xref: /linux/drivers/pci/pci.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/dma.h>
32 #include <linux/aer.h>
33 #include <linux/bitfield.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 #ifdef CONFIG_X86_32
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 #endif
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3hot_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
66 /*
67  * Following exit from Conventional Reset, devices must be ready within 1 sec
68  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
69  * Reset (PCIe r6.0 sec 5.8).
70  */
71 #define PCI_RESET_WAIT 1000 /* msec */
72 
73 /*
74  * Devices may extend the 1 sec period through Request Retry Status
75  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
76  * limit, but 60 sec ought to be enough for any device to become
77  * responsive.
78  */
79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80 
81 static void pci_dev_d3_sleep(struct pci_dev *dev)
82 {
83 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 	unsigned int upper;
85 
86 	if (delay_ms) {
87 		/* Use a 20% upper bound, 1ms minimum */
88 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 		usleep_range(delay_ms * USEC_PER_MSEC,
90 			     (delay_ms + upper) * USEC_PER_MSEC);
91 	}
92 }
93 
94 bool pci_reset_supported(struct pci_dev *dev)
95 {
96 	return dev->reset_methods[0] != 0;
97 }
98 
99 #ifdef CONFIG_PCI_DOMAINS
100 int pci_domains_supported = 1;
101 #endif
102 
103 #define DEFAULT_CARDBUS_IO_SIZE		(256)
104 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108 
109 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
110 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
112 /* hpiosize=nn can override this */
113 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
114 /*
115  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117  * pci=hpmemsize=nnM overrides both
118  */
119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121 
122 #define DEFAULT_HOTPLUG_BUS_SIZE	1
123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124 
125 
126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129 #elif defined CONFIG_PCIE_BUS_SAFE
130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133 #elif defined CONFIG_PCIE_BUS_PEER2PEER
134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135 #else
136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137 #endif
138 
139 /*
140  * The default CLS is used if arch didn't set CLS explicitly and not
141  * all pci devices agree on the same value.  Arch can override either
142  * the dfl or actual value as it sees fit.  Don't forget this is
143  * measured in 32-bit words, not bytes.
144  */
145 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
146 u8 pci_cache_line_size;
147 
148 /*
149  * If we set up a device for bus mastering, we need to check the latency
150  * timer as certain BIOSes forget to set it properly.
151  */
152 unsigned int pcibios_max_latency = 255;
153 
154 /* If set, the PCIe ARI capability will not be used. */
155 static bool pcie_ari_disabled;
156 
157 /* If set, the PCIe ATS capability will not be used. */
158 static bool pcie_ats_disabled;
159 
160 /* If set, the PCI config space of each device is printed during boot. */
161 bool pci_early_dump;
162 
163 bool pci_ats_disabled(void)
164 {
165 	return pcie_ats_disabled;
166 }
167 EXPORT_SYMBOL_GPL(pci_ats_disabled);
168 
169 /* Disable bridge_d3 for all PCIe ports */
170 static bool pci_bridge_d3_disable;
171 /* Force bridge_d3 for all PCIe ports */
172 static bool pci_bridge_d3_force;
173 
174 static int __init pcie_port_pm_setup(char *str)
175 {
176 	if (!strcmp(str, "off"))
177 		pci_bridge_d3_disable = true;
178 	else if (!strcmp(str, "force"))
179 		pci_bridge_d3_force = true;
180 	return 1;
181 }
182 __setup("pcie_port_pm=", pcie_port_pm_setup);
183 
184 /**
185  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186  * @bus: pointer to PCI bus structure to search
187  *
188  * Given a PCI bus, returns the highest PCI bus number present in the set
189  * including the given PCI bus and its list of child PCI buses.
190  */
191 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192 {
193 	struct pci_bus *tmp;
194 	unsigned char max, n;
195 
196 	max = bus->busn_res.end;
197 	list_for_each_entry(tmp, &bus->children, node) {
198 		n = pci_bus_max_busnr(tmp);
199 		if (n > max)
200 			max = n;
201 	}
202 	return max;
203 }
204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205 
206 /**
207  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208  * @pdev: the PCI device
209  *
210  * Returns error bits set in PCI_STATUS and clears them.
211  */
212 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213 {
214 	u16 status;
215 	int ret;
216 
217 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 	if (ret != PCIBIOS_SUCCESSFUL)
219 		return -EIO;
220 
221 	status &= PCI_STATUS_ERROR_BITS;
222 	if (status)
223 		pci_write_config_word(pdev, PCI_STATUS, status);
224 
225 	return status;
226 }
227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228 
229 #ifdef CONFIG_HAS_IOMEM
230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 					    bool write_combine)
232 {
233 	struct resource *res = &pdev->resource[bar];
234 	resource_size_t start = res->start;
235 	resource_size_t size = resource_size(res);
236 
237 	/*
238 	 * Make sure the BAR is actually a memory resource, not an IO resource
239 	 */
240 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 		return NULL;
243 	}
244 
245 	if (write_combine)
246 		return ioremap_wc(start, size);
247 
248 	return ioremap(start, size);
249 }
250 
251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252 {
253 	return __pci_ioremap_resource(pdev, bar, false);
254 }
255 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256 
257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258 {
259 	return __pci_ioremap_resource(pdev, bar, true);
260 }
261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262 #endif
263 
264 /**
265  * pci_dev_str_match_path - test if a path string matches a device
266  * @dev: the PCI device to test
267  * @path: string to match the device against
268  * @endptr: pointer to the string after the match
269  *
270  * Test if a string (typically from a kernel parameter) formatted as a
271  * path of device/function addresses matches a PCI device. The string must
272  * be of the form:
273  *
274  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275  *
276  * A path for a device can be obtained using 'lspci -t'.  Using a path
277  * is more robust against bus renumbering than using only a single bus,
278  * device and function address.
279  *
280  * Returns 1 if the string matches the device, 0 if it does not and
281  * a negative error code if it fails to parse the string.
282  */
283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 				  const char **endptr)
285 {
286 	int ret;
287 	unsigned int seg, bus, slot, func;
288 	char *wpath, *p;
289 	char end;
290 
291 	*endptr = strchrnul(path, ';');
292 
293 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 	if (!wpath)
295 		return -ENOMEM;
296 
297 	while (1) {
298 		p = strrchr(wpath, '/');
299 		if (!p)
300 			break;
301 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 		if (ret != 2) {
303 			ret = -EINVAL;
304 			goto free_and_exit;
305 		}
306 
307 		if (dev->devfn != PCI_DEVFN(slot, func)) {
308 			ret = 0;
309 			goto free_and_exit;
310 		}
311 
312 		/*
313 		 * Note: we don't need to get a reference to the upstream
314 		 * bridge because we hold a reference to the top level
315 		 * device which should hold a reference to the bridge,
316 		 * and so on.
317 		 */
318 		dev = pci_upstream_bridge(dev);
319 		if (!dev) {
320 			ret = 0;
321 			goto free_and_exit;
322 		}
323 
324 		*p = 0;
325 	}
326 
327 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 		     &func, &end);
329 	if (ret != 4) {
330 		seg = 0;
331 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 		if (ret != 3) {
333 			ret = -EINVAL;
334 			goto free_and_exit;
335 		}
336 	}
337 
338 	ret = (seg == pci_domain_nr(dev->bus) &&
339 	       bus == dev->bus->number &&
340 	       dev->devfn == PCI_DEVFN(slot, func));
341 
342 free_and_exit:
343 	kfree(wpath);
344 	return ret;
345 }
346 
347 /**
348  * pci_dev_str_match - test if a string matches a device
349  * @dev: the PCI device to test
350  * @p: string to match the device against
351  * @endptr: pointer to the string after the match
352  *
353  * Test if a string (typically from a kernel parameter) matches a specified
354  * PCI device. The string may be of one of the following formats:
355  *
356  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358  *
359  * The first format specifies a PCI bus/device/function address which
360  * may change if new hardware is inserted, if motherboard firmware changes,
361  * or due to changes caused in kernel parameters. If the domain is
362  * left unspecified, it is taken to be 0.  In order to be robust against
363  * bus renumbering issues, a path of PCI device/function numbers may be used
364  * to address the specific device.  The path for a device can be determined
365  * through the use of 'lspci -t'.
366  *
367  * The second format matches devices using IDs in the configuration
368  * space which may match multiple devices in the system. A value of 0
369  * for any field will match all devices. (Note: this differs from
370  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371  * legacy reasons and convenience so users don't have to specify
372  * FFFFFFFFs on the command line.)
373  *
374  * Returns 1 if the string matches the device, 0 if it does not and
375  * a negative error code if the string cannot be parsed.
376  */
377 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 			     const char **endptr)
379 {
380 	int ret;
381 	int count;
382 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
383 
384 	if (strncmp(p, "pci:", 4) == 0) {
385 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 		p += 4;
387 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 			     &subsystem_vendor, &subsystem_device, &count);
389 		if (ret != 4) {
390 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 			if (ret != 2)
392 				return -EINVAL;
393 
394 			subsystem_vendor = 0;
395 			subsystem_device = 0;
396 		}
397 
398 		p += count;
399 
400 		if ((!vendor || vendor == dev->vendor) &&
401 		    (!device || device == dev->device) &&
402 		    (!subsystem_vendor ||
403 			    subsystem_vendor == dev->subsystem_vendor) &&
404 		    (!subsystem_device ||
405 			    subsystem_device == dev->subsystem_device))
406 			goto found;
407 	} else {
408 		/*
409 		 * PCI Bus, Device, Function IDs are specified
410 		 * (optionally, may include a path of devfns following it)
411 		 */
412 		ret = pci_dev_str_match_path(dev, p, &p);
413 		if (ret < 0)
414 			return ret;
415 		else if (ret)
416 			goto found;
417 	}
418 
419 	*endptr = p;
420 	return 0;
421 
422 found:
423 	*endptr = p;
424 	return 1;
425 }
426 
427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 				  u8 pos, int cap, int *ttl)
429 {
430 	u8 id;
431 	u16 ent;
432 
433 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
434 
435 	while ((*ttl)--) {
436 		if (pos < 0x40)
437 			break;
438 		pos &= ~3;
439 		pci_bus_read_config_word(bus, devfn, pos, &ent);
440 
441 		id = ent & 0xff;
442 		if (id == 0xff)
443 			break;
444 		if (id == cap)
445 			return pos;
446 		pos = (ent >> 8);
447 	}
448 	return 0;
449 }
450 
451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 			      u8 pos, int cap)
453 {
454 	int ttl = PCI_FIND_CAP_TTL;
455 
456 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457 }
458 
459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460 {
461 	return __pci_find_next_cap(dev->bus, dev->devfn,
462 				   pos + PCI_CAP_LIST_NEXT, cap);
463 }
464 EXPORT_SYMBOL_GPL(pci_find_next_capability);
465 
466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 				    unsigned int devfn, u8 hdr_type)
468 {
469 	u16 status;
470 
471 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 	if (!(status & PCI_STATUS_CAP_LIST))
473 		return 0;
474 
475 	switch (hdr_type) {
476 	case PCI_HEADER_TYPE_NORMAL:
477 	case PCI_HEADER_TYPE_BRIDGE:
478 		return PCI_CAPABILITY_LIST;
479 	case PCI_HEADER_TYPE_CARDBUS:
480 		return PCI_CB_CAPABILITY_LIST;
481 	}
482 
483 	return 0;
484 }
485 
486 /**
487  * pci_find_capability - query for devices' capabilities
488  * @dev: PCI device to query
489  * @cap: capability code
490  *
491  * Tell if a device supports a given PCI capability.
492  * Returns the address of the requested capability structure within the
493  * device's PCI configuration space or 0 in case the device does not
494  * support it.  Possible values for @cap include:
495  *
496  *  %PCI_CAP_ID_PM           Power Management
497  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
498  *  %PCI_CAP_ID_VPD          Vital Product Data
499  *  %PCI_CAP_ID_SLOTID       Slot Identification
500  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
501  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
502  *  %PCI_CAP_ID_PCIX         PCI-X
503  *  %PCI_CAP_ID_EXP          PCI Express
504  */
505 u8 pci_find_capability(struct pci_dev *dev, int cap)
506 {
507 	u8 pos;
508 
509 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 	if (pos)
511 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512 
513 	return pos;
514 }
515 EXPORT_SYMBOL(pci_find_capability);
516 
517 /**
518  * pci_bus_find_capability - query for devices' capabilities
519  * @bus: the PCI bus to query
520  * @devfn: PCI device to query
521  * @cap: capability code
522  *
523  * Like pci_find_capability() but works for PCI devices that do not have a
524  * pci_dev structure set up yet.
525  *
526  * Returns the address of the requested capability structure within the
527  * device's PCI configuration space or 0 in case the device does not
528  * support it.
529  */
530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531 {
532 	u8 hdr_type, pos;
533 
534 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535 
536 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 	if (pos)
538 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
539 
540 	return pos;
541 }
542 EXPORT_SYMBOL(pci_bus_find_capability);
543 
544 /**
545  * pci_find_next_ext_capability - Find an extended capability
546  * @dev: PCI device to query
547  * @start: address at which to start looking (0 to start at beginning of list)
548  * @cap: capability code
549  *
550  * Returns the address of the next matching extended capability structure
551  * within the device's PCI configuration space or 0 if the device does
552  * not support it.  Some capabilities can occur several times, e.g., the
553  * vendor-specific capability, and this provides a way to find them all.
554  */
555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556 {
557 	u32 header;
558 	int ttl;
559 	u16 pos = PCI_CFG_SPACE_SIZE;
560 
561 	/* minimum 8 bytes per capability */
562 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563 
564 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 		return 0;
566 
567 	if (start)
568 		pos = start;
569 
570 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 		return 0;
572 
573 	/*
574 	 * If we have no capabilities, this is indicated by cap ID,
575 	 * cap version and next pointer all being 0.
576 	 */
577 	if (header == 0)
578 		return 0;
579 
580 	while (ttl-- > 0) {
581 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 			return pos;
583 
584 		pos = PCI_EXT_CAP_NEXT(header);
585 		if (pos < PCI_CFG_SPACE_SIZE)
586 			break;
587 
588 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 			break;
590 	}
591 
592 	return 0;
593 }
594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595 
596 /**
597  * pci_find_ext_capability - Find an extended capability
598  * @dev: PCI device to query
599  * @cap: capability code
600  *
601  * Returns the address of the requested extended capability structure
602  * within the device's PCI configuration space or 0 if the device does
603  * not support it.  Possible values for @cap include:
604  *
605  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
606  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
607  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
608  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
609  */
610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611 {
612 	return pci_find_next_ext_capability(dev, 0, cap);
613 }
614 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615 
616 /**
617  * pci_get_dsn - Read and return the 8-byte Device Serial Number
618  * @dev: PCI device to query
619  *
620  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621  * Number.
622  *
623  * Returns the DSN, or zero if the capability does not exist.
624  */
625 u64 pci_get_dsn(struct pci_dev *dev)
626 {
627 	u32 dword;
628 	u64 dsn;
629 	int pos;
630 
631 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 	if (!pos)
633 		return 0;
634 
635 	/*
636 	 * The Device Serial Number is two dwords offset 4 bytes from the
637 	 * capability position. The specification says that the first dword is
638 	 * the lower half, and the second dword is the upper half.
639 	 */
640 	pos += 4;
641 	pci_read_config_dword(dev, pos, &dword);
642 	dsn = (u64)dword;
643 	pci_read_config_dword(dev, pos + 4, &dword);
644 	dsn |= ((u64)dword) << 32;
645 
646 	return dsn;
647 }
648 EXPORT_SYMBOL_GPL(pci_get_dsn);
649 
650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651 {
652 	int rc, ttl = PCI_FIND_CAP_TTL;
653 	u8 cap, mask;
654 
655 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 		mask = HT_3BIT_CAP_MASK;
657 	else
658 		mask = HT_5BIT_CAP_MASK;
659 
660 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 				      PCI_CAP_ID_HT, &ttl);
662 	while (pos) {
663 		rc = pci_read_config_byte(dev, pos + 3, &cap);
664 		if (rc != PCIBIOS_SUCCESSFUL)
665 			return 0;
666 
667 		if ((cap & mask) == ht_cap)
668 			return pos;
669 
670 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 					      pos + PCI_CAP_LIST_NEXT,
672 					      PCI_CAP_ID_HT, &ttl);
673 	}
674 
675 	return 0;
676 }
677 
678 /**
679  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680  * @dev: PCI device to query
681  * @pos: Position from which to continue searching
682  * @ht_cap: HyperTransport capability code
683  *
684  * To be used in conjunction with pci_find_ht_capability() to search for
685  * all capabilities matching @ht_cap. @pos should always be a value returned
686  * from pci_find_ht_capability().
687  *
688  * NB. To be 100% safe against broken PCI devices, the caller should take
689  * steps to avoid an infinite loop.
690  */
691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692 {
693 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694 }
695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696 
697 /**
698  * pci_find_ht_capability - query a device's HyperTransport capabilities
699  * @dev: PCI device to query
700  * @ht_cap: HyperTransport capability code
701  *
702  * Tell if a device supports a given HyperTransport capability.
703  * Returns an address within the device's PCI configuration space
704  * or 0 in case the device does not support the request capability.
705  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706  * which has a HyperTransport capability matching @ht_cap.
707  */
708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709 {
710 	u8 pos;
711 
712 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 	if (pos)
714 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715 
716 	return pos;
717 }
718 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719 
720 /**
721  * pci_find_vsec_capability - Find a vendor-specific extended capability
722  * @dev: PCI device to query
723  * @vendor: Vendor ID for which capability is defined
724  * @cap: Vendor-specific capability ID
725  *
726  * If @dev has Vendor ID @vendor, search for a VSEC capability with
727  * VSEC ID @cap. If found, return the capability offset in
728  * config space; otherwise return 0.
729  */
730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731 {
732 	u16 vsec = 0;
733 	u32 header;
734 	int ret;
735 
736 	if (vendor != dev->vendor)
737 		return 0;
738 
739 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 						     PCI_EXT_CAP_ID_VNDR))) {
741 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 		if (ret != PCIBIOS_SUCCESSFUL)
743 			continue;
744 
745 		if (PCI_VNDR_HEADER_ID(header) == cap)
746 			return vsec;
747 	}
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752 
753 /**
754  * pci_find_dvsec_capability - Find DVSEC for vendor
755  * @dev: PCI device to query
756  * @vendor: Vendor ID to match for the DVSEC
757  * @dvsec: Designated Vendor-specific capability ID
758  *
759  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760  * offset in config space; otherwise return 0.
761  */
762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763 {
764 	int pos;
765 
766 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 	if (!pos)
768 		return 0;
769 
770 	while (pos) {
771 		u16 v, id;
772 
773 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 		if (vendor == v && dvsec == id)
776 			return pos;
777 
778 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 	}
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784 
785 /**
786  * pci_find_parent_resource - return resource region of parent bus of given
787  *			      region
788  * @dev: PCI device structure contains resources to be searched
789  * @res: child resource record for which parent is sought
790  *
791  * For given resource region of given device, return the resource region of
792  * parent bus the given region is contained in.
793  */
794 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 					  struct resource *res)
796 {
797 	const struct pci_bus *bus = dev->bus;
798 	struct resource *r;
799 
800 	pci_bus_for_each_resource(bus, r) {
801 		if (!r)
802 			continue;
803 		if (resource_contains(r, res)) {
804 
805 			/*
806 			 * If the window is prefetchable but the BAR is
807 			 * not, the allocator made a mistake.
808 			 */
809 			if (r->flags & IORESOURCE_PREFETCH &&
810 			    !(res->flags & IORESOURCE_PREFETCH))
811 				return NULL;
812 
813 			/*
814 			 * If we're below a transparent bridge, there may
815 			 * be both a positively-decoded aperture and a
816 			 * subtractively-decoded region that contain the BAR.
817 			 * We want the positively-decoded one, so this depends
818 			 * on pci_bus_for_each_resource() giving us those
819 			 * first.
820 			 */
821 			return r;
822 		}
823 	}
824 	return NULL;
825 }
826 EXPORT_SYMBOL(pci_find_parent_resource);
827 
828 /**
829  * pci_find_resource - Return matching PCI device resource
830  * @dev: PCI device to query
831  * @res: Resource to look for
832  *
833  * Goes over standard PCI resources (BARs) and checks if the given resource
834  * is partially or fully contained in any of them. In that case the
835  * matching resource is returned, %NULL otherwise.
836  */
837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838 {
839 	int i;
840 
841 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 		struct resource *r = &dev->resource[i];
843 
844 		if (r->start && resource_contains(r, res))
845 			return r;
846 	}
847 
848 	return NULL;
849 }
850 EXPORT_SYMBOL(pci_find_resource);
851 
852 /**
853  * pci_resource_name - Return the name of the PCI resource
854  * @dev: PCI device to query
855  * @i: index of the resource
856  *
857  * Return the standard PCI resource (BAR) name according to their index.
858  */
859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860 {
861 	static const char * const bar_name[] = {
862 		"BAR 0",
863 		"BAR 1",
864 		"BAR 2",
865 		"BAR 3",
866 		"BAR 4",
867 		"BAR 5",
868 		"ROM",
869 #ifdef CONFIG_PCI_IOV
870 		"VF BAR 0",
871 		"VF BAR 1",
872 		"VF BAR 2",
873 		"VF BAR 3",
874 		"VF BAR 4",
875 		"VF BAR 5",
876 #endif
877 		"bridge window",	/* "io" included in %pR */
878 		"bridge window",	/* "mem" included in %pR */
879 		"bridge window",	/* "mem pref" included in %pR */
880 	};
881 	static const char * const cardbus_name[] = {
882 		"BAR 1",
883 		"unknown",
884 		"unknown",
885 		"unknown",
886 		"unknown",
887 		"unknown",
888 #ifdef CONFIG_PCI_IOV
889 		"unknown",
890 		"unknown",
891 		"unknown",
892 		"unknown",
893 		"unknown",
894 		"unknown",
895 #endif
896 		"CardBus bridge window 0",	/* I/O */
897 		"CardBus bridge window 1",	/* I/O */
898 		"CardBus bridge window 0",	/* mem */
899 		"CardBus bridge window 1",	/* mem */
900 	};
901 
902 	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 	    i < ARRAY_SIZE(cardbus_name))
904 		return cardbus_name[i];
905 
906 	if (i < ARRAY_SIZE(bar_name))
907 		return bar_name[i];
908 
909 	return "unknown";
910 }
911 
912 /**
913  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914  * @dev: the PCI device to operate on
915  * @pos: config space offset of status word
916  * @mask: mask of bit(s) to care about in status word
917  *
918  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919  */
920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921 {
922 	int i;
923 
924 	/* Wait for Transaction Pending bit clean */
925 	for (i = 0; i < 4; i++) {
926 		u16 status;
927 		if (i)
928 			msleep((1 << (i - 1)) * 100);
929 
930 		pci_read_config_word(dev, pos, &status);
931 		if (!(status & mask))
932 			return 1;
933 	}
934 
935 	return 0;
936 }
937 
938 static int pci_acs_enable;
939 
940 /**
941  * pci_request_acs - ask for ACS to be enabled if supported
942  */
943 void pci_request_acs(void)
944 {
945 	pci_acs_enable = 1;
946 }
947 
948 static const char *disable_acs_redir_param;
949 
950 /**
951  * pci_disable_acs_redir - disable ACS redirect capabilities
952  * @dev: the PCI device
953  *
954  * For only devices specified in the disable_acs_redir parameter.
955  */
956 static void pci_disable_acs_redir(struct pci_dev *dev)
957 {
958 	int ret = 0;
959 	const char *p;
960 	int pos;
961 	u16 ctrl;
962 
963 	if (!disable_acs_redir_param)
964 		return;
965 
966 	p = disable_acs_redir_param;
967 	while (*p) {
968 		ret = pci_dev_str_match(dev, p, &p);
969 		if (ret < 0) {
970 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
971 				     disable_acs_redir_param);
972 
973 			break;
974 		} else if (ret == 1) {
975 			/* Found a match */
976 			break;
977 		}
978 
979 		if (*p != ';' && *p != ',') {
980 			/* End of param or invalid format */
981 			break;
982 		}
983 		p++;
984 	}
985 
986 	if (ret != 1)
987 		return;
988 
989 	if (!pci_dev_specific_disable_acs_redir(dev))
990 		return;
991 
992 	pos = dev->acs_cap;
993 	if (!pos) {
994 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
995 		return;
996 	}
997 
998 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
999 
1000 	/* P2P Request & Completion Redirect */
1001 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
1002 
1003 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1004 
1005 	pci_info(dev, "disabled ACS redirect\n");
1006 }
1007 
1008 /**
1009  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1010  * @dev: the PCI device
1011  */
1012 static void pci_std_enable_acs(struct pci_dev *dev)
1013 {
1014 	int pos;
1015 	u16 cap;
1016 	u16 ctrl;
1017 
1018 	pos = dev->acs_cap;
1019 	if (!pos)
1020 		return;
1021 
1022 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1023 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1024 
1025 	/* Source Validation */
1026 	ctrl |= (cap & PCI_ACS_SV);
1027 
1028 	/* P2P Request Redirect */
1029 	ctrl |= (cap & PCI_ACS_RR);
1030 
1031 	/* P2P Completion Redirect */
1032 	ctrl |= (cap & PCI_ACS_CR);
1033 
1034 	/* Upstream Forwarding */
1035 	ctrl |= (cap & PCI_ACS_UF);
1036 
1037 	/* Enable Translation Blocking for external devices and noats */
1038 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1039 		ctrl |= (cap & PCI_ACS_TB);
1040 
1041 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1042 }
1043 
1044 /**
1045  * pci_enable_acs - enable ACS if hardware support it
1046  * @dev: the PCI device
1047  */
1048 static void pci_enable_acs(struct pci_dev *dev)
1049 {
1050 	if (!pci_acs_enable)
1051 		goto disable_acs_redir;
1052 
1053 	if (!pci_dev_specific_enable_acs(dev))
1054 		goto disable_acs_redir;
1055 
1056 	pci_std_enable_acs(dev);
1057 
1058 disable_acs_redir:
1059 	/*
1060 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1061 	 * enabled by the kernel because it may have been enabled by
1062 	 * platform firmware.  So if we are told to disable it, we should
1063 	 * always disable it after setting the kernel's default
1064 	 * preferences.
1065 	 */
1066 	pci_disable_acs_redir(dev);
1067 }
1068 
1069 /**
1070  * pcie_read_tlp_log - read TLP Header Log
1071  * @dev: PCIe device
1072  * @where: PCI Config offset of TLP Header Log
1073  * @tlp_log: TLP Log structure to fill
1074  *
1075  * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1076  *
1077  * Return: 0 on success and filled TLP Log structure, <0 on error.
1078  */
1079 int pcie_read_tlp_log(struct pci_dev *dev, int where,
1080 		      struct pcie_tlp_log *tlp_log)
1081 {
1082 	int i, ret;
1083 
1084 	memset(tlp_log, 0, sizeof(*tlp_log));
1085 
1086 	for (i = 0; i < 4; i++) {
1087 		ret = pci_read_config_dword(dev, where + i * 4,
1088 					    &tlp_log->dw[i]);
1089 		if (ret)
1090 			return pcibios_err_to_errno(ret);
1091 	}
1092 
1093 	return 0;
1094 }
1095 EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1096 
1097 /**
1098  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1099  * @dev: PCI device to have its BARs restored
1100  *
1101  * Restore the BAR values for a given device, so as to make it
1102  * accessible by its driver.
1103  */
1104 static void pci_restore_bars(struct pci_dev *dev)
1105 {
1106 	int i;
1107 
1108 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1109 		pci_update_resource(dev, i);
1110 }
1111 
1112 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1113 {
1114 	if (pci_use_mid_pm())
1115 		return true;
1116 
1117 	return acpi_pci_power_manageable(dev);
1118 }
1119 
1120 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1121 					       pci_power_t t)
1122 {
1123 	if (pci_use_mid_pm())
1124 		return mid_pci_set_power_state(dev, t);
1125 
1126 	return acpi_pci_set_power_state(dev, t);
1127 }
1128 
1129 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1130 {
1131 	if (pci_use_mid_pm())
1132 		return mid_pci_get_power_state(dev);
1133 
1134 	return acpi_pci_get_power_state(dev);
1135 }
1136 
1137 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1138 {
1139 	if (!pci_use_mid_pm())
1140 		acpi_pci_refresh_power_state(dev);
1141 }
1142 
1143 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1144 {
1145 	if (pci_use_mid_pm())
1146 		return PCI_POWER_ERROR;
1147 
1148 	return acpi_pci_choose_state(dev);
1149 }
1150 
1151 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1152 {
1153 	if (pci_use_mid_pm())
1154 		return PCI_POWER_ERROR;
1155 
1156 	return acpi_pci_wakeup(dev, enable);
1157 }
1158 
1159 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1160 {
1161 	if (pci_use_mid_pm())
1162 		return false;
1163 
1164 	return acpi_pci_need_resume(dev);
1165 }
1166 
1167 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1168 {
1169 	if (pci_use_mid_pm())
1170 		return false;
1171 
1172 	return acpi_pci_bridge_d3(dev);
1173 }
1174 
1175 /**
1176  * pci_update_current_state - Read power state of given device and cache it
1177  * @dev: PCI device to handle.
1178  * @state: State to cache in case the device doesn't have the PM capability
1179  *
1180  * The power state is read from the PMCSR register, which however is
1181  * inaccessible in D3cold.  The platform firmware is therefore queried first
1182  * to detect accessibility of the register.  In case the platform firmware
1183  * reports an incorrect state or the device isn't power manageable by the
1184  * platform at all, we try to detect D3cold by testing accessibility of the
1185  * vendor ID in config space.
1186  */
1187 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1188 {
1189 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1190 		dev->current_state = PCI_D3cold;
1191 	} else if (dev->pm_cap) {
1192 		u16 pmcsr;
1193 
1194 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1195 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1196 			dev->current_state = PCI_D3cold;
1197 			return;
1198 		}
1199 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1200 	} else {
1201 		dev->current_state = state;
1202 	}
1203 }
1204 
1205 /**
1206  * pci_refresh_power_state - Refresh the given device's power state data
1207  * @dev: Target PCI device.
1208  *
1209  * Ask the platform to refresh the devices power state information and invoke
1210  * pci_update_current_state() to update its current PCI power state.
1211  */
1212 void pci_refresh_power_state(struct pci_dev *dev)
1213 {
1214 	platform_pci_refresh_power_state(dev);
1215 	pci_update_current_state(dev, dev->current_state);
1216 }
1217 
1218 /**
1219  * pci_platform_power_transition - Use platform to change device power state
1220  * @dev: PCI device to handle.
1221  * @state: State to put the device into.
1222  */
1223 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1224 {
1225 	int error;
1226 
1227 	error = platform_pci_set_power_state(dev, state);
1228 	if (!error)
1229 		pci_update_current_state(dev, state);
1230 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1231 		dev->current_state = PCI_D0;
1232 
1233 	return error;
1234 }
1235 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1236 
1237 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1238 {
1239 	pm_request_resume(&pci_dev->dev);
1240 	return 0;
1241 }
1242 
1243 /**
1244  * pci_resume_bus - Walk given bus and runtime resume devices on it
1245  * @bus: Top bus of the subtree to walk.
1246  */
1247 void pci_resume_bus(struct pci_bus *bus)
1248 {
1249 	if (bus)
1250 		pci_walk_bus(bus, pci_resume_one, NULL);
1251 }
1252 
1253 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1254 {
1255 	int delay = 1;
1256 	bool retrain = false;
1257 	struct pci_dev *bridge;
1258 
1259 	if (pci_is_pcie(dev)) {
1260 		bridge = pci_upstream_bridge(dev);
1261 		if (bridge)
1262 			retrain = true;
1263 	}
1264 
1265 	/*
1266 	 * After reset, the device should not silently discard config
1267 	 * requests, but it may still indicate that it needs more time by
1268 	 * responding to them with CRS completions.  The Root Port will
1269 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1270 	 * the read (except when CRS SV is enabled and the read was for the
1271 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1272 	 *
1273 	 * Wait for the device to return a non-CRS completion.  Read the
1274 	 * Command register instead of Vendor ID so we don't have to
1275 	 * contend with the CRS SV value.
1276 	 */
1277 	for (;;) {
1278 		u32 id;
1279 
1280 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1281 		if (!PCI_POSSIBLE_ERROR(id))
1282 			break;
1283 
1284 		if (delay > timeout) {
1285 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1286 				 delay - 1, reset_type);
1287 			return -ENOTTY;
1288 		}
1289 
1290 		if (delay > PCI_RESET_WAIT) {
1291 			if (retrain) {
1292 				retrain = false;
1293 				if (pcie_failed_link_retrain(bridge)) {
1294 					delay = 1;
1295 					continue;
1296 				}
1297 			}
1298 			pci_info(dev, "not ready %dms after %s; waiting\n",
1299 				 delay - 1, reset_type);
1300 		}
1301 
1302 		msleep(delay);
1303 		delay *= 2;
1304 	}
1305 
1306 	if (delay > PCI_RESET_WAIT)
1307 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1308 			 reset_type);
1309 	else
1310 		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1311 			reset_type);
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  * pci_power_up - Put the given device into D0
1318  * @dev: PCI device to power up
1319  *
1320  * On success, return 0 or 1, depending on whether or not it is necessary to
1321  * restore the device's BARs subsequently (1 is returned in that case).
1322  *
1323  * On failure, return a negative error code.  Always return failure if @dev
1324  * lacks a Power Management Capability, even if the platform was able to
1325  * put the device in D0 via non-PCI means.
1326  */
1327 int pci_power_up(struct pci_dev *dev)
1328 {
1329 	bool need_restore;
1330 	pci_power_t state;
1331 	u16 pmcsr;
1332 
1333 	platform_pci_set_power_state(dev, PCI_D0);
1334 
1335 	if (!dev->pm_cap) {
1336 		state = platform_pci_get_power_state(dev);
1337 		if (state == PCI_UNKNOWN)
1338 			dev->current_state = PCI_D0;
1339 		else
1340 			dev->current_state = state;
1341 
1342 		return -EIO;
1343 	}
1344 
1345 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1346 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1347 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1348 			pci_power_name(dev->current_state));
1349 		dev->current_state = PCI_D3cold;
1350 		return -EIO;
1351 	}
1352 
1353 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1354 
1355 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1356 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1357 
1358 	if (state == PCI_D0)
1359 		goto end;
1360 
1361 	/*
1362 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1363 	 * PME_En, and sets PowerState to 0.
1364 	 */
1365 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1366 
1367 	/* Mandatory transition delays; see PCI PM 1.2. */
1368 	if (state == PCI_D3hot)
1369 		pci_dev_d3_sleep(dev);
1370 	else if (state == PCI_D2)
1371 		udelay(PCI_PM_D2_DELAY);
1372 
1373 end:
1374 	dev->current_state = PCI_D0;
1375 	if (need_restore)
1376 		return 1;
1377 
1378 	return 0;
1379 }
1380 
1381 /**
1382  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1383  * @dev: PCI device to power up
1384  * @locked: whether pci_bus_sem is held
1385  *
1386  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1387  * to confirm the state change, restore its BARs if they might be lost and
1388  * reconfigure ASPM in accordance with the new power state.
1389  *
1390  * If pci_restore_state() is going to be called right after a power state change
1391  * to D0, it is more efficient to use pci_power_up() directly instead of this
1392  * function.
1393  */
1394 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1395 {
1396 	u16 pmcsr;
1397 	int ret;
1398 
1399 	ret = pci_power_up(dev);
1400 	if (ret < 0) {
1401 		if (dev->current_state == PCI_D0)
1402 			return 0;
1403 
1404 		return ret;
1405 	}
1406 
1407 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1408 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1409 	if (dev->current_state != PCI_D0) {
1410 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1411 				     pci_power_name(dev->current_state));
1412 	} else if (ret > 0) {
1413 		/*
1414 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1415 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1416 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1417 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1418 		 * For example, at least some versions of the 3c905B and the
1419 		 * 3c556B exhibit this behaviour.
1420 		 *
1421 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1422 		 * devices in a D3hot state at boot.  Consequently, we need to
1423 		 * restore at least the BARs so that the device will be
1424 		 * accessible to its driver.
1425 		 */
1426 		pci_restore_bars(dev);
1427 	}
1428 
1429 	if (dev->bus->self)
1430 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1431 
1432 	return 0;
1433 }
1434 
1435 /**
1436  * __pci_dev_set_current_state - Set current state of a PCI device
1437  * @dev: Device to handle
1438  * @data: pointer to state to be set
1439  */
1440 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1441 {
1442 	pci_power_t state = *(pci_power_t *)data;
1443 
1444 	dev->current_state = state;
1445 	return 0;
1446 }
1447 
1448 /**
1449  * pci_bus_set_current_state - Walk given bus and set current state of devices
1450  * @bus: Top bus of the subtree to walk.
1451  * @state: state to be set
1452  */
1453 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1454 {
1455 	if (bus)
1456 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1457 }
1458 
1459 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1460 {
1461 	if (!bus)
1462 		return;
1463 
1464 	if (locked)
1465 		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1466 	else
1467 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1468 }
1469 
1470 /**
1471  * pci_set_low_power_state - Put a PCI device into a low-power state.
1472  * @dev: PCI device to handle.
1473  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1474  * @locked: whether pci_bus_sem is held
1475  *
1476  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1477  *
1478  * RETURN VALUE:
1479  * -EINVAL if the requested state is invalid.
1480  * -EIO if device does not support PCI PM or its PM capabilities register has a
1481  * wrong version, or device doesn't support the requested state.
1482  * 0 if device already is in the requested state.
1483  * 0 if device's power state has been successfully changed.
1484  */
1485 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1486 {
1487 	u16 pmcsr;
1488 
1489 	if (!dev->pm_cap)
1490 		return -EIO;
1491 
1492 	/*
1493 	 * Validate transition: We can enter D0 from any state, but if
1494 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1495 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1496 	 * we'd have to go from D3 to D0, then to D1.
1497 	 */
1498 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1499 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1500 			pci_power_name(dev->current_state),
1501 			pci_power_name(state));
1502 		return -EINVAL;
1503 	}
1504 
1505 	/* Check if this device supports the desired state */
1506 	if ((state == PCI_D1 && !dev->d1_support)
1507 	   || (state == PCI_D2 && !dev->d2_support))
1508 		return -EIO;
1509 
1510 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1511 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1512 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1513 			pci_power_name(dev->current_state),
1514 			pci_power_name(state));
1515 		dev->current_state = PCI_D3cold;
1516 		return -EIO;
1517 	}
1518 
1519 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1520 	pmcsr |= state;
1521 
1522 	/* Enter specified state */
1523 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1524 
1525 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1526 	if (state == PCI_D3hot)
1527 		pci_dev_d3_sleep(dev);
1528 	else if (state == PCI_D2)
1529 		udelay(PCI_PM_D2_DELAY);
1530 
1531 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1532 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1533 	if (dev->current_state != state)
1534 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1535 				     pci_power_name(dev->current_state),
1536 				     pci_power_name(state));
1537 
1538 	if (dev->bus->self)
1539 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1540 
1541 	return 0;
1542 }
1543 
1544 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1545 {
1546 	int error;
1547 
1548 	/* Bound the state we're entering */
1549 	if (state > PCI_D3cold)
1550 		state = PCI_D3cold;
1551 	else if (state < PCI_D0)
1552 		state = PCI_D0;
1553 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1554 
1555 		/*
1556 		 * If the device or the parent bridge do not support PCI
1557 		 * PM, ignore the request if we're doing anything other
1558 		 * than putting it into D0 (which would only happen on
1559 		 * boot).
1560 		 */
1561 		return 0;
1562 
1563 	/* Check if we're already there */
1564 	if (dev->current_state == state)
1565 		return 0;
1566 
1567 	if (state == PCI_D0)
1568 		return pci_set_full_power_state(dev, locked);
1569 
1570 	/*
1571 	 * This device is quirked not to be put into D3, so don't put it in
1572 	 * D3
1573 	 */
1574 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1575 		return 0;
1576 
1577 	if (state == PCI_D3cold) {
1578 		/*
1579 		 * To put the device in D3cold, put it into D3hot in the native
1580 		 * way, then put it into D3cold using platform ops.
1581 		 */
1582 		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1583 
1584 		if (pci_platform_power_transition(dev, PCI_D3cold))
1585 			return error;
1586 
1587 		/* Powering off a bridge may power off the whole hierarchy */
1588 		if (dev->current_state == PCI_D3cold)
1589 			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1590 	} else {
1591 		error = pci_set_low_power_state(dev, state, locked);
1592 
1593 		if (pci_platform_power_transition(dev, state))
1594 			return error;
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 /**
1601  * pci_set_power_state - Set the power state of a PCI device
1602  * @dev: PCI device to handle.
1603  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1604  *
1605  * Transition a device to a new power state, using the platform firmware and/or
1606  * the device's PCI PM registers.
1607  *
1608  * RETURN VALUE:
1609  * -EINVAL if the requested state is invalid.
1610  * -EIO if device does not support PCI PM or its PM capabilities register has a
1611  * wrong version, or device doesn't support the requested state.
1612  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1613  * 0 if device already is in the requested state.
1614  * 0 if the transition is to D3 but D3 is not supported.
1615  * 0 if device's power state has been successfully changed.
1616  */
1617 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1618 {
1619 	return __pci_set_power_state(dev, state, false);
1620 }
1621 EXPORT_SYMBOL(pci_set_power_state);
1622 
1623 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1624 {
1625 	lockdep_assert_held(&pci_bus_sem);
1626 
1627 	return __pci_set_power_state(dev, state, true);
1628 }
1629 EXPORT_SYMBOL(pci_set_power_state_locked);
1630 
1631 #define PCI_EXP_SAVE_REGS	7
1632 
1633 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1634 						       u16 cap, bool extended)
1635 {
1636 	struct pci_cap_saved_state *tmp;
1637 
1638 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1639 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1640 			return tmp;
1641 	}
1642 	return NULL;
1643 }
1644 
1645 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1646 {
1647 	return _pci_find_saved_cap(dev, cap, false);
1648 }
1649 
1650 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1651 {
1652 	return _pci_find_saved_cap(dev, cap, true);
1653 }
1654 
1655 static int pci_save_pcie_state(struct pci_dev *dev)
1656 {
1657 	int i = 0;
1658 	struct pci_cap_saved_state *save_state;
1659 	u16 *cap;
1660 
1661 	if (!pci_is_pcie(dev))
1662 		return 0;
1663 
1664 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1665 	if (!save_state) {
1666 		pci_err(dev, "buffer not found in %s\n", __func__);
1667 		return -ENOMEM;
1668 	}
1669 
1670 	cap = (u16 *)&save_state->cap.data[0];
1671 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1672 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1673 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1674 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1675 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1676 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1677 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1678 
1679 	pci_save_aspm_l1ss_state(dev);
1680 	pci_save_ltr_state(dev);
1681 
1682 	return 0;
1683 }
1684 
1685 static void pci_restore_pcie_state(struct pci_dev *dev)
1686 {
1687 	int i = 0;
1688 	struct pci_cap_saved_state *save_state;
1689 	u16 *cap;
1690 
1691 	/*
1692 	 * Restore max latencies (in the LTR capability) before enabling
1693 	 * LTR itself in PCI_EXP_DEVCTL2.
1694 	 */
1695 	pci_restore_ltr_state(dev);
1696 	pci_restore_aspm_l1ss_state(dev);
1697 
1698 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1699 	if (!save_state)
1700 		return;
1701 
1702 	/*
1703 	 * Downstream ports reset the LTR enable bit when link goes down.
1704 	 * Check and re-configure the bit here before restoring device.
1705 	 * PCIe r5.0, sec 7.5.3.16.
1706 	 */
1707 	pci_bridge_reconfigure_ltr(dev);
1708 
1709 	cap = (u16 *)&save_state->cap.data[0];
1710 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1711 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1712 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1713 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1714 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1715 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1716 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1717 }
1718 
1719 static int pci_save_pcix_state(struct pci_dev *dev)
1720 {
1721 	int pos;
1722 	struct pci_cap_saved_state *save_state;
1723 
1724 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1725 	if (!pos)
1726 		return 0;
1727 
1728 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1729 	if (!save_state) {
1730 		pci_err(dev, "buffer not found in %s\n", __func__);
1731 		return -ENOMEM;
1732 	}
1733 
1734 	pci_read_config_word(dev, pos + PCI_X_CMD,
1735 			     (u16 *)save_state->cap.data);
1736 
1737 	return 0;
1738 }
1739 
1740 static void pci_restore_pcix_state(struct pci_dev *dev)
1741 {
1742 	int i = 0, pos;
1743 	struct pci_cap_saved_state *save_state;
1744 	u16 *cap;
1745 
1746 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1747 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1748 	if (!save_state || !pos)
1749 		return;
1750 	cap = (u16 *)&save_state->cap.data[0];
1751 
1752 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1753 }
1754 
1755 /**
1756  * pci_save_state - save the PCI configuration space of a device before
1757  *		    suspending
1758  * @dev: PCI device that we're dealing with
1759  */
1760 int pci_save_state(struct pci_dev *dev)
1761 {
1762 	int i;
1763 	/* XXX: 100% dword access ok here? */
1764 	for (i = 0; i < 16; i++) {
1765 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1766 		pci_dbg(dev, "save config %#04x: %#010x\n",
1767 			i * 4, dev->saved_config_space[i]);
1768 	}
1769 	dev->state_saved = true;
1770 
1771 	i = pci_save_pcie_state(dev);
1772 	if (i != 0)
1773 		return i;
1774 
1775 	i = pci_save_pcix_state(dev);
1776 	if (i != 0)
1777 		return i;
1778 
1779 	pci_save_dpc_state(dev);
1780 	pci_save_aer_state(dev);
1781 	pci_save_ptm_state(dev);
1782 	return pci_save_vc_state(dev);
1783 }
1784 EXPORT_SYMBOL(pci_save_state);
1785 
1786 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1787 				     u32 saved_val, int retry, bool force)
1788 {
1789 	u32 val;
1790 
1791 	pci_read_config_dword(pdev, offset, &val);
1792 	if (!force && val == saved_val)
1793 		return;
1794 
1795 	for (;;) {
1796 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1797 			offset, val, saved_val);
1798 		pci_write_config_dword(pdev, offset, saved_val);
1799 		if (retry-- <= 0)
1800 			return;
1801 
1802 		pci_read_config_dword(pdev, offset, &val);
1803 		if (val == saved_val)
1804 			return;
1805 
1806 		mdelay(1);
1807 	}
1808 }
1809 
1810 static void pci_restore_config_space_range(struct pci_dev *pdev,
1811 					   int start, int end, int retry,
1812 					   bool force)
1813 {
1814 	int index;
1815 
1816 	for (index = end; index >= start; index--)
1817 		pci_restore_config_dword(pdev, 4 * index,
1818 					 pdev->saved_config_space[index],
1819 					 retry, force);
1820 }
1821 
1822 static void pci_restore_config_space(struct pci_dev *pdev)
1823 {
1824 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1825 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1826 		/* Restore BARs before the command register. */
1827 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1828 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1829 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1830 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1831 
1832 		/*
1833 		 * Force rewriting of prefetch registers to avoid S3 resume
1834 		 * issues on Intel PCI bridges that occur when these
1835 		 * registers are not explicitly written.
1836 		 */
1837 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1838 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1839 	} else {
1840 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1841 	}
1842 }
1843 
1844 static void pci_restore_rebar_state(struct pci_dev *pdev)
1845 {
1846 	unsigned int pos, nbars, i;
1847 	u32 ctrl;
1848 
1849 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1850 	if (!pos)
1851 		return;
1852 
1853 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1854 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1855 
1856 	for (i = 0; i < nbars; i++, pos += 8) {
1857 		struct resource *res;
1858 		int bar_idx, size;
1859 
1860 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1861 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1862 		res = pdev->resource + bar_idx;
1863 		size = pci_rebar_bytes_to_size(resource_size(res));
1864 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1865 		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1866 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1867 	}
1868 }
1869 
1870 /**
1871  * pci_restore_state - Restore the saved state of a PCI device
1872  * @dev: PCI device that we're dealing with
1873  */
1874 void pci_restore_state(struct pci_dev *dev)
1875 {
1876 	if (!dev->state_saved)
1877 		return;
1878 
1879 	pci_restore_pcie_state(dev);
1880 	pci_restore_pasid_state(dev);
1881 	pci_restore_pri_state(dev);
1882 	pci_restore_ats_state(dev);
1883 	pci_restore_vc_state(dev);
1884 	pci_restore_rebar_state(dev);
1885 	pci_restore_dpc_state(dev);
1886 	pci_restore_ptm_state(dev);
1887 
1888 	pci_aer_clear_status(dev);
1889 	pci_restore_aer_state(dev);
1890 
1891 	pci_restore_config_space(dev);
1892 
1893 	pci_restore_pcix_state(dev);
1894 	pci_restore_msi_state(dev);
1895 
1896 	/* Restore ACS and IOV configuration state */
1897 	pci_enable_acs(dev);
1898 	pci_restore_iov_state(dev);
1899 
1900 	dev->state_saved = false;
1901 }
1902 EXPORT_SYMBOL(pci_restore_state);
1903 
1904 struct pci_saved_state {
1905 	u32 config_space[16];
1906 	struct pci_cap_saved_data cap[];
1907 };
1908 
1909 /**
1910  * pci_store_saved_state - Allocate and return an opaque struct containing
1911  *			   the device saved state.
1912  * @dev: PCI device that we're dealing with
1913  *
1914  * Return NULL if no state or error.
1915  */
1916 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1917 {
1918 	struct pci_saved_state *state;
1919 	struct pci_cap_saved_state *tmp;
1920 	struct pci_cap_saved_data *cap;
1921 	size_t size;
1922 
1923 	if (!dev->state_saved)
1924 		return NULL;
1925 
1926 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1927 
1928 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1929 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1930 
1931 	state = kzalloc(size, GFP_KERNEL);
1932 	if (!state)
1933 		return NULL;
1934 
1935 	memcpy(state->config_space, dev->saved_config_space,
1936 	       sizeof(state->config_space));
1937 
1938 	cap = state->cap;
1939 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1940 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1941 		memcpy(cap, &tmp->cap, len);
1942 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1943 	}
1944 	/* Empty cap_save terminates list */
1945 
1946 	return state;
1947 }
1948 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1949 
1950 /**
1951  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1952  * @dev: PCI device that we're dealing with
1953  * @state: Saved state returned from pci_store_saved_state()
1954  */
1955 int pci_load_saved_state(struct pci_dev *dev,
1956 			 struct pci_saved_state *state)
1957 {
1958 	struct pci_cap_saved_data *cap;
1959 
1960 	dev->state_saved = false;
1961 
1962 	if (!state)
1963 		return 0;
1964 
1965 	memcpy(dev->saved_config_space, state->config_space,
1966 	       sizeof(state->config_space));
1967 
1968 	cap = state->cap;
1969 	while (cap->size) {
1970 		struct pci_cap_saved_state *tmp;
1971 
1972 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1973 		if (!tmp || tmp->cap.size != cap->size)
1974 			return -EINVAL;
1975 
1976 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1977 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1978 		       sizeof(struct pci_cap_saved_data) + cap->size);
1979 	}
1980 
1981 	dev->state_saved = true;
1982 	return 0;
1983 }
1984 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1985 
1986 /**
1987  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1988  *				   and free the memory allocated for it.
1989  * @dev: PCI device that we're dealing with
1990  * @state: Pointer to saved state returned from pci_store_saved_state()
1991  */
1992 int pci_load_and_free_saved_state(struct pci_dev *dev,
1993 				  struct pci_saved_state **state)
1994 {
1995 	int ret = pci_load_saved_state(dev, *state);
1996 	kfree(*state);
1997 	*state = NULL;
1998 	return ret;
1999 }
2000 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2001 
2002 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2003 {
2004 	return pci_enable_resources(dev, bars);
2005 }
2006 
2007 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2008 {
2009 	int err;
2010 	struct pci_dev *bridge;
2011 	u16 cmd;
2012 	u8 pin;
2013 
2014 	err = pci_set_power_state(dev, PCI_D0);
2015 	if (err < 0 && err != -EIO)
2016 		return err;
2017 
2018 	bridge = pci_upstream_bridge(dev);
2019 	if (bridge)
2020 		pcie_aspm_powersave_config_link(bridge);
2021 
2022 	err = pcibios_enable_device(dev, bars);
2023 	if (err < 0)
2024 		return err;
2025 	pci_fixup_device(pci_fixup_enable, dev);
2026 
2027 	if (dev->msi_enabled || dev->msix_enabled)
2028 		return 0;
2029 
2030 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2031 	if (pin) {
2032 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2033 		if (cmd & PCI_COMMAND_INTX_DISABLE)
2034 			pci_write_config_word(dev, PCI_COMMAND,
2035 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 /**
2042  * pci_reenable_device - Resume abandoned device
2043  * @dev: PCI device to be resumed
2044  *
2045  * NOTE: This function is a backend of pci_default_resume() and is not supposed
2046  * to be called by normal code, write proper resume handler and use it instead.
2047  */
2048 int pci_reenable_device(struct pci_dev *dev)
2049 {
2050 	if (pci_is_enabled(dev))
2051 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2052 	return 0;
2053 }
2054 EXPORT_SYMBOL(pci_reenable_device);
2055 
2056 static void pci_enable_bridge(struct pci_dev *dev)
2057 {
2058 	struct pci_dev *bridge;
2059 	int retval;
2060 
2061 	bridge = pci_upstream_bridge(dev);
2062 	if (bridge)
2063 		pci_enable_bridge(bridge);
2064 
2065 	if (pci_is_enabled(dev)) {
2066 		if (!dev->is_busmaster)
2067 			pci_set_master(dev);
2068 		return;
2069 	}
2070 
2071 	retval = pci_enable_device(dev);
2072 	if (retval)
2073 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2074 			retval);
2075 	pci_set_master(dev);
2076 }
2077 
2078 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2079 {
2080 	struct pci_dev *bridge;
2081 	int err;
2082 	int i, bars = 0;
2083 
2084 	/*
2085 	 * Power state could be unknown at this point, either due to a fresh
2086 	 * boot or a device removal call.  So get the current power state
2087 	 * so that things like MSI message writing will behave as expected
2088 	 * (e.g. if the device really is in D0 at enable time).
2089 	 */
2090 	pci_update_current_state(dev, dev->current_state);
2091 
2092 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2093 		return 0;		/* already enabled */
2094 
2095 	bridge = pci_upstream_bridge(dev);
2096 	if (bridge)
2097 		pci_enable_bridge(bridge);
2098 
2099 	/* only skip sriov related */
2100 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2101 		if (dev->resource[i].flags & flags)
2102 			bars |= (1 << i);
2103 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2104 		if (dev->resource[i].flags & flags)
2105 			bars |= (1 << i);
2106 
2107 	err = do_pci_enable_device(dev, bars);
2108 	if (err < 0)
2109 		atomic_dec(&dev->enable_cnt);
2110 	return err;
2111 }
2112 
2113 /**
2114  * pci_enable_device_io - Initialize a device for use with IO space
2115  * @dev: PCI device to be initialized
2116  *
2117  * Initialize device before it's used by a driver. Ask low-level code
2118  * to enable I/O resources. Wake up the device if it was suspended.
2119  * Beware, this function can fail.
2120  */
2121 int pci_enable_device_io(struct pci_dev *dev)
2122 {
2123 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2124 }
2125 EXPORT_SYMBOL(pci_enable_device_io);
2126 
2127 /**
2128  * pci_enable_device_mem - Initialize a device for use with Memory space
2129  * @dev: PCI device to be initialized
2130  *
2131  * Initialize device before it's used by a driver. Ask low-level code
2132  * to enable Memory resources. Wake up the device if it was suspended.
2133  * Beware, this function can fail.
2134  */
2135 int pci_enable_device_mem(struct pci_dev *dev)
2136 {
2137 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2138 }
2139 EXPORT_SYMBOL(pci_enable_device_mem);
2140 
2141 /**
2142  * pci_enable_device - Initialize device before it's used by a driver.
2143  * @dev: PCI device to be initialized
2144  *
2145  * Initialize device before it's used by a driver. Ask low-level code
2146  * to enable I/O and memory. Wake up the device if it was suspended.
2147  * Beware, this function can fail.
2148  *
2149  * Note we don't actually enable the device many times if we call
2150  * this function repeatedly (we just increment the count).
2151  */
2152 int pci_enable_device(struct pci_dev *dev)
2153 {
2154 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2155 }
2156 EXPORT_SYMBOL(pci_enable_device);
2157 
2158 /*
2159  * pcibios_device_add - provide arch specific hooks when adding device dev
2160  * @dev: the PCI device being added
2161  *
2162  * Permits the platform to provide architecture specific functionality when
2163  * devices are added. This is the default implementation. Architecture
2164  * implementations can override this.
2165  */
2166 int __weak pcibios_device_add(struct pci_dev *dev)
2167 {
2168 	return 0;
2169 }
2170 
2171 /**
2172  * pcibios_release_device - provide arch specific hooks when releasing
2173  *			    device dev
2174  * @dev: the PCI device being released
2175  *
2176  * Permits the platform to provide architecture specific functionality when
2177  * devices are released. This is the default implementation. Architecture
2178  * implementations can override this.
2179  */
2180 void __weak pcibios_release_device(struct pci_dev *dev) {}
2181 
2182 /**
2183  * pcibios_disable_device - disable arch specific PCI resources for device dev
2184  * @dev: the PCI device to disable
2185  *
2186  * Disables architecture specific PCI resources for the device. This
2187  * is the default implementation. Architecture implementations can
2188  * override this.
2189  */
2190 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2191 
2192 static void do_pci_disable_device(struct pci_dev *dev)
2193 {
2194 	u16 pci_command;
2195 
2196 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2197 	if (pci_command & PCI_COMMAND_MASTER) {
2198 		pci_command &= ~PCI_COMMAND_MASTER;
2199 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2200 	}
2201 
2202 	pcibios_disable_device(dev);
2203 }
2204 
2205 /**
2206  * pci_disable_enabled_device - Disable device without updating enable_cnt
2207  * @dev: PCI device to disable
2208  *
2209  * NOTE: This function is a backend of PCI power management routines and is
2210  * not supposed to be called drivers.
2211  */
2212 void pci_disable_enabled_device(struct pci_dev *dev)
2213 {
2214 	if (pci_is_enabled(dev))
2215 		do_pci_disable_device(dev);
2216 }
2217 
2218 /**
2219  * pci_disable_device - Disable PCI device after use
2220  * @dev: PCI device to be disabled
2221  *
2222  * Signal to the system that the PCI device is not in use by the system
2223  * anymore.  This only involves disabling PCI bus-mastering, if active.
2224  *
2225  * Note we don't actually disable the device until all callers of
2226  * pci_enable_device() have called pci_disable_device().
2227  */
2228 void pci_disable_device(struct pci_dev *dev)
2229 {
2230 	struct pci_devres *dr;
2231 
2232 	dr = find_pci_dr(dev);
2233 	if (dr)
2234 		dr->enabled = 0;
2235 
2236 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2237 		      "disabling already-disabled device");
2238 
2239 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2240 		return;
2241 
2242 	do_pci_disable_device(dev);
2243 
2244 	dev->is_busmaster = 0;
2245 }
2246 EXPORT_SYMBOL(pci_disable_device);
2247 
2248 /**
2249  * pcibios_set_pcie_reset_state - set reset state for device dev
2250  * @dev: the PCIe device reset
2251  * @state: Reset state to enter into
2252  *
2253  * Set the PCIe reset state for the device. This is the default
2254  * implementation. Architecture implementations can override this.
2255  */
2256 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2257 					enum pcie_reset_state state)
2258 {
2259 	return -EINVAL;
2260 }
2261 
2262 /**
2263  * pci_set_pcie_reset_state - set reset state for device dev
2264  * @dev: the PCIe device reset
2265  * @state: Reset state to enter into
2266  *
2267  * Sets the PCI reset state for the device.
2268  */
2269 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2270 {
2271 	return pcibios_set_pcie_reset_state(dev, state);
2272 }
2273 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2274 
2275 #ifdef CONFIG_PCIEAER
2276 void pcie_clear_device_status(struct pci_dev *dev)
2277 {
2278 	u16 sta;
2279 
2280 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2281 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2282 }
2283 #endif
2284 
2285 /**
2286  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2287  * @dev: PCIe root port or event collector.
2288  */
2289 void pcie_clear_root_pme_status(struct pci_dev *dev)
2290 {
2291 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2292 }
2293 
2294 /**
2295  * pci_check_pme_status - Check if given device has generated PME.
2296  * @dev: Device to check.
2297  *
2298  * Check the PME status of the device and if set, clear it and clear PME enable
2299  * (if set).  Return 'true' if PME status and PME enable were both set or
2300  * 'false' otherwise.
2301  */
2302 bool pci_check_pme_status(struct pci_dev *dev)
2303 {
2304 	int pmcsr_pos;
2305 	u16 pmcsr;
2306 	bool ret = false;
2307 
2308 	if (!dev->pm_cap)
2309 		return false;
2310 
2311 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2312 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2313 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2314 		return false;
2315 
2316 	/* Clear PME status. */
2317 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2318 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2319 		/* Disable PME to avoid interrupt flood. */
2320 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2321 		ret = true;
2322 	}
2323 
2324 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2325 
2326 	return ret;
2327 }
2328 
2329 /**
2330  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2331  * @dev: Device to handle.
2332  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2333  *
2334  * Check if @dev has generated PME and queue a resume request for it in that
2335  * case.
2336  */
2337 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2338 {
2339 	if (pme_poll_reset && dev->pme_poll)
2340 		dev->pme_poll = false;
2341 
2342 	if (pci_check_pme_status(dev)) {
2343 		pci_wakeup_event(dev);
2344 		pm_request_resume(&dev->dev);
2345 	}
2346 	return 0;
2347 }
2348 
2349 /**
2350  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2351  * @bus: Top bus of the subtree to walk.
2352  */
2353 void pci_pme_wakeup_bus(struct pci_bus *bus)
2354 {
2355 	if (bus)
2356 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2357 }
2358 
2359 
2360 /**
2361  * pci_pme_capable - check the capability of PCI device to generate PME#
2362  * @dev: PCI device to handle.
2363  * @state: PCI state from which device will issue PME#.
2364  */
2365 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2366 {
2367 	if (!dev->pm_cap)
2368 		return false;
2369 
2370 	return !!(dev->pme_support & (1 << state));
2371 }
2372 EXPORT_SYMBOL(pci_pme_capable);
2373 
2374 static void pci_pme_list_scan(struct work_struct *work)
2375 {
2376 	struct pci_pme_device *pme_dev, *n;
2377 
2378 	mutex_lock(&pci_pme_list_mutex);
2379 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2380 		struct pci_dev *pdev = pme_dev->dev;
2381 
2382 		if (pdev->pme_poll) {
2383 			struct pci_dev *bridge = pdev->bus->self;
2384 			struct device *dev = &pdev->dev;
2385 			struct device *bdev = bridge ? &bridge->dev : NULL;
2386 			int bref = 0;
2387 
2388 			/*
2389 			 * If we have a bridge, it should be in an active/D0
2390 			 * state or the configuration space of subordinate
2391 			 * devices may not be accessible or stable over the
2392 			 * course of the call.
2393 			 */
2394 			if (bdev) {
2395 				bref = pm_runtime_get_if_active(bdev);
2396 				if (!bref)
2397 					continue;
2398 
2399 				if (bridge->current_state != PCI_D0)
2400 					goto put_bridge;
2401 			}
2402 
2403 			/*
2404 			 * The device itself should be suspended but config
2405 			 * space must be accessible, therefore it cannot be in
2406 			 * D3cold.
2407 			 */
2408 			if (pm_runtime_suspended(dev) &&
2409 			    pdev->current_state != PCI_D3cold)
2410 				pci_pme_wakeup(pdev, NULL);
2411 
2412 put_bridge:
2413 			if (bref > 0)
2414 				pm_runtime_put(bdev);
2415 		} else {
2416 			list_del(&pme_dev->list);
2417 			kfree(pme_dev);
2418 		}
2419 	}
2420 	if (!list_empty(&pci_pme_list))
2421 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2422 				   msecs_to_jiffies(PME_TIMEOUT));
2423 	mutex_unlock(&pci_pme_list_mutex);
2424 }
2425 
2426 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2427 {
2428 	u16 pmcsr;
2429 
2430 	if (!dev->pme_support)
2431 		return;
2432 
2433 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2434 	/* Clear PME_Status by writing 1 to it and enable PME# */
2435 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2436 	if (!enable)
2437 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2438 
2439 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2440 }
2441 
2442 /**
2443  * pci_pme_restore - Restore PME configuration after config space restore.
2444  * @dev: PCI device to update.
2445  */
2446 void pci_pme_restore(struct pci_dev *dev)
2447 {
2448 	u16 pmcsr;
2449 
2450 	if (!dev->pme_support)
2451 		return;
2452 
2453 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2454 	if (dev->wakeup_prepared) {
2455 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2456 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2457 	} else {
2458 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2459 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2460 	}
2461 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2462 }
2463 
2464 /**
2465  * pci_pme_active - enable or disable PCI device's PME# function
2466  * @dev: PCI device to handle.
2467  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2468  *
2469  * The caller must verify that the device is capable of generating PME# before
2470  * calling this function with @enable equal to 'true'.
2471  */
2472 void pci_pme_active(struct pci_dev *dev, bool enable)
2473 {
2474 	__pci_pme_active(dev, enable);
2475 
2476 	/*
2477 	 * PCI (as opposed to PCIe) PME requires that the device have
2478 	 * its PME# line hooked up correctly. Not all hardware vendors
2479 	 * do this, so the PME never gets delivered and the device
2480 	 * remains asleep. The easiest way around this is to
2481 	 * periodically walk the list of suspended devices and check
2482 	 * whether any have their PME flag set. The assumption is that
2483 	 * we'll wake up often enough anyway that this won't be a huge
2484 	 * hit, and the power savings from the devices will still be a
2485 	 * win.
2486 	 *
2487 	 * Although PCIe uses in-band PME message instead of PME# line
2488 	 * to report PME, PME does not work for some PCIe devices in
2489 	 * reality.  For example, there are devices that set their PME
2490 	 * status bits, but don't really bother to send a PME message;
2491 	 * there are PCI Express Root Ports that don't bother to
2492 	 * trigger interrupts when they receive PME messages from the
2493 	 * devices below.  So PME poll is used for PCIe devices too.
2494 	 */
2495 
2496 	if (dev->pme_poll) {
2497 		struct pci_pme_device *pme_dev;
2498 		if (enable) {
2499 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2500 					  GFP_KERNEL);
2501 			if (!pme_dev) {
2502 				pci_warn(dev, "can't enable PME#\n");
2503 				return;
2504 			}
2505 			pme_dev->dev = dev;
2506 			mutex_lock(&pci_pme_list_mutex);
2507 			list_add(&pme_dev->list, &pci_pme_list);
2508 			if (list_is_singular(&pci_pme_list))
2509 				queue_delayed_work(system_freezable_wq,
2510 						   &pci_pme_work,
2511 						   msecs_to_jiffies(PME_TIMEOUT));
2512 			mutex_unlock(&pci_pme_list_mutex);
2513 		} else {
2514 			mutex_lock(&pci_pme_list_mutex);
2515 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2516 				if (pme_dev->dev == dev) {
2517 					list_del(&pme_dev->list);
2518 					kfree(pme_dev);
2519 					break;
2520 				}
2521 			}
2522 			mutex_unlock(&pci_pme_list_mutex);
2523 		}
2524 	}
2525 
2526 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2527 }
2528 EXPORT_SYMBOL(pci_pme_active);
2529 
2530 /**
2531  * __pci_enable_wake - enable PCI device as wakeup event source
2532  * @dev: PCI device affected
2533  * @state: PCI state from which device will issue wakeup events
2534  * @enable: True to enable event generation; false to disable
2535  *
2536  * This enables the device as a wakeup event source, or disables it.
2537  * When such events involves platform-specific hooks, those hooks are
2538  * called automatically by this routine.
2539  *
2540  * Devices with legacy power management (no standard PCI PM capabilities)
2541  * always require such platform hooks.
2542  *
2543  * RETURN VALUE:
2544  * 0 is returned on success
2545  * -EINVAL is returned if device is not supposed to wake up the system
2546  * Error code depending on the platform is returned if both the platform and
2547  * the native mechanism fail to enable the generation of wake-up events
2548  */
2549 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2550 {
2551 	int ret = 0;
2552 
2553 	/*
2554 	 * Bridges that are not power-manageable directly only signal
2555 	 * wakeup on behalf of subordinate devices which is set up
2556 	 * elsewhere, so skip them. However, bridges that are
2557 	 * power-manageable may signal wakeup for themselves (for example,
2558 	 * on a hotplug event) and they need to be covered here.
2559 	 */
2560 	if (!pci_power_manageable(dev))
2561 		return 0;
2562 
2563 	/* Don't do the same thing twice in a row for one device. */
2564 	if (!!enable == !!dev->wakeup_prepared)
2565 		return 0;
2566 
2567 	/*
2568 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2569 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2570 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2571 	 */
2572 
2573 	if (enable) {
2574 		int error;
2575 
2576 		/*
2577 		 * Enable PME signaling if the device can signal PME from
2578 		 * D3cold regardless of whether or not it can signal PME from
2579 		 * the current target state, because that will allow it to
2580 		 * signal PME when the hierarchy above it goes into D3cold and
2581 		 * the device itself ends up in D3cold as a result of that.
2582 		 */
2583 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2584 			pci_pme_active(dev, true);
2585 		else
2586 			ret = 1;
2587 		error = platform_pci_set_wakeup(dev, true);
2588 		if (ret)
2589 			ret = error;
2590 		if (!ret)
2591 			dev->wakeup_prepared = true;
2592 	} else {
2593 		platform_pci_set_wakeup(dev, false);
2594 		pci_pme_active(dev, false);
2595 		dev->wakeup_prepared = false;
2596 	}
2597 
2598 	return ret;
2599 }
2600 
2601 /**
2602  * pci_enable_wake - change wakeup settings for a PCI device
2603  * @pci_dev: Target device
2604  * @state: PCI state from which device will issue wakeup events
2605  * @enable: Whether or not to enable event generation
2606  *
2607  * If @enable is set, check device_may_wakeup() for the device before calling
2608  * __pci_enable_wake() for it.
2609  */
2610 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2611 {
2612 	if (enable && !device_may_wakeup(&pci_dev->dev))
2613 		return -EINVAL;
2614 
2615 	return __pci_enable_wake(pci_dev, state, enable);
2616 }
2617 EXPORT_SYMBOL(pci_enable_wake);
2618 
2619 /**
2620  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2621  * @dev: PCI device to prepare
2622  * @enable: True to enable wake-up event generation; false to disable
2623  *
2624  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2625  * and this function allows them to set that up cleanly - pci_enable_wake()
2626  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2627  * ordering constraints.
2628  *
2629  * This function only returns error code if the device is not allowed to wake
2630  * up the system from sleep or it is not capable of generating PME# from both
2631  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2632  */
2633 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2634 {
2635 	return pci_pme_capable(dev, PCI_D3cold) ?
2636 			pci_enable_wake(dev, PCI_D3cold, enable) :
2637 			pci_enable_wake(dev, PCI_D3hot, enable);
2638 }
2639 EXPORT_SYMBOL(pci_wake_from_d3);
2640 
2641 /**
2642  * pci_target_state - find an appropriate low power state for a given PCI dev
2643  * @dev: PCI device
2644  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2645  *
2646  * Use underlying platform code to find a supported low power state for @dev.
2647  * If the platform can't manage @dev, return the deepest state from which it
2648  * can generate wake events, based on any available PME info.
2649  */
2650 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2651 {
2652 	if (platform_pci_power_manageable(dev)) {
2653 		/*
2654 		 * Call the platform to find the target state for the device.
2655 		 */
2656 		pci_power_t state = platform_pci_choose_state(dev);
2657 
2658 		switch (state) {
2659 		case PCI_POWER_ERROR:
2660 		case PCI_UNKNOWN:
2661 			return PCI_D3hot;
2662 
2663 		case PCI_D1:
2664 		case PCI_D2:
2665 			if (pci_no_d1d2(dev))
2666 				return PCI_D3hot;
2667 		}
2668 
2669 		return state;
2670 	}
2671 
2672 	/*
2673 	 * If the device is in D3cold even though it's not power-manageable by
2674 	 * the platform, it may have been powered down by non-standard means.
2675 	 * Best to let it slumber.
2676 	 */
2677 	if (dev->current_state == PCI_D3cold)
2678 		return PCI_D3cold;
2679 	else if (!dev->pm_cap)
2680 		return PCI_D0;
2681 
2682 	if (wakeup && dev->pme_support) {
2683 		pci_power_t state = PCI_D3hot;
2684 
2685 		/*
2686 		 * Find the deepest state from which the device can generate
2687 		 * PME#.
2688 		 */
2689 		while (state && !(dev->pme_support & (1 << state)))
2690 			state--;
2691 
2692 		if (state)
2693 			return state;
2694 		else if (dev->pme_support & 1)
2695 			return PCI_D0;
2696 	}
2697 
2698 	return PCI_D3hot;
2699 }
2700 
2701 /**
2702  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2703  *			  into a sleep state
2704  * @dev: Device to handle.
2705  *
2706  * Choose the power state appropriate for the device depending on whether
2707  * it can wake up the system and/or is power manageable by the platform
2708  * (PCI_D3hot is the default) and put the device into that state.
2709  */
2710 int pci_prepare_to_sleep(struct pci_dev *dev)
2711 {
2712 	bool wakeup = device_may_wakeup(&dev->dev);
2713 	pci_power_t target_state = pci_target_state(dev, wakeup);
2714 	int error;
2715 
2716 	if (target_state == PCI_POWER_ERROR)
2717 		return -EIO;
2718 
2719 	pci_enable_wake(dev, target_state, wakeup);
2720 
2721 	error = pci_set_power_state(dev, target_state);
2722 
2723 	if (error)
2724 		pci_enable_wake(dev, target_state, false);
2725 
2726 	return error;
2727 }
2728 EXPORT_SYMBOL(pci_prepare_to_sleep);
2729 
2730 /**
2731  * pci_back_from_sleep - turn PCI device on during system-wide transition
2732  *			 into working state
2733  * @dev: Device to handle.
2734  *
2735  * Disable device's system wake-up capability and put it into D0.
2736  */
2737 int pci_back_from_sleep(struct pci_dev *dev)
2738 {
2739 	int ret = pci_set_power_state(dev, PCI_D0);
2740 
2741 	if (ret)
2742 		return ret;
2743 
2744 	pci_enable_wake(dev, PCI_D0, false);
2745 	return 0;
2746 }
2747 EXPORT_SYMBOL(pci_back_from_sleep);
2748 
2749 /**
2750  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2751  * @dev: PCI device being suspended.
2752  *
2753  * Prepare @dev to generate wake-up events at run time and put it into a low
2754  * power state.
2755  */
2756 int pci_finish_runtime_suspend(struct pci_dev *dev)
2757 {
2758 	pci_power_t target_state;
2759 	int error;
2760 
2761 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2762 	if (target_state == PCI_POWER_ERROR)
2763 		return -EIO;
2764 
2765 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2766 
2767 	error = pci_set_power_state(dev, target_state);
2768 
2769 	if (error)
2770 		pci_enable_wake(dev, target_state, false);
2771 
2772 	return error;
2773 }
2774 
2775 /**
2776  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2777  * @dev: Device to check.
2778  *
2779  * Return true if the device itself is capable of generating wake-up events
2780  * (through the platform or using the native PCIe PME) or if the device supports
2781  * PME and one of its upstream bridges can generate wake-up events.
2782  */
2783 bool pci_dev_run_wake(struct pci_dev *dev)
2784 {
2785 	struct pci_bus *bus = dev->bus;
2786 
2787 	if (!dev->pme_support)
2788 		return false;
2789 
2790 	/* PME-capable in principle, but not from the target power state */
2791 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2792 		return false;
2793 
2794 	if (device_can_wakeup(&dev->dev))
2795 		return true;
2796 
2797 	while (bus->parent) {
2798 		struct pci_dev *bridge = bus->self;
2799 
2800 		if (device_can_wakeup(&bridge->dev))
2801 			return true;
2802 
2803 		bus = bus->parent;
2804 	}
2805 
2806 	/* We have reached the root bus. */
2807 	if (bus->bridge)
2808 		return device_can_wakeup(bus->bridge);
2809 
2810 	return false;
2811 }
2812 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2813 
2814 /**
2815  * pci_dev_need_resume - Check if it is necessary to resume the device.
2816  * @pci_dev: Device to check.
2817  *
2818  * Return 'true' if the device is not runtime-suspended or it has to be
2819  * reconfigured due to wakeup settings difference between system and runtime
2820  * suspend, or the current power state of it is not suitable for the upcoming
2821  * (system-wide) transition.
2822  */
2823 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2824 {
2825 	struct device *dev = &pci_dev->dev;
2826 	pci_power_t target_state;
2827 
2828 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2829 		return true;
2830 
2831 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2832 
2833 	/*
2834 	 * If the earlier platform check has not triggered, D3cold is just power
2835 	 * removal on top of D3hot, so no need to resume the device in that
2836 	 * case.
2837 	 */
2838 	return target_state != pci_dev->current_state &&
2839 		target_state != PCI_D3cold &&
2840 		pci_dev->current_state != PCI_D3hot;
2841 }
2842 
2843 /**
2844  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2845  * @pci_dev: Device to check.
2846  *
2847  * If the device is suspended and it is not configured for system wakeup,
2848  * disable PME for it to prevent it from waking up the system unnecessarily.
2849  *
2850  * Note that if the device's power state is D3cold and the platform check in
2851  * pci_dev_need_resume() has not triggered, the device's configuration need not
2852  * be changed.
2853  */
2854 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2855 {
2856 	struct device *dev = &pci_dev->dev;
2857 
2858 	spin_lock_irq(&dev->power.lock);
2859 
2860 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2861 	    pci_dev->current_state < PCI_D3cold)
2862 		__pci_pme_active(pci_dev, false);
2863 
2864 	spin_unlock_irq(&dev->power.lock);
2865 }
2866 
2867 /**
2868  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2869  * @pci_dev: Device to handle.
2870  *
2871  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2872  * it might have been disabled during the prepare phase of system suspend if
2873  * the device was not configured for system wakeup.
2874  */
2875 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2876 {
2877 	struct device *dev = &pci_dev->dev;
2878 
2879 	if (!pci_dev_run_wake(pci_dev))
2880 		return;
2881 
2882 	spin_lock_irq(&dev->power.lock);
2883 
2884 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2885 		__pci_pme_active(pci_dev, true);
2886 
2887 	spin_unlock_irq(&dev->power.lock);
2888 }
2889 
2890 /**
2891  * pci_choose_state - Choose the power state of a PCI device.
2892  * @dev: Target PCI device.
2893  * @state: Target state for the whole system.
2894  *
2895  * Returns PCI power state suitable for @dev and @state.
2896  */
2897 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2898 {
2899 	if (state.event == PM_EVENT_ON)
2900 		return PCI_D0;
2901 
2902 	return pci_target_state(dev, false);
2903 }
2904 EXPORT_SYMBOL(pci_choose_state);
2905 
2906 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2907 {
2908 	struct device *dev = &pdev->dev;
2909 	struct device *parent = dev->parent;
2910 
2911 	if (parent)
2912 		pm_runtime_get_sync(parent);
2913 	pm_runtime_get_noresume(dev);
2914 	/*
2915 	 * pdev->current_state is set to PCI_D3cold during suspending,
2916 	 * so wait until suspending completes
2917 	 */
2918 	pm_runtime_barrier(dev);
2919 	/*
2920 	 * Only need to resume devices in D3cold, because config
2921 	 * registers are still accessible for devices suspended but
2922 	 * not in D3cold.
2923 	 */
2924 	if (pdev->current_state == PCI_D3cold)
2925 		pm_runtime_resume(dev);
2926 }
2927 
2928 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2929 {
2930 	struct device *dev = &pdev->dev;
2931 	struct device *parent = dev->parent;
2932 
2933 	pm_runtime_put(dev);
2934 	if (parent)
2935 		pm_runtime_put_sync(parent);
2936 }
2937 
2938 static const struct dmi_system_id bridge_d3_blacklist[] = {
2939 #ifdef CONFIG_X86
2940 	{
2941 		/*
2942 		 * Gigabyte X299 root port is not marked as hotplug capable
2943 		 * which allows Linux to power manage it.  However, this
2944 		 * confuses the BIOS SMI handler so don't power manage root
2945 		 * ports on that system.
2946 		 */
2947 		.ident = "X299 DESIGNARE EX-CF",
2948 		.matches = {
2949 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2950 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2951 		},
2952 	},
2953 	{
2954 		/*
2955 		 * Downstream device is not accessible after putting a root port
2956 		 * into D3cold and back into D0 on Elo Continental Z2 board
2957 		 */
2958 		.ident = "Elo Continental Z2",
2959 		.matches = {
2960 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2961 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2962 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2963 		},
2964 	},
2965 #endif
2966 	{ }
2967 };
2968 
2969 /**
2970  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2971  * @bridge: Bridge to check
2972  *
2973  * This function checks if it is possible to move the bridge to D3.
2974  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2975  */
2976 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2977 {
2978 	if (!pci_is_pcie(bridge))
2979 		return false;
2980 
2981 	switch (pci_pcie_type(bridge)) {
2982 	case PCI_EXP_TYPE_ROOT_PORT:
2983 	case PCI_EXP_TYPE_UPSTREAM:
2984 	case PCI_EXP_TYPE_DOWNSTREAM:
2985 		if (pci_bridge_d3_disable)
2986 			return false;
2987 
2988 		/*
2989 		 * Hotplug ports handled by firmware in System Management Mode
2990 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2991 		 */
2992 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2993 			return false;
2994 
2995 		if (pci_bridge_d3_force)
2996 			return true;
2997 
2998 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2999 		if (bridge->is_thunderbolt)
3000 			return true;
3001 
3002 		/* Platform might know better if the bridge supports D3 */
3003 		if (platform_pci_bridge_d3(bridge))
3004 			return true;
3005 
3006 		/*
3007 		 * Hotplug ports handled natively by the OS were not validated
3008 		 * by vendors for runtime D3 at least until 2018 because there
3009 		 * was no OS support.
3010 		 */
3011 		if (bridge->is_hotplug_bridge)
3012 			return false;
3013 
3014 		if (dmi_check_system(bridge_d3_blacklist))
3015 			return false;
3016 
3017 		/*
3018 		 * It should be safe to put PCIe ports from 2015 or newer
3019 		 * to D3.
3020 		 */
3021 		if (dmi_get_bios_year() >= 2015)
3022 			return true;
3023 		break;
3024 	}
3025 
3026 	return false;
3027 }
3028 
3029 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3030 {
3031 	bool *d3cold_ok = data;
3032 
3033 	if (/* The device needs to be allowed to go D3cold ... */
3034 	    dev->no_d3cold || !dev->d3cold_allowed ||
3035 
3036 	    /* ... and if it is wakeup capable to do so from D3cold. */
3037 	    (device_may_wakeup(&dev->dev) &&
3038 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3039 
3040 	    /* If it is a bridge it must be allowed to go to D3. */
3041 	    !pci_power_manageable(dev))
3042 
3043 		*d3cold_ok = false;
3044 
3045 	return !*d3cold_ok;
3046 }
3047 
3048 /*
3049  * pci_bridge_d3_update - Update bridge D3 capabilities
3050  * @dev: PCI device which is changed
3051  *
3052  * Update upstream bridge PM capabilities accordingly depending on if the
3053  * device PM configuration was changed or the device is being removed.  The
3054  * change is also propagated upstream.
3055  */
3056 void pci_bridge_d3_update(struct pci_dev *dev)
3057 {
3058 	bool remove = !device_is_registered(&dev->dev);
3059 	struct pci_dev *bridge;
3060 	bool d3cold_ok = true;
3061 
3062 	bridge = pci_upstream_bridge(dev);
3063 	if (!bridge || !pci_bridge_d3_possible(bridge))
3064 		return;
3065 
3066 	/*
3067 	 * If D3 is currently allowed for the bridge, removing one of its
3068 	 * children won't change that.
3069 	 */
3070 	if (remove && bridge->bridge_d3)
3071 		return;
3072 
3073 	/*
3074 	 * If D3 is currently allowed for the bridge and a child is added or
3075 	 * changed, disallowance of D3 can only be caused by that child, so
3076 	 * we only need to check that single device, not any of its siblings.
3077 	 *
3078 	 * If D3 is currently not allowed for the bridge, checking the device
3079 	 * first may allow us to skip checking its siblings.
3080 	 */
3081 	if (!remove)
3082 		pci_dev_check_d3cold(dev, &d3cold_ok);
3083 
3084 	/*
3085 	 * If D3 is currently not allowed for the bridge, this may be caused
3086 	 * either by the device being changed/removed or any of its siblings,
3087 	 * so we need to go through all children to find out if one of them
3088 	 * continues to block D3.
3089 	 */
3090 	if (d3cold_ok && !bridge->bridge_d3)
3091 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3092 			     &d3cold_ok);
3093 
3094 	if (bridge->bridge_d3 != d3cold_ok) {
3095 		bridge->bridge_d3 = d3cold_ok;
3096 		/* Propagate change to upstream bridges */
3097 		pci_bridge_d3_update(bridge);
3098 	}
3099 }
3100 
3101 /**
3102  * pci_d3cold_enable - Enable D3cold for device
3103  * @dev: PCI device to handle
3104  *
3105  * This function can be used in drivers to enable D3cold from the device
3106  * they handle.  It also updates upstream PCI bridge PM capabilities
3107  * accordingly.
3108  */
3109 void pci_d3cold_enable(struct pci_dev *dev)
3110 {
3111 	if (dev->no_d3cold) {
3112 		dev->no_d3cold = false;
3113 		pci_bridge_d3_update(dev);
3114 	}
3115 }
3116 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3117 
3118 /**
3119  * pci_d3cold_disable - Disable D3cold for device
3120  * @dev: PCI device to handle
3121  *
3122  * This function can be used in drivers to disable D3cold from the device
3123  * they handle.  It also updates upstream PCI bridge PM capabilities
3124  * accordingly.
3125  */
3126 void pci_d3cold_disable(struct pci_dev *dev)
3127 {
3128 	if (!dev->no_d3cold) {
3129 		dev->no_d3cold = true;
3130 		pci_bridge_d3_update(dev);
3131 	}
3132 }
3133 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3134 
3135 /**
3136  * pci_pm_init - Initialize PM functions of given PCI device
3137  * @dev: PCI device to handle.
3138  */
3139 void pci_pm_init(struct pci_dev *dev)
3140 {
3141 	int pm;
3142 	u16 status;
3143 	u16 pmc;
3144 
3145 	pm_runtime_forbid(&dev->dev);
3146 	pm_runtime_set_active(&dev->dev);
3147 	pm_runtime_enable(&dev->dev);
3148 	device_enable_async_suspend(&dev->dev);
3149 	dev->wakeup_prepared = false;
3150 
3151 	dev->pm_cap = 0;
3152 	dev->pme_support = 0;
3153 
3154 	/* find PCI PM capability in list */
3155 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3156 	if (!pm)
3157 		return;
3158 	/* Check device's ability to generate PME# */
3159 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3160 
3161 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3162 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3163 			pmc & PCI_PM_CAP_VER_MASK);
3164 		return;
3165 	}
3166 
3167 	dev->pm_cap = pm;
3168 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3169 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3170 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3171 	dev->d3cold_allowed = true;
3172 
3173 	dev->d1_support = false;
3174 	dev->d2_support = false;
3175 	if (!pci_no_d1d2(dev)) {
3176 		if (pmc & PCI_PM_CAP_D1)
3177 			dev->d1_support = true;
3178 		if (pmc & PCI_PM_CAP_D2)
3179 			dev->d2_support = true;
3180 
3181 		if (dev->d1_support || dev->d2_support)
3182 			pci_info(dev, "supports%s%s\n",
3183 				   dev->d1_support ? " D1" : "",
3184 				   dev->d2_support ? " D2" : "");
3185 	}
3186 
3187 	pmc &= PCI_PM_CAP_PME_MASK;
3188 	if (pmc) {
3189 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3190 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3191 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3192 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3193 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3194 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3195 		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3196 		dev->pme_poll = true;
3197 		/*
3198 		 * Make device's PM flags reflect the wake-up capability, but
3199 		 * let the user space enable it to wake up the system as needed.
3200 		 */
3201 		device_set_wakeup_capable(&dev->dev, true);
3202 		/* Disable the PME# generation functionality */
3203 		pci_pme_active(dev, false);
3204 	}
3205 
3206 	pci_read_config_word(dev, PCI_STATUS, &status);
3207 	if (status & PCI_STATUS_IMM_READY)
3208 		dev->imm_ready = 1;
3209 }
3210 
3211 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3212 {
3213 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3214 
3215 	switch (prop) {
3216 	case PCI_EA_P_MEM:
3217 	case PCI_EA_P_VF_MEM:
3218 		flags |= IORESOURCE_MEM;
3219 		break;
3220 	case PCI_EA_P_MEM_PREFETCH:
3221 	case PCI_EA_P_VF_MEM_PREFETCH:
3222 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3223 		break;
3224 	case PCI_EA_P_IO:
3225 		flags |= IORESOURCE_IO;
3226 		break;
3227 	default:
3228 		return 0;
3229 	}
3230 
3231 	return flags;
3232 }
3233 
3234 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3235 					    u8 prop)
3236 {
3237 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3238 		return &dev->resource[bei];
3239 #ifdef CONFIG_PCI_IOV
3240 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3241 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3242 		return &dev->resource[PCI_IOV_RESOURCES +
3243 				      bei - PCI_EA_BEI_VF_BAR0];
3244 #endif
3245 	else if (bei == PCI_EA_BEI_ROM)
3246 		return &dev->resource[PCI_ROM_RESOURCE];
3247 	else
3248 		return NULL;
3249 }
3250 
3251 /* Read an Enhanced Allocation (EA) entry */
3252 static int pci_ea_read(struct pci_dev *dev, int offset)
3253 {
3254 	struct resource *res;
3255 	const char *res_name;
3256 	int ent_size, ent_offset = offset;
3257 	resource_size_t start, end;
3258 	unsigned long flags;
3259 	u32 dw0, bei, base, max_offset;
3260 	u8 prop;
3261 	bool support_64 = (sizeof(resource_size_t) >= 8);
3262 
3263 	pci_read_config_dword(dev, ent_offset, &dw0);
3264 	ent_offset += 4;
3265 
3266 	/* Entry size field indicates DWORDs after 1st */
3267 	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3268 
3269 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3270 		goto out;
3271 
3272 	bei = FIELD_GET(PCI_EA_BEI, dw0);
3273 	prop = FIELD_GET(PCI_EA_PP, dw0);
3274 
3275 	/*
3276 	 * If the Property is in the reserved range, try the Secondary
3277 	 * Property instead.
3278 	 */
3279 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3280 		prop = FIELD_GET(PCI_EA_SP, dw0);
3281 	if (prop > PCI_EA_P_BRIDGE_IO)
3282 		goto out;
3283 
3284 	res = pci_ea_get_resource(dev, bei, prop);
3285 	res_name = pci_resource_name(dev, bei);
3286 	if (!res) {
3287 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3288 		goto out;
3289 	}
3290 
3291 	flags = pci_ea_flags(dev, prop);
3292 	if (!flags) {
3293 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3294 		goto out;
3295 	}
3296 
3297 	/* Read Base */
3298 	pci_read_config_dword(dev, ent_offset, &base);
3299 	start = (base & PCI_EA_FIELD_MASK);
3300 	ent_offset += 4;
3301 
3302 	/* Read MaxOffset */
3303 	pci_read_config_dword(dev, ent_offset, &max_offset);
3304 	ent_offset += 4;
3305 
3306 	/* Read Base MSBs (if 64-bit entry) */
3307 	if (base & PCI_EA_IS_64) {
3308 		u32 base_upper;
3309 
3310 		pci_read_config_dword(dev, ent_offset, &base_upper);
3311 		ent_offset += 4;
3312 
3313 		flags |= IORESOURCE_MEM_64;
3314 
3315 		/* entry starts above 32-bit boundary, can't use */
3316 		if (!support_64 && base_upper)
3317 			goto out;
3318 
3319 		if (support_64)
3320 			start |= ((u64)base_upper << 32);
3321 	}
3322 
3323 	end = start + (max_offset | 0x03);
3324 
3325 	/* Read MaxOffset MSBs (if 64-bit entry) */
3326 	if (max_offset & PCI_EA_IS_64) {
3327 		u32 max_offset_upper;
3328 
3329 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3330 		ent_offset += 4;
3331 
3332 		flags |= IORESOURCE_MEM_64;
3333 
3334 		/* entry too big, can't use */
3335 		if (!support_64 && max_offset_upper)
3336 			goto out;
3337 
3338 		if (support_64)
3339 			end += ((u64)max_offset_upper << 32);
3340 	}
3341 
3342 	if (end < start) {
3343 		pci_err(dev, "EA Entry crosses address boundary\n");
3344 		goto out;
3345 	}
3346 
3347 	if (ent_size != ent_offset - offset) {
3348 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3349 			ent_size, ent_offset - offset);
3350 		goto out;
3351 	}
3352 
3353 	res->name = pci_name(dev);
3354 	res->start = start;
3355 	res->end = end;
3356 	res->flags = flags;
3357 
3358 	if (bei <= PCI_EA_BEI_BAR5)
3359 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3360 			 res_name, res, prop);
3361 	else if (bei == PCI_EA_BEI_ROM)
3362 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3363 			 res_name, res, prop);
3364 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3365 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3366 			 res_name, res, prop);
3367 	else
3368 		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3369 			   bei, res, prop);
3370 
3371 out:
3372 	return offset + ent_size;
3373 }
3374 
3375 /* Enhanced Allocation Initialization */
3376 void pci_ea_init(struct pci_dev *dev)
3377 {
3378 	int ea;
3379 	u8 num_ent;
3380 	int offset;
3381 	int i;
3382 
3383 	/* find PCI EA capability in list */
3384 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3385 	if (!ea)
3386 		return;
3387 
3388 	/* determine the number of entries */
3389 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3390 					&num_ent);
3391 	num_ent &= PCI_EA_NUM_ENT_MASK;
3392 
3393 	offset = ea + PCI_EA_FIRST_ENT;
3394 
3395 	/* Skip DWORD 2 for type 1 functions */
3396 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3397 		offset += 4;
3398 
3399 	/* parse each EA entry */
3400 	for (i = 0; i < num_ent; ++i)
3401 		offset = pci_ea_read(dev, offset);
3402 }
3403 
3404 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3405 	struct pci_cap_saved_state *new_cap)
3406 {
3407 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3408 }
3409 
3410 /**
3411  * _pci_add_cap_save_buffer - allocate buffer for saving given
3412  *			      capability registers
3413  * @dev: the PCI device
3414  * @cap: the capability to allocate the buffer for
3415  * @extended: Standard or Extended capability ID
3416  * @size: requested size of the buffer
3417  */
3418 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3419 				    bool extended, unsigned int size)
3420 {
3421 	int pos;
3422 	struct pci_cap_saved_state *save_state;
3423 
3424 	if (extended)
3425 		pos = pci_find_ext_capability(dev, cap);
3426 	else
3427 		pos = pci_find_capability(dev, cap);
3428 
3429 	if (!pos)
3430 		return 0;
3431 
3432 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3433 	if (!save_state)
3434 		return -ENOMEM;
3435 
3436 	save_state->cap.cap_nr = cap;
3437 	save_state->cap.cap_extended = extended;
3438 	save_state->cap.size = size;
3439 	pci_add_saved_cap(dev, save_state);
3440 
3441 	return 0;
3442 }
3443 
3444 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3445 {
3446 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3447 }
3448 
3449 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3450 {
3451 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3452 }
3453 
3454 /**
3455  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3456  * @dev: the PCI device
3457  */
3458 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3459 {
3460 	int error;
3461 
3462 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3463 					PCI_EXP_SAVE_REGS * sizeof(u16));
3464 	if (error)
3465 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3466 
3467 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3468 	if (error)
3469 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3470 
3471 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3472 					    2 * sizeof(u16));
3473 	if (error)
3474 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3475 
3476 	pci_allocate_vc_save_buffers(dev);
3477 }
3478 
3479 void pci_free_cap_save_buffers(struct pci_dev *dev)
3480 {
3481 	struct pci_cap_saved_state *tmp;
3482 	struct hlist_node *n;
3483 
3484 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3485 		kfree(tmp);
3486 }
3487 
3488 /**
3489  * pci_configure_ari - enable or disable ARI forwarding
3490  * @dev: the PCI device
3491  *
3492  * If @dev and its upstream bridge both support ARI, enable ARI in the
3493  * bridge.  Otherwise, disable ARI in the bridge.
3494  */
3495 void pci_configure_ari(struct pci_dev *dev)
3496 {
3497 	u32 cap;
3498 	struct pci_dev *bridge;
3499 
3500 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3501 		return;
3502 
3503 	bridge = dev->bus->self;
3504 	if (!bridge)
3505 		return;
3506 
3507 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3508 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3509 		return;
3510 
3511 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3512 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3513 					 PCI_EXP_DEVCTL2_ARI);
3514 		bridge->ari_enabled = 1;
3515 	} else {
3516 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3517 					   PCI_EXP_DEVCTL2_ARI);
3518 		bridge->ari_enabled = 0;
3519 	}
3520 }
3521 
3522 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3523 {
3524 	int pos;
3525 	u16 cap, ctrl;
3526 
3527 	pos = pdev->acs_cap;
3528 	if (!pos)
3529 		return false;
3530 
3531 	/*
3532 	 * Except for egress control, capabilities are either required
3533 	 * or only required if controllable.  Features missing from the
3534 	 * capability field can therefore be assumed as hard-wired enabled.
3535 	 */
3536 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3537 	acs_flags &= (cap | PCI_ACS_EC);
3538 
3539 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3540 	return (ctrl & acs_flags) == acs_flags;
3541 }
3542 
3543 /**
3544  * pci_acs_enabled - test ACS against required flags for a given device
3545  * @pdev: device to test
3546  * @acs_flags: required PCI ACS flags
3547  *
3548  * Return true if the device supports the provided flags.  Automatically
3549  * filters out flags that are not implemented on multifunction devices.
3550  *
3551  * Note that this interface checks the effective ACS capabilities of the
3552  * device rather than the actual capabilities.  For instance, most single
3553  * function endpoints are not required to support ACS because they have no
3554  * opportunity for peer-to-peer access.  We therefore return 'true'
3555  * regardless of whether the device exposes an ACS capability.  This makes
3556  * it much easier for callers of this function to ignore the actual type
3557  * or topology of the device when testing ACS support.
3558  */
3559 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3560 {
3561 	int ret;
3562 
3563 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3564 	if (ret >= 0)
3565 		return ret > 0;
3566 
3567 	/*
3568 	 * Conventional PCI and PCI-X devices never support ACS, either
3569 	 * effectively or actually.  The shared bus topology implies that
3570 	 * any device on the bus can receive or snoop DMA.
3571 	 */
3572 	if (!pci_is_pcie(pdev))
3573 		return false;
3574 
3575 	switch (pci_pcie_type(pdev)) {
3576 	/*
3577 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3578 	 * but since their primary interface is PCI/X, we conservatively
3579 	 * handle them as we would a non-PCIe device.
3580 	 */
3581 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3582 	/*
3583 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3584 	 * applicable... must never implement an ACS Extended Capability...".
3585 	 * This seems arbitrary, but we take a conservative interpretation
3586 	 * of this statement.
3587 	 */
3588 	case PCI_EXP_TYPE_PCI_BRIDGE:
3589 	case PCI_EXP_TYPE_RC_EC:
3590 		return false;
3591 	/*
3592 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3593 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3594 	 * regardless of whether they are single- or multi-function devices.
3595 	 */
3596 	case PCI_EXP_TYPE_DOWNSTREAM:
3597 	case PCI_EXP_TYPE_ROOT_PORT:
3598 		return pci_acs_flags_enabled(pdev, acs_flags);
3599 	/*
3600 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3601 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3602 	 * capabilities, but only when they are part of a multifunction
3603 	 * device.  The footnote for section 6.12 indicates the specific
3604 	 * PCIe types included here.
3605 	 */
3606 	case PCI_EXP_TYPE_ENDPOINT:
3607 	case PCI_EXP_TYPE_UPSTREAM:
3608 	case PCI_EXP_TYPE_LEG_END:
3609 	case PCI_EXP_TYPE_RC_END:
3610 		if (!pdev->multifunction)
3611 			break;
3612 
3613 		return pci_acs_flags_enabled(pdev, acs_flags);
3614 	}
3615 
3616 	/*
3617 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3618 	 * to single function devices with the exception of downstream ports.
3619 	 */
3620 	return true;
3621 }
3622 
3623 /**
3624  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3625  * @start: starting downstream device
3626  * @end: ending upstream device or NULL to search to the root bus
3627  * @acs_flags: required flags
3628  *
3629  * Walk up a device tree from start to end testing PCI ACS support.  If
3630  * any step along the way does not support the required flags, return false.
3631  */
3632 bool pci_acs_path_enabled(struct pci_dev *start,
3633 			  struct pci_dev *end, u16 acs_flags)
3634 {
3635 	struct pci_dev *pdev, *parent = start;
3636 
3637 	do {
3638 		pdev = parent;
3639 
3640 		if (!pci_acs_enabled(pdev, acs_flags))
3641 			return false;
3642 
3643 		if (pci_is_root_bus(pdev->bus))
3644 			return (end == NULL);
3645 
3646 		parent = pdev->bus->self;
3647 	} while (pdev != end);
3648 
3649 	return true;
3650 }
3651 
3652 /**
3653  * pci_acs_init - Initialize ACS if hardware supports it
3654  * @dev: the PCI device
3655  */
3656 void pci_acs_init(struct pci_dev *dev)
3657 {
3658 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3659 
3660 	/*
3661 	 * Attempt to enable ACS regardless of capability because some Root
3662 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3663 	 * the standard ACS capability but still support ACS via those
3664 	 * quirks.
3665 	 */
3666 	pci_enable_acs(dev);
3667 }
3668 
3669 /**
3670  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3671  * @pdev: PCI device
3672  * @bar: BAR to find
3673  *
3674  * Helper to find the position of the ctrl register for a BAR.
3675  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3676  * Returns -ENOENT if no ctrl register for the BAR could be found.
3677  */
3678 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3679 {
3680 	unsigned int pos, nbars, i;
3681 	u32 ctrl;
3682 
3683 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3684 	if (!pos)
3685 		return -ENOTSUPP;
3686 
3687 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3688 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3689 
3690 	for (i = 0; i < nbars; i++, pos += 8) {
3691 		int bar_idx;
3692 
3693 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3694 		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3695 		if (bar_idx == bar)
3696 			return pos;
3697 	}
3698 
3699 	return -ENOENT;
3700 }
3701 
3702 /**
3703  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3704  * @pdev: PCI device
3705  * @bar: BAR to query
3706  *
3707  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3708  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3709  */
3710 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3711 {
3712 	int pos;
3713 	u32 cap;
3714 
3715 	pos = pci_rebar_find_pos(pdev, bar);
3716 	if (pos < 0)
3717 		return 0;
3718 
3719 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3720 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3721 
3722 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3723 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3724 	    bar == 0 && cap == 0x700)
3725 		return 0x3f00;
3726 
3727 	return cap;
3728 }
3729 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3730 
3731 /**
3732  * pci_rebar_get_current_size - get the current size of a BAR
3733  * @pdev: PCI device
3734  * @bar: BAR to set size to
3735  *
3736  * Read the size of a BAR from the resizable BAR config.
3737  * Returns size if found or negative error code.
3738  */
3739 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3740 {
3741 	int pos;
3742 	u32 ctrl;
3743 
3744 	pos = pci_rebar_find_pos(pdev, bar);
3745 	if (pos < 0)
3746 		return pos;
3747 
3748 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3749 	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3750 }
3751 
3752 /**
3753  * pci_rebar_set_size - set a new size for a BAR
3754  * @pdev: PCI device
3755  * @bar: BAR to set size to
3756  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3757  *
3758  * Set the new size of a BAR as defined in the spec.
3759  * Returns zero if resizing was successful, error code otherwise.
3760  */
3761 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3762 {
3763 	int pos;
3764 	u32 ctrl;
3765 
3766 	pos = pci_rebar_find_pos(pdev, bar);
3767 	if (pos < 0)
3768 		return pos;
3769 
3770 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3771 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3772 	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3773 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3774 	return 0;
3775 }
3776 
3777 /**
3778  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3779  * @dev: the PCI device
3780  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3781  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3782  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3783  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3784  *
3785  * Return 0 if all upstream bridges support AtomicOp routing, egress
3786  * blocking is disabled on all upstream ports, and the root port supports
3787  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3788  * AtomicOp completion), or negative otherwise.
3789  */
3790 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3791 {
3792 	struct pci_bus *bus = dev->bus;
3793 	struct pci_dev *bridge;
3794 	u32 cap, ctl2;
3795 
3796 	/*
3797 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3798 	 * in Device Control 2 is reserved in VFs and the PF value applies
3799 	 * to all associated VFs.
3800 	 */
3801 	if (dev->is_virtfn)
3802 		return -EINVAL;
3803 
3804 	if (!pci_is_pcie(dev))
3805 		return -EINVAL;
3806 
3807 	/*
3808 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3809 	 * AtomicOp requesters.  For now, we only support endpoints as
3810 	 * requesters and root ports as completers.  No endpoints as
3811 	 * completers, and no peer-to-peer.
3812 	 */
3813 
3814 	switch (pci_pcie_type(dev)) {
3815 	case PCI_EXP_TYPE_ENDPOINT:
3816 	case PCI_EXP_TYPE_LEG_END:
3817 	case PCI_EXP_TYPE_RC_END:
3818 		break;
3819 	default:
3820 		return -EINVAL;
3821 	}
3822 
3823 	while (bus->parent) {
3824 		bridge = bus->self;
3825 
3826 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3827 
3828 		switch (pci_pcie_type(bridge)) {
3829 		/* Ensure switch ports support AtomicOp routing */
3830 		case PCI_EXP_TYPE_UPSTREAM:
3831 		case PCI_EXP_TYPE_DOWNSTREAM:
3832 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3833 				return -EINVAL;
3834 			break;
3835 
3836 		/* Ensure root port supports all the sizes we care about */
3837 		case PCI_EXP_TYPE_ROOT_PORT:
3838 			if ((cap & cap_mask) != cap_mask)
3839 				return -EINVAL;
3840 			break;
3841 		}
3842 
3843 		/* Ensure upstream ports don't block AtomicOps on egress */
3844 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3845 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3846 						   &ctl2);
3847 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3848 				return -EINVAL;
3849 		}
3850 
3851 		bus = bus->parent;
3852 	}
3853 
3854 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3855 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3856 	return 0;
3857 }
3858 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3859 
3860 /**
3861  * pci_release_region - Release a PCI bar
3862  * @pdev: PCI device whose resources were previously reserved by
3863  *	  pci_request_region()
3864  * @bar: BAR to release
3865  *
3866  * Releases the PCI I/O and memory resources previously reserved by a
3867  * successful call to pci_request_region().  Call this function only
3868  * after all use of the PCI regions has ceased.
3869  */
3870 void pci_release_region(struct pci_dev *pdev, int bar)
3871 {
3872 	struct pci_devres *dr;
3873 
3874 	if (pci_resource_len(pdev, bar) == 0)
3875 		return;
3876 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3877 		release_region(pci_resource_start(pdev, bar),
3878 				pci_resource_len(pdev, bar));
3879 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3880 		release_mem_region(pci_resource_start(pdev, bar),
3881 				pci_resource_len(pdev, bar));
3882 
3883 	dr = find_pci_dr(pdev);
3884 	if (dr)
3885 		dr->region_mask &= ~(1 << bar);
3886 }
3887 EXPORT_SYMBOL(pci_release_region);
3888 
3889 /**
3890  * __pci_request_region - Reserved PCI I/O and memory resource
3891  * @pdev: PCI device whose resources are to be reserved
3892  * @bar: BAR to be reserved
3893  * @res_name: Name to be associated with resource.
3894  * @exclusive: whether the region access is exclusive or not
3895  *
3896  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3897  * being reserved by owner @res_name.  Do not access any
3898  * address inside the PCI regions unless this call returns
3899  * successfully.
3900  *
3901  * If @exclusive is set, then the region is marked so that userspace
3902  * is explicitly not allowed to map the resource via /dev/mem or
3903  * sysfs MMIO access.
3904  *
3905  * Returns 0 on success, or %EBUSY on error.  A warning
3906  * message is also printed on failure.
3907  */
3908 static int __pci_request_region(struct pci_dev *pdev, int bar,
3909 				const char *res_name, int exclusive)
3910 {
3911 	struct pci_devres *dr;
3912 
3913 	if (pci_resource_len(pdev, bar) == 0)
3914 		return 0;
3915 
3916 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3917 		if (!request_region(pci_resource_start(pdev, bar),
3918 			    pci_resource_len(pdev, bar), res_name))
3919 			goto err_out;
3920 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3921 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3922 					pci_resource_len(pdev, bar), res_name,
3923 					exclusive))
3924 			goto err_out;
3925 	}
3926 
3927 	dr = find_pci_dr(pdev);
3928 	if (dr)
3929 		dr->region_mask |= 1 << bar;
3930 
3931 	return 0;
3932 
3933 err_out:
3934 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3935 		 &pdev->resource[bar]);
3936 	return -EBUSY;
3937 }
3938 
3939 /**
3940  * pci_request_region - Reserve PCI I/O and memory resource
3941  * @pdev: PCI device whose resources are to be reserved
3942  * @bar: BAR to be reserved
3943  * @res_name: Name to be associated with resource
3944  *
3945  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3946  * being reserved by owner @res_name.  Do not access any
3947  * address inside the PCI regions unless this call returns
3948  * successfully.
3949  *
3950  * Returns 0 on success, or %EBUSY on error.  A warning
3951  * message is also printed on failure.
3952  */
3953 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3954 {
3955 	return __pci_request_region(pdev, bar, res_name, 0);
3956 }
3957 EXPORT_SYMBOL(pci_request_region);
3958 
3959 /**
3960  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3961  * @pdev: PCI device whose resources were previously reserved
3962  * @bars: Bitmask of BARs to be released
3963  *
3964  * Release selected PCI I/O and memory resources previously reserved.
3965  * Call this function only after all use of the PCI regions has ceased.
3966  */
3967 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3968 {
3969 	int i;
3970 
3971 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3972 		if (bars & (1 << i))
3973 			pci_release_region(pdev, i);
3974 }
3975 EXPORT_SYMBOL(pci_release_selected_regions);
3976 
3977 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3978 					  const char *res_name, int excl)
3979 {
3980 	int i;
3981 
3982 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3983 		if (bars & (1 << i))
3984 			if (__pci_request_region(pdev, i, res_name, excl))
3985 				goto err_out;
3986 	return 0;
3987 
3988 err_out:
3989 	while (--i >= 0)
3990 		if (bars & (1 << i))
3991 			pci_release_region(pdev, i);
3992 
3993 	return -EBUSY;
3994 }
3995 
3996 
3997 /**
3998  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3999  * @pdev: PCI device whose resources are to be reserved
4000  * @bars: Bitmask of BARs to be requested
4001  * @res_name: Name to be associated with resource
4002  */
4003 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4004 				 const char *res_name)
4005 {
4006 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4007 }
4008 EXPORT_SYMBOL(pci_request_selected_regions);
4009 
4010 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4011 					   const char *res_name)
4012 {
4013 	return __pci_request_selected_regions(pdev, bars, res_name,
4014 			IORESOURCE_EXCLUSIVE);
4015 }
4016 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4017 
4018 /**
4019  * pci_release_regions - Release reserved PCI I/O and memory resources
4020  * @pdev: PCI device whose resources were previously reserved by
4021  *	  pci_request_regions()
4022  *
4023  * Releases all PCI I/O and memory resources previously reserved by a
4024  * successful call to pci_request_regions().  Call this function only
4025  * after all use of the PCI regions has ceased.
4026  */
4027 
4028 void pci_release_regions(struct pci_dev *pdev)
4029 {
4030 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4031 }
4032 EXPORT_SYMBOL(pci_release_regions);
4033 
4034 /**
4035  * pci_request_regions - Reserve PCI I/O and memory resources
4036  * @pdev: PCI device whose resources are to be reserved
4037  * @res_name: Name to be associated with resource.
4038  *
4039  * Mark all PCI regions associated with PCI device @pdev as
4040  * being reserved by owner @res_name.  Do not access any
4041  * address inside the PCI regions unless this call returns
4042  * successfully.
4043  *
4044  * Returns 0 on success, or %EBUSY on error.  A warning
4045  * message is also printed on failure.
4046  */
4047 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4048 {
4049 	return pci_request_selected_regions(pdev,
4050 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4051 }
4052 EXPORT_SYMBOL(pci_request_regions);
4053 
4054 /**
4055  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4056  * @pdev: PCI device whose resources are to be reserved
4057  * @res_name: Name to be associated with resource.
4058  *
4059  * Mark all PCI regions associated with PCI device @pdev as being reserved
4060  * by owner @res_name.  Do not access any address inside the PCI regions
4061  * unless this call returns successfully.
4062  *
4063  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4064  * and the sysfs MMIO access will not be allowed.
4065  *
4066  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4067  * printed on failure.
4068  */
4069 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4070 {
4071 	return pci_request_selected_regions_exclusive(pdev,
4072 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4073 }
4074 EXPORT_SYMBOL(pci_request_regions_exclusive);
4075 
4076 /*
4077  * Record the PCI IO range (expressed as CPU physical address + size).
4078  * Return a negative value if an error has occurred, zero otherwise
4079  */
4080 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4081 			resource_size_t	size)
4082 {
4083 	int ret = 0;
4084 #ifdef PCI_IOBASE
4085 	struct logic_pio_hwaddr *range;
4086 
4087 	if (!size || addr + size < addr)
4088 		return -EINVAL;
4089 
4090 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4091 	if (!range)
4092 		return -ENOMEM;
4093 
4094 	range->fwnode = fwnode;
4095 	range->size = size;
4096 	range->hw_start = addr;
4097 	range->flags = LOGIC_PIO_CPU_MMIO;
4098 
4099 	ret = logic_pio_register_range(range);
4100 	if (ret)
4101 		kfree(range);
4102 
4103 	/* Ignore duplicates due to deferred probing */
4104 	if (ret == -EEXIST)
4105 		ret = 0;
4106 #endif
4107 
4108 	return ret;
4109 }
4110 
4111 phys_addr_t pci_pio_to_address(unsigned long pio)
4112 {
4113 #ifdef PCI_IOBASE
4114 	if (pio < MMIO_UPPER_LIMIT)
4115 		return logic_pio_to_hwaddr(pio);
4116 #endif
4117 
4118 	return (phys_addr_t) OF_BAD_ADDR;
4119 }
4120 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4121 
4122 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4123 {
4124 #ifdef PCI_IOBASE
4125 	return logic_pio_trans_cpuaddr(address);
4126 #else
4127 	if (address > IO_SPACE_LIMIT)
4128 		return (unsigned long)-1;
4129 
4130 	return (unsigned long) address;
4131 #endif
4132 }
4133 
4134 /**
4135  * pci_remap_iospace - Remap the memory mapped I/O space
4136  * @res: Resource describing the I/O space
4137  * @phys_addr: physical address of range to be mapped
4138  *
4139  * Remap the memory mapped I/O space described by the @res and the CPU
4140  * physical address @phys_addr into virtual address space.  Only
4141  * architectures that have memory mapped IO functions defined (and the
4142  * PCI_IOBASE value defined) should call this function.
4143  */
4144 #ifndef pci_remap_iospace
4145 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4146 {
4147 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4148 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4149 
4150 	if (!(res->flags & IORESOURCE_IO))
4151 		return -EINVAL;
4152 
4153 	if (res->end > IO_SPACE_LIMIT)
4154 		return -EINVAL;
4155 
4156 	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4157 			       pgprot_device(PAGE_KERNEL));
4158 #else
4159 	/*
4160 	 * This architecture does not have memory mapped I/O space,
4161 	 * so this function should never be called
4162 	 */
4163 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4164 	return -ENODEV;
4165 #endif
4166 }
4167 EXPORT_SYMBOL(pci_remap_iospace);
4168 #endif
4169 
4170 /**
4171  * pci_unmap_iospace - Unmap the memory mapped I/O space
4172  * @res: resource to be unmapped
4173  *
4174  * Unmap the CPU virtual address @res from virtual address space.  Only
4175  * architectures that have memory mapped IO functions defined (and the
4176  * PCI_IOBASE value defined) should call this function.
4177  */
4178 void pci_unmap_iospace(struct resource *res)
4179 {
4180 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4181 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4182 
4183 	vunmap_range(vaddr, vaddr + resource_size(res));
4184 #endif
4185 }
4186 EXPORT_SYMBOL(pci_unmap_iospace);
4187 
4188 static void __pci_set_master(struct pci_dev *dev, bool enable)
4189 {
4190 	u16 old_cmd, cmd;
4191 
4192 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4193 	if (enable)
4194 		cmd = old_cmd | PCI_COMMAND_MASTER;
4195 	else
4196 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4197 	if (cmd != old_cmd) {
4198 		pci_dbg(dev, "%s bus mastering\n",
4199 			enable ? "enabling" : "disabling");
4200 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4201 	}
4202 	dev->is_busmaster = enable;
4203 }
4204 
4205 /**
4206  * pcibios_setup - process "pci=" kernel boot arguments
4207  * @str: string used to pass in "pci=" kernel boot arguments
4208  *
4209  * Process kernel boot arguments.  This is the default implementation.
4210  * Architecture specific implementations can override this as necessary.
4211  */
4212 char * __weak __init pcibios_setup(char *str)
4213 {
4214 	return str;
4215 }
4216 
4217 /**
4218  * pcibios_set_master - enable PCI bus-mastering for device dev
4219  * @dev: the PCI device to enable
4220  *
4221  * Enables PCI bus-mastering for the device.  This is the default
4222  * implementation.  Architecture specific implementations can override
4223  * this if necessary.
4224  */
4225 void __weak pcibios_set_master(struct pci_dev *dev)
4226 {
4227 	u8 lat;
4228 
4229 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4230 	if (pci_is_pcie(dev))
4231 		return;
4232 
4233 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4234 	if (lat < 16)
4235 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4236 	else if (lat > pcibios_max_latency)
4237 		lat = pcibios_max_latency;
4238 	else
4239 		return;
4240 
4241 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4242 }
4243 
4244 /**
4245  * pci_set_master - enables bus-mastering for device dev
4246  * @dev: the PCI device to enable
4247  *
4248  * Enables bus-mastering on the device and calls pcibios_set_master()
4249  * to do the needed arch specific settings.
4250  */
4251 void pci_set_master(struct pci_dev *dev)
4252 {
4253 	__pci_set_master(dev, true);
4254 	pcibios_set_master(dev);
4255 }
4256 EXPORT_SYMBOL(pci_set_master);
4257 
4258 /**
4259  * pci_clear_master - disables bus-mastering for device dev
4260  * @dev: the PCI device to disable
4261  */
4262 void pci_clear_master(struct pci_dev *dev)
4263 {
4264 	__pci_set_master(dev, false);
4265 }
4266 EXPORT_SYMBOL(pci_clear_master);
4267 
4268 /**
4269  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4270  * @dev: the PCI device for which MWI is to be enabled
4271  *
4272  * Helper function for pci_set_mwi.
4273  * Originally copied from drivers/net/acenic.c.
4274  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4275  *
4276  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4277  */
4278 int pci_set_cacheline_size(struct pci_dev *dev)
4279 {
4280 	u8 cacheline_size;
4281 
4282 	if (!pci_cache_line_size)
4283 		return -EINVAL;
4284 
4285 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4286 	   equal to or multiple of the right value. */
4287 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4288 	if (cacheline_size >= pci_cache_line_size &&
4289 	    (cacheline_size % pci_cache_line_size) == 0)
4290 		return 0;
4291 
4292 	/* Write the correct value. */
4293 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4294 	/* Read it back. */
4295 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4296 	if (cacheline_size == pci_cache_line_size)
4297 		return 0;
4298 
4299 	pci_dbg(dev, "cache line size of %d is not supported\n",
4300 		   pci_cache_line_size << 2);
4301 
4302 	return -EINVAL;
4303 }
4304 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4305 
4306 /**
4307  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4308  * @dev: the PCI device for which MWI is enabled
4309  *
4310  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4311  *
4312  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4313  */
4314 int pci_set_mwi(struct pci_dev *dev)
4315 {
4316 #ifdef PCI_DISABLE_MWI
4317 	return 0;
4318 #else
4319 	int rc;
4320 	u16 cmd;
4321 
4322 	rc = pci_set_cacheline_size(dev);
4323 	if (rc)
4324 		return rc;
4325 
4326 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4327 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4328 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4329 		cmd |= PCI_COMMAND_INVALIDATE;
4330 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4331 	}
4332 	return 0;
4333 #endif
4334 }
4335 EXPORT_SYMBOL(pci_set_mwi);
4336 
4337 /**
4338  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4339  * @dev: the PCI device for which MWI is enabled
4340  *
4341  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4342  * Callers are not required to check the return value.
4343  *
4344  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4345  */
4346 int pci_try_set_mwi(struct pci_dev *dev)
4347 {
4348 #ifdef PCI_DISABLE_MWI
4349 	return 0;
4350 #else
4351 	return pci_set_mwi(dev);
4352 #endif
4353 }
4354 EXPORT_SYMBOL(pci_try_set_mwi);
4355 
4356 /**
4357  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4358  * @dev: the PCI device to disable
4359  *
4360  * Disables PCI Memory-Write-Invalidate transaction on the device
4361  */
4362 void pci_clear_mwi(struct pci_dev *dev)
4363 {
4364 #ifndef PCI_DISABLE_MWI
4365 	u16 cmd;
4366 
4367 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4368 	if (cmd & PCI_COMMAND_INVALIDATE) {
4369 		cmd &= ~PCI_COMMAND_INVALIDATE;
4370 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4371 	}
4372 #endif
4373 }
4374 EXPORT_SYMBOL(pci_clear_mwi);
4375 
4376 /**
4377  * pci_disable_parity - disable parity checking for device
4378  * @dev: the PCI device to operate on
4379  *
4380  * Disable parity checking for device @dev
4381  */
4382 void pci_disable_parity(struct pci_dev *dev)
4383 {
4384 	u16 cmd;
4385 
4386 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4387 	if (cmd & PCI_COMMAND_PARITY) {
4388 		cmd &= ~PCI_COMMAND_PARITY;
4389 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4390 	}
4391 }
4392 
4393 /**
4394  * pci_intx - enables/disables PCI INTx for device dev
4395  * @pdev: the PCI device to operate on
4396  * @enable: boolean: whether to enable or disable PCI INTx
4397  *
4398  * Enables/disables PCI INTx for device @pdev
4399  */
4400 void pci_intx(struct pci_dev *pdev, int enable)
4401 {
4402 	u16 pci_command, new;
4403 
4404 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4405 
4406 	if (enable)
4407 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4408 	else
4409 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4410 
4411 	if (new != pci_command) {
4412 		struct pci_devres *dr;
4413 
4414 		pci_write_config_word(pdev, PCI_COMMAND, new);
4415 
4416 		dr = find_pci_dr(pdev);
4417 		if (dr && !dr->restore_intx) {
4418 			dr->restore_intx = 1;
4419 			dr->orig_intx = !enable;
4420 		}
4421 	}
4422 }
4423 EXPORT_SYMBOL_GPL(pci_intx);
4424 
4425 /**
4426  * pci_wait_for_pending_transaction - wait for pending transaction
4427  * @dev: the PCI device to operate on
4428  *
4429  * Return 0 if transaction is pending 1 otherwise.
4430  */
4431 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4432 {
4433 	if (!pci_is_pcie(dev))
4434 		return 1;
4435 
4436 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4437 				    PCI_EXP_DEVSTA_TRPND);
4438 }
4439 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4440 
4441 /**
4442  * pcie_flr - initiate a PCIe function level reset
4443  * @dev: device to reset
4444  *
4445  * Initiate a function level reset unconditionally on @dev without
4446  * checking any flags and DEVCAP
4447  */
4448 int pcie_flr(struct pci_dev *dev)
4449 {
4450 	if (!pci_wait_for_pending_transaction(dev))
4451 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4452 
4453 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4454 
4455 	if (dev->imm_ready)
4456 		return 0;
4457 
4458 	/*
4459 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4460 	 * 100ms, but may silently discard requests while the FLR is in
4461 	 * progress.  Wait 100ms before trying to access the device.
4462 	 */
4463 	msleep(100);
4464 
4465 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4466 }
4467 EXPORT_SYMBOL_GPL(pcie_flr);
4468 
4469 /**
4470  * pcie_reset_flr - initiate a PCIe function level reset
4471  * @dev: device to reset
4472  * @probe: if true, return 0 if device can be reset this way
4473  *
4474  * Initiate a function level reset on @dev.
4475  */
4476 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4477 {
4478 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4479 		return -ENOTTY;
4480 
4481 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4482 		return -ENOTTY;
4483 
4484 	if (probe)
4485 		return 0;
4486 
4487 	return pcie_flr(dev);
4488 }
4489 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4490 
4491 static int pci_af_flr(struct pci_dev *dev, bool probe)
4492 {
4493 	int pos;
4494 	u8 cap;
4495 
4496 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4497 	if (!pos)
4498 		return -ENOTTY;
4499 
4500 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4501 		return -ENOTTY;
4502 
4503 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4504 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4505 		return -ENOTTY;
4506 
4507 	if (probe)
4508 		return 0;
4509 
4510 	/*
4511 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4512 	 * is used, so we use the control offset rather than status and shift
4513 	 * the test bit to match.
4514 	 */
4515 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4516 				 PCI_AF_STATUS_TP << 8))
4517 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4518 
4519 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4520 
4521 	if (dev->imm_ready)
4522 		return 0;
4523 
4524 	/*
4525 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4526 	 * updated 27 July 2006; a device must complete an FLR within
4527 	 * 100ms, but may silently discard requests while the FLR is in
4528 	 * progress.  Wait 100ms before trying to access the device.
4529 	 */
4530 	msleep(100);
4531 
4532 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4533 }
4534 
4535 /**
4536  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4537  * @dev: Device to reset.
4538  * @probe: if true, return 0 if the device can be reset this way.
4539  *
4540  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4541  * unset, it will be reinitialized internally when going from PCI_D3hot to
4542  * PCI_D0.  If that's the case and the device is not in a low-power state
4543  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4544  *
4545  * NOTE: This causes the caller to sleep for twice the device power transition
4546  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4547  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4548  * Moreover, only devices in D0 can be reset by this function.
4549  */
4550 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4551 {
4552 	u16 csr;
4553 
4554 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4555 		return -ENOTTY;
4556 
4557 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4558 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4559 		return -ENOTTY;
4560 
4561 	if (probe)
4562 		return 0;
4563 
4564 	if (dev->current_state != PCI_D0)
4565 		return -EINVAL;
4566 
4567 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4568 	csr |= PCI_D3hot;
4569 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4570 	pci_dev_d3_sleep(dev);
4571 
4572 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4573 	csr |= PCI_D0;
4574 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4575 	pci_dev_d3_sleep(dev);
4576 
4577 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4578 }
4579 
4580 /**
4581  * pcie_wait_for_link_status - Wait for link status change
4582  * @pdev: Device whose link to wait for.
4583  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4584  * @active: Waiting for active or inactive?
4585  *
4586  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4587  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4588  */
4589 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4590 				     bool use_lt, bool active)
4591 {
4592 	u16 lnksta_mask, lnksta_match;
4593 	unsigned long end_jiffies;
4594 	u16 lnksta;
4595 
4596 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4597 	lnksta_match = active ? lnksta_mask : 0;
4598 
4599 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4600 	do {
4601 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4602 		if ((lnksta & lnksta_mask) == lnksta_match)
4603 			return 0;
4604 		msleep(1);
4605 	} while (time_before(jiffies, end_jiffies));
4606 
4607 	return -ETIMEDOUT;
4608 }
4609 
4610 /**
4611  * pcie_retrain_link - Request a link retrain and wait for it to complete
4612  * @pdev: Device whose link to retrain.
4613  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4614  *
4615  * Retrain completion status is retrieved from the Link Status Register
4616  * according to @use_lt.  It is not verified whether the use of the DLLLA
4617  * bit is valid.
4618  *
4619  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4620  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4621  */
4622 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4623 {
4624 	int rc;
4625 
4626 	/*
4627 	 * Ensure the updated LNKCTL parameters are used during link
4628 	 * training by checking that there is no ongoing link training to
4629 	 * avoid LTSSM race as recommended in Implementation Note at the
4630 	 * end of PCIe r6.0.1 sec 7.5.3.7.
4631 	 */
4632 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4633 	if (rc)
4634 		return rc;
4635 
4636 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4637 	if (pdev->clear_retrain_link) {
4638 		/*
4639 		 * Due to an erratum in some devices the Retrain Link bit
4640 		 * needs to be cleared again manually to allow the link
4641 		 * training to succeed.
4642 		 */
4643 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4644 	}
4645 
4646 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4647 }
4648 
4649 /**
4650  * pcie_wait_for_link_delay - Wait until link is active or inactive
4651  * @pdev: Bridge device
4652  * @active: waiting for active or inactive?
4653  * @delay: Delay to wait after link has become active (in ms)
4654  *
4655  * Use this to wait till link becomes active or inactive.
4656  */
4657 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4658 				     int delay)
4659 {
4660 	int rc;
4661 
4662 	/*
4663 	 * Some controllers might not implement link active reporting. In this
4664 	 * case, we wait for 1000 ms + any delay requested by the caller.
4665 	 */
4666 	if (!pdev->link_active_reporting) {
4667 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4668 		return true;
4669 	}
4670 
4671 	/*
4672 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4673 	 * after which we should expect an link active if the reset was
4674 	 * successful. If so, software must wait a minimum 100ms before sending
4675 	 * configuration requests to devices downstream this port.
4676 	 *
4677 	 * If the link fails to activate, either the device was physically
4678 	 * removed or the link is permanently failed.
4679 	 */
4680 	if (active)
4681 		msleep(20);
4682 	rc = pcie_wait_for_link_status(pdev, false, active);
4683 	if (active) {
4684 		if (rc)
4685 			rc = pcie_failed_link_retrain(pdev);
4686 		if (rc)
4687 			return false;
4688 
4689 		msleep(delay);
4690 		return true;
4691 	}
4692 
4693 	if (rc)
4694 		return false;
4695 
4696 	return true;
4697 }
4698 
4699 /**
4700  * pcie_wait_for_link - Wait until link is active or inactive
4701  * @pdev: Bridge device
4702  * @active: waiting for active or inactive?
4703  *
4704  * Use this to wait till link becomes active or inactive.
4705  */
4706 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4707 {
4708 	return pcie_wait_for_link_delay(pdev, active, 100);
4709 }
4710 
4711 /*
4712  * Find maximum D3cold delay required by all the devices on the bus.  The
4713  * spec says 100 ms, but firmware can lower it and we allow drivers to
4714  * increase it as well.
4715  *
4716  * Called with @pci_bus_sem locked for reading.
4717  */
4718 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4719 {
4720 	const struct pci_dev *pdev;
4721 	int min_delay = 100;
4722 	int max_delay = 0;
4723 
4724 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4725 		if (pdev->d3cold_delay < min_delay)
4726 			min_delay = pdev->d3cold_delay;
4727 		if (pdev->d3cold_delay > max_delay)
4728 			max_delay = pdev->d3cold_delay;
4729 	}
4730 
4731 	return max(min_delay, max_delay);
4732 }
4733 
4734 /**
4735  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4736  * @dev: PCI bridge
4737  * @reset_type: reset type in human-readable form
4738  *
4739  * Handle necessary delays before access to the devices on the secondary
4740  * side of the bridge are permitted after D3cold to D0 transition
4741  * or Conventional Reset.
4742  *
4743  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4744  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4745  * 4.3.2.
4746  *
4747  * Return 0 on success or -ENOTTY if the first device on the secondary bus
4748  * failed to become accessible.
4749  */
4750 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4751 {
4752 	struct pci_dev *child;
4753 	int delay;
4754 
4755 	if (pci_dev_is_disconnected(dev))
4756 		return 0;
4757 
4758 	if (!pci_is_bridge(dev))
4759 		return 0;
4760 
4761 	down_read(&pci_bus_sem);
4762 
4763 	/*
4764 	 * We only deal with devices that are present currently on the bus.
4765 	 * For any hot-added devices the access delay is handled in pciehp
4766 	 * board_added(). In case of ACPI hotplug the firmware is expected
4767 	 * to configure the devices before OS is notified.
4768 	 */
4769 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4770 		up_read(&pci_bus_sem);
4771 		return 0;
4772 	}
4773 
4774 	/* Take d3cold_delay requirements into account */
4775 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4776 	if (!delay) {
4777 		up_read(&pci_bus_sem);
4778 		return 0;
4779 	}
4780 
4781 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4782 				 bus_list);
4783 	up_read(&pci_bus_sem);
4784 
4785 	/*
4786 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4787 	 * accessing the device after reset (that is 1000 ms + 100 ms).
4788 	 */
4789 	if (!pci_is_pcie(dev)) {
4790 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4791 		msleep(1000 + delay);
4792 		return 0;
4793 	}
4794 
4795 	/*
4796 	 * For PCIe downstream and root ports that do not support speeds
4797 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4798 	 * speeds (gen3) we need to wait first for the data link layer to
4799 	 * become active.
4800 	 *
4801 	 * However, 100 ms is the minimum and the PCIe spec says the
4802 	 * software must allow at least 1s before it can determine that the
4803 	 * device that did not respond is a broken device. Also device can
4804 	 * take longer than that to respond if it indicates so through Request
4805 	 * Retry Status completions.
4806 	 *
4807 	 * Therefore we wait for 100 ms and check for the device presence
4808 	 * until the timeout expires.
4809 	 */
4810 	if (!pcie_downstream_port(dev))
4811 		return 0;
4812 
4813 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4814 		u16 status;
4815 
4816 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4817 		msleep(delay);
4818 
4819 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4820 			return 0;
4821 
4822 		/*
4823 		 * If the port supports active link reporting we now check
4824 		 * whether the link is active and if not bail out early with
4825 		 * the assumption that the device is not present anymore.
4826 		 */
4827 		if (!dev->link_active_reporting)
4828 			return -ENOTTY;
4829 
4830 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4831 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
4832 			return -ENOTTY;
4833 
4834 		return pci_dev_wait(child, reset_type,
4835 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4836 	}
4837 
4838 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4839 		delay);
4840 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
4841 		/* Did not train, no need to wait any further */
4842 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4843 		return -ENOTTY;
4844 	}
4845 
4846 	return pci_dev_wait(child, reset_type,
4847 			    PCIE_RESET_READY_POLL_MS - delay);
4848 }
4849 
4850 void pci_reset_secondary_bus(struct pci_dev *dev)
4851 {
4852 	u16 ctrl;
4853 
4854 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4855 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4856 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4857 
4858 	/*
4859 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4860 	 * this to 2ms to ensure that we meet the minimum requirement.
4861 	 */
4862 	msleep(2);
4863 
4864 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4865 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4866 }
4867 
4868 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4869 {
4870 	pci_reset_secondary_bus(dev);
4871 }
4872 
4873 /**
4874  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4875  * @dev: Bridge device
4876  *
4877  * Use the bridge control register to assert reset on the secondary bus.
4878  * Devices on the secondary bus are left in power-on state.
4879  */
4880 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4881 {
4882 	pcibios_reset_secondary_bus(dev);
4883 
4884 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4885 }
4886 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4887 
4888 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4889 {
4890 	struct pci_dev *pdev;
4891 
4892 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4893 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4894 		return -ENOTTY;
4895 
4896 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4897 		if (pdev != dev)
4898 			return -ENOTTY;
4899 
4900 	if (probe)
4901 		return 0;
4902 
4903 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4904 }
4905 
4906 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
4907 {
4908 	int rc = -ENOTTY;
4909 
4910 	if (!hotplug || !try_module_get(hotplug->owner))
4911 		return rc;
4912 
4913 	if (hotplug->ops->reset_slot)
4914 		rc = hotplug->ops->reset_slot(hotplug, probe);
4915 
4916 	module_put(hotplug->owner);
4917 
4918 	return rc;
4919 }
4920 
4921 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
4922 {
4923 	if (dev->multifunction || dev->subordinate || !dev->slot ||
4924 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4925 		return -ENOTTY;
4926 
4927 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4928 }
4929 
4930 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
4931 {
4932 	int rc;
4933 
4934 	rc = pci_dev_reset_slot_function(dev, probe);
4935 	if (rc != -ENOTTY)
4936 		return rc;
4937 	return pci_parent_bus_reset(dev, probe);
4938 }
4939 
4940 void pci_dev_lock(struct pci_dev *dev)
4941 {
4942 	/* block PM suspend, driver probe, etc. */
4943 	device_lock(&dev->dev);
4944 	pci_cfg_access_lock(dev);
4945 }
4946 EXPORT_SYMBOL_GPL(pci_dev_lock);
4947 
4948 /* Return 1 on successful lock, 0 on contention */
4949 int pci_dev_trylock(struct pci_dev *dev)
4950 {
4951 	if (device_trylock(&dev->dev)) {
4952 		if (pci_cfg_access_trylock(dev))
4953 			return 1;
4954 		device_unlock(&dev->dev);
4955 	}
4956 
4957 	return 0;
4958 }
4959 EXPORT_SYMBOL_GPL(pci_dev_trylock);
4960 
4961 void pci_dev_unlock(struct pci_dev *dev)
4962 {
4963 	pci_cfg_access_unlock(dev);
4964 	device_unlock(&dev->dev);
4965 }
4966 EXPORT_SYMBOL_GPL(pci_dev_unlock);
4967 
4968 static void pci_dev_save_and_disable(struct pci_dev *dev)
4969 {
4970 	const struct pci_error_handlers *err_handler =
4971 			dev->driver ? dev->driver->err_handler : NULL;
4972 
4973 	/*
4974 	 * dev->driver->err_handler->reset_prepare() is protected against
4975 	 * races with ->remove() by the device lock, which must be held by
4976 	 * the caller.
4977 	 */
4978 	if (err_handler && err_handler->reset_prepare)
4979 		err_handler->reset_prepare(dev);
4980 
4981 	/*
4982 	 * Wake-up device prior to save.  PM registers default to D0 after
4983 	 * reset and a simple register restore doesn't reliably return
4984 	 * to a non-D0 state anyway.
4985 	 */
4986 	pci_set_power_state(dev, PCI_D0);
4987 
4988 	pci_save_state(dev);
4989 	/*
4990 	 * Disable the device by clearing the Command register, except for
4991 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4992 	 * BARs, but also prevents the device from being Bus Master, preventing
4993 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4994 	 * compliant devices, INTx-disable prevents legacy interrupts.
4995 	 */
4996 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4997 }
4998 
4999 static void pci_dev_restore(struct pci_dev *dev)
5000 {
5001 	const struct pci_error_handlers *err_handler =
5002 			dev->driver ? dev->driver->err_handler : NULL;
5003 
5004 	pci_restore_state(dev);
5005 
5006 	/*
5007 	 * dev->driver->err_handler->reset_done() is protected against
5008 	 * races with ->remove() by the device lock, which must be held by
5009 	 * the caller.
5010 	 */
5011 	if (err_handler && err_handler->reset_done)
5012 		err_handler->reset_done(dev);
5013 }
5014 
5015 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5016 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5017 	{ },
5018 	{ pci_dev_specific_reset, .name = "device_specific" },
5019 	{ pci_dev_acpi_reset, .name = "acpi" },
5020 	{ pcie_reset_flr, .name = "flr" },
5021 	{ pci_af_flr, .name = "af_flr" },
5022 	{ pci_pm_reset, .name = "pm" },
5023 	{ pci_reset_bus_function, .name = "bus" },
5024 };
5025 
5026 static ssize_t reset_method_show(struct device *dev,
5027 				 struct device_attribute *attr, char *buf)
5028 {
5029 	struct pci_dev *pdev = to_pci_dev(dev);
5030 	ssize_t len = 0;
5031 	int i, m;
5032 
5033 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5034 		m = pdev->reset_methods[i];
5035 		if (!m)
5036 			break;
5037 
5038 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5039 				     pci_reset_fn_methods[m].name);
5040 	}
5041 
5042 	if (len)
5043 		len += sysfs_emit_at(buf, len, "\n");
5044 
5045 	return len;
5046 }
5047 
5048 static int reset_method_lookup(const char *name)
5049 {
5050 	int m;
5051 
5052 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5053 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5054 			return m;
5055 	}
5056 
5057 	return 0;	/* not found */
5058 }
5059 
5060 static ssize_t reset_method_store(struct device *dev,
5061 				  struct device_attribute *attr,
5062 				  const char *buf, size_t count)
5063 {
5064 	struct pci_dev *pdev = to_pci_dev(dev);
5065 	char *options, *name;
5066 	int m, n;
5067 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5068 
5069 	if (sysfs_streq(buf, "")) {
5070 		pdev->reset_methods[0] = 0;
5071 		pci_warn(pdev, "All device reset methods disabled by user");
5072 		return count;
5073 	}
5074 
5075 	if (sysfs_streq(buf, "default")) {
5076 		pci_init_reset_methods(pdev);
5077 		return count;
5078 	}
5079 
5080 	options = kstrndup(buf, count, GFP_KERNEL);
5081 	if (!options)
5082 		return -ENOMEM;
5083 
5084 	n = 0;
5085 	while ((name = strsep(&options, " ")) != NULL) {
5086 		if (sysfs_streq(name, ""))
5087 			continue;
5088 
5089 		name = strim(name);
5090 
5091 		m = reset_method_lookup(name);
5092 		if (!m) {
5093 			pci_err(pdev, "Invalid reset method '%s'", name);
5094 			goto error;
5095 		}
5096 
5097 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5098 			pci_err(pdev, "Unsupported reset method '%s'", name);
5099 			goto error;
5100 		}
5101 
5102 		if (n == PCI_NUM_RESET_METHODS - 1) {
5103 			pci_err(pdev, "Too many reset methods\n");
5104 			goto error;
5105 		}
5106 
5107 		reset_methods[n++] = m;
5108 	}
5109 
5110 	reset_methods[n] = 0;
5111 
5112 	/* Warn if dev-specific supported but not highest priority */
5113 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5114 	    reset_methods[0] != 1)
5115 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5116 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5117 	kfree(options);
5118 	return count;
5119 
5120 error:
5121 	/* Leave previous methods unchanged */
5122 	kfree(options);
5123 	return -EINVAL;
5124 }
5125 static DEVICE_ATTR_RW(reset_method);
5126 
5127 static struct attribute *pci_dev_reset_method_attrs[] = {
5128 	&dev_attr_reset_method.attr,
5129 	NULL,
5130 };
5131 
5132 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5133 						    struct attribute *a, int n)
5134 {
5135 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5136 
5137 	if (!pci_reset_supported(pdev))
5138 		return 0;
5139 
5140 	return a->mode;
5141 }
5142 
5143 const struct attribute_group pci_dev_reset_method_attr_group = {
5144 	.attrs = pci_dev_reset_method_attrs,
5145 	.is_visible = pci_dev_reset_method_attr_is_visible,
5146 };
5147 
5148 /**
5149  * __pci_reset_function_locked - reset a PCI device function while holding
5150  * the @dev mutex lock.
5151  * @dev: PCI device to reset
5152  *
5153  * Some devices allow an individual function to be reset without affecting
5154  * other functions in the same device.  The PCI device must be responsive
5155  * to PCI config space in order to use this function.
5156  *
5157  * The device function is presumed to be unused and the caller is holding
5158  * the device mutex lock when this function is called.
5159  *
5160  * Resetting the device will make the contents of PCI configuration space
5161  * random, so any caller of this must be prepared to reinitialise the
5162  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5163  * etc.
5164  *
5165  * Returns 0 if the device function was successfully reset or negative if the
5166  * device doesn't support resetting a single function.
5167  */
5168 int __pci_reset_function_locked(struct pci_dev *dev)
5169 {
5170 	int i, m, rc;
5171 
5172 	might_sleep();
5173 
5174 	/*
5175 	 * A reset method returns -ENOTTY if it doesn't support this device and
5176 	 * we should try the next method.
5177 	 *
5178 	 * If it returns 0 (success), we're finished.  If it returns any other
5179 	 * error, we're also finished: this indicates that further reset
5180 	 * mechanisms might be broken on the device.
5181 	 */
5182 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5183 		m = dev->reset_methods[i];
5184 		if (!m)
5185 			return -ENOTTY;
5186 
5187 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5188 		if (!rc)
5189 			return 0;
5190 		if (rc != -ENOTTY)
5191 			return rc;
5192 	}
5193 
5194 	return -ENOTTY;
5195 }
5196 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5197 
5198 /**
5199  * pci_init_reset_methods - check whether device can be safely reset
5200  * and store supported reset mechanisms.
5201  * @dev: PCI device to check for reset mechanisms
5202  *
5203  * Some devices allow an individual function to be reset without affecting
5204  * other functions in the same device.  The PCI device must be in D0-D3hot
5205  * state.
5206  *
5207  * Stores reset mechanisms supported by device in reset_methods byte array
5208  * which is a member of struct pci_dev.
5209  */
5210 void pci_init_reset_methods(struct pci_dev *dev)
5211 {
5212 	int m, i, rc;
5213 
5214 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5215 
5216 	might_sleep();
5217 
5218 	i = 0;
5219 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5220 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5221 		if (!rc)
5222 			dev->reset_methods[i++] = m;
5223 		else if (rc != -ENOTTY)
5224 			break;
5225 	}
5226 
5227 	dev->reset_methods[i] = 0;
5228 }
5229 
5230 /**
5231  * pci_reset_function - quiesce and reset a PCI device function
5232  * @dev: PCI device to reset
5233  *
5234  * Some devices allow an individual function to be reset without affecting
5235  * other functions in the same device.  The PCI device must be responsive
5236  * to PCI config space in order to use this function.
5237  *
5238  * This function does not just reset the PCI portion of a device, but
5239  * clears all the state associated with the device.  This function differs
5240  * from __pci_reset_function_locked() in that it saves and restores device state
5241  * over the reset and takes the PCI device lock.
5242  *
5243  * Returns 0 if the device function was successfully reset or negative if the
5244  * device doesn't support resetting a single function.
5245  */
5246 int pci_reset_function(struct pci_dev *dev)
5247 {
5248 	int rc;
5249 
5250 	if (!pci_reset_supported(dev))
5251 		return -ENOTTY;
5252 
5253 	pci_dev_lock(dev);
5254 	pci_dev_save_and_disable(dev);
5255 
5256 	rc = __pci_reset_function_locked(dev);
5257 
5258 	pci_dev_restore(dev);
5259 	pci_dev_unlock(dev);
5260 
5261 	return rc;
5262 }
5263 EXPORT_SYMBOL_GPL(pci_reset_function);
5264 
5265 /**
5266  * pci_reset_function_locked - quiesce and reset a PCI device function
5267  * @dev: PCI device to reset
5268  *
5269  * Some devices allow an individual function to be reset without affecting
5270  * other functions in the same device.  The PCI device must be responsive
5271  * to PCI config space in order to use this function.
5272  *
5273  * This function does not just reset the PCI portion of a device, but
5274  * clears all the state associated with the device.  This function differs
5275  * from __pci_reset_function_locked() in that it saves and restores device state
5276  * over the reset.  It also differs from pci_reset_function() in that it
5277  * requires the PCI device lock to be held.
5278  *
5279  * Returns 0 if the device function was successfully reset or negative if the
5280  * device doesn't support resetting a single function.
5281  */
5282 int pci_reset_function_locked(struct pci_dev *dev)
5283 {
5284 	int rc;
5285 
5286 	if (!pci_reset_supported(dev))
5287 		return -ENOTTY;
5288 
5289 	pci_dev_save_and_disable(dev);
5290 
5291 	rc = __pci_reset_function_locked(dev);
5292 
5293 	pci_dev_restore(dev);
5294 
5295 	return rc;
5296 }
5297 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5298 
5299 /**
5300  * pci_try_reset_function - quiesce and reset a PCI device function
5301  * @dev: PCI device to reset
5302  *
5303  * Same as above, except return -EAGAIN if unable to lock device.
5304  */
5305 int pci_try_reset_function(struct pci_dev *dev)
5306 {
5307 	int rc;
5308 
5309 	if (!pci_reset_supported(dev))
5310 		return -ENOTTY;
5311 
5312 	if (!pci_dev_trylock(dev))
5313 		return -EAGAIN;
5314 
5315 	pci_dev_save_and_disable(dev);
5316 	rc = __pci_reset_function_locked(dev);
5317 	pci_dev_restore(dev);
5318 	pci_dev_unlock(dev);
5319 
5320 	return rc;
5321 }
5322 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5323 
5324 /* Do any devices on or below this bus prevent a bus reset? */
5325 static bool pci_bus_resettable(struct pci_bus *bus)
5326 {
5327 	struct pci_dev *dev;
5328 
5329 
5330 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5331 		return false;
5332 
5333 	list_for_each_entry(dev, &bus->devices, bus_list) {
5334 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5335 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5336 			return false;
5337 	}
5338 
5339 	return true;
5340 }
5341 
5342 /* Lock devices from the top of the tree down */
5343 static void pci_bus_lock(struct pci_bus *bus)
5344 {
5345 	struct pci_dev *dev;
5346 
5347 	list_for_each_entry(dev, &bus->devices, bus_list) {
5348 		pci_dev_lock(dev);
5349 		if (dev->subordinate)
5350 			pci_bus_lock(dev->subordinate);
5351 	}
5352 }
5353 
5354 /* Unlock devices from the bottom of the tree up */
5355 static void pci_bus_unlock(struct pci_bus *bus)
5356 {
5357 	struct pci_dev *dev;
5358 
5359 	list_for_each_entry(dev, &bus->devices, bus_list) {
5360 		if (dev->subordinate)
5361 			pci_bus_unlock(dev->subordinate);
5362 		pci_dev_unlock(dev);
5363 	}
5364 }
5365 
5366 /* Return 1 on successful lock, 0 on contention */
5367 static int pci_bus_trylock(struct pci_bus *bus)
5368 {
5369 	struct pci_dev *dev;
5370 
5371 	list_for_each_entry(dev, &bus->devices, bus_list) {
5372 		if (!pci_dev_trylock(dev))
5373 			goto unlock;
5374 		if (dev->subordinate) {
5375 			if (!pci_bus_trylock(dev->subordinate)) {
5376 				pci_dev_unlock(dev);
5377 				goto unlock;
5378 			}
5379 		}
5380 	}
5381 	return 1;
5382 
5383 unlock:
5384 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5385 		if (dev->subordinate)
5386 			pci_bus_unlock(dev->subordinate);
5387 		pci_dev_unlock(dev);
5388 	}
5389 	return 0;
5390 }
5391 
5392 /* Do any devices on or below this slot prevent a bus reset? */
5393 static bool pci_slot_resettable(struct pci_slot *slot)
5394 {
5395 	struct pci_dev *dev;
5396 
5397 	if (slot->bus->self &&
5398 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5399 		return false;
5400 
5401 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5402 		if (!dev->slot || dev->slot != slot)
5403 			continue;
5404 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5405 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5406 			return false;
5407 	}
5408 
5409 	return true;
5410 }
5411 
5412 /* Lock devices from the top of the tree down */
5413 static void pci_slot_lock(struct pci_slot *slot)
5414 {
5415 	struct pci_dev *dev;
5416 
5417 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5418 		if (!dev->slot || dev->slot != slot)
5419 			continue;
5420 		pci_dev_lock(dev);
5421 		if (dev->subordinate)
5422 			pci_bus_lock(dev->subordinate);
5423 	}
5424 }
5425 
5426 /* Unlock devices from the bottom of the tree up */
5427 static void pci_slot_unlock(struct pci_slot *slot)
5428 {
5429 	struct pci_dev *dev;
5430 
5431 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5432 		if (!dev->slot || dev->slot != slot)
5433 			continue;
5434 		if (dev->subordinate)
5435 			pci_bus_unlock(dev->subordinate);
5436 		pci_dev_unlock(dev);
5437 	}
5438 }
5439 
5440 /* Return 1 on successful lock, 0 on contention */
5441 static int pci_slot_trylock(struct pci_slot *slot)
5442 {
5443 	struct pci_dev *dev;
5444 
5445 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5446 		if (!dev->slot || dev->slot != slot)
5447 			continue;
5448 		if (!pci_dev_trylock(dev))
5449 			goto unlock;
5450 		if (dev->subordinate) {
5451 			if (!pci_bus_trylock(dev->subordinate)) {
5452 				pci_dev_unlock(dev);
5453 				goto unlock;
5454 			}
5455 		}
5456 	}
5457 	return 1;
5458 
5459 unlock:
5460 	list_for_each_entry_continue_reverse(dev,
5461 					     &slot->bus->devices, bus_list) {
5462 		if (!dev->slot || dev->slot != slot)
5463 			continue;
5464 		if (dev->subordinate)
5465 			pci_bus_unlock(dev->subordinate);
5466 		pci_dev_unlock(dev);
5467 	}
5468 	return 0;
5469 }
5470 
5471 /*
5472  * Save and disable devices from the top of the tree down while holding
5473  * the @dev mutex lock for the entire tree.
5474  */
5475 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5476 {
5477 	struct pci_dev *dev;
5478 
5479 	list_for_each_entry(dev, &bus->devices, bus_list) {
5480 		pci_dev_save_and_disable(dev);
5481 		if (dev->subordinate)
5482 			pci_bus_save_and_disable_locked(dev->subordinate);
5483 	}
5484 }
5485 
5486 /*
5487  * Restore devices from top of the tree down while holding @dev mutex lock
5488  * for the entire tree.  Parent bridges need to be restored before we can
5489  * get to subordinate devices.
5490  */
5491 static void pci_bus_restore_locked(struct pci_bus *bus)
5492 {
5493 	struct pci_dev *dev;
5494 
5495 	list_for_each_entry(dev, &bus->devices, bus_list) {
5496 		pci_dev_restore(dev);
5497 		if (dev->subordinate)
5498 			pci_bus_restore_locked(dev->subordinate);
5499 	}
5500 }
5501 
5502 /*
5503  * Save and disable devices from the top of the tree down while holding
5504  * the @dev mutex lock for the entire tree.
5505  */
5506 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5507 {
5508 	struct pci_dev *dev;
5509 
5510 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5511 		if (!dev->slot || dev->slot != slot)
5512 			continue;
5513 		pci_dev_save_and_disable(dev);
5514 		if (dev->subordinate)
5515 			pci_bus_save_and_disable_locked(dev->subordinate);
5516 	}
5517 }
5518 
5519 /*
5520  * Restore devices from top of the tree down while holding @dev mutex lock
5521  * for the entire tree.  Parent bridges need to be restored before we can
5522  * get to subordinate devices.
5523  */
5524 static void pci_slot_restore_locked(struct pci_slot *slot)
5525 {
5526 	struct pci_dev *dev;
5527 
5528 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5529 		if (!dev->slot || dev->slot != slot)
5530 			continue;
5531 		pci_dev_restore(dev);
5532 		if (dev->subordinate)
5533 			pci_bus_restore_locked(dev->subordinate);
5534 	}
5535 }
5536 
5537 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5538 {
5539 	int rc;
5540 
5541 	if (!slot || !pci_slot_resettable(slot))
5542 		return -ENOTTY;
5543 
5544 	if (!probe)
5545 		pci_slot_lock(slot);
5546 
5547 	might_sleep();
5548 
5549 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5550 
5551 	if (!probe)
5552 		pci_slot_unlock(slot);
5553 
5554 	return rc;
5555 }
5556 
5557 /**
5558  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5559  * @slot: PCI slot to probe
5560  *
5561  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5562  */
5563 int pci_probe_reset_slot(struct pci_slot *slot)
5564 {
5565 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5566 }
5567 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5568 
5569 /**
5570  * __pci_reset_slot - Try to reset a PCI slot
5571  * @slot: PCI slot to reset
5572  *
5573  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5574  * independent of other slots.  For instance, some slots may support slot power
5575  * control.  In the case of a 1:1 bus to slot architecture, this function may
5576  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5577  * Generally a slot reset should be attempted before a bus reset.  All of the
5578  * function of the slot and any subordinate buses behind the slot are reset
5579  * through this function.  PCI config space of all devices in the slot and
5580  * behind the slot is saved before and restored after reset.
5581  *
5582  * Same as above except return -EAGAIN if the slot cannot be locked
5583  */
5584 static int __pci_reset_slot(struct pci_slot *slot)
5585 {
5586 	int rc;
5587 
5588 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5589 	if (rc)
5590 		return rc;
5591 
5592 	if (pci_slot_trylock(slot)) {
5593 		pci_slot_save_and_disable_locked(slot);
5594 		might_sleep();
5595 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5596 		pci_slot_restore_locked(slot);
5597 		pci_slot_unlock(slot);
5598 	} else
5599 		rc = -EAGAIN;
5600 
5601 	return rc;
5602 }
5603 
5604 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5605 {
5606 	int ret;
5607 
5608 	if (!bus->self || !pci_bus_resettable(bus))
5609 		return -ENOTTY;
5610 
5611 	if (probe)
5612 		return 0;
5613 
5614 	pci_bus_lock(bus);
5615 
5616 	might_sleep();
5617 
5618 	ret = pci_bridge_secondary_bus_reset(bus->self);
5619 
5620 	pci_bus_unlock(bus);
5621 
5622 	return ret;
5623 }
5624 
5625 /**
5626  * pci_bus_error_reset - reset the bridge's subordinate bus
5627  * @bridge: The parent device that connects to the bus to reset
5628  *
5629  * This function will first try to reset the slots on this bus if the method is
5630  * available. If slot reset fails or is not available, this will fall back to a
5631  * secondary bus reset.
5632  */
5633 int pci_bus_error_reset(struct pci_dev *bridge)
5634 {
5635 	struct pci_bus *bus = bridge->subordinate;
5636 	struct pci_slot *slot;
5637 
5638 	if (!bus)
5639 		return -ENOTTY;
5640 
5641 	mutex_lock(&pci_slot_mutex);
5642 	if (list_empty(&bus->slots))
5643 		goto bus_reset;
5644 
5645 	list_for_each_entry(slot, &bus->slots, list)
5646 		if (pci_probe_reset_slot(slot))
5647 			goto bus_reset;
5648 
5649 	list_for_each_entry(slot, &bus->slots, list)
5650 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5651 			goto bus_reset;
5652 
5653 	mutex_unlock(&pci_slot_mutex);
5654 	return 0;
5655 bus_reset:
5656 	mutex_unlock(&pci_slot_mutex);
5657 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5658 }
5659 
5660 /**
5661  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5662  * @bus: PCI bus to probe
5663  *
5664  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5665  */
5666 int pci_probe_reset_bus(struct pci_bus *bus)
5667 {
5668 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5669 }
5670 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5671 
5672 /**
5673  * __pci_reset_bus - Try to reset a PCI bus
5674  * @bus: top level PCI bus to reset
5675  *
5676  * Same as above except return -EAGAIN if the bus cannot be locked
5677  */
5678 static int __pci_reset_bus(struct pci_bus *bus)
5679 {
5680 	int rc;
5681 
5682 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5683 	if (rc)
5684 		return rc;
5685 
5686 	if (pci_bus_trylock(bus)) {
5687 		pci_bus_save_and_disable_locked(bus);
5688 		might_sleep();
5689 		rc = pci_bridge_secondary_bus_reset(bus->self);
5690 		pci_bus_restore_locked(bus);
5691 		pci_bus_unlock(bus);
5692 	} else
5693 		rc = -EAGAIN;
5694 
5695 	return rc;
5696 }
5697 
5698 /**
5699  * pci_reset_bus - Try to reset a PCI bus
5700  * @pdev: top level PCI device to reset via slot/bus
5701  *
5702  * Same as above except return -EAGAIN if the bus cannot be locked
5703  */
5704 int pci_reset_bus(struct pci_dev *pdev)
5705 {
5706 	return (!pci_probe_reset_slot(pdev->slot)) ?
5707 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5708 }
5709 EXPORT_SYMBOL_GPL(pci_reset_bus);
5710 
5711 /**
5712  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5713  * @dev: PCI device to query
5714  *
5715  * Returns mmrbc: maximum designed memory read count in bytes or
5716  * appropriate error value.
5717  */
5718 int pcix_get_max_mmrbc(struct pci_dev *dev)
5719 {
5720 	int cap;
5721 	u32 stat;
5722 
5723 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5724 	if (!cap)
5725 		return -EINVAL;
5726 
5727 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5728 		return -EINVAL;
5729 
5730 	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5731 }
5732 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5733 
5734 /**
5735  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5736  * @dev: PCI device to query
5737  *
5738  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5739  * value.
5740  */
5741 int pcix_get_mmrbc(struct pci_dev *dev)
5742 {
5743 	int cap;
5744 	u16 cmd;
5745 
5746 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5747 	if (!cap)
5748 		return -EINVAL;
5749 
5750 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5751 		return -EINVAL;
5752 
5753 	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5754 }
5755 EXPORT_SYMBOL(pcix_get_mmrbc);
5756 
5757 /**
5758  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5759  * @dev: PCI device to query
5760  * @mmrbc: maximum memory read count in bytes
5761  *    valid values are 512, 1024, 2048, 4096
5762  *
5763  * If possible sets maximum memory read byte count, some bridges have errata
5764  * that prevent this.
5765  */
5766 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5767 {
5768 	int cap;
5769 	u32 stat, v, o;
5770 	u16 cmd;
5771 
5772 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5773 		return -EINVAL;
5774 
5775 	v = ffs(mmrbc) - 10;
5776 
5777 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5778 	if (!cap)
5779 		return -EINVAL;
5780 
5781 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5782 		return -EINVAL;
5783 
5784 	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5785 		return -E2BIG;
5786 
5787 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5788 		return -EINVAL;
5789 
5790 	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5791 	if (o != v) {
5792 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5793 			return -EIO;
5794 
5795 		cmd &= ~PCI_X_CMD_MAX_READ;
5796 		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
5797 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5798 			return -EIO;
5799 	}
5800 	return 0;
5801 }
5802 EXPORT_SYMBOL(pcix_set_mmrbc);
5803 
5804 /**
5805  * pcie_get_readrq - get PCI Express read request size
5806  * @dev: PCI device to query
5807  *
5808  * Returns maximum memory read request in bytes or appropriate error value.
5809  */
5810 int pcie_get_readrq(struct pci_dev *dev)
5811 {
5812 	u16 ctl;
5813 
5814 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5815 
5816 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
5817 }
5818 EXPORT_SYMBOL(pcie_get_readrq);
5819 
5820 /**
5821  * pcie_set_readrq - set PCI Express maximum memory read request
5822  * @dev: PCI device to query
5823  * @rq: maximum memory read count in bytes
5824  *    valid values are 128, 256, 512, 1024, 2048, 4096
5825  *
5826  * If possible sets maximum memory read request in bytes
5827  */
5828 int pcie_set_readrq(struct pci_dev *dev, int rq)
5829 {
5830 	u16 v;
5831 	int ret;
5832 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
5833 
5834 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5835 		return -EINVAL;
5836 
5837 	/*
5838 	 * If using the "performance" PCIe config, we clamp the read rq
5839 	 * size to the max packet size to keep the host bridge from
5840 	 * generating requests larger than we can cope with.
5841 	 */
5842 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5843 		int mps = pcie_get_mps(dev);
5844 
5845 		if (mps < rq)
5846 			rq = mps;
5847 	}
5848 
5849 	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
5850 
5851 	if (bridge->no_inc_mrrs) {
5852 		int max_mrrs = pcie_get_readrq(dev);
5853 
5854 		if (rq > max_mrrs) {
5855 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5856 			return -EINVAL;
5857 		}
5858 	}
5859 
5860 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5861 						  PCI_EXP_DEVCTL_READRQ, v);
5862 
5863 	return pcibios_err_to_errno(ret);
5864 }
5865 EXPORT_SYMBOL(pcie_set_readrq);
5866 
5867 /**
5868  * pcie_get_mps - get PCI Express maximum payload size
5869  * @dev: PCI device to query
5870  *
5871  * Returns maximum payload size in bytes
5872  */
5873 int pcie_get_mps(struct pci_dev *dev)
5874 {
5875 	u16 ctl;
5876 
5877 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5878 
5879 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
5880 }
5881 EXPORT_SYMBOL(pcie_get_mps);
5882 
5883 /**
5884  * pcie_set_mps - set PCI Express maximum payload size
5885  * @dev: PCI device to query
5886  * @mps: maximum payload size in bytes
5887  *    valid values are 128, 256, 512, 1024, 2048, 4096
5888  *
5889  * If possible sets maximum payload size
5890  */
5891 int pcie_set_mps(struct pci_dev *dev, int mps)
5892 {
5893 	u16 v;
5894 	int ret;
5895 
5896 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5897 		return -EINVAL;
5898 
5899 	v = ffs(mps) - 8;
5900 	if (v > dev->pcie_mpss)
5901 		return -EINVAL;
5902 	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
5903 
5904 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5905 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5906 
5907 	return pcibios_err_to_errno(ret);
5908 }
5909 EXPORT_SYMBOL(pcie_set_mps);
5910 
5911 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
5912 {
5913 	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
5914 }
5915 
5916 int pcie_link_speed_mbps(struct pci_dev *pdev)
5917 {
5918 	u16 lnksta;
5919 	int err;
5920 
5921 	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5922 	if (err)
5923 		return err;
5924 
5925 	switch (to_pcie_link_speed(lnksta)) {
5926 	case PCIE_SPEED_2_5GT:
5927 		return 2500;
5928 	case PCIE_SPEED_5_0GT:
5929 		return 5000;
5930 	case PCIE_SPEED_8_0GT:
5931 		return 8000;
5932 	case PCIE_SPEED_16_0GT:
5933 		return 16000;
5934 	case PCIE_SPEED_32_0GT:
5935 		return 32000;
5936 	case PCIE_SPEED_64_0GT:
5937 		return 64000;
5938 	default:
5939 		break;
5940 	}
5941 
5942 	return -EINVAL;
5943 }
5944 EXPORT_SYMBOL(pcie_link_speed_mbps);
5945 
5946 /**
5947  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5948  *			      device and its bandwidth limitation
5949  * @dev: PCI device to query
5950  * @limiting_dev: storage for device causing the bandwidth limitation
5951  * @speed: storage for speed of limiting device
5952  * @width: storage for width of limiting device
5953  *
5954  * Walk up the PCI device chain and find the point where the minimum
5955  * bandwidth is available.  Return the bandwidth available there and (if
5956  * limiting_dev, speed, and width pointers are supplied) information about
5957  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5958  * raw bandwidth.
5959  */
5960 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5961 			     enum pci_bus_speed *speed,
5962 			     enum pcie_link_width *width)
5963 {
5964 	u16 lnksta;
5965 	enum pci_bus_speed next_speed;
5966 	enum pcie_link_width next_width;
5967 	u32 bw, next_bw;
5968 
5969 	if (speed)
5970 		*speed = PCI_SPEED_UNKNOWN;
5971 	if (width)
5972 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5973 
5974 	bw = 0;
5975 
5976 	while (dev) {
5977 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5978 
5979 		next_speed = to_pcie_link_speed(lnksta);
5980 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
5981 
5982 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5983 
5984 		/* Check if current device limits the total bandwidth */
5985 		if (!bw || next_bw <= bw) {
5986 			bw = next_bw;
5987 
5988 			if (limiting_dev)
5989 				*limiting_dev = dev;
5990 			if (speed)
5991 				*speed = next_speed;
5992 			if (width)
5993 				*width = next_width;
5994 		}
5995 
5996 		dev = pci_upstream_bridge(dev);
5997 	}
5998 
5999 	return bw;
6000 }
6001 EXPORT_SYMBOL(pcie_bandwidth_available);
6002 
6003 /**
6004  * pcie_get_speed_cap - query for the PCI device's link speed capability
6005  * @dev: PCI device to query
6006  *
6007  * Query the PCI device speed capability.  Return the maximum link speed
6008  * supported by the device.
6009  */
6010 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6011 {
6012 	u32 lnkcap2, lnkcap;
6013 
6014 	/*
6015 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6016 	 * implementation note there recommends using the Supported Link
6017 	 * Speeds Vector in Link Capabilities 2 when supported.
6018 	 *
6019 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6020 	 * should use the Supported Link Speeds field in Link Capabilities,
6021 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6022 	 */
6023 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6024 
6025 	/* PCIe r3.0-compliant */
6026 	if (lnkcap2)
6027 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6028 
6029 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6030 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6031 		return PCIE_SPEED_5_0GT;
6032 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6033 		return PCIE_SPEED_2_5GT;
6034 
6035 	return PCI_SPEED_UNKNOWN;
6036 }
6037 EXPORT_SYMBOL(pcie_get_speed_cap);
6038 
6039 /**
6040  * pcie_get_width_cap - query for the PCI device's link width capability
6041  * @dev: PCI device to query
6042  *
6043  * Query the PCI device width capability.  Return the maximum link width
6044  * supported by the device.
6045  */
6046 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6047 {
6048 	u32 lnkcap;
6049 
6050 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6051 	if (lnkcap)
6052 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6053 
6054 	return PCIE_LNK_WIDTH_UNKNOWN;
6055 }
6056 EXPORT_SYMBOL(pcie_get_width_cap);
6057 
6058 /**
6059  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6060  * @dev: PCI device
6061  * @speed: storage for link speed
6062  * @width: storage for link width
6063  *
6064  * Calculate a PCI device's link bandwidth by querying for its link speed
6065  * and width, multiplying them, and applying encoding overhead.  The result
6066  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6067  */
6068 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6069 			   enum pcie_link_width *width)
6070 {
6071 	*speed = pcie_get_speed_cap(dev);
6072 	*width = pcie_get_width_cap(dev);
6073 
6074 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6075 		return 0;
6076 
6077 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6078 }
6079 
6080 /**
6081  * __pcie_print_link_status - Report the PCI device's link speed and width
6082  * @dev: PCI device to query
6083  * @verbose: Print info even when enough bandwidth is available
6084  *
6085  * If the available bandwidth at the device is less than the device is
6086  * capable of, report the device's maximum possible bandwidth and the
6087  * upstream link that limits its performance.  If @verbose, always print
6088  * the available bandwidth, even if the device isn't constrained.
6089  */
6090 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6091 {
6092 	enum pcie_link_width width, width_cap;
6093 	enum pci_bus_speed speed, speed_cap;
6094 	struct pci_dev *limiting_dev = NULL;
6095 	u32 bw_avail, bw_cap;
6096 
6097 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6098 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6099 
6100 	if (bw_avail >= bw_cap && verbose)
6101 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6102 			 bw_cap / 1000, bw_cap % 1000,
6103 			 pci_speed_string(speed_cap), width_cap);
6104 	else if (bw_avail < bw_cap)
6105 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6106 			 bw_avail / 1000, bw_avail % 1000,
6107 			 pci_speed_string(speed), width,
6108 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6109 			 bw_cap / 1000, bw_cap % 1000,
6110 			 pci_speed_string(speed_cap), width_cap);
6111 }
6112 
6113 /**
6114  * pcie_print_link_status - Report the PCI device's link speed and width
6115  * @dev: PCI device to query
6116  *
6117  * Report the available bandwidth at the device.
6118  */
6119 void pcie_print_link_status(struct pci_dev *dev)
6120 {
6121 	__pcie_print_link_status(dev, true);
6122 }
6123 EXPORT_SYMBOL(pcie_print_link_status);
6124 
6125 /**
6126  * pci_select_bars - Make BAR mask from the type of resource
6127  * @dev: the PCI device for which BAR mask is made
6128  * @flags: resource type mask to be selected
6129  *
6130  * This helper routine makes bar mask from the type of resource.
6131  */
6132 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6133 {
6134 	int i, bars = 0;
6135 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6136 		if (pci_resource_flags(dev, i) & flags)
6137 			bars |= (1 << i);
6138 	return bars;
6139 }
6140 EXPORT_SYMBOL(pci_select_bars);
6141 
6142 /* Some architectures require additional programming to enable VGA */
6143 static arch_set_vga_state_t arch_set_vga_state;
6144 
6145 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6146 {
6147 	arch_set_vga_state = func;	/* NULL disables */
6148 }
6149 
6150 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6151 				  unsigned int command_bits, u32 flags)
6152 {
6153 	if (arch_set_vga_state)
6154 		return arch_set_vga_state(dev, decode, command_bits,
6155 						flags);
6156 	return 0;
6157 }
6158 
6159 /**
6160  * pci_set_vga_state - set VGA decode state on device and parents if requested
6161  * @dev: the PCI device
6162  * @decode: true = enable decoding, false = disable decoding
6163  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6164  * @flags: traverse ancestors and change bridges
6165  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6166  */
6167 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6168 		      unsigned int command_bits, u32 flags)
6169 {
6170 	struct pci_bus *bus;
6171 	struct pci_dev *bridge;
6172 	u16 cmd;
6173 	int rc;
6174 
6175 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6176 
6177 	/* ARCH specific VGA enables */
6178 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6179 	if (rc)
6180 		return rc;
6181 
6182 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6183 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6184 		if (decode)
6185 			cmd |= command_bits;
6186 		else
6187 			cmd &= ~command_bits;
6188 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6189 	}
6190 
6191 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6192 		return 0;
6193 
6194 	bus = dev->bus;
6195 	while (bus) {
6196 		bridge = bus->self;
6197 		if (bridge) {
6198 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6199 					     &cmd);
6200 			if (decode)
6201 				cmd |= PCI_BRIDGE_CTL_VGA;
6202 			else
6203 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6204 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6205 					      cmd);
6206 		}
6207 		bus = bus->parent;
6208 	}
6209 	return 0;
6210 }
6211 
6212 #ifdef CONFIG_ACPI
6213 bool pci_pr3_present(struct pci_dev *pdev)
6214 {
6215 	struct acpi_device *adev;
6216 
6217 	if (acpi_disabled)
6218 		return false;
6219 
6220 	adev = ACPI_COMPANION(&pdev->dev);
6221 	if (!adev)
6222 		return false;
6223 
6224 	return adev->power.flags.power_resources &&
6225 		acpi_has_method(adev->handle, "_PR3");
6226 }
6227 EXPORT_SYMBOL_GPL(pci_pr3_present);
6228 #endif
6229 
6230 /**
6231  * pci_add_dma_alias - Add a DMA devfn alias for a device
6232  * @dev: the PCI device for which alias is added
6233  * @devfn_from: alias slot and function
6234  * @nr_devfns: number of subsequent devfns to alias
6235  *
6236  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6237  * which is used to program permissible bus-devfn source addresses for DMA
6238  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6239  * and are useful for devices generating DMA requests beyond or different
6240  * from their logical bus-devfn.  Examples include device quirks where the
6241  * device simply uses the wrong devfn, as well as non-transparent bridges
6242  * where the alias may be a proxy for devices in another domain.
6243  *
6244  * IOMMU group creation is performed during device discovery or addition,
6245  * prior to any potential DMA mapping and therefore prior to driver probing
6246  * (especially for userspace assigned devices where IOMMU group definition
6247  * cannot be left as a userspace activity).  DMA aliases should therefore
6248  * be configured via quirks, such as the PCI fixup header quirk.
6249  */
6250 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6251 		       unsigned int nr_devfns)
6252 {
6253 	int devfn_to;
6254 
6255 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6256 	devfn_to = devfn_from + nr_devfns - 1;
6257 
6258 	if (!dev->dma_alias_mask)
6259 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6260 	if (!dev->dma_alias_mask) {
6261 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6262 		return;
6263 	}
6264 
6265 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6266 
6267 	if (nr_devfns == 1)
6268 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6269 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6270 	else if (nr_devfns > 1)
6271 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6272 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6273 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6274 }
6275 
6276 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6277 {
6278 	return (dev1->dma_alias_mask &&
6279 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6280 	       (dev2->dma_alias_mask &&
6281 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6282 	       pci_real_dma_dev(dev1) == dev2 ||
6283 	       pci_real_dma_dev(dev2) == dev1;
6284 }
6285 
6286 bool pci_device_is_present(struct pci_dev *pdev)
6287 {
6288 	u32 v;
6289 
6290 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6291 	pdev = pci_physfn(pdev);
6292 	if (pci_dev_is_disconnected(pdev))
6293 		return false;
6294 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6295 }
6296 EXPORT_SYMBOL_GPL(pci_device_is_present);
6297 
6298 void pci_ignore_hotplug(struct pci_dev *dev)
6299 {
6300 	struct pci_dev *bridge = dev->bus->self;
6301 
6302 	dev->ignore_hotplug = 1;
6303 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6304 	if (bridge)
6305 		bridge->ignore_hotplug = 1;
6306 }
6307 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6308 
6309 /**
6310  * pci_real_dma_dev - Get PCI DMA device for PCI device
6311  * @dev: the PCI device that may have a PCI DMA alias
6312  *
6313  * Permits the platform to provide architecture-specific functionality to
6314  * devices needing to alias DMA to another PCI device on another PCI bus. If
6315  * the PCI device is on the same bus, it is recommended to use
6316  * pci_add_dma_alias(). This is the default implementation. Architecture
6317  * implementations can override this.
6318  */
6319 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6320 {
6321 	return dev;
6322 }
6323 
6324 resource_size_t __weak pcibios_default_alignment(void)
6325 {
6326 	return 0;
6327 }
6328 
6329 /*
6330  * Arches that don't want to expose struct resource to userland as-is in
6331  * sysfs and /proc can implement their own pci_resource_to_user().
6332  */
6333 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6334 				 const struct resource *rsrc,
6335 				 resource_size_t *start, resource_size_t *end)
6336 {
6337 	*start = rsrc->start;
6338 	*end = rsrc->end;
6339 }
6340 
6341 static char *resource_alignment_param;
6342 static DEFINE_SPINLOCK(resource_alignment_lock);
6343 
6344 /**
6345  * pci_specified_resource_alignment - get resource alignment specified by user.
6346  * @dev: the PCI device to get
6347  * @resize: whether or not to change resources' size when reassigning alignment
6348  *
6349  * RETURNS: Resource alignment if it is specified.
6350  *          Zero if it is not specified.
6351  */
6352 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6353 							bool *resize)
6354 {
6355 	int align_order, count;
6356 	resource_size_t align = pcibios_default_alignment();
6357 	const char *p;
6358 	int ret;
6359 
6360 	spin_lock(&resource_alignment_lock);
6361 	p = resource_alignment_param;
6362 	if (!p || !*p)
6363 		goto out;
6364 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6365 		align = 0;
6366 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6367 		goto out;
6368 	}
6369 
6370 	while (*p) {
6371 		count = 0;
6372 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6373 		    p[count] == '@') {
6374 			p += count + 1;
6375 			if (align_order > 63) {
6376 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6377 				       align_order);
6378 				align_order = PAGE_SHIFT;
6379 			}
6380 		} else {
6381 			align_order = PAGE_SHIFT;
6382 		}
6383 
6384 		ret = pci_dev_str_match(dev, p, &p);
6385 		if (ret == 1) {
6386 			*resize = true;
6387 			align = 1ULL << align_order;
6388 			break;
6389 		} else if (ret < 0) {
6390 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6391 			       p);
6392 			break;
6393 		}
6394 
6395 		if (*p != ';' && *p != ',') {
6396 			/* End of param or invalid format */
6397 			break;
6398 		}
6399 		p++;
6400 	}
6401 out:
6402 	spin_unlock(&resource_alignment_lock);
6403 	return align;
6404 }
6405 
6406 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6407 					   resource_size_t align, bool resize)
6408 {
6409 	struct resource *r = &dev->resource[bar];
6410 	const char *r_name = pci_resource_name(dev, bar);
6411 	resource_size_t size;
6412 
6413 	if (!(r->flags & IORESOURCE_MEM))
6414 		return;
6415 
6416 	if (r->flags & IORESOURCE_PCI_FIXED) {
6417 		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6418 			 r_name, r, (unsigned long long)align);
6419 		return;
6420 	}
6421 
6422 	size = resource_size(r);
6423 	if (size >= align)
6424 		return;
6425 
6426 	/*
6427 	 * Increase the alignment of the resource.  There are two ways we
6428 	 * can do this:
6429 	 *
6430 	 * 1) Increase the size of the resource.  BARs are aligned on their
6431 	 *    size, so when we reallocate space for this resource, we'll
6432 	 *    allocate it with the larger alignment.  This also prevents
6433 	 *    assignment of any other BARs inside the alignment region, so
6434 	 *    if we're requesting page alignment, this means no other BARs
6435 	 *    will share the page.
6436 	 *
6437 	 *    The disadvantage is that this makes the resource larger than
6438 	 *    the hardware BAR, which may break drivers that compute things
6439 	 *    based on the resource size, e.g., to find registers at a
6440 	 *    fixed offset before the end of the BAR.
6441 	 *
6442 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6443 	 *    set r->start to the desired alignment.  By itself this
6444 	 *    doesn't prevent other BARs being put inside the alignment
6445 	 *    region, but if we realign *every* resource of every device in
6446 	 *    the system, none of them will share an alignment region.
6447 	 *
6448 	 * When the user has requested alignment for only some devices via
6449 	 * the "pci=resource_alignment" argument, "resize" is true and we
6450 	 * use the first method.  Otherwise we assume we're aligning all
6451 	 * devices and we use the second.
6452 	 */
6453 
6454 	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6455 		 r_name, r, (unsigned long long)align);
6456 
6457 	if (resize) {
6458 		r->start = 0;
6459 		r->end = align - 1;
6460 	} else {
6461 		r->flags &= ~IORESOURCE_SIZEALIGN;
6462 		r->flags |= IORESOURCE_STARTALIGN;
6463 		r->start = align;
6464 		r->end = r->start + size - 1;
6465 	}
6466 	r->flags |= IORESOURCE_UNSET;
6467 }
6468 
6469 /*
6470  * This function disables memory decoding and releases memory resources
6471  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6472  * It also rounds up size to specified alignment.
6473  * Later on, the kernel will assign page-aligned memory resource back
6474  * to the device.
6475  */
6476 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6477 {
6478 	int i;
6479 	struct resource *r;
6480 	resource_size_t align;
6481 	u16 command;
6482 	bool resize = false;
6483 
6484 	/*
6485 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6486 	 * 3.4.1.11.  Their resources are allocated from the space
6487 	 * described by the VF BARx register in the PF's SR-IOV capability.
6488 	 * We can't influence their alignment here.
6489 	 */
6490 	if (dev->is_virtfn)
6491 		return;
6492 
6493 	/* check if specified PCI is target device to reassign */
6494 	align = pci_specified_resource_alignment(dev, &resize);
6495 	if (!align)
6496 		return;
6497 
6498 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6499 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6500 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6501 		return;
6502 	}
6503 
6504 	pci_read_config_word(dev, PCI_COMMAND, &command);
6505 	command &= ~PCI_COMMAND_MEMORY;
6506 	pci_write_config_word(dev, PCI_COMMAND, command);
6507 
6508 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6509 		pci_request_resource_alignment(dev, i, align, resize);
6510 
6511 	/*
6512 	 * Need to disable bridge's resource window,
6513 	 * to enable the kernel to reassign new resource
6514 	 * window later on.
6515 	 */
6516 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6517 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6518 			r = &dev->resource[i];
6519 			if (!(r->flags & IORESOURCE_MEM))
6520 				continue;
6521 			r->flags |= IORESOURCE_UNSET;
6522 			r->end = resource_size(r) - 1;
6523 			r->start = 0;
6524 		}
6525 		pci_disable_bridge_window(dev);
6526 	}
6527 }
6528 
6529 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6530 {
6531 	size_t count = 0;
6532 
6533 	spin_lock(&resource_alignment_lock);
6534 	if (resource_alignment_param)
6535 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6536 	spin_unlock(&resource_alignment_lock);
6537 
6538 	return count;
6539 }
6540 
6541 static ssize_t resource_alignment_store(const struct bus_type *bus,
6542 					const char *buf, size_t count)
6543 {
6544 	char *param, *old, *end;
6545 
6546 	if (count >= (PAGE_SIZE - 1))
6547 		return -EINVAL;
6548 
6549 	param = kstrndup(buf, count, GFP_KERNEL);
6550 	if (!param)
6551 		return -ENOMEM;
6552 
6553 	end = strchr(param, '\n');
6554 	if (end)
6555 		*end = '\0';
6556 
6557 	spin_lock(&resource_alignment_lock);
6558 	old = resource_alignment_param;
6559 	if (strlen(param)) {
6560 		resource_alignment_param = param;
6561 	} else {
6562 		kfree(param);
6563 		resource_alignment_param = NULL;
6564 	}
6565 	spin_unlock(&resource_alignment_lock);
6566 
6567 	kfree(old);
6568 
6569 	return count;
6570 }
6571 
6572 static BUS_ATTR_RW(resource_alignment);
6573 
6574 static int __init pci_resource_alignment_sysfs_init(void)
6575 {
6576 	return bus_create_file(&pci_bus_type,
6577 					&bus_attr_resource_alignment);
6578 }
6579 late_initcall(pci_resource_alignment_sysfs_init);
6580 
6581 static void pci_no_domains(void)
6582 {
6583 #ifdef CONFIG_PCI_DOMAINS
6584 	pci_domains_supported = 0;
6585 #endif
6586 }
6587 
6588 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6589 static DEFINE_IDA(pci_domain_nr_static_ida);
6590 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6591 
6592 static void of_pci_reserve_static_domain_nr(void)
6593 {
6594 	struct device_node *np;
6595 	int domain_nr;
6596 
6597 	for_each_node_by_type(np, "pci") {
6598 		domain_nr = of_get_pci_domain_nr(np);
6599 		if (domain_nr < 0)
6600 			continue;
6601 		/*
6602 		 * Permanently allocate domain_nr in dynamic_ida
6603 		 * to prevent it from dynamic allocation.
6604 		 */
6605 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6606 				domain_nr, domain_nr, GFP_KERNEL);
6607 	}
6608 }
6609 
6610 static int of_pci_bus_find_domain_nr(struct device *parent)
6611 {
6612 	static bool static_domains_reserved = false;
6613 	int domain_nr;
6614 
6615 	/* On the first call scan device tree for static allocations. */
6616 	if (!static_domains_reserved) {
6617 		of_pci_reserve_static_domain_nr();
6618 		static_domains_reserved = true;
6619 	}
6620 
6621 	if (parent) {
6622 		/*
6623 		 * If domain is in DT, allocate it in static IDA.  This
6624 		 * prevents duplicate static allocations in case of errors
6625 		 * in DT.
6626 		 */
6627 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6628 		if (domain_nr >= 0)
6629 			return ida_alloc_range(&pci_domain_nr_static_ida,
6630 					       domain_nr, domain_nr,
6631 					       GFP_KERNEL);
6632 	}
6633 
6634 	/*
6635 	 * If domain was not specified in DT, choose a free ID from dynamic
6636 	 * allocations. All domain numbers from DT are permanently in
6637 	 * dynamic allocations to prevent assigning them to other DT nodes
6638 	 * without static domain.
6639 	 */
6640 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6641 }
6642 
6643 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6644 {
6645 	if (bus->domain_nr < 0)
6646 		return;
6647 
6648 	/* Release domain from IDA where it was allocated. */
6649 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6650 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6651 	else
6652 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6653 }
6654 
6655 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6656 {
6657 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6658 			       acpi_pci_bus_find_domain_nr(bus);
6659 }
6660 
6661 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6662 {
6663 	if (!acpi_disabled)
6664 		return;
6665 	of_pci_bus_release_domain_nr(bus, parent);
6666 }
6667 #endif
6668 
6669 /**
6670  * pci_ext_cfg_avail - can we access extended PCI config space?
6671  *
6672  * Returns 1 if we can access PCI extended config space (offsets
6673  * greater than 0xff). This is the default implementation. Architecture
6674  * implementations can override this.
6675  */
6676 int __weak pci_ext_cfg_avail(void)
6677 {
6678 	return 1;
6679 }
6680 
6681 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6682 {
6683 }
6684 EXPORT_SYMBOL(pci_fixup_cardbus);
6685 
6686 static int __init pci_setup(char *str)
6687 {
6688 	while (str) {
6689 		char *k = strchr(str, ',');
6690 		if (k)
6691 			*k++ = 0;
6692 		if (*str && (str = pcibios_setup(str)) && *str) {
6693 			if (!strcmp(str, "nomsi")) {
6694 				pci_no_msi();
6695 			} else if (!strncmp(str, "noats", 5)) {
6696 				pr_info("PCIe: ATS is disabled\n");
6697 				pcie_ats_disabled = true;
6698 			} else if (!strcmp(str, "noaer")) {
6699 				pci_no_aer();
6700 			} else if (!strcmp(str, "earlydump")) {
6701 				pci_early_dump = true;
6702 			} else if (!strncmp(str, "realloc=", 8)) {
6703 				pci_realloc_get_opt(str + 8);
6704 			} else if (!strncmp(str, "realloc", 7)) {
6705 				pci_realloc_get_opt("on");
6706 			} else if (!strcmp(str, "nodomains")) {
6707 				pci_no_domains();
6708 			} else if (!strncmp(str, "noari", 5)) {
6709 				pcie_ari_disabled = true;
6710 			} else if (!strncmp(str, "cbiosize=", 9)) {
6711 				pci_cardbus_io_size = memparse(str + 9, &str);
6712 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6713 				pci_cardbus_mem_size = memparse(str + 10, &str);
6714 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6715 				resource_alignment_param = str + 19;
6716 			} else if (!strncmp(str, "ecrc=", 5)) {
6717 				pcie_ecrc_get_policy(str + 5);
6718 			} else if (!strncmp(str, "hpiosize=", 9)) {
6719 				pci_hotplug_io_size = memparse(str + 9, &str);
6720 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6721 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6722 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6723 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6724 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6725 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6726 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6727 			} else if (!strncmp(str, "hpbussize=", 10)) {
6728 				pci_hotplug_bus_size =
6729 					simple_strtoul(str + 10, &str, 0);
6730 				if (pci_hotplug_bus_size > 0xff)
6731 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6732 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6733 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6734 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6735 				pcie_bus_config = PCIE_BUS_SAFE;
6736 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6737 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6738 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6739 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6740 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6741 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6742 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6743 				disable_acs_redir_param = str + 18;
6744 			} else {
6745 				pr_err("PCI: Unknown option `%s'\n", str);
6746 			}
6747 		}
6748 		str = k;
6749 	}
6750 	return 0;
6751 }
6752 early_param("pci", pci_setup);
6753 
6754 /*
6755  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6756  * in pci_setup(), above, to point to data in the __initdata section which
6757  * will be freed after the init sequence is complete. We can't allocate memory
6758  * in pci_setup() because some architectures do not have any memory allocation
6759  * service available during an early_param() call. So we allocate memory and
6760  * copy the variable here before the init section is freed.
6761  *
6762  */
6763 static int __init pci_realloc_setup_params(void)
6764 {
6765 	resource_alignment_param = kstrdup(resource_alignment_param,
6766 					   GFP_KERNEL);
6767 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6768 
6769 	return 0;
6770 }
6771 pure_initcall(pci_realloc_setup_params);
6772