pci_device_is_present(dev)) { 917 dev->current_state = PCI_D3cold; 918 } else if (dev->pm_cap) { 919 u16 pmcsr; 920 921 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 922 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 923 } else { 924 dev->current_state = state; 925 } 926 } 927 928 /** 929 * pci_power_up - Put the given device into D0 forcibly 930 * @dev: PCI device to power up 931 */ 932 void pci_power_up(struct pci_dev *dev) 933 { 934 if (platform_pci_power_manageable(dev)) 935 platform_pci_set_power_state(dev, PCI_D0); 936 937 pci_raw_set_power_state(dev, PCI_D0); 938 pci_update_current_state(dev, PCI_D0); 939 } 940 941 /** 942 * pci_platform_power_transition - Use platform to change device power state 943 * @dev: PCI device to handle. 944 * @state: State to put the device into. 945 */ 946 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 947 { 948 int error; 949 950 if (platform_pci_power_manageable(dev)) { 951 error = platform_pci_set_power_state(dev, state); 952 if (!error) 953 pci_update_current_state(dev, state); 954 } else 955 error = -ENODEV; 956 957 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 958 dev->current_state = PCI_D0; 959 960 return error; 961 } 962 963 /** 964 * pci_wakeup - Wake up a PCI device 965 * @pci_dev: Device to handle. 966 * @ign: ignored parameter 967 */ 968 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 969 { 970 pci_wakeup_event(pci_dev); 971 pm_request_resume(&pci_dev->dev); 972 return 0; 973 } 974 975 /** 976 * pci_wakeup_bus - Walk given bus and wake up devices on it 977 * @bus: Top bus of the subtree to walk. 978 */ 979 void pci_wakeup_bus(struct pci_bus *bus) 980 { 981 if (bus) 982 pci_walk_bus(bus, pci_wakeup, NULL); 983 } 984 985 /** 986 * __pci_start_power_transition - Start power transition of a PCI device 987 * @dev: PCI device to handle. 988 * @state: State to put the device into. 989 */ 990 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 991 { 992 if (state == PCI_D0) { 993 pci_platform_power_transition(dev, PCI_D0); 994 /* 995 * Mandatory power management transition delays, see 996 * PCI Express Base Specification Revision 2.0 Section 997 * 6.6.1: Conventional Reset. Do not delay for 998 * devices powered on/off by corresponding bridge, 999 * because have already delayed for the bridge. 1000 */ 1001 if (dev->runtime_d3cold) { 1002 if (dev->d3cold_delay) 1003 msleep(dev->d3cold_delay); 1004 /* 1005 * When powering on a bridge from D3cold, the 1006 * whole hierarchy may be powered on into 1007 * D0uninitialized state, resume them to give 1008 * them a chance to suspend again 1009 */ 1010 pci_wakeup_bus(dev->subordinate); 1011 } 1012 } 1013 } 1014 1015 /** 1016 * __pci_dev_set_current_state - Set current state of a PCI device 1017 * @dev: Device to handle 1018 * @data: pointer to state to be set 1019 */ 1020 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1021 { 1022 pci_power_t state = *(pci_power_t *)data; 1023 1024 dev->current_state = state; 1025 return 0; 1026 } 1027 1028 /** 1029 * pci_bus_set_current_state - Walk given bus and set current state of devices 1030 * @bus: Top bus of the subtree to walk. 1031 * @state: state to be set 1032 */ 1033 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1034 { 1035 if (bus) 1036 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1037 } 1038 1039 /** 1040 * __pci_complete_power_transition - Complete power transition of a PCI device 1041 * @dev: PCI device to handle. 1042 * @state: State to put the device into. 1043 * 1044 * This function should not be called directly by device drivers. 1045 */ 1046 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 1047 { 1048 int ret; 1049 1050 if (state <= PCI_D0) 1051 return -EINVAL; 1052 ret = pci_platform_power_transition(dev, state); 1053 /* Power off the bridge may power off the whole hierarchy */ 1054 if (!ret && state == PCI_D3cold) 1055 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1056 return ret; 1057 } 1058 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 1059 1060 /** 1061 * pci_set_power_state - Set the power state of a PCI device 1062 * @dev: PCI device to handle. 1063 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1064 * 1065 * Transition a device to a new power state, using the platform firmware and/or 1066 * the device's PCI PM registers. 1067 * 1068 * RETURN VALUE: 1069 * -EINVAL if the requested state is invalid. 1070 * -EIO if device does not support PCI PM or its PM capabilities register has a 1071 * wrong version, or device doesn't support the requested state. 1072 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1073 * 0 if device already is in the requested state. 1074 * 0 if the transition is to D3 but D3 is not supported. 1075 * 0 if device's power state has been successfully changed. 1076 */ 1077 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1078 { 1079 int error; 1080 1081 /* bound the state we're entering */ 1082 if (state > PCI_D3cold) 1083 state = PCI_D3cold; 1084 else if (state < PCI_D0) 1085 state = PCI_D0; 1086 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1087 /* 1088 * If the device or the parent bridge do not support PCI PM, 1089 * ignore the request if we're doing anything other than putting 1090 * it into D0 (which would only happen on boot). 1091 */ 1092 return 0; 1093 1094 /* Check if we're already there */ 1095 if (dev->current_state == state) 1096 return 0; 1097 1098 __pci_start_power_transition(dev, state); 1099 1100 /* This device is quirked not to be put into D3, so 1101 don't put it in D3 */ 1102 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1103 return 0; 1104 1105 /* 1106 * To put device in D3cold, we put device into D3hot in native 1107 * way, then put device into D3cold with platform ops 1108 */ 1109 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1110 PCI_D3hot : state); 1111 1112 if (!__pci_complete_power_transition(dev, state)) 1113 error = 0; 1114 1115 return error; 1116 } 1117 EXPORT_SYMBOL(pci_set_power_state); 1118 1119 /** 1120 * pci_choose_state - Choose the power state of a PCI device 1121 * @dev: PCI device to be suspended 1122 * @state: target sleep state for the whole system. This is the value 1123 * that is passed to suspend() function. 1124 * 1125 * Returns PCI power state suitable for given device and given system 1126 * message. 1127 */ 1128 1129 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1130 { 1131 pci_power_t ret; 1132 1133 if (!dev->pm_cap) 1134 return PCI_D0; 1135 1136 ret = platform_pci_choose_state(dev); 1137 if (ret != PCI_POWER_ERROR) 1138 return ret; 1139 1140 switch (state.event) { 1141 case PM_EVENT_ON: 1142 return PCI_D0; 1143 case PM_EVENT_FREEZE: 1144 case PM_EVENT_PRETHAW: 1145 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1146 case PM_EVENT_SUSPEND: 1147 case PM_EVENT_HIBERNATE: 1148 return PCI_D3hot; 1149 default: 1150 pci_info(dev, "unrecognized suspend event %d\n", 1151 state.event); 1152 BUG(); 1153 } 1154 return PCI_D0; 1155 } 1156 EXPORT_SYMBOL(pci_choose_state); 1157 1158 #define PCI_EXP_SAVE_REGS 7 1159 1160 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1161 u16 cap, bool extended) 1162 { 1163 struct pci_cap_saved_state *tmp; 1164 1165 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1166 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1167 return tmp; 1168 } 1169 return NULL; 1170 } 1171 1172 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1173 { 1174 return _pci_find_saved_cap(dev, cap, false); 1175 } 1176 1177 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1178 { 1179 return _pci_find_saved_cap(dev, cap, true); 1180 } 1181 1182 static int pci_save_pcie_state(struct pci_dev *dev) 1183 { 1184 int i = 0; 1185 struct pci_cap_saved_state *save_state; 1186 u16 *cap; 1187 1188 if (!pci_is_pcie(dev)) 1189 return 0; 1190 1191 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1192 if (!save_state) { 1193 pci_err(dev, "buffer not found in %s\n", __func__); 1194 return -ENOMEM; 1195 } 1196 1197 cap = (u16 *)&save_state->cap.data[0]; 1198 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1199 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1200 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1201 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1202 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1203 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1204 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1205 1206 return 0; 1207 } 1208 1209 static void pci_restore_pcie_state(struct pci_dev *dev) 1210 { 1211 int i = 0; 1212 struct pci_cap_saved_state *save_state; 1213 u16 *cap; 1214 1215 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1216 if (!save_state) 1217 return; 1218 1219 cap = (u16 *)&save_state->cap.data[0]; 1220 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1221 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1222 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1223 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1224 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1225 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1226 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1227 } 1228 1229 1230 static int pci_save_pcix_state(struct pci_dev *dev) 1231 { 1232 int pos; 1233 struct pci_cap_saved_state *save_state; 1234 1235 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1236 if (!pos) 1237 return 0; 1238 1239 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1240 if (!save_state) { 1241 pci_err(dev, "buffer not found in %s\n", __func__); 1242 return -ENOMEM; 1243 } 1244 1245 pci_read_config_word(dev, pos + PCI_X_CMD, 1246 (u16 *)save_state->cap.data); 1247 1248 return 0; 1249 } 1250 1251 static void pci_restore_pcix_state(struct pci_dev *dev) 1252 { 1253 int i = 0, pos; 1254 struct pci_cap_saved_state *save_state; 1255 u16 *cap; 1256 1257 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1258 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1259 if (!save_state || !pos) 1260 return; 1261 cap = (u16 *)&save_state->cap.data[0]; 1262 1263 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1264 } 1265 1266 1267 /** 1268 * pci_save_state - save the PCI configuration space of a device before suspending 1269 * @dev: - PCI device that we're dealing with 1270 */ 1271 int pci_save_state(struct pci_dev *dev) 1272 { 1273 int i; 1274 /* XXX: 100% dword access ok here? */ 1275 for (i = 0; i < 16; i++) 1276 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1277 dev->state_saved = true; 1278 1279 i = pci_save_pcie_state(dev); 1280 if (i != 0) 1281 return i; 1282 1283 i = pci_save_pcix_state(dev); 1284 if (i != 0) 1285 return i; 1286 1287 return pci_save_vc_state(dev); 1288 } 1289 EXPORT_SYMBOL(pci_save_state); 1290 1291 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1292 u32 saved_val, int retry) 1293 { 1294 u32 val; 1295 1296 pci_read_config_dword(pdev, offset, &val); 1297 if (val == saved_val) 1298 return; 1299 1300 for (;;) { 1301 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1302 offset, val, saved_val); 1303 pci_write_config_dword(pdev, offset, saved_val); 1304 if (retry-- <= 0) 1305 return; 1306 1307 pci_read_config_dword(pdev, offset, &val); 1308 if (val == saved_val) 1309 return; 1310 1311 mdelay(1); 1312 } 1313 } 1314 1315 static void pci_restore_config_space_range(struct pci_dev *pdev, 1316 int start, int end, int retry) 1317 { 1318 int index; 1319 1320 for (index = end; index >= start; index--) 1321 pci_restore_config_dword(pdev, 4 * index, 1322 pdev->saved_config_space[index], 1323 retry); 1324 } 1325 1326 static void pci_restore_config_space(struct pci_dev *pdev) 1327 { 1328 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1329 pci_restore_config_space_range(pdev, 10, 15, 0); 1330 /* Restore BARs before the command register. */ 1331 pci_restore_config_space_range(pdev, 4, 9, 10); 1332 pci_restore_config_space_range(pdev, 0, 3, 0); 1333 } else { 1334 pci_restore_config_space_range(pdev, 0, 15, 0); 1335 } 1336 } 1337 1338 static void pci_restore_rebar_state(struct pci_dev *pdev) 1339 { 1340 unsigned int pos, nbars, i; 1341 u32 ctrl; 1342 1343 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1344 if (!pos) 1345 return; 1346 1347 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1348 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1349 PCI_REBAR_CTRL_NBAR_SHIFT; 1350 1351 for (i = 0; i < nbars; i++, pos += 8) { 1352 struct resource *res; 1353 int bar_idx, size; 1354 1355 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1356 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1357 res = pdev->resource + bar_idx; 1358 size = order_base_2((resource_size(res) >> 20) | 1) - 1; 1359 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1360 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1361 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1362 } 1363 } 1364 1365 /** 1366 * pci_restore_state - Restore the saved state of a PCI device 1367 * @dev: - PCI device that we're dealing with 1368 */ 1369 void pci_restore_state(struct pci_dev *dev) 1370 { 1371 if (!dev->state_saved) 1372 return; 1373 1374 /* PCI Express register must be restored first */ 1375 pci_restore_pcie_state(dev); 1376 pci_restore_pasid_state(dev); 1377 pci_restore_pri_state(dev); 1378 pci_restore_ats_state(dev); 1379 pci_restore_vc_state(dev); 1380 pci_restore_rebar_state(dev); 1381 1382 pci_cleanup_aer_error_status_regs(dev); 1383 1384 pci_restore_config_space(dev); 1385 1386 pci_restore_pcix_state(dev); 1387 pci_restore_msi_state(dev); 1388 1389 /* Restore ACS and IOV configuration state */ 1390 pci_enable_acs(dev); 1391 pci_restore_iov_state(dev); 1392 1393 dev->state_saved = false; 1394 } 1395 EXPORT_SYMBOL(pci_restore_state); 1396 1397 struct pci_saved_state { 1398 u32 config_space[16]; 1399 struct pci_cap_saved_data cap[0]; 1400 }; 1401 1402 /** 1403 * pci_store_saved_state - Allocate and return an opaque struct containing 1404 * the device saved state. 1405 * @dev: PCI device that we're dealing with 1406 * 1407 * Return NULL if no state or error. 1408 */ 1409 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1410 { 1411 struct pci_saved_state *state; 1412 struct pci_cap_saved_state *tmp; 1413 struct pci_cap_saved_data *cap; 1414 size_t size; 1415 1416 if (!dev->state_saved) 1417 return NULL; 1418 1419 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1420 1421 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1422 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1423 1424 state = kzalloc(size, GFP_KERNEL); 1425 if (!state) 1426 return NULL; 1427 1428 memcpy(state->config_space, dev->saved_config_space, 1429 sizeof(state->config_space)); 1430 1431 cap = state->cap; 1432 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1433 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1434 memcpy(cap, &tmp->cap, len); 1435 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1436 } 1437 /* Empty cap_save terminates list */ 1438 1439 return state; 1440 } 1441 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1442 1443 /** 1444 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1445 * @dev: PCI device that we're dealing with 1446 * @state: Saved state returned from pci_store_saved_state() 1447 */ 1448 int pci_load_saved_state(struct pci_dev *dev, 1449 struct pci_saved_state *state) 1450 { 1451 struct pci_cap_saved_data *cap; 1452 1453 dev->state_saved = false; 1454 1455 if (!state) 1456 return 0; 1457 1458 memcpy(dev->saved_config_space, state->config_space, 1459 sizeof(state->config_space)); 1460 1461 cap = state->cap; 1462 while (cap->size) { 1463 struct pci_cap_saved_state *tmp; 1464 1465 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1466 if (!tmp || tmp->cap.size != cap->size) 1467 return -EINVAL; 1468 1469 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1470 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1471 sizeof(struct pci_cap_saved_data) + cap->size); 1472 } 1473 1474 dev->state_saved = true; 1475 return 0; 1476 } 1477 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1478 1479 /** 1480 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1481 * and free the memory allocated for it. 1482 * @dev: PCI device that we're dealing with 1483 * @state: Pointer to saved state returned from pci_store_saved_state() 1484 */ 1485 int pci_load_and_free_saved_state(struct pci_dev *dev, 1486 struct pci_saved_state **state) 1487 { 1488 int ret = pci_load_saved_state(dev, *state); 1489 kfree(*state); 1490 *state = NULL; 1491 return ret; 1492 } 1493 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1494 1495 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1496 { 1497 return pci_enable_resources(dev, bars); 1498 } 1499 1500 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1501 { 1502 int err; 1503 struct pci_dev *bridge; 1504 u16 cmd; 1505 u8 pin; 1506 1507 err = pci_set_power_state(dev, PCI_D0); 1508 if (err < 0 && err != -EIO) 1509 return err; 1510 1511 bridge = pci_upstream_bridge(dev); 1512 if (bridge) 1513 pcie_aspm_powersave_config_link(bridge); 1514 1515 err = pcibios_enable_device(dev, bars); 1516 if (err < 0) 1517 return err; 1518 pci_fixup_device(pci_fixup_enable, dev); 1519 1520 if (dev->msi_enabled || dev->msix_enabled) 1521 return 0; 1522 1523 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1524 if (pin) { 1525 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1526 if (cmd & PCI_COMMAND_INTX_DISABLE) 1527 pci_write_config_word(dev, PCI_COMMAND, 1528 cmd & ~PCI_COMMAND_INTX_DISABLE); 1529 } 1530 1531 return 0; 1532 } 1533 1534 /** 1535 * pci_reenable_device - Resume abandoned device 1536 * @dev: PCI device to be resumed 1537 * 1538 * Note this function is a backend of pci_default_resume and is not supposed 1539 * to be called by normal code, write proper resume handler and use it instead. 1540 */ 1541 int pci_reenable_device(struct pci_dev *dev) 1542 { 1543 if (pci_is_enabled(dev)) 1544 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1545 return 0; 1546 } 1547 EXPORT_SYMBOL(pci_reenable_device); 1548 1549 static void pci_enable_bridge(struct pci_dev *dev) 1550 { 1551 struct pci_dev *bridge; 1552 int retval; 1553 1554 bridge = pci_upstream_bridge(dev); 1555 if (bridge) 1556 pci_enable_bridge(bridge); 1557 1558 if (pci_is_enabled(dev)) { 1559 if (!dev->is_busmaster) 1560 pci_set_master(dev); 1561 return; 1562 } 1563 1564 retval = pci_enable_device(dev); 1565 if (retval) 1566 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1567 retval); 1568 pci_set_master(dev); 1569 } 1570 1571 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1572 { 1573 struct pci_dev *bridge; 1574 int err; 1575 int i, bars = 0; 1576 1577 /* 1578 * Power state could be unknown at this point, either due to a fresh 1579 * boot or a device removal call. So get the current power state 1580 * so that things like MSI message writing will behave as expected 1581 * (e.g. if the device really is in D0 at enable time). 1582 */ 1583 if (dev->pm_cap) { 1584 u16 pmcsr; 1585 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1586 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1587 } 1588 1589 if (atomic_inc_return(&dev->enable_cnt) > 1) 1590 return 0; /* already enabled */ 1591 1592 bridge = pci_upstream_bridge(dev); 1593 if (bridge) 1594 pci_enable_bridge(bridge); 1595 1596 /* only skip sriov related */ 1597 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1598 if (dev->resource[i].flags & flags) 1599 bars |= (1 << i); 1600 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1601 if (dev->resource[i].flags & flags) 1602 bars |= (1 << i); 1603 1604 err = do_pci_enable_device(dev, bars); 1605 if (err < 0) 1606 atomic_dec(&dev->enable_cnt); 1607 return err; 1608 } 1609 1610 /** 1611 * pci_enable_device_io - Initialize a device for use with IO space 1612 * @dev: PCI device to be initialized 1613 * 1614 * Initialize device before it's used by a driver. Ask low-level code 1615 * to enable I/O resources. Wake up the device if it was suspended. 1616 * Beware, this function can fail. 1617 */ 1618 int pci_enable_device_io(struct pci_dev *dev) 1619 { 1620 return pci_enable_device_flags(dev, IORESOURCE_IO); 1621 } 1622 EXPORT_SYMBOL(pci_enable_device_io); 1623 1624 /** 1625 * pci_enable_device_mem - Initialize a device for use with Memory space 1626 * @dev: PCI device to be initialized 1627 * 1628 * Initialize device before it's used by a driver. Ask low-level code 1629 * to enable Memory resources. Wake up the device if it was suspended. 1630 * Beware, this function can fail. 1631 */ 1632 int pci_enable_device_mem(struct pci_dev *dev) 1633 { 1634 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1635 } 1636 EXPORT_SYMBOL(pci_enable_device_mem); 1637 1638 /** 1639 * pci_enable_device - Initialize device before it's used by a driver. 1640 * @dev: PCI device to be initialized 1641 * 1642 * Initialize device before it's used by a driver. Ask low-level code 1643 * to enable I/O and memory. Wake up the device if it was suspended. 1644 * Beware, this function can fail. 1645 * 1646 * Note we don't actually enable the device many times if we call 1647 * this function repeatedly (we just increment the count). 1648 */ 1649 int pci_enable_device(struct pci_dev *dev) 1650 { 1651 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1652 } 1653 EXPORT_SYMBOL(pci_enable_device); 1654 1655 /* 1656 * Managed PCI resources. This manages device on/off, intx/msi/msix 1657 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1658 * there's no need to track it separately. pci_devres is initialized 1659 * when a device is enabled using managed PCI device enable interface. 1660 */ 1661 struct pci_devres { 1662 unsigned int enabled:1; 1663 unsigned int pinned:1; 1664 unsigned int orig_intx:1; 1665 unsigned int restore_intx:1; 1666 unsigned int mwi:1; 1667 u32 region_mask; 1668 }; 1669 1670 static void pcim_release(struct device *gendev, void *res) 1671 { 1672 struct pci_dev *dev = to_pci_dev(gendev); 1673 struct pci_devres *this = res; 1674 int i; 1675 1676 if (dev->msi_enabled) 1677 pci_disable_msi(dev); 1678 if (dev->msix_enabled) 1679 pci_disable_msix(dev); 1680 1681 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1682 if (this->region_mask & (1 << i)) 1683 pci_release_region(dev, i); 1684 1685 if (this->mwi) 1686 pci_clear_mwi(dev); 1687 1688 if (this->restore_intx) 1689 pci_intx(dev, this->orig_intx); 1690 1691 if (this->enabled && !this->pinned) 1692 pci_disable_device(dev); 1693 } 1694 1695 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1696 { 1697 struct pci_devres *dr, *new_dr; 1698 1699 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1700 if (dr) 1701 return dr; 1702 1703 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1704 if (!new_dr) 1705 return NULL; 1706 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1707 } 1708 1709 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1710 { 1711 if (pci_is_managed(pdev)) 1712 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1713 return NULL; 1714 } 1715 1716 /** 1717 * pcim_enable_device - Managed pci_enable_device() 1718 * @pdev: PCI device to be initialized 1719 * 1720 * Managed pci_enable_device(). 1721 */ 1722 int pcim_enable_device(struct pci_dev *pdev) 1723 { 1724 struct pci_devres *dr; 1725 int rc; 1726 1727 dr = get_pci_dr(pdev); 1728 if (unlikely(!dr)) 1729 return -ENOMEM; 1730 if (dr->enabled) 1731 return 0; 1732 1733 rc = pci_enable_device(pdev); 1734 if (!rc) { 1735 pdev->is_managed = 1; 1736 dr->enabled = 1; 1737 } 1738 return rc; 1739 } 1740 EXPORT_SYMBOL(pcim_enable_device); 1741 1742 /** 1743 * pcim_pin_device - Pin managed PCI device 1744 * @pdev: PCI device to pin 1745 * 1746 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1747 * driver detach. @pdev must have been enabled with 1748 * pcim_enable_device(). 1749 */ 1750 void pcim_pin_device(struct pci_dev *pdev) 1751 { 1752 struct pci_devres *dr; 1753 1754 dr = find_pci_dr(pdev); 1755 WARN_ON(!dr || !dr->enabled); 1756 if (dr) 1757 dr->pinned = 1; 1758 } 1759 EXPORT_SYMBOL(pcim_pin_device); 1760 1761 /* 1762 * pcibios_add_device - provide arch specific hooks when adding device dev 1763 * @dev: the PCI device being added 1764 * 1765 * Permits the platform to provide architecture specific functionality when 1766 * devices are added. This is the default implementation. Architecture 1767 * implementations can override this. 1768 */ 1769 int __weak pcibios_add_device(struct pci_dev *dev) 1770 { 1771 return 0; 1772 } 1773 1774 /** 1775 * pcibios_release_device - provide arch specific hooks when releasing device dev 1776 * @dev: the PCI device being released 1777 * 1778 * Permits the platform to provide architecture specific functionality when 1779 * devices are released. This is the default implementation. Architecture 1780 * implementations can override this. 1781 */ 1782 void __weak pcibios_release_device(struct pci_dev *dev) {} 1783 1784 /** 1785 * pcibios_disable_device - disable arch specific PCI resources for device dev 1786 * @dev: the PCI device to disable 1787 * 1788 * Disables architecture specific PCI resources for the device. This 1789 * is the default implementation. Architecture implementations can 1790 * override this. 1791 */ 1792 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1793 1794 /** 1795 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1796 * @irq: ISA IRQ to penalize 1797 * @active: IRQ active or not 1798 * 1799 * Permits the platform to provide architecture-specific functionality when 1800 * penalizing ISA IRQs. This is the default implementation. Architecture 1801 * implementations can override this. 1802 */ 1803 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1804 1805 static void do_pci_disable_device(struct pci_dev *dev) 1806 { 1807 u16 pci_command; 1808 1809 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1810 if (pci_command & PCI_COMMAND_MASTER) { 1811 pci_command &= ~PCI_COMMAND_MASTER; 1812 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1813 } 1814 1815 pcibios_disable_device(dev); 1816 } 1817 1818 /** 1819 * pci_disable_enabled_device - Disable device without updating enable_cnt 1820 * @dev: PCI device to disable 1821 * 1822 * NOTE: This function is a backend of PCI power management routines and is 1823 * not supposed to be called drivers. 1824 */ 1825 void pci_disable_enabled_device(struct pci_dev *dev) 1826 { 1827 if (pci_is_enabled(dev)) 1828 do_pci_disable_device(dev); 1829 } 1830 1831 /** 1832 * pci_disable_device - Disable PCI device after use 1833 * @dev: PCI device to be disabled 1834 * 1835 * Signal to the system that the PCI device is not in use by the system 1836 * anymore. This only involves disabling PCI bus-mastering, if active. 1837 * 1838 * Note we don't actually disable the device until all callers of 1839 * pci_enable_device() have called pci_disable_device(). 1840 */ 1841 void pci_disable_device(struct pci_dev *dev) 1842 { 1843 struct pci_devres *dr; 1844 1845 dr = find_pci_dr(dev); 1846 if (dr) 1847 dr->enabled = 0; 1848 1849 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1850 "disabling already-disabled device"); 1851 1852 if (atomic_dec_return(&dev->enable_cnt) != 0) 1853 return; 1854 1855 do_pci_disable_device(dev); 1856 1857 dev->is_busmaster = 0; 1858 } 1859 EXPORT_SYMBOL(pci_disable_device); 1860 1861 /** 1862 * pcibios_set_pcie_reset_state - set reset state for device dev 1863 * @dev: the PCIe device reset 1864 * @state: Reset state to enter into 1865 * 1866 * 1867 * Sets the PCIe reset state for the device. This is the default 1868 * implementation. Architecture implementations can override this. 1869 */ 1870 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1871 enum pcie_reset_state state) 1872 { 1873 return -EINVAL; 1874 } 1875 1876 /** 1877 * pci_set_pcie_reset_state - set reset state for device dev 1878 * @dev: the PCIe device reset 1879 * @state: Reset state to enter into 1880 * 1881 * 1882 * Sets the PCI reset state for the device. 1883 */ 1884 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1885 { 1886 return pcibios_set_pcie_reset_state(dev, state); 1887 } 1888 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1889 1890 /** 1891 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 1892 * @dev: PCIe root port or event collector. 1893 */ 1894 void pcie_clear_root_pme_status(struct pci_dev *dev) 1895 { 1896 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 1897 } 1898 1899 /** 1900 * pci_check_pme_status - Check if given device has generated PME. 1901 * @dev: Device to check. 1902 * 1903 * Check the PME status of the device and if set, clear it and clear PME enable 1904 * (if set). Return 'true' if PME status and PME enable were both set or 1905 * 'false' otherwise. 1906 */ 1907 bool pci_check_pme_status(struct pci_dev *dev) 1908 { 1909 int pmcsr_pos; 1910 u16 pmcsr; 1911 bool ret = false; 1912 1913 if (!dev->pm_cap) 1914 return false; 1915 1916 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1917 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1918 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1919 return false; 1920 1921 /* Clear PME status. */ 1922 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1923 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1924 /* Disable PME to avoid interrupt flood. */ 1925 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1926 ret = true; 1927 } 1928 1929 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1930 1931 return ret; 1932 } 1933 1934 /** 1935 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1936 * @dev: Device to handle. 1937 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1938 * 1939 * Check if @dev has generated PME and queue a resume request for it in that 1940 * case. 1941 */ 1942 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1943 { 1944 if (pme_poll_reset && dev->pme_poll) 1945 dev->pme_poll = false; 1946 1947 if (pci_check_pme_status(dev)) { 1948 pci_wakeup_event(dev); 1949 pm_request_resume(&dev->dev); 1950 } 1951 return 0; 1952 } 1953 1954 /** 1955 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1956 * @bus: Top bus of the subtree to walk. 1957 */ 1958 void pci_pme_wakeup_bus(struct pci_bus *bus) 1959 { 1960 if (bus) 1961 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1962 } 1963 1964 1965 /** 1966 * pci_pme_capable - check the capability of PCI device to generate PME# 1967 * @dev: PCI device to handle. 1968 * @state: PCI state from which device will issue PME#. 1969 */ 1970 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1971 { 1972 if (!dev->pm_cap) 1973 return false; 1974 1975 return !!(dev->pme_support & (1 << state)); 1976 } 1977 EXPORT_SYMBOL(pci_pme_capable); 1978 1979 static void pci_pme_list_scan(struct work_struct *work) 1980 { 1981 struct pci_pme_device *pme_dev, *n; 1982 1983 mutex_lock(&pci_pme_list_mutex); 1984 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1985 if (pme_dev->dev->pme_poll) { 1986 struct pci_dev *bridge; 1987 1988 bridge = pme_dev->dev->bus->self; 1989 /* 1990 * If bridge is in low power state, the 1991 * configuration space of subordinate devices 1992 * may be not accessible 1993 */ 1994 if (bridge && bridge->current_state != PCI_D0) 1995 continue; 1996 pci_pme_wakeup(pme_dev->dev, NULL); 1997 } else { 1998 list_del(&pme_dev->list); 1999 kfree(pme_dev); 2000 } 2001 } 2002 if (!list_empty(&pci_pme_list)) 2003 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2004 msecs_to_jiffies(PME_TIMEOUT)); 2005 mutex_unlock(&pci_pme_list_mutex); 2006 } 2007 2008 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2009 { 2010 u16 pmcsr; 2011 2012 if (!dev->pme_support) 2013 return; 2014 2015 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2016 /* Clear PME_Status by writing 1 to it and enable PME# */ 2017 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2018 if (!enable) 2019 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2020 2021 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2022 } 2023 2024 /** 2025 * pci_pme_restore - Restore PME configuration after config space restore. 2026 * @dev: PCI device to update. 2027 */ 2028 void pci_pme_restore(struct pci_dev *dev) 2029 { 2030 u16 pmcsr; 2031 2032 if (!dev->pme_support) 2033 return; 2034 2035 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2036 if (dev->wakeup_prepared) { 2037 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2038 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2039 } else { 2040 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2041 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2042 } 2043 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2044 } 2045 2046 /** 2047 * pci_pme_active - enable or disable PCI device's PME# function 2048 * @dev: PCI device to handle. 2049 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2050 * 2051 * The caller must verify that the device is capable of generating PME# before 2052 * calling this function with @enable equal to 'true'. 2053 */ 2054 void pci_pme_active(struct pci_dev *dev, bool enable) 2055 { 2056 __pci_pme_active(dev, enable); 2057 2058 /* 2059 * PCI (as opposed to PCIe) PME requires that the device have 2060 * its PME# line hooked up correctly. Not all hardware vendors 2061 * do this, so the PME never gets delivered and the device 2062 * remains asleep. The easiest way around this is to 2063 * periodically walk the list of suspended devices and check 2064 * whether any have their PME flag set. The assumption is that 2065 * we'll wake up often enough anyway that this won't be a huge 2066 * hit, and the power savings from the devices will still be a 2067 * win. 2068 * 2069 * Although PCIe uses in-band PME message instead of PME# line 2070 * to report PME, PME does not work for some PCIe devices in 2071 * reality. For example, there are devices that set their PME 2072 * status bits, but don't really bother to send a PME message; 2073 * there are PCI Express Root Ports that don't bother to 2074 * trigger interrupts when they receive PME messages from the 2075 * devices below. So PME poll is used for PCIe devices too. 2076 */ 2077 2078 if (dev->pme_poll) { 2079 struct pci_pme_device *pme_dev; 2080 if (enable) { 2081 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2082 GFP_KERNEL); 2083 if (!pme_dev) { 2084 pci_warn(dev, "can't enable PME#\n"); 2085 return; 2086 } 2087 pme_dev->dev = dev; 2088 mutex_lock(&pci_pme_list_mutex); 2089 list_add(&pme_dev->list, &pci_pme_list); 2090 if (list_is_singular(&pci_pme_list)) 2091 queue_delayed_work(system_freezable_wq, 2092 &pci_pme_work, 2093 msecs_to_jiffies(PME_TIMEOUT)); 2094 mutex_unlock(&pci_pme_list_mutex); 2095 } else { 2096 mutex_lock(&pci_pme_list_mutex); 2097 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2098 if (pme_dev->dev == dev) { 2099 list_del(&pme_dev->list); 2100 kfree(pme_dev); 2101 break; 2102 } 2103 } 2104 mutex_unlock(&pci_pme_list_mutex); 2105 } 2106 } 2107 2108 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2109 } 2110 EXPORT_SYMBOL(pci_pme_active); 2111 2112 /** 2113 * __pci_enable_wake - enable PCI device as wakeup event source 2114 * @dev: PCI device affected 2115 * @state: PCI state from which device will issue wakeup events 2116 * @enable: True to enable event generation; false to disable 2117 * 2118 * This enables the device as a wakeup event source, or disables it. 2119 * When such events involves platform-specific hooks, those hooks are 2120 * called automatically by this routine. 2121 * 2122 * Devices with legacy power management (no standard PCI PM capabilities) 2123 * always require such platform hooks. 2124 * 2125 * RETURN VALUE: 2126 * 0 is returned on success 2127 * -EINVAL is returned if device is not supposed to wake up the system 2128 * Error code depending on the platform is returned if both the platform and 2129 * the native mechanism fail to enable the generation of wake-up events 2130 */ 2131 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2132 { 2133 int ret = 0; 2134 2135 /* 2136 * Bridges can only signal wakeup on behalf of subordinate devices, 2137 * but that is set up elsewhere, so skip them. 2138 */ 2139 if (pci_has_subordinate(dev)) 2140 return 0; 2141 2142 /* Don't do the same thing twice in a row for one device. */ 2143 if (!!enable == !!dev->wakeup_prepared) 2144 return 0; 2145 2146 /* 2147 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2148 * Anderson we should be doing PME# wake enable followed by ACPI wake 2149 * enable. To disable wake-up we call the platform first, for symmetry. 2150 */ 2151 2152 if (enable) { 2153 int error; 2154 2155 if (pci_pme_capable(dev, state)) 2156 pci_pme_active(dev, true); 2157 else 2158 ret = 1; 2159 error = platform_pci_set_wakeup(dev, true); 2160 if (ret) 2161 ret = error; 2162 if (!ret) 2163 dev->wakeup_prepared = true; 2164 } else { 2165 platform_pci_set_wakeup(dev, false); 2166 pci_pme_active(dev, false); 2167 dev->wakeup_prepared = false; 2168 } 2169 2170 return ret; 2171 } 2172 2173 /** 2174 * pci_enable_wake - change wakeup settings for a PCI device 2175 * @pci_dev: Target device 2176 * @state: PCI state from which device will issue wakeup events 2177 * @enable: Whether or not to enable event generation 2178 * 2179 * If @enable is set, check device_may_wakeup() for the device before calling 2180 * __pci_enable_wake() for it. 2181 */ 2182 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2183 { 2184 if (enable && !device_may_wakeup(&pci_dev->dev)) 2185 return -EINVAL; 2186 2187 return __pci_enable_wake(pci_dev, state, enable); 2188 } 2189 EXPORT_SYMBOL(pci_enable_wake); 2190 2191 /** 2192 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2193 * @dev: PCI device to prepare 2194 * @enable: True to enable wake-up event generation; false to disable 2195 * 2196 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2197 * and this function allows them to set that up cleanly - pci_enable_wake() 2198 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2199 * ordering constraints. 2200 * 2201 * This function only returns error code if the device is not allowed to wake 2202 * up the system from sleep or it is not capable of generating PME# from both 2203 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2204 */ 2205 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2206 { 2207 return pci_pme_capable(dev, PCI_D3cold) ? 2208 pci_enable_wake(dev, PCI_D3cold, enable) : 2209 pci_enable_wake(dev, PCI_D3hot, enable); 2210 } 2211 EXPORT_SYMBOL(pci_wake_from_d3); 2212 2213 /** 2214 * pci_target_state - find an appropriate low power state for a given PCI dev 2215 * @dev: PCI device 2216 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2217 * 2218 * Use underlying platform code to find a supported low power state for @dev. 2219 * If the platform can't manage @dev, return the deepest state from which it 2220 * can generate wake events, based on any available PME info. 2221 */ 2222 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2223 { 2224 pci_power_t target_state = PCI_D3hot; 2225 2226 if (platform_pci_power_manageable(dev)) { 2227 /* 2228 * Call the platform to find the target state for the device. 2229 */ 2230 pci_power_t state = platform_pci_choose_state(dev); 2231 2232 switch (state) { 2233 case PCI_POWER_ERROR: 2234 case PCI_UNKNOWN: 2235 break; 2236 case PCI_D1: 2237 case PCI_D2: 2238 if (pci_no_d1d2(dev)) 2239 break; 2240 /* else: fall through */ 2241 default: 2242 target_state = state; 2243 } 2244 2245 return target_state; 2246 } 2247 2248 if (!dev->pm_cap) 2249 target_state = PCI_D0; 2250 2251 /* 2252 * If the device is in D3cold even though it's not power-manageable by 2253 * the platform, it may have been powered down by non-standard means. 2254 * Best to let it slumber. 2255 */ 2256 if (dev->current_state == PCI_D3cold) 2257 target_state = PCI_D3cold; 2258 2259 if (wakeup) { 2260 /* 2261 * Find the deepest state from which the device can generate 2262 * PME#. 2263 */ 2264 if (dev->pme_support) { 2265 while (target_state 2266 && !(dev->pme_support & (1 << target_state))) 2267 target_state--; 2268 } 2269 } 2270 2271 return target_state; 2272 } 2273 2274 /** 2275 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2276 * @dev: Device to handle. 2277 * 2278 * Choose the power state appropriate for the device depending on whether 2279 * it can wake up the system and/or is power manageable by the platform 2280 * (PCI_D3hot is the default) and put the device into that state. 2281 */ 2282 int pci_prepare_to_sleep(struct pci_dev *dev) 2283 { 2284 bool wakeup = device_may_wakeup(&dev->dev); 2285 pci_power_t target_state = pci_target_state(dev, wakeup); 2286 int error; 2287 2288 if (target_state == PCI_POWER_ERROR) 2289 return -EIO; 2290 2291 pci_enable_wake(dev, target_state, wakeup); 2292 2293 error = pci_set_power_state(dev, target_state); 2294 2295 if (error) 2296 pci_enable_wake(dev, target_state, false); 2297 2298 return error; 2299 } 2300 EXPORT_SYMBOL(pci_prepare_to_sleep); 2301 2302 /** 2303 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2304 * @dev: Device to handle. 2305 * 2306 * Disable device's system wake-up capability and put it into D0. 2307 */ 2308 int pci_back_from_sleep(struct pci_dev *dev) 2309 { 2310 pci_enable_wake(dev, PCI_D0, false); 2311 return pci_set_power_state(dev, PCI_D0); 2312 } 2313 EXPORT_SYMBOL(pci_back_from_sleep); 2314 2315 /** 2316 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2317 * @dev: PCI device being suspended. 2318 * 2319 * Prepare @dev to generate wake-up events at run time and put it into a low 2320 * power state. 2321 */ 2322 int pci_finish_runtime_suspend(struct pci_dev *dev) 2323 { 2324 pci_power_t target_state; 2325 int error; 2326 2327 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2328 if (target_state == PCI_POWER_ERROR) 2329 return -EIO; 2330 2331 dev->runtime_d3cold = target_state == PCI_D3cold; 2332 2333 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2334 2335 error = pci_set_power_state(dev, target_state); 2336 2337 if (error) { 2338 pci_enable_wake(dev, target_state, false); 2339 dev->runtime_d3cold = false; 2340 } 2341 2342 return error; 2343 } 2344 2345 /** 2346 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2347 * @dev: Device to check. 2348 * 2349 * Return true if the device itself is capable of generating wake-up events 2350 * (through the platform or using the native PCIe PME) or if the device supports 2351 * PME and one of its upstream bridges can generate wake-up events. 2352 */ 2353 bool pci_dev_run_wake(struct pci_dev *dev) 2354 { 2355 struct pci_bus *bus = dev->bus; 2356 2357 if (!dev->pme_support) 2358 return false; 2359 2360 /* PME-capable in principle, but not from the target power state */ 2361 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2362 return false; 2363 2364 if (device_can_wakeup(&dev->dev)) 2365 return true; 2366 2367 while (bus->parent) { 2368 struct pci_dev *bridge = bus->self; 2369 2370 if (device_can_wakeup(&bridge->dev)) 2371 return true; 2372 2373 bus = bus->parent; 2374 } 2375 2376 /* We have reached the root bus. */ 2377 if (bus->bridge) 2378 return device_can_wakeup(bus->bridge); 2379 2380 return false; 2381 } 2382 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2383 2384 /** 2385 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2386 * @pci_dev: Device to check. 2387 * 2388 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2389 * reconfigured due to wakeup settings difference between system and runtime 2390 * suspend and the current power state of it is suitable for the upcoming 2391 * (system) transition. 2392 * 2393 * If the device is not configured for system wakeup, disable PME for it before 2394 * returning 'true' to prevent it from waking up the system unnecessarily. 2395 */ 2396 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2397 { 2398 struct device *dev = &pci_dev->dev; 2399 bool wakeup = device_may_wakeup(dev); 2400 2401 if (!pm_runtime_suspended(dev) 2402 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2403 || platform_pci_need_resume(pci_dev)) 2404 return false; 2405 2406 /* 2407 * At this point the device is good to go unless it's been configured 2408 * to generate PME at the runtime suspend time, but it is not supposed 2409 * to wake up the system. In that case, simply disable PME for it 2410 * (it will have to be re-enabled on exit from system resume). 2411 * 2412 * If the device's power state is D3cold and the platform check above 2413 * hasn't triggered, the device's configuration is suitable and we don't 2414 * need to manipulate it at all. 2415 */ 2416 spin_lock_irq(&dev->power.lock); 2417 2418 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2419 !wakeup) 2420 __pci_pme_active(pci_dev, false); 2421 2422 spin_unlock_irq(&dev->power.lock); 2423 return true; 2424 } 2425 2426 /** 2427 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2428 * @pci_dev: Device to handle. 2429 * 2430 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2431 * it might have been disabled during the prepare phase of system suspend if 2432 * the device was not configured for system wakeup. 2433 */ 2434 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2435 { 2436 struct device *dev = &pci_dev->dev; 2437 2438 if (!pci_dev_run_wake(pci_dev)) 2439 return; 2440 2441 spin_lock_irq(&dev->power.lock); 2442 2443 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2444 __pci_pme_active(pci_dev, true); 2445 2446 spin_unlock_irq(&dev->power.lock); 2447 } 2448 2449 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2450 { 2451 struct device *dev = &pdev->dev; 2452 struct device *parent = dev->parent; 2453 2454 if (parent) 2455 pm_runtime_get_sync(parent); 2456 pm_runtime_get_noresume(dev); 2457 /* 2458 * pdev->current_state is set to PCI_D3cold during suspending, 2459 * so wait until suspending completes 2460 */ 2461 pm_runtime_barrier(dev); 2462 /* 2463 * Only need to resume devices in D3cold, because config 2464 * registers are still accessible for devices suspended but 2465 * not in D3cold. 2466 */ 2467 if (pdev->current_state == PCI_D3cold) 2468 pm_runtime_resume(dev); 2469 } 2470 2471 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2472 { 2473 struct device *dev = &pdev->dev; 2474 struct device *parent = dev->parent; 2475 2476 pm_runtime_put(dev); 2477 if (parent) 2478 pm_runtime_put_sync(parent); 2479 } 2480 2481 /** 2482 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2483 * @bridge: Bridge to check 2484 * 2485 * This function checks if it is possible to move the bridge to D3. 2486 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2487 */ 2488 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2489 { 2490 if (!pci_is_pcie(bridge)) 2491 return false; 2492 2493 switch (pci_pcie_type(bridge)) { 2494 case PCI_EXP_TYPE_ROOT_PORT: 2495 case PCI_EXP_TYPE_UPSTREAM: 2496 case PCI_EXP_TYPE_DOWNSTREAM: 2497 if (pci_bridge_d3_disable) 2498 return false; 2499 2500 /* 2501 * Hotplug ports handled by firmware in System Management Mode 2502 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2503 */ 2504 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2505 return false; 2506 2507 if (pci_bridge_d3_force) 2508 return true; 2509 2510 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2511 if (bridge->is_thunderbolt) 2512 return true; 2513 2514 /* 2515 * Hotplug ports handled natively by the OS were not validated 2516 * by vendors for runtime D3 at least until 2018 because there 2517 * was no OS support. 2518 */ 2519 if (bridge->is_hotplug_bridge) 2520 return false; 2521 2522 /* 2523 * It should be safe to put PCIe ports from 2015 or newer 2524 * to D3. 2525 */ 2526 if (dmi_get_bios_year() >= 2015) 2527 return true; 2528 break; 2529 } 2530 2531 return false; 2532 } 2533 2534 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2535 { 2536 bool *d3cold_ok = data; 2537 2538 if (/* The device needs to be allowed to go D3cold ... */ 2539 dev->no_d3cold || !dev->d3cold_allowed || 2540 2541 /* ... and if it is wakeup capable to do so from D3cold. */ 2542 (device_may_wakeup(&dev->dev) && 2543 !pci_pme_capable(dev, PCI_D3cold)) || 2544 2545 /* If it is a bridge it must be allowed to go to D3. */ 2546 !pci_power_manageable(dev)) 2547 2548 *d3cold_ok = false; 2549 2550 return !*d3cold_ok; 2551 } 2552 2553 /* 2554 * pci_bridge_d3_update - Update bridge D3 capabilities 2555 * @dev: PCI device which is changed 2556 * 2557 * Update upstream bridge PM capabilities accordingly depending on if the 2558 * device PM configuration was changed or the device is being removed. The 2559 * change is also propagated upstream. 2560 */ 2561 void pci_bridge_d3_update(struct pci_dev *dev) 2562 { 2563 bool remove = !device_is_registered(&dev->dev); 2564 struct pci_dev *bridge; 2565 bool d3cold_ok = true; 2566 2567 bridge = pci_upstream_bridge(dev); 2568 if (!bridge || !pci_bridge_d3_possible(bridge)) 2569 return; 2570 2571 /* 2572 * If D3 is currently allowed for the bridge, removing one of its 2573 * children won't change that. 2574 */ 2575 if (remove && bridge->bridge_d3) 2576 return; 2577 2578 /* 2579 * If D3 is currently allowed for the bridge and a child is added or 2580 * changed, disallowance of D3 can only be caused by that child, so 2581 * we only need to check that single device, not any of its siblings. 2582 * 2583 * If D3 is currently not allowed for the bridge, checking the device 2584 * first may allow us to skip checking its siblings. 2585 */ 2586 if (!remove) 2587 pci_dev_check_d3cold(dev, &d3cold_ok); 2588 2589 /* 2590 * If D3 is currently not allowed for the bridge, this may be caused 2591 * either by the device being changed/removed or any of its siblings, 2592 * so we need to go through all children to find out if one of them 2593 * continues to block D3. 2594 */ 2595 if (d3cold_ok && !bridge->bridge_d3) 2596 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2597 &d3cold_ok); 2598 2599 if (bridge->bridge_d3 != d3cold_ok) { 2600 bridge->bridge_d3 = d3cold_ok; 2601 /* Propagate change to upstream bridges */ 2602 pci_bridge_d3_update(bridge); 2603 } 2604 } 2605 2606 /** 2607 * pci_d3cold_enable - Enable D3cold for device 2608 * @dev: PCI device to handle 2609 * 2610 * This function can be used in drivers to enable D3cold from the device 2611 * they handle. It also updates upstream PCI bridge PM capabilities 2612 * accordingly. 2613 */ 2614 void pci_d3cold_enable(struct pci_dev *dev) 2615 { 2616 if (dev->no_d3cold) { 2617 dev->no_d3cold = false; 2618 pci_bridge_d3_update(dev); 2619 } 2620 } 2621 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2622 2623 /** 2624 * pci_d3cold_disable - Disable D3cold for device 2625 * @dev: PCI device to handle 2626 * 2627 * This function can be used in drivers to disable D3cold from the device 2628 * they handle. It also updates upstream PCI bridge PM capabilities 2629 * accordingly. 2630 */ 2631 void pci_d3cold_disable(struct pci_dev *dev) 2632 { 2633 if (!dev->no_d3cold) { 2634 dev->no_d3cold = true; 2635 pci_bridge_d3_update(dev); 2636 } 2637 } 2638 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2639 2640 /** 2641 * pci_pm_init - Initialize PM functions of given PCI device 2642 * @dev: PCI device to handle. 2643 */ 2644 void pci_pm_init(struct pci_dev *dev) 2645 { 2646 int pm; 2647 u16 pmc; 2648 2649 pm_runtime_forbid(&dev->dev); 2650 pm_runtime_set_active(&dev->dev); 2651 pm_runtime_enable(&dev->dev); 2652 device_enable_async_suspend(&dev->dev); 2653 dev->wakeup_prepared = false; 2654 2655 dev->pm_cap = 0; 2656 dev->pme_support = 0; 2657 2658 /* find PCI PM capability in list */ 2659 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2660 if (!pm) 2661 return; 2662 /* Check device's ability to generate PME# */ 2663 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2664 2665 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2666 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2667 pmc & PCI_PM_CAP_VER_MASK); 2668 return; 2669 } 2670 2671 dev->pm_cap = pm; 2672 dev->d3_delay = PCI_PM_D3_WAIT; 2673 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2674 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2675 dev->d3cold_allowed = true; 2676 2677 dev->d1_support = false; 2678 dev->d2_support = false; 2679 if (!pci_no_d1d2(dev)) { 2680 if (pmc & PCI_PM_CAP_D1) 2681 dev->d1_support = true; 2682 if (pmc & PCI_PM_CAP_D2) 2683 dev->d2_support = true; 2684 2685 if (dev->d1_support || dev->d2_support) 2686 pci_printk(KERN_DEBUG, dev, "supports%s%s\n", 2687 dev->d1_support ? " D1" : "", 2688 dev->d2_support ? " D2" : ""); 2689 } 2690 2691 pmc &= PCI_PM_CAP_PME_MASK; 2692 if (pmc) { 2693 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n", 2694 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2695 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2696 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2697 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2698 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2699 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2700 dev->pme_poll = true; 2701 /* 2702 * Make device's PM flags reflect the wake-up capability, but 2703 * let the user space enable it to wake up the system as needed. 2704 */ 2705 device_set_wakeup_capable(&dev->dev, true); 2706 /* Disable the PME# generation functionality */ 2707 pci_pme_active(dev, false); 2708 } 2709 } 2710 2711 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2712 { 2713 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2714 2715 switch (prop) { 2716 case PCI_EA_P_MEM: 2717 case PCI_EA_P_VF_MEM: 2718 flags |= IORESOURCE_MEM; 2719 break; 2720 case PCI_EA_P_MEM_PREFETCH: 2721 case PCI_EA_P_VF_MEM_PREFETCH: 2722 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2723 break; 2724 case PCI_EA_P_IO: 2725 flags |= IORESOURCE_IO; 2726 break; 2727 default: 2728 return 0; 2729 } 2730 2731 return flags; 2732 } 2733 2734 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2735 u8 prop) 2736 { 2737 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2738 return &dev->resource[bei]; 2739 #ifdef CONFIG_PCI_IOV 2740 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2741 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2742 return &dev->resource[PCI_IOV_RESOURCES + 2743 bei - PCI_EA_BEI_VF_BAR0]; 2744 #endif 2745 else if (bei == PCI_EA_BEI_ROM) 2746 return &dev->resource[PCI_ROM_RESOURCE]; 2747 else 2748 return NULL; 2749 } 2750 2751 /* Read an Enhanced Allocation (EA) entry */ 2752 static int pci_ea_read(struct pci_dev *dev, int offset) 2753 { 2754 struct resource *res; 2755 int ent_size, ent_offset = offset; 2756 resource_size_t start, end; 2757 unsigned long flags; 2758 u32 dw0, bei, base, max_offset; 2759 u8 prop; 2760 bool support_64 = (sizeof(resource_size_t) >= 8); 2761 2762 pci_read_config_dword(dev, ent_offset, &dw0); 2763 ent_offset += 4; 2764 2765 /* Entry size field indicates DWORDs after 1st */ 2766 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2767 2768 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2769 goto out; 2770 2771 bei = (dw0 & PCI_EA_BEI) >> 4; 2772 prop = (dw0 & PCI_EA_PP) >> 8; 2773 2774 /* 2775 * If the Property is in the reserved range, try the Secondary 2776 * Property instead. 2777 */ 2778 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2779 prop = (dw0 & PCI_EA_SP) >> 16; 2780 if (prop > PCI_EA_P_BRIDGE_IO) 2781 goto out; 2782 2783 res = pci_ea_get_resource(dev, bei, prop); 2784 if (!res) { 2785 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2786 goto out; 2787 } 2788 2789 flags = pci_ea_flags(dev, prop); 2790 if (!flags) { 2791 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2792 goto out; 2793 } 2794 2795 /* Read Base */ 2796 pci_read_config_dword(dev, ent_offset, &base); 2797 start = (base & PCI_EA_FIELD_MASK); 2798 ent_offset += 4; 2799 2800 /* Read MaxOffset */ 2801 pci_read_config_dword(dev, ent_offset, &max_offset); 2802 ent_offset += 4; 2803 2804 /* Read Base MSBs (if 64-bit entry) */ 2805 if (base & PCI_EA_IS_64) { 2806 u32 base_upper; 2807 2808 pci_read_config_dword(dev, ent_offset, &base_upper); 2809 ent_offset += 4; 2810 2811 flags |= IORESOURCE_MEM_64; 2812 2813 /* entry starts above 32-bit boundary, can't use */ 2814 if (!support_64 && base_upper) 2815 goto out; 2816 2817 if (support_64) 2818 start |= ((u64)base_upper << 32); 2819 } 2820 2821 end = start + (max_offset | 0x03); 2822 2823 /* Read MaxOffset MSBs (if 64-bit entry) */ 2824 if (max_offset & PCI_EA_IS_64) { 2825 u32 max_offset_upper; 2826 2827 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2828 ent_offset += 4; 2829 2830 flags |= IORESOURCE_MEM_64; 2831 2832 /* entry too big, can't use */ 2833 if (!support_64 && max_offset_upper) 2834 goto out; 2835 2836 if (support_64) 2837 end += ((u64)max_offset_upper << 32); 2838 } 2839 2840 if (end < start) { 2841 pci_err(dev, "EA Entry crosses address boundary\n"); 2842 goto out; 2843 } 2844 2845 if (ent_size != ent_offset - offset) { 2846 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2847 ent_size, ent_offset - offset); 2848 goto out; 2849 } 2850 2851 res->name = pci_name(dev); 2852 res->start = start; 2853 res->end = end; 2854 res->flags = flags; 2855 2856 if (bei <= PCI_EA_BEI_BAR5) 2857 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2858 bei, res, prop); 2859 else if (bei == PCI_EA_BEI_ROM) 2860 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2861 res, prop); 2862 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2863 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2864 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2865 else 2866 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2867 bei, res, prop); 2868 2869 out: 2870 return offset + ent_size; 2871 } 2872 2873 /* Enhanced Allocation Initialization */ 2874 void pci_ea_init(struct pci_dev *dev) 2875 { 2876 int ea; 2877 u8 num_ent; 2878 int offset; 2879 int i; 2880 2881 /* find PCI EA capability in list */ 2882 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2883 if (!ea) 2884 return; 2885 2886 /* determine the number of entries */ 2887 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2888 &num_ent); 2889 num_ent &= PCI_EA_NUM_ENT_MASK; 2890 2891 offset = ea + PCI_EA_FIRST_ENT; 2892 2893 /* Skip DWORD 2 for type 1 functions */ 2894 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2895 offset += 4; 2896 2897 /* parse each EA entry */ 2898 for (i = 0; i < num_ent; ++i) 2899 offset = pci_ea_read(dev, offset); 2900 } 2901 2902 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2903 struct pci_cap_saved_state *new_cap) 2904 { 2905 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2906 } 2907 2908 /** 2909 * _pci_add_cap_save_buffer - allocate buffer for saving given 2910 * capability registers 2911 * @dev: the PCI device 2912 * @cap: the capability to allocate the buffer for 2913 * @extended: Standard or Extended capability ID 2914 * @size: requested size of the buffer 2915 */ 2916 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2917 bool extended, unsigned int size) 2918 { 2919 int pos; 2920 struct pci_cap_saved_state *save_state; 2921 2922 if (extended) 2923 pos = pci_find_ext_capability(dev, cap); 2924 else 2925 pos = pci_find_capability(dev, cap); 2926 2927 if (!pos) 2928 return 0; 2929 2930 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2931 if (!save_state) 2932 return -ENOMEM; 2933 2934 save_state->cap.cap_nr = cap; 2935 save_state->cap.cap_extended = extended; 2936 save_state->cap.size = size; 2937 pci_add_saved_cap(dev, save_state); 2938 2939 return 0; 2940 } 2941 2942 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2943 { 2944 return _pci_add_cap_save_buffer(dev, cap, false, size); 2945 } 2946 2947 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2948 { 2949 return _pci_add_cap_save_buffer(dev, cap, true, size); 2950 } 2951 2952 /** 2953 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2954 * @dev: the PCI device 2955 */ 2956 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2957 { 2958 int error; 2959 2960 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2961 PCI_EXP_SAVE_REGS * sizeof(u16)); 2962 if (error) 2963 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 2964 2965 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2966 if (error) 2967 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 2968 2969 pci_allocate_vc_save_buffers(dev); 2970 } 2971 2972 void pci_free_cap_save_buffers(struct pci_dev *dev) 2973 { 2974 struct pci_cap_saved_state *tmp; 2975 struct hlist_node *n; 2976 2977 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2978 kfree(tmp); 2979 } 2980 2981 /** 2982 * pci_configure_ari - enable or disable ARI forwarding 2983 * @dev: the PCI device 2984 * 2985 * If @dev and its upstream bridge both support ARI, enable ARI in the 2986 * bridge. Otherwise, disable ARI in the bridge. 2987 */ 2988 void pci_configure_ari(struct pci_dev *dev) 2989 { 2990 u32 cap; 2991 struct pci_dev *bridge; 2992 2993 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2994 return; 2995 2996 bridge = dev->bus->self; 2997 if (!bridge) 2998 return; 2999 3000 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3001 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3002 return; 3003 3004 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3005 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3006 PCI_EXP_DEVCTL2_ARI); 3007 bridge->ari_enabled = 1; 3008 } else { 3009 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3010 PCI_EXP_DEVCTL2_ARI); 3011 bridge->ari_enabled = 0; 3012 } 3013 } 3014 3015 static int pci_acs_enable; 3016 3017 /** 3018 * pci_request_acs - ask for ACS to be enabled if supported 3019 */ 3020 void pci_request_acs(void) 3021 { 3022 pci_acs_enable = 1; 3023 } 3024 3025 static const char *disable_acs_redir_param; 3026 3027 /** 3028 * pci_disable_acs_redir - disable ACS redirect capabilities 3029 * @dev: the PCI device 3030 * 3031 * For only devices specified in the disable_acs_redir parameter. 3032 */ 3033 static void pci_disable_acs_redir(struct pci_dev *dev) 3034 { 3035 int ret = 0; 3036 const char *p; 3037 int pos; 3038 u16 ctrl; 3039 3040 if (!disable_acs_redir_param) 3041 return; 3042 3043 p = disable_acs_redir_param; 3044 while (*p) { 3045 ret = pci_dev_str_match(dev, p, &p); 3046 if (ret < 0) { 3047 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3048 disable_acs_redir_param); 3049 3050 break; 3051 } else if (ret == 1) { 3052 /* Found a match */ 3053 break; 3054 } 3055 3056 if (*p != ';' && *p != ',') { 3057 /* End of param or invalid format */ 3058 break; 3059 } 3060 p++; 3061 } 3062 3063 if (ret != 1) 3064 return; 3065 3066 if (!pci_dev_specific_disable_acs_redir(dev)) 3067 return; 3068 3069 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3070 if (!pos) { 3071 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3072 return; 3073 } 3074 3075 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3076 3077 /* P2P Request & Completion Redirect */ 3078 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3079 3080 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3081 3082 pci_info(dev, "disabled ACS redirect\n"); 3083 } 3084 3085 /** 3086 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 3087 * @dev: the PCI device 3088 */ 3089 static void pci_std_enable_acs(struct pci_dev *dev) 3090 { 3091 int pos; 3092 u16 cap; 3093 u16 ctrl; 3094 3095 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3096 if (!pos) 3097 return; 3098 3099 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3100 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3101 3102 /* Source Validation */ 3103 ctrl |= (cap & PCI_ACS_SV); 3104 3105 /* P2P Request Redirect */ 3106 ctrl |= (cap & PCI_ACS_RR); 3107 3108 /* P2P Completion Redirect */ 3109 ctrl |= (cap & PCI_ACS_CR); 3110 3111 /* Upstream Forwarding */ 3112 ctrl |= (cap & PCI_ACS_UF); 3113 3114 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3115 } 3116 3117 /** 3118 * pci_enable_acs - enable ACS if hardware support it 3119 * @dev: the PCI device 3120 */ 3121 void pci_enable_acs(struct pci_dev *dev) 3122 { 3123 if (!pci_acs_enable) 3124 goto disable_acs_redir; 3125 3126 if (!pci_dev_specific_enable_acs(dev)) 3127 goto disable_acs_redir; 3128 3129 pci_std_enable_acs(dev); 3130 3131 disable_acs_redir: 3132 /* 3133 * Note: pci_disable_acs_redir() must be called even if ACS was not 3134 * enabled by the kernel because it may have been enabled by 3135 * platform firmware. So if we are told to disable it, we should 3136 * always disable it after setting the kernel's default 3137 * preferences. 3138 */ 3139 pci_disable_acs_redir(dev); 3140 } 3141 3142 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3143 { 3144 int pos; 3145 u16 cap, ctrl; 3146 3147 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3148 if (!pos) 3149 return false; 3150 3151 /* 3152 * Except for egress control, capabilities are either required 3153 * or only required if controllable. Features missing from the 3154 * capability field can therefore be assumed as hard-wired enabled. 3155 */ 3156 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3157 acs_flags &= (cap | PCI_ACS_EC); 3158 3159 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3160 return (ctrl & acs_flags) == acs_flags; 3161 } 3162 3163 /** 3164 * pci_acs_enabled - test ACS against required flags for a given device 3165 * @pdev: device to test 3166 * @acs_flags: required PCI ACS flags 3167 * 3168 * Return true if the device supports the provided flags. Automatically 3169 * filters out flags that are not implemented on multifunction devices. 3170 * 3171 * Note that this interface checks the effective ACS capabilities of the 3172 * device rather than the actual capabilities. For instance, most single 3173 * function endpoints are not required to support ACS because they have no 3174 * opportunity for peer-to-peer access. We therefore return 'true' 3175 * regardless of whether the device exposes an ACS capability. This makes 3176 * it much easier for callers of this function to ignore the actual type 3177 * or topology of the device when testing ACS support. 3178 */ 3179 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3180 { 3181 int ret; 3182 3183 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3184 if (ret >= 0) 3185 return ret > 0; 3186 3187 /* 3188 * Conventional PCI and PCI-X devices never support ACS, either 3189 * effectively or actually. The shared bus topology implies that 3190 * any device on the bus can receive or snoop DMA. 3191 */ 3192 if (!pci_is_pcie(pdev)) 3193 return false; 3194 3195 switch (pci_pcie_type(pdev)) { 3196 /* 3197 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3198 * but since their primary interface is PCI/X, we conservatively 3199 * handle them as we would a non-PCIe device. 3200 */ 3201 case PCI_EXP_TYPE_PCIE_BRIDGE: 3202 /* 3203 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3204 * applicable... must never implement an ACS Extended Capability...". 3205 * This seems arbitrary, but we take a conservative interpretation 3206 * of this statement. 3207 */ 3208 case PCI_EXP_TYPE_PCI_BRIDGE: 3209 case PCI_EXP_TYPE_RC_EC: 3210 return false; 3211 /* 3212 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3213 * implement ACS in order to indicate their peer-to-peer capabilities, 3214 * regardless of whether they are single- or multi-function devices. 3215 */ 3216 case PCI_EXP_TYPE_DOWNSTREAM: 3217 case PCI_EXP_TYPE_ROOT_PORT: 3218 return pci_acs_flags_enabled(pdev, acs_flags); 3219 /* 3220 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3221 * implemented by the remaining PCIe types to indicate peer-to-peer 3222 * capabilities, but only when they are part of a multifunction 3223 * device. The footnote for section 6.12 indicates the specific 3224 * PCIe types included here. 3225 */ 3226 case PCI_EXP_TYPE_ENDPOINT: 3227 case PCI_EXP_TYPE_UPSTREAM: 3228 case PCI_EXP_TYPE_LEG_END: 3229 case PCI_EXP_TYPE_RC_END: 3230 if (!pdev->multifunction) 3231 break; 3232 3233 return pci_acs_flags_enabled(pdev, acs_flags); 3234 } 3235 3236 /* 3237 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3238 * to single function devices with the exception of downstream ports. 3239 */ 3240 return true; 3241 } 3242 3243 /** 3244 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3245 * @start: starting downstream device 3246 * @end: ending upstream device or NULL to search to the root bus 3247 * @acs_flags: required flags 3248 * 3249 * Walk up a device tree from start to end testing PCI ACS support. If 3250 * any step along the way does not support the required flags, return false. 3251 */ 3252 bool pci_acs_path_enabled(struct pci_dev *start, 3253 struct pci_dev *end, u16 acs_flags) 3254 { 3255 struct pci_dev *pdev, *parent = start; 3256 3257 do { 3258 pdev = parent; 3259 3260 if (!pci_acs_enabled(pdev, acs_flags)) 3261 return false; 3262 3263 if (pci_is_root_bus(pdev->bus)) 3264 return (end == NULL); 3265 3266 parent = pdev->bus->self; 3267 } while (pdev != end); 3268 3269 return true; 3270 } 3271 3272 /** 3273 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3274 * @pdev: PCI device 3275 * @bar: BAR to find 3276 * 3277 * Helper to find the position of the ctrl register for a BAR. 3278 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3279 * Returns -ENOENT if no ctrl register for the BAR could be found. 3280 */ 3281 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3282 { 3283 unsigned int pos, nbars, i; 3284 u32 ctrl; 3285 3286 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3287 if (!pos) 3288 return -ENOTSUPP; 3289 3290 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3291 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3292 PCI_REBAR_CTRL_NBAR_SHIFT; 3293 3294 for (i = 0; i < nbars; i++, pos += 8) { 3295 int bar_idx; 3296 3297 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3298 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3299 if (bar_idx == bar) 3300 return pos; 3301 } 3302 3303 return -ENOENT; 3304 } 3305 3306 /** 3307 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3308 * @pdev: PCI device 3309 * @bar: BAR to query 3310 * 3311 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3312 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3313 */ 3314 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3315 { 3316 int pos; 3317 u32 cap; 3318 3319 pos = pci_rebar_find_pos(pdev, bar); 3320 if (pos < 0) 3321 return 0; 3322 3323 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3324 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3325 } 3326 3327 /** 3328 * pci_rebar_get_current_size - get the current size of a BAR 3329 * @pdev: PCI device 3330 * @bar: BAR to set size to 3331 * 3332 * Read the size of a BAR from the resizable BAR config. 3333 * Returns size if found or negative error code. 3334 */ 3335 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3336 { 3337 int pos; 3338 u32 ctrl; 3339 3340 pos = pci_rebar_find_pos(pdev, bar); 3341 if (pos < 0) 3342 return pos; 3343 3344 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3345 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3346 } 3347 3348 /** 3349 * pci_rebar_set_size - set a new size for a BAR 3350 * @pdev: PCI device 3351 * @bar: BAR to set size to 3352 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3353 * 3354 * Set the new size of a BAR as defined in the spec. 3355 * Returns zero if resizing was successful, error code otherwise. 3356 */ 3357 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3358 { 3359 int pos; 3360 u32 ctrl; 3361 3362 pos = pci_rebar_find_pos(pdev, bar); 3363 if (pos < 0) 3364 return pos; 3365 3366 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3367 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3368 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3369 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3370 return 0; 3371 } 3372 3373 /** 3374 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3375 * @dev: the PCI device 3376 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3377 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3378 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3379 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3380 * 3381 * Return 0 if all upstream bridges support AtomicOp routing, egress 3382 * blocking is disabled on all upstream ports, and the root port supports 3383 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3384 * AtomicOp completion), or negative otherwise. 3385 */ 3386 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3387 { 3388 struct pci_bus *bus = dev->bus; 3389 struct pci_dev *bridge; 3390 u32 cap, ctl2; 3391 3392 if (!pci_is_pcie(dev)) 3393 return -EINVAL; 3394 3395 /* 3396 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3397 * AtomicOp requesters. For now, we only support endpoints as 3398 * requesters and root ports as completers. No endpoints as 3399 * completers, and no peer-to-peer. 3400 */ 3401 3402 switch (pci_pcie_type(dev)) { 3403 case PCI_EXP_TYPE_ENDPOINT: 3404 case PCI_EXP_TYPE_LEG_END: 3405 case PCI_EXP_TYPE_RC_END: 3406 break; 3407 default: 3408 return -EINVAL; 3409 } 3410 3411 while (bus->parent) { 3412 bridge = bus->self; 3413 3414 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3415 3416 switch (pci_pcie_type(bridge)) { 3417 /* Ensure switch ports support AtomicOp routing */ 3418 case PCI_EXP_TYPE_UPSTREAM: 3419 case PCI_EXP_TYPE_DOWNSTREAM: 3420 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3421 return -EINVAL; 3422 break; 3423 3424 /* Ensure root port supports all the sizes we care about */ 3425 case PCI_EXP_TYPE_ROOT_PORT: 3426 if ((cap & cap_mask) != cap_mask) 3427 return -EINVAL; 3428 break; 3429 } 3430 3431 /* Ensure upstream ports don't block AtomicOps on egress */ 3432 if (!bridge->has_secondary_link) { 3433 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3434 &ctl2); 3435 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3436 return -EINVAL; 3437 } 3438 3439 bus = bus->parent; 3440 } 3441 3442 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3443 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3444 return 0; 3445 } 3446 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3447 3448 /** 3449 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3450 * @dev: the PCI device 3451 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3452 * 3453 * Perform INTx swizzling for a device behind one level of bridge. This is 3454 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3455 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3456 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3457 * the PCI Express Base Specification, Revision 2.1) 3458 */ 3459 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3460 { 3461 int slot; 3462 3463 if (pci_ari_enabled(dev->bus)) 3464 slot = 0; 3465 else 3466 slot = PCI_SLOT(dev->devfn); 3467 3468 return (((pin - 1) + slot) % 4) + 1; 3469 } 3470 3471 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3472 { 3473 u8 pin; 3474 3475 pin = dev->pin; 3476 if (!pin) 3477 return -1; 3478 3479 while (!pci_is_root_bus(dev->bus)) { 3480 pin = pci_swizzle_interrupt_pin(dev, pin); 3481 dev = dev->bus->self; 3482 } 3483 *bridge = dev; 3484 return pin; 3485 } 3486 3487 /** 3488 * pci_common_swizzle - swizzle INTx all the way to root bridge 3489 * @dev: the PCI device 3490 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3491 * 3492 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3493 * bridges all the way up to a PCI root bus. 3494 */ 3495 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3496 { 3497 u8 pin = *pinp; 3498 3499 while (!pci_is_root_bus(dev->bus)) { 3500 pin = pci_swizzle_interrupt_pin(dev, pin); 3501 dev = dev->bus->self; 3502 } 3503 *pinp = pin; 3504 return PCI_SLOT(dev->devfn); 3505 } 3506 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3507 3508 /** 3509 * pci_release_region - Release a PCI bar 3510 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3511 * @bar: BAR to release 3512 * 3513 * Releases the PCI I/O and memory resources previously reserved by a 3514 * successful call to pci_request_region. Call this function only 3515 * after all use of the PCI regions has ceased. 3516 */ 3517 void pci_release_region(struct pci_dev *pdev, int bar) 3518 { 3519 struct pci_devres *dr; 3520 3521 if (pci_resource_len(pdev, bar) == 0) 3522 return; 3523 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3524 release_region(pci_resource_start(pdev, bar), 3525 pci_resource_len(pdev, bar)); 3526 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3527 release_mem_region(pci_resource_start(pdev, bar), 3528 pci_resource_len(pdev, bar)); 3529 3530 dr = find_pci_dr(pdev); 3531 if (dr) 3532 dr->region_mask &= ~(1 << bar); 3533 } 3534 EXPORT_SYMBOL(pci_release_region); 3535 3536 /** 3537 * __pci_request_region - Reserved PCI I/O and memory resource 3538 * @pdev: PCI device whose resources are to be reserved 3539 * @bar: BAR to be reserved 3540 * @res_name: Name to be associated with resource. 3541 * @exclusive: whether the region access is exclusive or not 3542 * 3543 * Mark the PCI region associated with PCI device @pdev BR @bar as 3544 * being reserved by owner @res_name. Do not access any 3545 * address inside the PCI regions unless this call returns 3546 * successfully. 3547 * 3548 * If @exclusive is set, then the region is marked so that userspace 3549 * is explicitly not allowed to map the resource via /dev/mem or 3550 * sysfs MMIO access. 3551 * 3552 * Returns 0 on success, or %EBUSY on error. A warning 3553 * message is also printed on failure. 3554 */ 3555 static int __pci_request_region(struct pci_dev *pdev, int bar, 3556 const char *res_name, int exclusive) 3557 { 3558 struct pci_devres *dr; 3559 3560 if (pci_resource_len(pdev, bar) == 0) 3561 return 0; 3562 3563 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3564 if (!request_region(pci_resource_start(pdev, bar), 3565 pci_resource_len(pdev, bar), res_name)) 3566 goto err_out; 3567 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3568 if (!__request_mem_region(pci_resource_start(pdev, bar), 3569 pci_resource_len(pdev, bar), res_name, 3570 exclusive)) 3571 goto err_out; 3572 } 3573 3574 dr = find_pci_dr(pdev); 3575 if (dr) 3576 dr->region_mask |= 1 << bar; 3577 3578 return 0; 3579 3580 err_out: 3581 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3582 &pdev->resource[bar]); 3583 return -EBUSY; 3584 } 3585 3586 /** 3587 * pci_request_region - Reserve PCI I/O and memory resource 3588 * @pdev: PCI device whose resources are to be reserved 3589 * @bar: BAR to be reserved 3590 * @res_name: Name to be associated with resource 3591 * 3592 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3593 * being reserved by owner @res_name. Do not access any 3594 * address inside the PCI regions unless this call returns 3595 * successfully. 3596 * 3597 * Returns 0 on success, or %EBUSY on error. A warning 3598 * message is also printed on failure. 3599 */ 3600 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3601 { 3602 return __pci_request_region(pdev, bar, res_name, 0); 3603 } 3604 EXPORT_SYMBOL(pci_request_region); 3605 3606 /** 3607 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3608 * @pdev: PCI device whose resources are to be reserved 3609 * @bar: BAR to be reserved 3610 * @res_name: Name to be associated with resource. 3611 * 3612 * Mark the PCI region associated with PCI device @pdev BR @bar as 3613 * being reserved by owner @res_name. Do not access any 3614 * address inside the PCI regions unless this call returns 3615 * successfully. 3616 * 3617 * Returns 0 on success, or %EBUSY on error. A warning 3618 * message is also printed on failure. 3619 * 3620 * The key difference that _exclusive makes it that userspace is 3621 * explicitly not allowed to map the resource via /dev/mem or 3622 * sysfs. 3623 */ 3624 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3625 const char *res_name) 3626 { 3627 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3628 } 3629 EXPORT_SYMBOL(pci_request_region_exclusive); 3630 3631 /** 3632 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3633 * @pdev: PCI device whose resources were previously reserved 3634 * @bars: Bitmask of BARs to be released 3635 * 3636 * Release selected PCI I/O and memory resources previously reserved. 3637 * Call this function only after all use of the PCI regions has ceased. 3638 */ 3639 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3640 { 3641 int i; 3642 3643 for (i = 0; i < 6; i++) 3644 if (bars & (1 << i)) 3645 pci_release_region(pdev, i); 3646 } 3647 EXPORT_SYMBOL(pci_release_selected_regions); 3648 3649 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3650 const char *res_name, int excl) 3651 { 3652 int i; 3653 3654 for (i = 0; i < 6; i++) 3655 if (bars & (1 << i)) 3656 if (__pci_request_region(pdev, i, res_name, excl)) 3657 goto err_out; 3658 return 0; 3659 3660 err_out: 3661 while (--i >= 0) 3662 if (bars & (1 << i)) 3663 pci_release_region(pdev, i); 3664 3665 return -EBUSY; 3666 } 3667 3668 3669 /** 3670 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3671 * @pdev: PCI device whose resources are to be reserved 3672 * @bars: Bitmask of BARs to be requested 3673 * @res_name: Name to be associated with resource 3674 */ 3675 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3676 const char *res_name) 3677 { 3678 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3679 } 3680 EXPORT_SYMBOL(pci_request_selected_regions); 3681 3682 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3683 const char *res_name) 3684 { 3685 return __pci_request_selected_regions(pdev, bars, res_name, 3686 IORESOURCE_EXCLUSIVE); 3687 } 3688 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3689 3690 /** 3691 * pci_release_regions - Release reserved PCI I/O and memory resources 3692 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3693 * 3694 * Releases all PCI I/O and memory resources previously reserved by a 3695 * successful call to pci_request_regions. Call this function only 3696 * after all use of the PCI regions has ceased. 3697 */ 3698 3699 void pci_release_regions(struct pci_dev *pdev) 3700 { 3701 pci_release_selected_regions(pdev, (1 << 6) - 1); 3702 } 3703 EXPORT_SYMBOL(pci_release_regions); 3704 3705 /** 3706 * pci_request_regions - Reserved PCI I/O and memory resources 3707 * @pdev: PCI device whose resources are to be reserved 3708 * @res_name: Name to be associated with resource. 3709 * 3710 * Mark all PCI regions associated with PCI device @pdev as 3711 * being reserved by owner @res_name. Do not access any 3712 * address inside the PCI regions unless this call returns 3713 * successfully. 3714 * 3715 * Returns 0 on success, or %EBUSY on error. A warning 3716 * message is also printed on failure. 3717 */ 3718 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3719 { 3720 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3721 } 3722 EXPORT_SYMBOL(pci_request_regions); 3723 3724 /** 3725 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3726 * @pdev: PCI device whose resources are to be reserved 3727 * @res_name: Name to be associated with resource. 3728 * 3729 * Mark all PCI regions associated with PCI device @pdev as 3730 * being reserved by owner @res_name. Do not access any 3731 * address inside the PCI regions unless this call returns 3732 * successfully. 3733 * 3734 * pci_request_regions_exclusive() will mark the region so that 3735 * /dev/mem and the sysfs MMIO access will not be allowed. 3736 * 3737 * Returns 0 on success, or %EBUSY on error. A warning 3738 * message is also printed on failure. 3739 */ 3740 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3741 { 3742 return pci_request_selected_regions_exclusive(pdev, 3743 ((1 << 6) - 1), res_name); 3744 } 3745 EXPORT_SYMBOL(pci_request_regions_exclusive); 3746 3747 /* 3748 * Record the PCI IO range (expressed as CPU physical address + size). 3749 * Return a negative value if an error has occured, zero otherwise 3750 */ 3751 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3752 resource_size_t size) 3753 { 3754 int ret = 0; 3755 #ifdef PCI_IOBASE 3756 struct logic_pio_hwaddr *range; 3757 3758 if (!size || addr + size < addr) 3759 return -EINVAL; 3760 3761 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3762 if (!range) 3763 return -ENOMEM; 3764 3765 range->fwnode = fwnode; 3766 range->size = size; 3767 range->hw_start = addr; 3768 range->flags = LOGIC_PIO_CPU_MMIO; 3769 3770 ret = logic_pio_register_range(range); 3771 if (ret) 3772 kfree(range); 3773 #endif 3774 3775 return ret; 3776 } 3777 3778 phys_addr_t pci_pio_to_address(unsigned long pio) 3779 { 3780 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3781 3782 #ifdef PCI_IOBASE 3783 if (pio >= MMIO_UPPER_LIMIT) 3784 return address; 3785 3786 address = logic_pio_to_hwaddr(pio); 3787 #endif 3788 3789 return address; 3790 } 3791 3792 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3793 { 3794 #ifdef PCI_IOBASE 3795 return logic_pio_trans_cpuaddr(address); 3796 #else 3797 if (address > IO_SPACE_LIMIT) 3798 return (unsigned long)-1; 3799 3800 return (unsigned long) address; 3801 #endif 3802 } 3803 3804 /** 3805 * pci_remap_iospace - Remap the memory mapped I/O space 3806 * @res: Resource describing the I/O space 3807 * @phys_addr: physical address of range to be mapped 3808 * 3809 * Remap the memory mapped I/O space described by the @res 3810 * and the CPU physical address @phys_addr into virtual address space. 3811 * Only architectures that have memory mapped IO functions defined 3812 * (and the PCI_IOBASE value defined) should call this function. 3813 */ 3814 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3815 { 3816 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3817 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3818 3819 if (!(res->flags & IORESOURCE_IO)) 3820 return -EINVAL; 3821 3822 if (res->end > IO_SPACE_LIMIT) 3823 return -EINVAL; 3824 3825 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3826 pgprot_device(PAGE_KERNEL)); 3827 #else 3828 /* this architecture does not have memory mapped I/O space, 3829 so this function should never be called */ 3830 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3831 return -ENODEV; 3832 #endif 3833 } 3834 EXPORT_SYMBOL(pci_remap_iospace); 3835 3836 /** 3837 * pci_unmap_iospace - Unmap the memory mapped I/O space 3838 * @res: resource to be unmapped 3839 * 3840 * Unmap the CPU virtual address @res from virtual address space. 3841 * Only architectures that have memory mapped IO functions defined 3842 * (and the PCI_IOBASE value defined) should call this function. 3843 */ 3844 void pci_unmap_iospace(struct resource *res) 3845 { 3846 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3847 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3848 3849 unmap_kernel_range(vaddr, resource_size(res)); 3850 #endif 3851 } 3852 EXPORT_SYMBOL(pci_unmap_iospace); 3853 3854 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 3855 { 3856 struct resource **res = ptr; 3857 3858 pci_unmap_iospace(*res); 3859 } 3860 3861 /** 3862 * devm_pci_remap_iospace - Managed pci_remap_iospace() 3863 * @dev: Generic device to remap IO address for 3864 * @res: Resource describing the I/O space 3865 * @phys_addr: physical address of range to be mapped 3866 * 3867 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 3868 * detach. 3869 */ 3870 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 3871 phys_addr_t phys_addr) 3872 { 3873 const struct resource **ptr; 3874 int error; 3875 3876 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 3877 if (!ptr) 3878 return -ENOMEM; 3879 3880 error = pci_remap_iospace(res, phys_addr); 3881 if (error) { 3882 devres_free(ptr); 3883 } else { 3884 *ptr = res; 3885 devres_add(dev, ptr); 3886 } 3887 3888 return error; 3889 } 3890 EXPORT_SYMBOL(devm_pci_remap_iospace); 3891 3892 /** 3893 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3894 * @dev: Generic device to remap IO address for 3895 * @offset: Resource address to map 3896 * @size: Size of map 3897 * 3898 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3899 * detach. 3900 */ 3901 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3902 resource_size_t offset, 3903 resource_size_t size) 3904 { 3905 void __iomem **ptr, *addr; 3906 3907 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3908 if (!ptr) 3909 return NULL; 3910 3911 addr = pci_remap_cfgspace(offset, size); 3912 if (addr) { 3913 *ptr = addr; 3914 devres_add(dev, ptr); 3915 } else 3916 devres_free(ptr); 3917 3918 return addr; 3919 } 3920 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3921 3922 /** 3923 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3924 * @dev: generic device to handle the resource for 3925 * @res: configuration space resource to be handled 3926 * 3927 * Checks that a resource is a valid memory region, requests the memory 3928 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3929 * proper PCI configuration space memory attributes are guaranteed. 3930 * 3931 * All operations are managed and will be undone on driver detach. 3932 * 3933 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3934 * on failure. Usage example:: 3935 * 3936 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3937 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3938 * if (IS_ERR(base)) 3939 * return PTR_ERR(base); 3940 */ 3941 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3942 struct resource *res) 3943 { 3944 resource_size_t size; 3945 const char *name; 3946 void __iomem *dest_ptr; 3947 3948 BUG_ON(!dev); 3949 3950 if (!res || resource_type(res) != IORESOURCE_MEM) { 3951 dev_err(dev, "invalid resource\n"); 3952 return IOMEM_ERR_PTR(-EINVAL); 3953 } 3954 3955 size = resource_size(res); 3956 name = res->name ?: dev_name(dev); 3957 3958 if (!devm_request_mem_region(dev, res->start, size, name)) { 3959 dev_err(dev, "can't request region for resource %pR\n", res); 3960 return IOMEM_ERR_PTR(-EBUSY); 3961 } 3962 3963 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3964 if (!dest_ptr) { 3965 dev_err(dev, "ioremap failed for resource %pR\n", res); 3966 devm_release_mem_region(dev, res->start, size); 3967 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3968 } 3969 3970 return dest_ptr; 3971 } 3972 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3973 3974 static void __pci_set_master(struct pci_dev *dev, bool enable) 3975 { 3976 u16 old_cmd, cmd; 3977 3978 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3979 if (enable) 3980 cmd = old_cmd | PCI_COMMAND_MASTER; 3981 else 3982 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3983 if (cmd != old_cmd) { 3984 pci_dbg(dev, "%s bus mastering\n", 3985 enable ? "enabling" : "disabling"); 3986 pci_write_config_word(dev, PCI_COMMAND, cmd); 3987 } 3988 dev->is_busmaster = enable; 3989 } 3990 3991 /** 3992 * pcibios_setup - process "pci=" kernel boot arguments 3993 * @str: string used to pass in "pci=" kernel boot arguments 3994 * 3995 * Process kernel boot arguments. This is the default implementation. 3996 * Architecture specific implementations can override this as necessary. 3997 */ 3998 char * __weak __init pcibios_setup(char *str) 3999 { 4000 return str; 4001 } 4002 4003 /** 4004 * pcibios_set_master - enable PCI bus-mastering for device dev 4005 * @dev: the PCI device to enable 4006 * 4007 * Enables PCI bus-mastering for the device. This is the default 4008 * implementation. Architecture specific implementations can override 4009 * this if necessary. 4010 */ 4011 void __weak pcibios_set_master(struct pci_dev *dev) 4012 { 4013 u8 lat; 4014 4015 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4016 if (pci_is_pcie(dev)) 4017 return; 4018 4019 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4020 if (lat < 16) 4021 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4022 else if (lat > pcibios_max_latency) 4023 lat = pcibios_max_latency; 4024 else 4025 return; 4026 4027 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4028 } 4029 4030 /** 4031 * pci_set_master - enables bus-mastering for device dev 4032 * @dev: the PCI device to enable 4033 * 4034 * Enables bus-mastering on the device and calls pcibios_set_master() 4035 * to do the needed arch specific settings. 4036 */ 4037 void pci_set_master(struct pci_dev *dev) 4038 { 4039 __pci_set_master(dev, true); 4040 pcibios_set_master(dev); 4041 } 4042 EXPORT_SYMBOL(pci_set_master); 4043 4044 /** 4045 * pci_clear_master - disables bus-mastering for device dev 4046 * @dev: the PCI device to disable 4047 */ 4048 void pci_clear_master(struct pci_dev *dev) 4049 { 4050 __pci_set_master(dev, false); 4051 } 4052 EXPORT_SYMBOL(pci_clear_master); 4053 4054 /** 4055 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4056 * @dev: the PCI device for which MWI is to be enabled 4057 * 4058 * Helper function for pci_set_mwi. 4059 * Originally copied from drivers/net/acenic.c. 4060 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4061 * 4062 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4063 */ 4064 int pci_set_cacheline_size(struct pci_dev *dev) 4065 { 4066 u8 cacheline_size; 4067 4068 if (!pci_cache_line_size) 4069 return -EINVAL; 4070 4071 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4072 equal to or multiple of the right value. */ 4073 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4074 if (cacheline_size >= pci_cache_line_size && 4075 (cacheline_size % pci_cache_line_size) == 0) 4076 return 0; 4077 4078 /* Write the correct value. */ 4079 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4080 /* Read it back. */ 4081 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4082 if (cacheline_size == pci_cache_line_size) 4083 return 0; 4084 4085 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n", 4086 pci_cache_line_size << 2); 4087 4088 return -EINVAL; 4089 } 4090 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4091 4092 /** 4093 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4094 * @dev: the PCI device for which MWI is enabled 4095 * 4096 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4097 * 4098 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4099 */ 4100 int pci_set_mwi(struct pci_dev *dev) 4101 { 4102 #ifdef PCI_DISABLE_MWI 4103 return 0; 4104 #else 4105 int rc; 4106 u16 cmd; 4107 4108 rc = pci_set_cacheline_size(dev); 4109 if (rc) 4110 return rc; 4111 4112 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4113 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4114 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4115 cmd |= PCI_COMMAND_INVALIDATE; 4116 pci_write_config_word(dev, PCI_COMMAND, cmd); 4117 } 4118 return 0; 4119 #endif 4120 } 4121 EXPORT_SYMBOL(pci_set_mwi); 4122 4123 /** 4124 * pcim_set_mwi - a device-managed pci_set_mwi() 4125 * @dev: the PCI device for which MWI is enabled 4126 * 4127 * Managed pci_set_mwi(). 4128 * 4129 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4130 */ 4131 int pcim_set_mwi(struct pci_dev *dev) 4132 { 4133 struct pci_devres *dr; 4134 4135 dr = find_pci_dr(dev); 4136 if (!dr) 4137 return -ENOMEM; 4138 4139 dr->mwi = 1; 4140 return pci_set_mwi(dev); 4141 } 4142 EXPORT_SYMBOL(pcim_set_mwi); 4143 4144 /** 4145 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4146 * @dev: the PCI device for which MWI is enabled 4147 * 4148 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4149 * Callers are not required to check the return value. 4150 * 4151 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4152 */ 4153 int pci_try_set_mwi(struct pci_dev *dev) 4154 { 4155 #ifdef PCI_DISABLE_MWI 4156 return 0; 4157 #else 4158 return pci_set_mwi(dev); 4159 #endif 4160 } 4161 EXPORT_SYMBOL(pci_try_set_mwi); 4162 4163 /** 4164 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4165 * @dev: the PCI device to disable 4166 * 4167 * Disables PCI Memory-Write-Invalidate transaction on the device 4168 */ 4169 void pci_clear_mwi(struct pci_dev *dev) 4170 { 4171 #ifndef PCI_DISABLE_MWI 4172 u16 cmd; 4173 4174 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4175 if (cmd & PCI_COMMAND_INVALIDATE) { 4176 cmd &= ~PCI_COMMAND_INVALIDATE; 4177 pci_write_config_word(dev, PCI_COMMAND, cmd); 4178 } 4179 #endif 4180 } 4181 EXPORT_SYMBOL(pci_clear_mwi); 4182 4183 /** 4184 * pci_intx - enables/disables PCI INTx for device dev 4185 * @pdev: the PCI device to operate on 4186 * @enable: boolean: whether to enable or disable PCI INTx 4187 * 4188 * Enables/disables PCI INTx for device dev 4189 */ 4190 void pci_intx(struct pci_dev *pdev, int enable) 4191 { 4192 u16 pci_command, new; 4193 4194 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4195 4196 if (enable) 4197 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4198 else 4199 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4200 4201 if (new != pci_command) { 4202 struct pci_devres *dr; 4203 4204 pci_write_config_word(pdev, PCI_COMMAND, new); 4205 4206 dr = find_pci_dr(pdev); 4207 if (dr && !dr->restore_intx) { 4208 dr->restore_intx = 1; 4209 dr->orig_intx = !enable; 4210 } 4211 } 4212 } 4213 EXPORT_SYMBOL_GPL(pci_intx); 4214 4215 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4216 { 4217 struct pci_bus *bus = dev->bus; 4218 bool mask_updated = true; 4219 u32 cmd_status_dword; 4220 u16 origcmd, newcmd; 4221 unsigned long flags; 4222 bool irq_pending; 4223 4224 /* 4225 * We do a single dword read to retrieve both command and status. 4226 * Document assumptions that make this possible. 4227 */ 4228 BUILD_BUG_ON(PCI_COMMAND % 4); 4229 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4230 4231 raw_spin_lock_irqsave(&pci_lock, flags); 4232 4233 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4234 4235 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4236 4237 /* 4238 * Check interrupt status register to see whether our device 4239 * triggered the interrupt (when masking) or the next IRQ is 4240 * already pending (when unmasking). 4241 */ 4242 if (mask != irq_pending) { 4243 mask_updated = false; 4244 goto done; 4245 } 4246 4247 origcmd = cmd_status_dword; 4248 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4249 if (mask) 4250 newcmd |= PCI_COMMAND_INTX_DISABLE; 4251 if (newcmd != origcmd) 4252 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4253 4254 done: 4255 raw_spin_unlock_irqrestore(&pci_lock, flags); 4256 4257 return mask_updated; 4258 } 4259 4260 /** 4261 * pci_check_and_mask_intx - mask INTx on pending interrupt 4262 * @dev: the PCI device to operate on 4263 * 4264 * Check if the device dev has its INTx line asserted, mask it and 4265 * return true in that case. False is returned if no interrupt was 4266 * pending. 4267 */ 4268 bool pci_check_and_mask_intx(struct pci_dev *dev) 4269 { 4270 return pci_check_and_set_intx_mask(dev, true); 4271 } 4272 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4273 4274 /** 4275 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4276 * @dev: the PCI device to operate on 4277 * 4278 * Check if the device dev has its INTx line asserted, unmask it if not 4279 * and return true. False is returned and the mask remains active if 4280 * there was still an interrupt pending. 4281 */ 4282 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4283 { 4284 return pci_check_and_set_intx_mask(dev, false); 4285 } 4286 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4287 4288 /** 4289 * pci_wait_for_pending_transaction - waits for pending transaction 4290 * @dev: the PCI device to operate on 4291 * 4292 * Return 0 if transaction is pending 1 otherwise. 4293 */ 4294 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4295 { 4296 if (!pci_is_pcie(dev)) 4297 return 1; 4298 4299 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4300 PCI_EXP_DEVSTA_TRPND); 4301 } 4302 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4303 4304 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 4305 { 4306 int delay = 1; 4307 u32 id; 4308 4309 /* 4310 * After reset, the device should not silently discard config 4311 * requests, but it may still indicate that it needs more time by 4312 * responding to them with CRS completions. The Root Port will 4313 * generally synthesize ~0 data to complete the read (except when 4314 * CRS SV is enabled and the read was for the Vendor ID; in that 4315 * case it synthesizes 0x0001 data). 4316 * 4317 * Wait for the device to return a non-CRS completion. Read the 4318 * Command register instead of Vendor ID so we don't have to 4319 * contend with the CRS SV value. 4320 */ 4321 pci_read_config_dword(dev, PCI_COMMAND, &id); 4322 while (id == ~0) { 4323 if (delay > timeout) { 4324 pci_warn(dev, "not ready %dms after %s; giving up\n", 4325 delay - 1, reset_type); 4326 return -ENOTTY; 4327 } 4328 4329 if (delay > 1000) 4330 pci_info(dev, "not ready %dms after %s; waiting\n", 4331 delay - 1, reset_type); 4332 4333 msleep(delay); 4334 delay *= 2; 4335 pci_read_config_dword(dev, PCI_COMMAND, &id); 4336 } 4337 4338 if (delay > 1000) 4339 pci_info(dev, "ready %dms after %s\n", delay - 1, 4340 reset_type); 4341 4342 return 0; 4343 } 4344 4345 /** 4346 * pcie_has_flr - check if a device supports function level resets 4347 * @dev: device to check 4348 * 4349 * Returns true if the device advertises support for PCIe function level 4350 * resets. 4351 */ 4352 bool pcie_has_flr(struct pci_dev *dev) 4353 { 4354 u32 cap; 4355 4356 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4357 return false; 4358 4359 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4360 return cap & PCI_EXP_DEVCAP_FLR; 4361 } 4362 EXPORT_SYMBOL_GPL(pcie_has_flr); 4363 4364 /** 4365 * pcie_flr - initiate a PCIe function level reset 4366 * @dev: device to reset 4367 * 4368 * Initiate a function level reset on @dev. The caller should ensure the 4369 * device supports FLR before calling this function, e.g. by using the 4370 * pcie_has_flr() helper. 4371 */ 4372 int pcie_flr(struct pci_dev *dev) 4373 { 4374 if (!pci_wait_for_pending_transaction(dev)) 4375 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4376 4377 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4378 4379 /* 4380 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4381 * 100ms, but may silently discard requests while the FLR is in 4382 * progress. Wait 100ms before trying to access the device. 4383 */ 4384 msleep(100); 4385 4386 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4387 } 4388 EXPORT_SYMBOL_GPL(pcie_flr); 4389 4390 static int pci_af_flr(struct pci_dev *dev, int probe) 4391 { 4392 int pos; 4393 u8 cap; 4394 4395 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4396 if (!pos) 4397 return -ENOTTY; 4398 4399 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4400 return -ENOTTY; 4401 4402 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4403 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4404 return -ENOTTY; 4405 4406 if (probe) 4407 return 0; 4408 4409 /* 4410 * Wait for Transaction Pending bit to clear. A word-aligned test 4411 * is used, so we use the conrol offset rather than status and shift 4412 * the test bit to match. 4413 */ 4414 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4415 PCI_AF_STATUS_TP << 8)) 4416 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4417 4418 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4419 4420 /* 4421 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4422 * updated 27 July 2006; a device must complete an FLR within 4423 * 100ms, but may silently discard requests while the FLR is in 4424 * progress. Wait 100ms before trying to access the device. 4425 */ 4426 msleep(100); 4427 4428 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4429 } 4430 4431 /** 4432 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4433 * @dev: Device to reset. 4434 * @probe: If set, only check if the device can be reset this way. 4435 * 4436 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4437 * unset, it will be reinitialized internally when going from PCI_D3hot to 4438 * PCI_D0. If that's the case and the device is not in a low-power state 4439 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4440 * 4441 * NOTE: This causes the caller to sleep for twice the device power transition 4442 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4443 * by default (i.e. unless the @dev's d3_delay field has a different value). 4444 * Moreover, only devices in D0 can be reset by this function. 4445 */ 4446 static int pci_pm_reset(struct pci_dev *dev, int probe) 4447 { 4448 u16 csr; 4449 4450 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4451 return -ENOTTY; 4452 4453 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4454 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4455 return -ENOTTY; 4456 4457 if (probe) 4458 return 0; 4459 4460 if (dev->current_state != PCI_D0) 4461 return -EINVAL; 4462 4463 csr &= ~PCI_PM_CTRL_STATE_MASK; 4464 csr |= PCI_D3hot; 4465 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4466 pci_dev_d3_sleep(dev); 4467 4468 csr &= ~PCI_PM_CTRL_STATE_MASK; 4469 csr |= PCI_D0; 4470 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4471 pci_dev_d3_sleep(dev); 4472 4473 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS); 4474 } 4475 /** 4476 * pcie_wait_for_link - Wait until link is active or inactive 4477 * @pdev: Bridge device 4478 * @active: waiting for active or inactive? 4479 * 4480 * Use this to wait till link becomes active or inactive. 4481 */ 4482 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4483 { 4484 int timeout = 1000; 4485 bool ret; 4486 u16 lnk_status; 4487 4488 for (;;) { 4489 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4490 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4491 if (ret == active) 4492 return true; 4493 if (timeout <= 0) 4494 break; 4495 msleep(10); 4496 timeout -= 10; 4497 } 4498 4499 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4500 active ? "set" : "cleared"); 4501 4502 return false; 4503 } 4504 4505 void pci_reset_secondary_bus(struct pci_dev *dev) 4506 { 4507 u16 ctrl; 4508 4509 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4510 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4511 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4512 4513 /* 4514 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4515 * this to 2ms to ensure that we meet the minimum requirement. 4516 */ 4517 msleep(2); 4518 4519 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4520 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4521 4522 /* 4523 * Trhfa for conventional PCI is 2^25 clock cycles. 4524 * Assuming a minimum 33MHz clock this results in a 1s 4525 * delay before we can consider subordinate devices to 4526 * be re-initialized. PCIe has some ways to shorten this, 4527 * but we don't make use of them yet. 4528 */ 4529 ssleep(1); 4530 } 4531 4532 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4533 { 4534 pci_reset_secondary_bus(dev); 4535 } 4536 4537 /** 4538 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4539 * @dev: Bridge device 4540 * 4541 * Use the bridge control register to assert reset on the secondary bus. 4542 * Devices on the secondary bus are left in power-on state. 4543 */ 4544 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4545 { 4546 pcibios_reset_secondary_bus(dev); 4547 4548 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4549 } 4550 4551 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4552 { 4553 struct pci_dev *pdev; 4554 4555 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4556 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4557 return -ENOTTY; 4558 4559 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4560 if (pdev != dev) 4561 return -ENOTTY; 4562 4563 if (probe) 4564 return 0; 4565 4566 return pci_bridge_secondary_bus_reset(dev->bus->self); 4567 } 4568 4569 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4570 { 4571 int rc = -ENOTTY; 4572 4573 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4574 return rc; 4575 4576 if (hotplug->ops->reset_slot) 4577 rc = hotplug->ops->reset_slot(hotplug, probe); 4578 4579 module_put(hotplug->ops->owner); 4580 4581 return rc; 4582 } 4583 4584 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4585 { 4586 struct pci_dev *pdev; 4587 4588 if (dev->subordinate || !dev->slot || 4589 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4590 return -ENOTTY; 4591 4592 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4593 if (pdev != dev && pdev->slot == dev->slot) 4594 return -ENOTTY; 4595 4596 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4597 } 4598 4599 static void pci_dev_lock(struct pci_dev *dev) 4600 { 4601 pci_cfg_access_lock(dev); 4602 /* block PM suspend, driver probe, etc. */ 4603 device_lock(&dev->dev); 4604 } 4605 4606 /* Return 1 on successful lock, 0 on contention */ 4607 static int pci_dev_trylock(struct pci_dev *dev) 4608 { 4609 if (pci_cfg_access_trylock(dev)) { 4610 if (device_trylock(&dev->dev)) 4611 return 1; 4612 pci_cfg_access_unlock(dev); 4613 } 4614 4615 return 0; 4616 } 4617 4618 static void pci_dev_unlock(struct pci_dev *dev) 4619 { 4620 device_unlock(&dev->dev); 4621 pci_cfg_access_unlock(dev); 4622 } 4623 4624 static void pci_dev_save_and_disable(struct pci_dev *dev) 4625 { 4626 const struct pci_error_handlers *err_handler = 4627 dev->driver ? dev->driver->err_handler : NULL; 4628 4629 /* 4630 * dev->driver->err_handler->reset_prepare() is protected against 4631 * races with ->remove() by the device lock, which must be held by 4632 * the caller. 4633 */ 4634 if (err_handler && err_handler->reset_prepare) 4635 err_handler->reset_prepare(dev); 4636 4637 /* 4638 * Wake-up device prior to save. PM registers default to D0 after 4639 * reset and a simple register restore doesn't reliably return 4640 * to a non-D0 state anyway. 4641 */ 4642 pci_set_power_state(dev, PCI_D0); 4643 4644 pci_save_state(dev); 4645 /* 4646 * Disable the device by clearing the Command register, except for 4647 * INTx-disable which is set. This not only disables MMIO and I/O port 4648 * BARs, but also prevents the device from being Bus Master, preventing 4649 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4650 * compliant devices, INTx-disable prevents legacy interrupts. 4651 */ 4652 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4653 } 4654 4655 static void pci_dev_restore(struct pci_dev *dev) 4656 { 4657 const struct pci_error_handlers *err_handler = 4658 dev->driver ? dev->driver->err_handler : NULL; 4659 4660 pci_restore_state(dev); 4661 4662 /* 4663 * dev->driver->err_handler->reset_done() is protected against 4664 * races with ->remove() by the device lock, which must be held by 4665 * the caller. 4666 */ 4667 if (err_handler && err_handler->reset_done) 4668 err_handler->reset_done(dev); 4669 } 4670 4671 /** 4672 * __pci_reset_function_locked - reset a PCI device function while holding 4673 * the @dev mutex lock. 4674 * @dev: PCI device to reset 4675 * 4676 * Some devices allow an individual function to be reset without affecting 4677 * other functions in the same device. The PCI device must be responsive 4678 * to PCI config space in order to use this function. 4679 * 4680 * The device function is presumed to be unused and the caller is holding 4681 * the device mutex lock when this function is called. 4682 * Resetting the device will make the contents of PCI configuration space 4683 * random, so any caller of this must be prepared to reinitialise the 4684 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4685 * etc. 4686 * 4687 * Returns 0 if the device function was successfully reset or negative if the 4688 * device doesn't support resetting a single function. 4689 */ 4690 int __pci_reset_function_locked(struct pci_dev *dev) 4691 { 4692 int rc; 4693 4694 might_sleep(); 4695 4696 /* 4697 * A reset method returns -ENOTTY if it doesn't support this device 4698 * and we should try the next method. 4699 * 4700 * If it returns 0 (success), we're finished. If it returns any 4701 * other error, we're also finished: this indicates that further 4702 * reset mechanisms might be broken on the device. 4703 */ 4704 rc = pci_dev_specific_reset(dev, 0); 4705 if (rc != -ENOTTY) 4706 return rc; 4707 if (pcie_has_flr(dev)) { 4708 rc = pcie_flr(dev); 4709 if (rc != -ENOTTY) 4710 return rc; 4711 } 4712 rc = pci_af_flr(dev, 0); 4713 if (rc != -ENOTTY) 4714 return rc; 4715 rc = pci_pm_reset(dev, 0); 4716 if (rc != -ENOTTY) 4717 return rc; 4718 rc = pci_dev_reset_slot_function(dev, 0); 4719 if (rc != -ENOTTY) 4720 return rc; 4721 return pci_parent_bus_reset(dev, 0); 4722 } 4723 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4724 4725 /** 4726 * pci_probe_reset_function - check whether the device can be safely reset 4727 * @dev: PCI device to reset 4728 * 4729 * Some devices allow an individual function to be reset without affecting 4730 * other functions in the same device. The PCI device must be responsive 4731 * to PCI config space in order to use this function. 4732 * 4733 * Returns 0 if the device function can be reset or negative if the 4734 * device doesn't support resetting a single function. 4735 */ 4736 int pci_probe_reset_function(struct pci_dev *dev) 4737 { 4738 int rc; 4739 4740 might_sleep(); 4741 4742 rc = pci_dev_specific_reset(dev, 1); 4743 if (rc != -ENOTTY) 4744 return rc; 4745 if (pcie_has_flr(dev)) 4746 return 0; 4747 rc = pci_af_flr(dev, 1); 4748 if (rc != -ENOTTY) 4749 return rc; 4750 rc = pci_pm_reset(dev, 1); 4751 if (rc != -ENOTTY) 4752 return rc; 4753 rc = pci_dev_reset_slot_function(dev, 1); 4754 if (rc != -ENOTTY) 4755 return rc; 4756 4757 return pci_parent_bus_reset(dev, 1); 4758 } 4759 4760 /** 4761 * pci_reset_function - quiesce and reset a PCI device function 4762 * @dev: PCI device to reset 4763 * 4764 * Some devices allow an individual function to be reset without affecting 4765 * other functions in the same device. The PCI device must be responsive 4766 * to PCI config space in order to use this function. 4767 * 4768 * This function does not just reset the PCI portion of a device, but 4769 * clears all the state associated with the device. This function differs 4770 * from __pci_reset_function_locked() in that it saves and restores device state 4771 * over the reset and takes the PCI device lock. 4772 * 4773 * Returns 0 if the device function was successfully reset or negative if the 4774 * device doesn't support resetting a single function. 4775 */ 4776 int pci_reset_function(struct pci_dev *dev) 4777 { 4778 int rc; 4779 4780 if (!dev->reset_fn) 4781 return -ENOTTY; 4782 4783 pci_dev_lock(dev); 4784 pci_dev_save_and_disable(dev); 4785 4786 rc = __pci_reset_function_locked(dev); 4787 4788 pci_dev_restore(dev); 4789 pci_dev_unlock(dev); 4790 4791 return rc; 4792 } 4793 EXPORT_SYMBOL_GPL(pci_reset_function); 4794 4795 /** 4796 * pci_reset_function_locked - quiesce and reset a PCI device function 4797 * @dev: PCI device to reset 4798 * 4799 * Some devices allow an individual function to be reset without affecting 4800 * other functions in the same device. The PCI device must be responsive 4801 * to PCI config space in order to use this function. 4802 * 4803 * This function does not just reset the PCI portion of a device, but 4804 * clears all the state associated with the device. This function differs 4805 * from __pci_reset_function_locked() in that it saves and restores device state 4806 * over the reset. It also differs from pci_reset_function() in that it 4807 * requires the PCI device lock to be held. 4808 * 4809 * Returns 0 if the device function was successfully reset or negative if the 4810 * device doesn't support resetting a single function. 4811 */ 4812 int pci_reset_function_locked(struct pci_dev *dev) 4813 { 4814 int rc; 4815 4816 if (!dev->reset_fn) 4817 return -ENOTTY; 4818 4819 pci_dev_save_and_disable(dev); 4820 4821 rc = __pci_reset_function_locked(dev); 4822 4823 pci_dev_restore(dev); 4824 4825 return rc; 4826 } 4827 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4828 4829 /** 4830 * pci_try_reset_function - quiesce and reset a PCI device function 4831 * @dev: PCI device to reset 4832 * 4833 * Same as above, except return -EAGAIN if unable to lock device. 4834 */ 4835 int pci_try_reset_function(struct pci_dev *dev) 4836 { 4837 int rc; 4838 4839 if (!dev->reset_fn) 4840 return -ENOTTY; 4841 4842 if (!pci_dev_trylock(dev)) 4843 return -EAGAIN; 4844 4845 pci_dev_save_and_disable(dev); 4846 rc = __pci_reset_function_locked(dev); 4847 pci_dev_restore(dev); 4848 pci_dev_unlock(dev); 4849 4850 return rc; 4851 } 4852 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4853 4854 /* Do any devices on or below this bus prevent a bus reset? */ 4855 static bool pci_bus_resetable(struct pci_bus *bus) 4856 { 4857 struct pci_dev *dev; 4858 4859 4860 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4861 return false; 4862 4863 list_for_each_entry(dev, &bus->devices, bus_list) { 4864 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4865 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4866 return false; 4867 } 4868 4869 return true; 4870 } 4871 4872 /* Lock devices from the top of the tree down */ 4873 static void pci_bus_lock(struct pci_bus *bus) 4874 { 4875 struct pci_dev *dev; 4876 4877 list_for_each_entry(dev, &bus->devices, bus_list) { 4878 pci_dev_lock(dev); 4879 if (dev->subordinate) 4880 pci_bus_lock(dev->subordinate); 4881 } 4882 } 4883 4884 /* Unlock devices from the bottom of the tree up */ 4885 static void pci_bus_unlock(struct pci_bus *bus) 4886 { 4887 struct pci_dev *dev; 4888 4889 list_for_each_entry(dev, &bus->devices, bus_list) { 4890 if (dev->subordinate) 4891 pci_bus_unlock(dev->subordinate); 4892 pci_dev_unlock(dev); 4893 } 4894 } 4895 4896 /* Return 1 on successful lock, 0 on contention */ 4897 static int pci_bus_trylock(struct pci_bus *bus) 4898 { 4899 struct pci_dev *dev; 4900 4901 list_for_each_entry(dev, &bus->devices, bus_list) { 4902 if (!pci_dev_trylock(dev)) 4903 goto unlock; 4904 if (dev->subordinate) { 4905 if (!pci_bus_trylock(dev->subordinate)) { 4906 pci_dev_unlock(dev); 4907 goto unlock; 4908 } 4909 } 4910 } 4911 return 1; 4912 4913 unlock: 4914 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4915 if (dev->subordinate) 4916 pci_bus_unlock(dev->subordinate); 4917 pci_dev_unlock(dev); 4918 } 4919 return 0; 4920 } 4921 4922 /* Do any devices on or below this slot prevent a bus reset? */ 4923 static bool pci_slot_resetable(struct pci_slot *slot) 4924 { 4925 struct pci_dev *dev; 4926 4927 if (slot->bus->self && 4928 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4929 return false; 4930 4931 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4932 if (!dev->slot || dev->slot != slot) 4933 continue; 4934 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4935 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4936 return false; 4937 } 4938 4939 return true; 4940 } 4941 4942 /* Lock devices from the top of the tree down */ 4943 static void pci_slot_lock(struct pci_slot *slot) 4944 { 4945 struct pci_dev *dev; 4946 4947 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4948 if (!dev->slot || dev->slot != slot) 4949 continue; 4950 pci_dev_lock(dev); 4951 if (dev->subordinate) 4952 pci_bus_lock(dev->subordinate); 4953 } 4954 } 4955 4956 /* Unlock devices from the bottom of the tree up */ 4957 static void pci_slot_unlock(struct pci_slot *slot) 4958 { 4959 struct pci_dev *dev; 4960 4961 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4962 if (!dev->slot || dev->slot != slot) 4963 continue; 4964 if (dev->subordinate) 4965 pci_bus_unlock(dev->subordinate); 4966 pci_dev_unlock(dev); 4967 } 4968 } 4969 4970 /* Return 1 on successful lock, 0 on contention */ 4971 static int pci_slot_trylock(struct pci_slot *slot) 4972 { 4973 struct pci_dev *dev; 4974 4975 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4976 if (!dev->slot || dev->slot != slot) 4977 continue; 4978 if (!pci_dev_trylock(dev)) 4979 goto unlock; 4980 if (dev->subordinate) { 4981 if (!pci_bus_trylock(dev->subordinate)) { 4982 pci_dev_unlock(dev); 4983 goto unlock; 4984 } 4985 } 4986 } 4987 return 1; 4988 4989 unlock: 4990 list_for_each_entry_continue_reverse(dev, 4991 &slot->bus->devices, bus_list) { 4992 if (!dev->slot || dev->slot != slot) 4993 continue; 4994 if (dev->subordinate) 4995 pci_bus_unlock(dev->subordinate); 4996 pci_dev_unlock(dev); 4997 } 4998 return 0; 4999 } 5000 5001 /* Save and disable devices from the top of the tree down */ 5002 static void pci_bus_save_and_disable(struct pci_bus *bus) 5003 { 5004 struct pci_dev *dev; 5005 5006 list_for_each_entry(dev, &bus->devices, bus_list) { 5007 pci_dev_lock(dev); 5008 pci_dev_save_and_disable(dev); 5009 pci_dev_unlock(dev); 5010 if (dev->subordinate) 5011 pci_bus_save_and_disable(dev->subordinate); 5012 } 5013 } 5014 5015 /* 5016 * Restore devices from top of the tree down - parent bridges need to be 5017 * restored before we can get to subordinate devices. 5018 */ 5019 static void pci_bus_restore(struct pci_bus *bus) 5020 { 5021 struct pci_dev *dev; 5022 5023 list_for_each_entry(dev, &bus->devices, bus_list) { 5024 pci_dev_lock(dev); 5025 pci_dev_restore(dev); 5026 pci_dev_unlock(dev); 5027 if (dev->subordinate) 5028 pci_bus_restore(dev->subordinate); 5029 } 5030 } 5031 5032 /* Save and disable devices from the top of the tree down */ 5033 static void pci_slot_save_and_disable(struct pci_slot *slot) 5034 { 5035 struct pci_dev *dev; 5036 5037 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5038 if (!dev->slot || dev->slot != slot) 5039 continue; 5040 pci_dev_save_and_disable(dev); 5041 if (dev->subordinate) 5042 pci_bus_save_and_disable(dev->subordinate); 5043 } 5044 } 5045 5046 /* 5047 * Restore devices from top of the tree down - parent bridges need to be 5048 * restored before we can get to subordinate devices. 5049 */ 5050 static void pci_slot_restore(struct pci_slot *slot) 5051 { 5052 struct pci_dev *dev; 5053 5054 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5055 if (!dev->slot || dev->slot != slot) 5056 continue; 5057 pci_dev_lock(dev); 5058 pci_dev_restore(dev); 5059 pci_dev_unlock(dev); 5060 if (dev->subordinate) 5061 pci_bus_restore(dev->subordinate); 5062 } 5063 } 5064 5065 static int pci_slot_reset(struct pci_slot *slot, int probe) 5066 { 5067 int rc; 5068 5069 if (!slot || !pci_slot_resetable(slot)) 5070 return -ENOTTY; 5071 5072 if (!probe) 5073 pci_slot_lock(slot); 5074 5075 might_sleep(); 5076 5077 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5078 5079 if (!probe) 5080 pci_slot_unlock(slot); 5081 5082 return rc; 5083 } 5084 5085 /** 5086 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5087 * @slot: PCI slot to probe 5088 * 5089 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5090 */ 5091 int pci_probe_reset_slot(struct pci_slot *slot) 5092 { 5093 return pci_slot_reset(slot, 1); 5094 } 5095 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5096 5097 /** 5098 * __pci_reset_slot - Try to reset a PCI slot 5099 * @slot: PCI slot to reset 5100 * 5101 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5102 * independent of other slots. For instance, some slots may support slot power 5103 * control. In the case of a 1:1 bus to slot architecture, this function may 5104 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5105 * Generally a slot reset should be attempted before a bus reset. All of the 5106 * function of the slot and any subordinate buses behind the slot are reset 5107 * through this function. PCI config space of all devices in the slot and 5108 * behind the slot is saved before and restored after reset. 5109 * 5110 * Same as above except return -EAGAIN if the slot cannot be locked 5111 */ 5112 static int __pci_reset_slot(struct pci_slot *slot) 5113 { 5114 int rc; 5115 5116 rc = pci_slot_reset(slot, 1); 5117 if (rc) 5118 return rc; 5119 5120 pci_slot_save_and_disable(slot); 5121 5122 if (pci_slot_trylock(slot)) { 5123 might_sleep(); 5124 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5125 pci_slot_unlock(slot); 5126 } else 5127 rc = -EAGAIN; 5128 5129 pci_slot_restore(slot); 5130 5131 return rc; 5132 } 5133 5134 static int pci_bus_reset(struct pci_bus *bus, int probe) 5135 { 5136 int ret; 5137 5138 if (!bus->self || !pci_bus_resetable(bus)) 5139 return -ENOTTY; 5140 5141 if (probe) 5142 return 0; 5143 5144 pci_bus_lock(bus); 5145 5146 might_sleep(); 5147 5148 ret = pci_bridge_secondary_bus_reset(bus->self); 5149 5150 pci_bus_unlock(bus); 5151 5152 return ret; 5153 } 5154 5155 /** 5156 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5157 * @bus: PCI bus to probe 5158 * 5159 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5160 */ 5161 int pci_probe_reset_bus(struct pci_bus *bus) 5162 { 5163 return pci_bus_reset(bus, 1); 5164 } 5165 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5166 5167 /** 5168 * __pci_reset_bus - Try to reset a PCI bus 5169 * @bus: top level PCI bus to reset 5170 * 5171 * Same as above except return -EAGAIN if the bus cannot be locked 5172 */ 5173 static int __pci_reset_bus(struct pci_bus *bus) 5174 { 5175 int rc; 5176 5177 rc = pci_bus_reset(bus, 1); 5178 if (rc) 5179 return rc; 5180 5181 pci_bus_save_and_disable(bus); 5182 5183 if (pci_bus_trylock(bus)) { 5184 might_sleep(); 5185 rc = pci_bridge_secondary_bus_reset(bus->self); 5186 pci_bus_unlock(bus); 5187 } else 5188 rc = -EAGAIN; 5189 5190 pci_bus_restore(bus); 5191 5192 return rc; 5193 } 5194 5195 /** 5196 * pci_reset_bus - Try to reset a PCI bus 5197 * @pdev: top level PCI device to reset via slot/bus 5198 * 5199 * Same as above except return -EAGAIN if the bus cannot be locked 5200 */ 5201 int pci_reset_bus(struct pci_dev *pdev) 5202 { 5203 return pci_probe_reset_slot(pdev->slot) ? 5204 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5205 } 5206 EXPORT_SYMBOL_GPL(pci_reset_bus); 5207 5208 /** 5209 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5210 * @dev: PCI device to query 5211 * 5212 * Returns mmrbc: maximum designed memory read count in bytes 5213 * or appropriate error value. 5214 */ 5215 int pcix_get_max_mmrbc(struct pci_dev *dev) 5216 { 5217 int cap; 5218 u32 stat; 5219 5220 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5221 if (!cap) 5222 return -EINVAL; 5223 5224 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5225 return -EINVAL; 5226 5227 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5228 } 5229 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5230 5231 /** 5232 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5233 * @dev: PCI device to query 5234 * 5235 * Returns mmrbc: maximum memory read count in bytes 5236 * or appropriate error value. 5237 */ 5238 int pcix_get_mmrbc(struct pci_dev *dev) 5239 { 5240 int cap; 5241 u16 cmd; 5242 5243 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5244 if (!cap) 5245 return -EINVAL; 5246 5247 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5248 return -EINVAL; 5249 5250 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5251 } 5252 EXPORT_SYMBOL(pcix_get_mmrbc); 5253 5254 /** 5255 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5256 * @dev: PCI device to query 5257 * @mmrbc: maximum memory read count in bytes 5258 * valid values are 512, 1024, 2048, 4096 5259 * 5260 * If possible sets maximum memory read byte count, some bridges have erratas 5261 * that prevent this. 5262 */ 5263 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5264 { 5265 int cap; 5266 u32 stat, v, o; 5267 u16 cmd; 5268 5269 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5270 return -EINVAL; 5271 5272 v = ffs(mmrbc) - 10; 5273 5274 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5275 if (!cap) 5276 return -EINVAL; 5277 5278 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5279 return -EINVAL; 5280 5281 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5282 return -E2BIG; 5283 5284 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5285 return -EINVAL; 5286 5287 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5288 if (o != v) { 5289 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5290 return -EIO; 5291 5292 cmd &= ~PCI_X_CMD_MAX_READ; 5293 cmd |= v << 2; 5294 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5295 return -EIO; 5296 } 5297 return 0; 5298 } 5299 EXPORT_SYMBOL(pcix_set_mmrbc); 5300 5301 /** 5302 * pcie_get_readrq - get PCI Express read request size 5303 * @dev: PCI device to query 5304 * 5305 * Returns maximum memory read request in bytes 5306 * or appropriate error value. 5307 */ 5308 int pcie_get_readrq(struct pci_dev *dev) 5309 { 5310 u16 ctl; 5311 5312 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5313 5314 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5315 } 5316 EXPORT_SYMBOL(pcie_get_readrq); 5317 5318 /** 5319 * pcie_set_readrq - set PCI Express maximum memory read request 5320 * @dev: PCI device to query 5321 * @rq: maximum memory read count in bytes 5322 * valid values are 128, 256, 512, 1024, 2048, 4096 5323 * 5324 * If possible sets maximum memory read request in bytes 5325 */ 5326 int pcie_set_readrq(struct pci_dev *dev, int rq) 5327 { 5328 u16 v; 5329 5330 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5331 return -EINVAL; 5332 5333 /* 5334 * If using the "performance" PCIe config, we clamp the 5335 * read rq size to the max packet size to prevent the 5336 * host bridge generating requests larger than we can 5337 * cope with 5338 */ 5339 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5340 int mps = pcie_get_mps(dev); 5341 5342 if (mps < rq) 5343 rq = mps; 5344 } 5345 5346 v = (ffs(rq) - 8) << 12; 5347 5348 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5349 PCI_EXP_DEVCTL_READRQ, v); 5350 } 5351 EXPORT_SYMBOL(pcie_set_readrq); 5352 5353 /** 5354 * pcie_get_mps - get PCI Express maximum payload size 5355 * @dev: PCI device to query 5356 * 5357 * Returns maximum payload size in bytes 5358 */ 5359 int pcie_get_mps(struct pci_dev *dev) 5360 { 5361 u16 ctl; 5362 5363 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5364 5365 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5366 } 5367 EXPORT_SYMBOL(pcie_get_mps); 5368 5369 /** 5370 * pcie_set_mps - set PCI Express maximum payload size 5371 * @dev: PCI device to query 5372 * @mps: maximum payload size in bytes 5373 * valid values are 128, 256, 512, 1024, 2048, 4096 5374 * 5375 * If possible sets maximum payload size 5376 */ 5377 int pcie_set_mps(struct pci_dev *dev, int mps) 5378 { 5379 u16 v; 5380 5381 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5382 return -EINVAL; 5383 5384 v = ffs(mps) - 8; 5385 if (v > dev->pcie_mpss) 5386 return -EINVAL; 5387 v <<= 5; 5388 5389 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5390 PCI_EXP_DEVCTL_PAYLOAD, v); 5391 } 5392 EXPORT_SYMBOL(pcie_set_mps); 5393 5394 /** 5395 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5396 * device and its bandwidth limitation 5397 * @dev: PCI device to query 5398 * @limiting_dev: storage for device causing the bandwidth limitation 5399 * @speed: storage for speed of limiting device 5400 * @width: storage for width of limiting device 5401 * 5402 * Walk up the PCI device chain and find the point where the minimum 5403 * bandwidth is available. Return the bandwidth available there and (if 5404 * limiting_dev, speed, and width pointers are supplied) information about 5405 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5406 * raw bandwidth. 5407 */ 5408 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5409 enum pci_bus_speed *speed, 5410 enum pcie_link_width *width) 5411 { 5412 u16 lnksta; 5413 enum pci_bus_speed next_speed; 5414 enum pcie_link_width next_width; 5415 u32 bw, next_bw; 5416 5417 if (speed) 5418 *speed = PCI_SPEED_UNKNOWN; 5419 if (width) 5420 *width = PCIE_LNK_WIDTH_UNKNOWN; 5421 5422 bw = 0; 5423 5424 while (dev) { 5425 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5426 5427 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5428 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5429 PCI_EXP_LNKSTA_NLW_SHIFT; 5430 5431 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5432 5433 /* Check if current device limits the total bandwidth */ 5434 if (!bw || next_bw <= bw) { 5435 bw = next_bw; 5436 5437 if (limiting_dev) 5438 *limiting_dev = dev; 5439 if (speed) 5440 *speed = next_speed; 5441 if (width) 5442 *width = next_width; 5443 } 5444 5445 dev = pci_upstream_bridge(dev); 5446 } 5447 5448 return bw; 5449 } 5450 EXPORT_SYMBOL(pcie_bandwidth_available); 5451 5452 /** 5453 * pcie_get_speed_cap - query for the PCI device's link speed capability 5454 * @dev: PCI device to query 5455 * 5456 * Query the PCI device speed capability. Return the maximum link speed 5457 * supported by the device. 5458 */ 5459 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5460 { 5461 u32 lnkcap2, lnkcap; 5462 5463 /* 5464 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link 5465 * Speeds Vector in Link Capabilities 2 when supported, falling 5466 * back to Max Link Speed in Link Capabilities otherwise. 5467 */ 5468 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5469 if (lnkcap2) { /* PCIe r3.0-compliant */ 5470 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5471 return PCIE_SPEED_16_0GT; 5472 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5473 return PCIE_SPEED_8_0GT; 5474 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5475 return PCIE_SPEED_5_0GT; 5476 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5477 return PCIE_SPEED_2_5GT; 5478 return PCI_SPEED_UNKNOWN; 5479 } 5480 5481 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5482 if (lnkcap) { 5483 if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB) 5484 return PCIE_SPEED_16_0GT; 5485 else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB) 5486 return PCIE_SPEED_8_0GT; 5487 else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB) 5488 return PCIE_SPEED_5_0GT; 5489 else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB) 5490 return PCIE_SPEED_2_5GT; 5491 } 5492 5493 return PCI_SPEED_UNKNOWN; 5494 } 5495 EXPORT_SYMBOL(pcie_get_speed_cap); 5496 5497 /** 5498 * pcie_get_width_cap - query for the PCI device's link width capability 5499 * @dev: PCI device to query 5500 * 5501 * Query the PCI device width capability. Return the maximum link width 5502 * supported by the device. 5503 */ 5504 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5505 { 5506 u32 lnkcap; 5507 5508 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5509 if (lnkcap) 5510 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5511 5512 return PCIE_LNK_WIDTH_UNKNOWN; 5513 } 5514 EXPORT_SYMBOL(pcie_get_width_cap); 5515 5516 /** 5517 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5518 * @dev: PCI device 5519 * @speed: storage for link speed 5520 * @width: storage for link width 5521 * 5522 * Calculate a PCI device's link bandwidth by querying for its link speed 5523 * and width, multiplying them, and applying encoding overhead. The result 5524 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5525 */ 5526 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5527 enum pcie_link_width *width) 5528 { 5529 *speed = pcie_get_speed_cap(dev); 5530 *width = pcie_get_width_cap(dev); 5531 5532 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5533 return 0; 5534 5535 return *width * PCIE_SPEED2MBS_ENC(*speed); 5536 } 5537 5538 /** 5539 * __pcie_print_link_status - Report the PCI device's link speed and width 5540 * @dev: PCI device to query 5541 * @verbose: Print info even when enough bandwidth is available 5542 * 5543 * If the available bandwidth at the device is less than the device is 5544 * capable of, report the device's maximum possible bandwidth and the 5545 * upstream link that limits its performance. If @verbose, always print 5546 * the available bandwidth, even if the device isn't constrained. 5547 */ 5548 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5549 { 5550 enum pcie_link_width width, width_cap; 5551 enum pci_bus_speed speed, speed_cap; 5552 struct pci_dev *limiting_dev = NULL; 5553 u32 bw_avail, bw_cap; 5554 5555 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5556 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5557 5558 if (bw_avail >= bw_cap && verbose) 5559 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5560 bw_cap / 1000, bw_cap % 1000, 5561 PCIE_SPEED2STR(speed_cap), width_cap); 5562 else if (bw_avail < bw_cap) 5563 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5564 bw_avail / 1000, bw_avail % 1000, 5565 PCIE_SPEED2STR(speed), width, 5566 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5567 bw_cap / 1000, bw_cap % 1000, 5568 PCIE_SPEED2STR(speed_cap), width_cap); 5569 } 5570 5571 /** 5572 * pcie_print_link_status - Report the PCI device's link speed and width 5573 * @dev: PCI device to query 5574 * 5575 * Report the available bandwidth at the device. 5576 */ 5577 void pcie_print_link_status(struct pci_dev *dev) 5578 { 5579 __pcie_print_link_status(dev, true); 5580 } 5581 EXPORT_SYMBOL(pcie_print_link_status); 5582 5583 /** 5584 * pci_select_bars - Make BAR mask from the type of resource 5585 * @dev: the PCI device for which BAR mask is made 5586 * @flags: resource type mask to be selected 5587 * 5588 * This helper routine makes bar mask from the type of resource. 5589 */ 5590 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5591 { 5592 int i, bars = 0; 5593 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5594 if (pci_resource_flags(dev, i) & flags) 5595 bars |= (1 << i); 5596 return bars; 5597 } 5598 EXPORT_SYMBOL(pci_select_bars); 5599 5600 /* Some architectures require additional programming to enable VGA */ 5601 static arch_set_vga_state_t arch_set_vga_state; 5602 5603 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5604 { 5605 arch_set_vga_state = func; /* NULL disables */ 5606 } 5607 5608 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5609 unsigned int command_bits, u32 flags) 5610 { 5611 if (arch_set_vga_state) 5612 return arch_set_vga_state(dev, decode, command_bits, 5613 flags); 5614 return 0; 5615 } 5616 5617 /** 5618 * pci_set_vga_state - set VGA decode state on device and parents if requested 5619 * @dev: the PCI device 5620 * @decode: true = enable decoding, false = disable decoding 5621 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5622 * @flags: traverse ancestors and change bridges 5623 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5624 */ 5625 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5626 unsigned int command_bits, u32 flags) 5627 { 5628 struct pci_bus *bus; 5629 struct pci_dev *bridge; 5630 u16 cmd; 5631 int rc; 5632 5633 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5634 5635 /* ARCH specific VGA enables */ 5636 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5637 if (rc) 5638 return rc; 5639 5640 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5641 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5642 if (decode == true) 5643 cmd |= command_bits; 5644 else 5645 cmd &= ~command_bits; 5646 pci_write_config_word(dev, PCI_COMMAND, cmd); 5647 } 5648 5649 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5650 return 0; 5651 5652 bus = dev->bus; 5653 while (bus) { 5654 bridge = bus->self; 5655 if (bridge) { 5656 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5657 &cmd); 5658 if (decode == true) 5659 cmd |= PCI_BRIDGE_CTL_VGA; 5660 else 5661 cmd &= ~PCI_BRIDGE_CTL_VGA; 5662 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5663 cmd); 5664 } 5665 bus = bus->parent; 5666 } 5667 return 0; 5668 } 5669 5670 /** 5671 * pci_add_dma_alias - Add a DMA devfn alias for a device 5672 * @dev: the PCI device for which alias is added 5673 * @devfn: alias slot and function 5674 * 5675 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 5676 * which is used to program permissible bus-devfn source addresses for DMA 5677 * requests in an IOMMU. These aliases factor into IOMMU group creation 5678 * and are useful for devices generating DMA requests beyond or different 5679 * from their logical bus-devfn. Examples include device quirks where the 5680 * device simply uses the wrong devfn, as well as non-transparent bridges 5681 * where the alias may be a proxy for devices in another domain. 5682 * 5683 * IOMMU group creation is performed during device discovery or addition, 5684 * prior to any potential DMA mapping and therefore prior to driver probing 5685 * (especially for userspace assigned devices where IOMMU group definition 5686 * cannot be left as a userspace activity). DMA aliases should therefore 5687 * be configured via quirks, such as the PCI fixup header quirk. 5688 */ 5689 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5690 { 5691 if (!dev->dma_alias_mask) 5692 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5693 sizeof(long), GFP_KERNEL); 5694 if (!dev->dma_alias_mask) { 5695 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5696 return; 5697 } 5698 5699 set_bit(devfn, dev->dma_alias_mask); 5700 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5701 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5702 } 5703 5704 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5705 { 5706 return (dev1->dma_alias_mask && 5707 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5708 (dev2->dma_alias_mask && 5709 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5710 } 5711 5712 bool pci_device_is_present(struct pci_dev *pdev) 5713 { 5714 u32 v; 5715 5716 if (pci_dev_is_disconnected(pdev)) 5717 return false; 5718 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5719 } 5720 EXPORT_SYMBOL_GPL(pci_device_is_present); 5721 5722 void pci_ignore_hotplug(struct pci_dev *dev) 5723 { 5724 struct pci_dev *bridge = dev->bus->self; 5725 5726 dev->ignore_hotplug = 1; 5727 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5728 if (bridge) 5729 bridge->ignore_hotplug = 1; 5730 } 5731 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5732 5733 resource_size_t __weak pcibios_default_alignment(void) 5734 { 5735 return 0; 5736 } 5737 5738 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5739 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5740 static DEFINE_SPINLOCK(resource_alignment_lock); 5741 5742 /** 5743 * pci_specified_resource_alignment - get resource alignment specified by user. 5744 * @dev: the PCI device to get 5745 * @resize: whether or not to change resources' size when reassigning alignment 5746 * 5747 * RETURNS: Resource alignment if it is specified. 5748 * Zero if it is not specified. 5749 */ 5750 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5751 bool *resize) 5752 { 5753 int align_order, count; 5754 resource_size_t align = pcibios_default_alignment(); 5755 const char *p; 5756 int ret; 5757 5758 spin_lock(&resource_alignment_lock); 5759 p = resource_alignment_param; 5760 if (!*p && !align) 5761 goto out; 5762 if (pci_has_flag(PCI_PROBE_ONLY)) { 5763 align = 0; 5764 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5765 goto out; 5766 } 5767 5768 while (*p) { 5769 count = 0; 5770 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5771 p[count] == '@') { 5772 p += count + 1; 5773 } else { 5774 align_order = -1; 5775 } 5776 5777 ret = pci_dev_str_match(dev, p, &p); 5778 if (ret == 1) { 5779 *resize = true; 5780 if (align_order == -1) 5781 align = PAGE_SIZE; 5782 else 5783 align = 1 << align_order; 5784 break; 5785 } else if (ret < 0) { 5786 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 5787 p); 5788 break; 5789 } 5790 5791 if (*p != ';' && *p != ',') { 5792 /* End of param or invalid format */ 5793 break; 5794 } 5795 p++; 5796 } 5797 out: 5798 spin_unlock(&resource_alignment_lock); 5799 return align; 5800 } 5801 5802 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5803 resource_size_t align, bool resize) 5804 { 5805 struct resource *r = &dev->resource[bar]; 5806 resource_size_t size; 5807 5808 if (!(r->flags & IORESOURCE_MEM)) 5809 return; 5810 5811 if (r->flags & IORESOURCE_PCI_FIXED) { 5812 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5813 bar, r, (unsigned long long)align); 5814 return; 5815 } 5816 5817 size = resource_size(r); 5818 if (size >= align) 5819 return; 5820 5821 /* 5822 * Increase the alignment of the resource. There are two ways we 5823 * can do this: 5824 * 5825 * 1) Increase the size of the resource. BARs are aligned on their 5826 * size, so when we reallocate space for this resource, we'll 5827 * allocate it with the larger alignment. This also prevents 5828 * assignment of any other BARs inside the alignment region, so 5829 * if we're requesting page alignment, this means no other BARs 5830 * will share the page. 5831 * 5832 * The disadvantage is that this makes the resource larger than 5833 * the hardware BAR, which may break drivers that compute things 5834 * based on the resource size, e.g., to find registers at a 5835 * fixed offset before the end of the BAR. 5836 * 5837 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5838 * set r->start to the desired alignment. By itself this 5839 * doesn't prevent other BARs being put inside the alignment 5840 * region, but if we realign *every* resource of every device in 5841 * the system, none of them will share an alignment region. 5842 * 5843 * When the user has requested alignment for only some devices via 5844 * the "pci=resource_alignment" argument, "resize" is true and we 5845 * use the first method. Otherwise we assume we're aligning all 5846 * devices and we use the second. 5847 */ 5848 5849 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 5850 bar, r, (unsigned long long)align); 5851 5852 if (resize) { 5853 r->start = 0; 5854 r->end = align - 1; 5855 } else { 5856 r->flags &= ~IORESOURCE_SIZEALIGN; 5857 r->flags |= IORESOURCE_STARTALIGN; 5858 r->start = align; 5859 r->end = r->start + size - 1; 5860 } 5861 r->flags |= IORESOURCE_UNSET; 5862 } 5863 5864 /* 5865 * This function disables memory decoding and releases memory resources 5866 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5867 * It also rounds up size to specified alignment. 5868 * Later on, the kernel will assign page-aligned memory resource back 5869 * to the device. 5870 */ 5871 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5872 { 5873 int i; 5874 struct resource *r; 5875 resource_size_t align; 5876 u16 command; 5877 bool resize = false; 5878 5879 /* 5880 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5881 * 3.4.1.11. Their resources are allocated from the space 5882 * described by the VF BARx register in the PF's SR-IOV capability. 5883 * We can't influence their alignment here. 5884 */ 5885 if (dev->is_virtfn) 5886 return; 5887 5888 /* check if specified PCI is target device to reassign */ 5889 align = pci_specified_resource_alignment(dev, &resize); 5890 if (!align) 5891 return; 5892 5893 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5894 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5895 pci_warn(dev, "Can't reassign resources to host bridge\n"); 5896 return; 5897 } 5898 5899 pci_read_config_word(dev, PCI_COMMAND, &command); 5900 command &= ~PCI_COMMAND_MEMORY; 5901 pci_write_config_word(dev, PCI_COMMAND, command); 5902 5903 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5904 pci_request_resource_alignment(dev, i, align, resize); 5905 5906 /* 5907 * Need to disable bridge's resource window, 5908 * to enable the kernel to reassign new resource 5909 * window later on. 5910 */ 5911 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5912 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5913 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5914 r = &dev->resource[i]; 5915 if (!(r->flags & IORESOURCE_MEM)) 5916 continue; 5917 r->flags |= IORESOURCE_UNSET; 5918 r->end = resource_size(r) - 1; 5919 r->start = 0; 5920 } 5921 pci_disable_bridge_window(dev); 5922 } 5923 } 5924 5925 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5926 { 5927 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5928 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5929 spin_lock(&resource_alignment_lock); 5930 strncpy(resource_alignment_param, buf, count); 5931 resource_alignment_param[count] = '\0'; 5932 spin_unlock(&resource_alignment_lock); 5933 return count; 5934 } 5935 5936 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5937 { 5938 size_t count; 5939 spin_lock(&resource_alignment_lock); 5940 count = snprintf(buf, size, "%s", resource_alignment_param); 5941 spin_unlock(&resource_alignment_lock); 5942 return count; 5943 } 5944 5945 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5946 { 5947 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5948 } 5949 5950 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5951 const char *buf, size_t count) 5952 { 5953 return pci_set_resource_alignment_param(buf, count); 5954 } 5955 5956 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5957 pci_resource_alignment_store); 5958 5959 static int __init pci_resource_alignment_sysfs_init(void) 5960 { 5961 return bus_create_file(&pci_bus_type, 5962 &bus_attr_resource_alignment); 5963 } 5964 late_initcall(pci_resource_alignment_sysfs_init); 5965 5966 static void pci_no_domains(void) 5967 { 5968 #ifdef CONFIG_PCI_DOMAINS 5969 pci_domains_supported = 0; 5970 #endif 5971 } 5972 5973 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5974 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5975 5976 static int pci_get_new_domain_nr(void) 5977 { 5978 return atomic_inc_return(&__domain_nr); 5979 } 5980 5981 static int of_pci_bus_find_domain_nr(struct device *parent) 5982 { 5983 static int use_dt_domains = -1; 5984 int domain = -1; 5985 5986 if (parent) 5987 domain = of_get_pci_domain_nr(parent->of_node); 5988 /* 5989 * Check DT domain and use_dt_domains values. 5990 * 5991 * If DT domain property is valid (domain >= 0) and 5992 * use_dt_domains != 0, the DT assignment is valid since this means 5993 * we have not previously allocated a domain number by using 5994 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5995 * 1, to indicate that we have just assigned a domain number from 5996 * DT. 5997 * 5998 * If DT domain property value is not valid (ie domain < 0), and we 5999 * have not previously assigned a domain number from DT 6000 * (use_dt_domains != 1) we should assign a domain number by 6001 * using the: 6002 * 6003 * pci_get_new_domain_nr() 6004 * 6005 * API and update the use_dt_domains value to keep track of method we 6006 * are using to assign domain numbers (use_dt_domains = 0). 6007 * 6008 * All other combinations imply we have a platform that is trying 6009 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6010 * which is a recipe for domain mishandling and it is prevented by 6011 * invalidating the domain value (domain = -1) and printing a 6012 * corresponding error. 6013 */ 6014 if (domain >= 0 && use_dt_domains) { 6015 use_dt_domains = 1; 6016 } else if (domain < 0 && use_dt_domains != 1) { 6017 use_dt_domains = 0; 6018 domain = pci_get_new_domain_nr(); 6019 } else { 6020 if (parent) 6021 pr_err("Node %pOF has ", parent->of_node); 6022 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6023 domain = -1; 6024 } 6025 6026 return domain; 6027 } 6028 6029 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6030 { 6031 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6032 acpi_pci_bus_find_domain_nr(bus); 6033 } 6034 #endif 6035 6036 /** 6037 * pci_ext_cfg_avail - can we access extended PCI config space? 6038 * 6039 * Returns 1 if we can access PCI extended config space (offsets 6040 * greater than 0xff). This is the default implementation. Architecture 6041 * implementations can override this. 6042 */ 6043 int __weak pci_ext_cfg_avail(void) 6044 { 6045 return 1; 6046 } 6047 6048 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6049 { 6050 } 6051 EXPORT_SYMBOL(pci_fixup_cardbus); 6052 6053 static int __init pci_setup(char *str) 6054 { 6055 while (str) { 6056 char *k = strchr(str, ','); 6057 if (k) 6058 *k++ = 0; 6059 if (*str && (str = pcibios_setup(str)) && *str) { 6060 if (!strcmp(str, "nomsi")) { 6061 pci_no_msi(); 6062 } else if (!strncmp(str, "noats", 5)) { 6063 pr_info("PCIe: ATS is disabled\n"); 6064 pcie_ats_disabled = true; 6065 } else if (!strcmp(str, "noaer")) { 6066 pci_no_aer(); 6067 } else if (!strcmp(str, "earlydump")) { 6068 pci_early_dump = true; 6069 } else if (!strncmp(str, "realloc=", 8)) { 6070 pci_realloc_get_opt(str + 8); 6071 } else if (!strncmp(str, "realloc", 7)) { 6072 pci_realloc_get_opt("on"); 6073 } else if (!strcmp(str, "nodomains")) { 6074 pci_no_domains(); 6075 } else if (!strncmp(str, "noari", 5)) { 6076 pcie_ari_disabled = true; 6077 } else if (!strncmp(str, "cbiosize=", 9)) { 6078 pci_cardbus_io_size = memparse(str + 9, &str); 6079 } else if (!strncmp(str, "cbmemsize=", 10)) { 6080 pci_cardbus_mem_size = memparse(str + 10, &str); 6081 } else if (!strncmp(str, "resource_alignment=", 19)) { 6082 pci_set_resource_alignment_param(str + 19, 6083 strlen(str + 19)); 6084 } else if (!strncmp(str, "ecrc=", 5)) { 6085 pcie_ecrc_get_policy(str + 5); 6086 } else if (!strncmp(str, "hpiosize=", 9)) { 6087 pci_hotplug_io_size = memparse(str + 9, &str); 6088 } else if (!strncmp(str, "hpmemsize=", 10)) { 6089 pci_hotplug_mem_size = memparse(str + 10, &str); 6090 } else if (!strncmp(str, "hpbussize=", 10)) { 6091 pci_hotplug_bus_size = 6092 simple_strtoul(str + 10, &str, 0); 6093 if (pci_hotplug_bus_size > 0xff) 6094 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6095 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6096 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6097 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6098 pcie_bus_config = PCIE_BUS_SAFE; 6099 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6100 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6101 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6102 pcie_bus_config = PCIE_BUS_PEER2PEER; 6103 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6104 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6105 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6106 disable_acs_redir_param = str + 18; 6107 } else { 6108 printk(KERN_ERR "PCI: Unknown option `%s'\n", 6109 str); 6110 } 6111 } 6112 str = k; 6113 } 6114 return 0; 6115 } 6116 early_param("pci", pci_setup); 6117