xref: /linux/drivers/pci/pci.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h>	/* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26 
27 const char *pci_power_names[] = {
28 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
29 };
30 EXPORT_SYMBOL_GPL(pci_power_names);
31 
32 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
33 
34 #ifdef CONFIG_PCI_DOMAINS
35 int pci_domains_supported = 1;
36 #endif
37 
38 #define DEFAULT_CARDBUS_IO_SIZE		(256)
39 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
40 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
41 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
42 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
43 
44 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
45 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
46 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
47 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
48 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
49 
50 /**
51  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
52  * @bus: pointer to PCI bus structure to search
53  *
54  * Given a PCI bus, returns the highest PCI bus number present in the set
55  * including the given PCI bus and its list of child PCI buses.
56  */
57 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
58 {
59 	struct list_head *tmp;
60 	unsigned char max, n;
61 
62 	max = bus->subordinate;
63 	list_for_each(tmp, &bus->children) {
64 		n = pci_bus_max_busnr(pci_bus_b(tmp));
65 		if(n > max)
66 			max = n;
67 	}
68 	return max;
69 }
70 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
71 
72 #ifdef CONFIG_HAS_IOMEM
73 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
74 {
75 	/*
76 	 * Make sure the BAR is actually a memory resource, not an IO resource
77 	 */
78 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
79 		WARN_ON(1);
80 		return NULL;
81 	}
82 	return ioremap_nocache(pci_resource_start(pdev, bar),
83 				     pci_resource_len(pdev, bar));
84 }
85 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
86 #endif
87 
88 #if 0
89 /**
90  * pci_max_busnr - returns maximum PCI bus number
91  *
92  * Returns the highest PCI bus number present in the system global list of
93  * PCI buses.
94  */
95 unsigned char __devinit
96 pci_max_busnr(void)
97 {
98 	struct pci_bus *bus = NULL;
99 	unsigned char max, n;
100 
101 	max = 0;
102 	while ((bus = pci_find_next_bus(bus)) != NULL) {
103 		n = pci_bus_max_busnr(bus);
104 		if(n > max)
105 			max = n;
106 	}
107 	return max;
108 }
109 
110 #endif  /*  0  */
111 
112 #define PCI_FIND_CAP_TTL	48
113 
114 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
115 				   u8 pos, int cap, int *ttl)
116 {
117 	u8 id;
118 
119 	while ((*ttl)--) {
120 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
121 		if (pos < 0x40)
122 			break;
123 		pos &= ~3;
124 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
125 					 &id);
126 		if (id == 0xff)
127 			break;
128 		if (id == cap)
129 			return pos;
130 		pos += PCI_CAP_LIST_NEXT;
131 	}
132 	return 0;
133 }
134 
135 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
136 			       u8 pos, int cap)
137 {
138 	int ttl = PCI_FIND_CAP_TTL;
139 
140 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
141 }
142 
143 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
144 {
145 	return __pci_find_next_cap(dev->bus, dev->devfn,
146 				   pos + PCI_CAP_LIST_NEXT, cap);
147 }
148 EXPORT_SYMBOL_GPL(pci_find_next_capability);
149 
150 static int __pci_bus_find_cap_start(struct pci_bus *bus,
151 				    unsigned int devfn, u8 hdr_type)
152 {
153 	u16 status;
154 
155 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
156 	if (!(status & PCI_STATUS_CAP_LIST))
157 		return 0;
158 
159 	switch (hdr_type) {
160 	case PCI_HEADER_TYPE_NORMAL:
161 	case PCI_HEADER_TYPE_BRIDGE:
162 		return PCI_CAPABILITY_LIST;
163 	case PCI_HEADER_TYPE_CARDBUS:
164 		return PCI_CB_CAPABILITY_LIST;
165 	default:
166 		return 0;
167 	}
168 
169 	return 0;
170 }
171 
172 /**
173  * pci_find_capability - query for devices' capabilities
174  * @dev: PCI device to query
175  * @cap: capability code
176  *
177  * Tell if a device supports a given PCI capability.
178  * Returns the address of the requested capability structure within the
179  * device's PCI configuration space or 0 in case the device does not
180  * support it.  Possible values for @cap:
181  *
182  *  %PCI_CAP_ID_PM           Power Management
183  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
184  *  %PCI_CAP_ID_VPD          Vital Product Data
185  *  %PCI_CAP_ID_SLOTID       Slot Identification
186  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
187  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
188  *  %PCI_CAP_ID_PCIX         PCI-X
189  *  %PCI_CAP_ID_EXP          PCI Express
190  */
191 int pci_find_capability(struct pci_dev *dev, int cap)
192 {
193 	int pos;
194 
195 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
196 	if (pos)
197 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
198 
199 	return pos;
200 }
201 
202 /**
203  * pci_bus_find_capability - query for devices' capabilities
204  * @bus:   the PCI bus to query
205  * @devfn: PCI device to query
206  * @cap:   capability code
207  *
208  * Like pci_find_capability() but works for pci devices that do not have a
209  * pci_dev structure set up yet.
210  *
211  * Returns the address of the requested capability structure within the
212  * device's PCI configuration space or 0 in case the device does not
213  * support it.
214  */
215 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
216 {
217 	int pos;
218 	u8 hdr_type;
219 
220 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
221 
222 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
223 	if (pos)
224 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
225 
226 	return pos;
227 }
228 
229 /**
230  * pci_find_ext_capability - Find an extended capability
231  * @dev: PCI device to query
232  * @cap: capability code
233  *
234  * Returns the address of the requested extended capability structure
235  * within the device's PCI configuration space or 0 if the device does
236  * not support it.  Possible values for @cap:
237  *
238  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
239  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
240  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
241  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
242  */
243 int pci_find_ext_capability(struct pci_dev *dev, int cap)
244 {
245 	u32 header;
246 	int ttl;
247 	int pos = PCI_CFG_SPACE_SIZE;
248 
249 	/* minimum 8 bytes per capability */
250 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
251 
252 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
253 		return 0;
254 
255 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
256 		return 0;
257 
258 	/*
259 	 * If we have no capabilities, this is indicated by cap ID,
260 	 * cap version and next pointer all being 0.
261 	 */
262 	if (header == 0)
263 		return 0;
264 
265 	while (ttl-- > 0) {
266 		if (PCI_EXT_CAP_ID(header) == cap)
267 			return pos;
268 
269 		pos = PCI_EXT_CAP_NEXT(header);
270 		if (pos < PCI_CFG_SPACE_SIZE)
271 			break;
272 
273 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
274 			break;
275 	}
276 
277 	return 0;
278 }
279 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
280 
281 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
282 {
283 	int rc, ttl = PCI_FIND_CAP_TTL;
284 	u8 cap, mask;
285 
286 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
287 		mask = HT_3BIT_CAP_MASK;
288 	else
289 		mask = HT_5BIT_CAP_MASK;
290 
291 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
292 				      PCI_CAP_ID_HT, &ttl);
293 	while (pos) {
294 		rc = pci_read_config_byte(dev, pos + 3, &cap);
295 		if (rc != PCIBIOS_SUCCESSFUL)
296 			return 0;
297 
298 		if ((cap & mask) == ht_cap)
299 			return pos;
300 
301 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
302 					      pos + PCI_CAP_LIST_NEXT,
303 					      PCI_CAP_ID_HT, &ttl);
304 	}
305 
306 	return 0;
307 }
308 /**
309  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
310  * @dev: PCI device to query
311  * @pos: Position from which to continue searching
312  * @ht_cap: Hypertransport capability code
313  *
314  * To be used in conjunction with pci_find_ht_capability() to search for
315  * all capabilities matching @ht_cap. @pos should always be a value returned
316  * from pci_find_ht_capability().
317  *
318  * NB. To be 100% safe against broken PCI devices, the caller should take
319  * steps to avoid an infinite loop.
320  */
321 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
322 {
323 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
324 }
325 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
326 
327 /**
328  * pci_find_ht_capability - query a device's Hypertransport capabilities
329  * @dev: PCI device to query
330  * @ht_cap: Hypertransport capability code
331  *
332  * Tell if a device supports a given Hypertransport capability.
333  * Returns an address within the device's PCI configuration space
334  * or 0 in case the device does not support the request capability.
335  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
336  * which has a Hypertransport capability matching @ht_cap.
337  */
338 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
339 {
340 	int pos;
341 
342 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
343 	if (pos)
344 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
345 
346 	return pos;
347 }
348 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
349 
350 /**
351  * pci_find_parent_resource - return resource region of parent bus of given region
352  * @dev: PCI device structure contains resources to be searched
353  * @res: child resource record for which parent is sought
354  *
355  *  For given resource region of given device, return the resource
356  *  region of parent bus the given region is contained in or where
357  *  it should be allocated from.
358  */
359 struct resource *
360 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
361 {
362 	const struct pci_bus *bus = dev->bus;
363 	int i;
364 	struct resource *best = NULL;
365 
366 	for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
367 		struct resource *r = bus->resource[i];
368 		if (!r)
369 			continue;
370 		if (res->start && !(res->start >= r->start && res->end <= r->end))
371 			continue;	/* Not contained */
372 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
373 			continue;	/* Wrong type */
374 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
375 			return r;	/* Exact match */
376 		if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
377 			best = r;	/* Approximating prefetchable by non-prefetchable */
378 	}
379 	return best;
380 }
381 
382 /**
383  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
384  * @dev: PCI device to have its BARs restored
385  *
386  * Restore the BAR values for a given device, so as to make it
387  * accessible by its driver.
388  */
389 static void
390 pci_restore_bars(struct pci_dev *dev)
391 {
392 	int i;
393 
394 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
395 		pci_update_resource(dev, i);
396 }
397 
398 static struct pci_platform_pm_ops *pci_platform_pm;
399 
400 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
401 {
402 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
403 	    || !ops->sleep_wake || !ops->can_wakeup)
404 		return -EINVAL;
405 	pci_platform_pm = ops;
406 	return 0;
407 }
408 
409 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
410 {
411 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
412 }
413 
414 static inline int platform_pci_set_power_state(struct pci_dev *dev,
415                                                 pci_power_t t)
416 {
417 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
418 }
419 
420 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
421 {
422 	return pci_platform_pm ?
423 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
424 }
425 
426 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
427 {
428 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
429 }
430 
431 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
432 {
433 	return pci_platform_pm ?
434 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
435 }
436 
437 /**
438  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
439  *                           given PCI device
440  * @dev: PCI device to handle.
441  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
442  *
443  * RETURN VALUE:
444  * -EINVAL if the requested state is invalid.
445  * -EIO if device does not support PCI PM or its PM capabilities register has a
446  * wrong version, or device doesn't support the requested state.
447  * 0 if device already is in the requested state.
448  * 0 if device's power state has been successfully changed.
449  */
450 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
451 {
452 	u16 pmcsr;
453 	bool need_restore = false;
454 
455 	/* Check if we're already there */
456 	if (dev->current_state == state)
457 		return 0;
458 
459 	if (!dev->pm_cap)
460 		return -EIO;
461 
462 	if (state < PCI_D0 || state > PCI_D3hot)
463 		return -EINVAL;
464 
465 	/* Validate current state:
466 	 * Can enter D0 from any state, but if we can only go deeper
467 	 * to sleep if we're already in a low power state
468 	 */
469 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
470 	    && dev->current_state > state) {
471 		dev_err(&dev->dev, "invalid power transition "
472 			"(from state %d to %d)\n", dev->current_state, state);
473 		return -EINVAL;
474 	}
475 
476 	/* check if this device supports the desired state */
477 	if ((state == PCI_D1 && !dev->d1_support)
478 	   || (state == PCI_D2 && !dev->d2_support))
479 		return -EIO;
480 
481 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
482 
483 	/* If we're (effectively) in D3, force entire word to 0.
484 	 * This doesn't affect PME_Status, disables PME_En, and
485 	 * sets PowerState to 0.
486 	 */
487 	switch (dev->current_state) {
488 	case PCI_D0:
489 	case PCI_D1:
490 	case PCI_D2:
491 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
492 		pmcsr |= state;
493 		break;
494 	case PCI_D3hot:
495 	case PCI_D3cold:
496 	case PCI_UNKNOWN: /* Boot-up */
497 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
498 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
499 			need_restore = true;
500 		/* Fall-through: force to D0 */
501 	default:
502 		pmcsr = 0;
503 		break;
504 	}
505 
506 	/* enter specified state */
507 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
508 
509 	/* Mandatory power management transition delays */
510 	/* see PCI PM 1.1 5.6.1 table 18 */
511 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
512 		msleep(pci_pm_d3_delay);
513 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
514 		udelay(PCI_PM_D2_DELAY);
515 
516 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
517 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
518 	if (dev->current_state != state && printk_ratelimit())
519 		dev_info(&dev->dev, "Refused to change power state, "
520 			"currently in D%d\n", dev->current_state);
521 
522 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
523 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
524 	 * from D3hot to D0 _may_ perform an internal reset, thereby
525 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
526 	 * For example, at least some versions of the 3c905B and the
527 	 * 3c556B exhibit this behaviour.
528 	 *
529 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
530 	 * devices in a D3hot state at boot.  Consequently, we need to
531 	 * restore at least the BARs so that the device will be
532 	 * accessible to its driver.
533 	 */
534 	if (need_restore)
535 		pci_restore_bars(dev);
536 
537 	if (dev->bus->self)
538 		pcie_aspm_pm_state_change(dev->bus->self);
539 
540 	return 0;
541 }
542 
543 /**
544  * pci_update_current_state - Read PCI power state of given device from its
545  *                            PCI PM registers and cache it
546  * @dev: PCI device to handle.
547  * @state: State to cache in case the device doesn't have the PM capability
548  */
549 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
550 {
551 	if (dev->pm_cap) {
552 		u16 pmcsr;
553 
554 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
555 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
556 	} else {
557 		dev->current_state = state;
558 	}
559 }
560 
561 /**
562  * pci_platform_power_transition - Use platform to change device power state
563  * @dev: PCI device to handle.
564  * @state: State to put the device into.
565  */
566 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
567 {
568 	int error;
569 
570 	if (platform_pci_power_manageable(dev)) {
571 		error = platform_pci_set_power_state(dev, state);
572 		if (!error)
573 			pci_update_current_state(dev, state);
574 	} else {
575 		error = -ENODEV;
576 		/* Fall back to PCI_D0 if native PM is not supported */
577 		if (!dev->pm_cap)
578 			dev->current_state = PCI_D0;
579 	}
580 
581 	return error;
582 }
583 
584 /**
585  * __pci_start_power_transition - Start power transition of a PCI device
586  * @dev: PCI device to handle.
587  * @state: State to put the device into.
588  */
589 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
590 {
591 	if (state == PCI_D0)
592 		pci_platform_power_transition(dev, PCI_D0);
593 }
594 
595 /**
596  * __pci_complete_power_transition - Complete power transition of a PCI device
597  * @dev: PCI device to handle.
598  * @state: State to put the device into.
599  *
600  * This function should not be called directly by device drivers.
601  */
602 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
603 {
604 	return state > PCI_D0 ?
605 			pci_platform_power_transition(dev, state) : -EINVAL;
606 }
607 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
608 
609 /**
610  * pci_set_power_state - Set the power state of a PCI device
611  * @dev: PCI device to handle.
612  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
613  *
614  * Transition a device to a new power state, using the platform firmware and/or
615  * the device's PCI PM registers.
616  *
617  * RETURN VALUE:
618  * -EINVAL if the requested state is invalid.
619  * -EIO if device does not support PCI PM or its PM capabilities register has a
620  * wrong version, or device doesn't support the requested state.
621  * 0 if device already is in the requested state.
622  * 0 if device's power state has been successfully changed.
623  */
624 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
625 {
626 	int error;
627 
628 	/* bound the state we're entering */
629 	if (state > PCI_D3hot)
630 		state = PCI_D3hot;
631 	else if (state < PCI_D0)
632 		state = PCI_D0;
633 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
634 		/*
635 		 * If the device or the parent bridge do not support PCI PM,
636 		 * ignore the request if we're doing anything other than putting
637 		 * it into D0 (which would only happen on boot).
638 		 */
639 		return 0;
640 
641 	/* Check if we're already there */
642 	if (dev->current_state == state)
643 		return 0;
644 
645 	__pci_start_power_transition(dev, state);
646 
647 	/* This device is quirked not to be put into D3, so
648 	   don't put it in D3 */
649 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
650 		return 0;
651 
652 	error = pci_raw_set_power_state(dev, state);
653 
654 	if (!__pci_complete_power_transition(dev, state))
655 		error = 0;
656 
657 	return error;
658 }
659 
660 /**
661  * pci_choose_state - Choose the power state of a PCI device
662  * @dev: PCI device to be suspended
663  * @state: target sleep state for the whole system. This is the value
664  *	that is passed to suspend() function.
665  *
666  * Returns PCI power state suitable for given device and given system
667  * message.
668  */
669 
670 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
671 {
672 	pci_power_t ret;
673 
674 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
675 		return PCI_D0;
676 
677 	ret = platform_pci_choose_state(dev);
678 	if (ret != PCI_POWER_ERROR)
679 		return ret;
680 
681 	switch (state.event) {
682 	case PM_EVENT_ON:
683 		return PCI_D0;
684 	case PM_EVENT_FREEZE:
685 	case PM_EVENT_PRETHAW:
686 		/* REVISIT both freeze and pre-thaw "should" use D0 */
687 	case PM_EVENT_SUSPEND:
688 	case PM_EVENT_HIBERNATE:
689 		return PCI_D3hot;
690 	default:
691 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
692 			 state.event);
693 		BUG();
694 	}
695 	return PCI_D0;
696 }
697 
698 EXPORT_SYMBOL(pci_choose_state);
699 
700 #define PCI_EXP_SAVE_REGS	7
701 
702 #define pcie_cap_has_devctl(type, flags)	1
703 #define pcie_cap_has_lnkctl(type, flags)		\
704 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
705 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
706 		  type == PCI_EXP_TYPE_ENDPOINT ||	\
707 		  type == PCI_EXP_TYPE_LEG_END))
708 #define pcie_cap_has_sltctl(type, flags)		\
709 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
710 		 ((type == PCI_EXP_TYPE_ROOT_PORT) ||	\
711 		  (type == PCI_EXP_TYPE_DOWNSTREAM &&	\
712 		   (flags & PCI_EXP_FLAGS_SLOT))))
713 #define pcie_cap_has_rtctl(type, flags)			\
714 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
715 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
716 		  type == PCI_EXP_TYPE_RC_EC))
717 #define pcie_cap_has_devctl2(type, flags)		\
718 		((flags & PCI_EXP_FLAGS_VERS) > 1)
719 #define pcie_cap_has_lnkctl2(type, flags)		\
720 		((flags & PCI_EXP_FLAGS_VERS) > 1)
721 #define pcie_cap_has_sltctl2(type, flags)		\
722 		((flags & PCI_EXP_FLAGS_VERS) > 1)
723 
724 static int pci_save_pcie_state(struct pci_dev *dev)
725 {
726 	int pos, i = 0;
727 	struct pci_cap_saved_state *save_state;
728 	u16 *cap;
729 	u16 flags;
730 
731 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
732 	if (pos <= 0)
733 		return 0;
734 
735 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
736 	if (!save_state) {
737 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
738 		return -ENOMEM;
739 	}
740 	cap = (u16 *)&save_state->data[0];
741 
742 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
743 
744 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
745 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
746 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
747 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
748 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
749 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
750 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
751 		pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
752 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
753 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
754 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
755 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
756 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
757 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
758 
759 	return 0;
760 }
761 
762 static void pci_restore_pcie_state(struct pci_dev *dev)
763 {
764 	int i = 0, pos;
765 	struct pci_cap_saved_state *save_state;
766 	u16 *cap;
767 	u16 flags;
768 
769 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
770 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
771 	if (!save_state || pos <= 0)
772 		return;
773 	cap = (u16 *)&save_state->data[0];
774 
775 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
776 
777 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
778 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
779 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
780 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
781 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
782 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
783 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
784 		pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
785 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
786 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
787 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
788 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
789 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
790 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
791 }
792 
793 
794 static int pci_save_pcix_state(struct pci_dev *dev)
795 {
796 	int pos;
797 	struct pci_cap_saved_state *save_state;
798 
799 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
800 	if (pos <= 0)
801 		return 0;
802 
803 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
804 	if (!save_state) {
805 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
806 		return -ENOMEM;
807 	}
808 
809 	pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
810 
811 	return 0;
812 }
813 
814 static void pci_restore_pcix_state(struct pci_dev *dev)
815 {
816 	int i = 0, pos;
817 	struct pci_cap_saved_state *save_state;
818 	u16 *cap;
819 
820 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
821 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
822 	if (!save_state || pos <= 0)
823 		return;
824 	cap = (u16 *)&save_state->data[0];
825 
826 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
827 }
828 
829 
830 /**
831  * pci_save_state - save the PCI configuration space of a device before suspending
832  * @dev: - PCI device that we're dealing with
833  */
834 int
835 pci_save_state(struct pci_dev *dev)
836 {
837 	int i;
838 	/* XXX: 100% dword access ok here? */
839 	for (i = 0; i < 16; i++)
840 		pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
841 	dev->state_saved = true;
842 	if ((i = pci_save_pcie_state(dev)) != 0)
843 		return i;
844 	if ((i = pci_save_pcix_state(dev)) != 0)
845 		return i;
846 	return 0;
847 }
848 
849 /**
850  * pci_restore_state - Restore the saved state of a PCI device
851  * @dev: - PCI device that we're dealing with
852  */
853 int
854 pci_restore_state(struct pci_dev *dev)
855 {
856 	int i;
857 	u32 val;
858 
859 	if (!dev->state_saved)
860 		return 0;
861 
862 	/* PCI Express register must be restored first */
863 	pci_restore_pcie_state(dev);
864 
865 	/*
866 	 * The Base Address register should be programmed before the command
867 	 * register(s)
868 	 */
869 	for (i = 15; i >= 0; i--) {
870 		pci_read_config_dword(dev, i * 4, &val);
871 		if (val != dev->saved_config_space[i]) {
872 			dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
873 				"space at offset %#x (was %#x, writing %#x)\n",
874 				i, val, (int)dev->saved_config_space[i]);
875 			pci_write_config_dword(dev,i * 4,
876 				dev->saved_config_space[i]);
877 		}
878 	}
879 	pci_restore_pcix_state(dev);
880 	pci_restore_msi_state(dev);
881 	pci_restore_iov_state(dev);
882 
883 	dev->state_saved = false;
884 
885 	return 0;
886 }
887 
888 static int do_pci_enable_device(struct pci_dev *dev, int bars)
889 {
890 	int err;
891 
892 	err = pci_set_power_state(dev, PCI_D0);
893 	if (err < 0 && err != -EIO)
894 		return err;
895 	err = pcibios_enable_device(dev, bars);
896 	if (err < 0)
897 		return err;
898 	pci_fixup_device(pci_fixup_enable, dev);
899 
900 	return 0;
901 }
902 
903 /**
904  * pci_reenable_device - Resume abandoned device
905  * @dev: PCI device to be resumed
906  *
907  *  Note this function is a backend of pci_default_resume and is not supposed
908  *  to be called by normal code, write proper resume handler and use it instead.
909  */
910 int pci_reenable_device(struct pci_dev *dev)
911 {
912 	if (pci_is_enabled(dev))
913 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
914 	return 0;
915 }
916 
917 static int __pci_enable_device_flags(struct pci_dev *dev,
918 				     resource_size_t flags)
919 {
920 	int err;
921 	int i, bars = 0;
922 
923 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
924 		return 0;		/* already enabled */
925 
926 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
927 		if (dev->resource[i].flags & flags)
928 			bars |= (1 << i);
929 
930 	err = do_pci_enable_device(dev, bars);
931 	if (err < 0)
932 		atomic_dec(&dev->enable_cnt);
933 	return err;
934 }
935 
936 /**
937  * pci_enable_device_io - Initialize a device for use with IO space
938  * @dev: PCI device to be initialized
939  *
940  *  Initialize device before it's used by a driver. Ask low-level code
941  *  to enable I/O resources. Wake up the device if it was suspended.
942  *  Beware, this function can fail.
943  */
944 int pci_enable_device_io(struct pci_dev *dev)
945 {
946 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
947 }
948 
949 /**
950  * pci_enable_device_mem - Initialize a device for use with Memory space
951  * @dev: PCI device to be initialized
952  *
953  *  Initialize device before it's used by a driver. Ask low-level code
954  *  to enable Memory resources. Wake up the device if it was suspended.
955  *  Beware, this function can fail.
956  */
957 int pci_enable_device_mem(struct pci_dev *dev)
958 {
959 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
960 }
961 
962 /**
963  * pci_enable_device - Initialize device before it's used by a driver.
964  * @dev: PCI device to be initialized
965  *
966  *  Initialize device before it's used by a driver. Ask low-level code
967  *  to enable I/O and memory. Wake up the device if it was suspended.
968  *  Beware, this function can fail.
969  *
970  *  Note we don't actually enable the device many times if we call
971  *  this function repeatedly (we just increment the count).
972  */
973 int pci_enable_device(struct pci_dev *dev)
974 {
975 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
976 }
977 
978 /*
979  * Managed PCI resources.  This manages device on/off, intx/msi/msix
980  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
981  * there's no need to track it separately.  pci_devres is initialized
982  * when a device is enabled using managed PCI device enable interface.
983  */
984 struct pci_devres {
985 	unsigned int enabled:1;
986 	unsigned int pinned:1;
987 	unsigned int orig_intx:1;
988 	unsigned int restore_intx:1;
989 	u32 region_mask;
990 };
991 
992 static void pcim_release(struct device *gendev, void *res)
993 {
994 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
995 	struct pci_devres *this = res;
996 	int i;
997 
998 	if (dev->msi_enabled)
999 		pci_disable_msi(dev);
1000 	if (dev->msix_enabled)
1001 		pci_disable_msix(dev);
1002 
1003 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1004 		if (this->region_mask & (1 << i))
1005 			pci_release_region(dev, i);
1006 
1007 	if (this->restore_intx)
1008 		pci_intx(dev, this->orig_intx);
1009 
1010 	if (this->enabled && !this->pinned)
1011 		pci_disable_device(dev);
1012 }
1013 
1014 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1015 {
1016 	struct pci_devres *dr, *new_dr;
1017 
1018 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1019 	if (dr)
1020 		return dr;
1021 
1022 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1023 	if (!new_dr)
1024 		return NULL;
1025 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1026 }
1027 
1028 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1029 {
1030 	if (pci_is_managed(pdev))
1031 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1032 	return NULL;
1033 }
1034 
1035 /**
1036  * pcim_enable_device - Managed pci_enable_device()
1037  * @pdev: PCI device to be initialized
1038  *
1039  * Managed pci_enable_device().
1040  */
1041 int pcim_enable_device(struct pci_dev *pdev)
1042 {
1043 	struct pci_devres *dr;
1044 	int rc;
1045 
1046 	dr = get_pci_dr(pdev);
1047 	if (unlikely(!dr))
1048 		return -ENOMEM;
1049 	if (dr->enabled)
1050 		return 0;
1051 
1052 	rc = pci_enable_device(pdev);
1053 	if (!rc) {
1054 		pdev->is_managed = 1;
1055 		dr->enabled = 1;
1056 	}
1057 	return rc;
1058 }
1059 
1060 /**
1061  * pcim_pin_device - Pin managed PCI device
1062  * @pdev: PCI device to pin
1063  *
1064  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1065  * driver detach.  @pdev must have been enabled with
1066  * pcim_enable_device().
1067  */
1068 void pcim_pin_device(struct pci_dev *pdev)
1069 {
1070 	struct pci_devres *dr;
1071 
1072 	dr = find_pci_dr(pdev);
1073 	WARN_ON(!dr || !dr->enabled);
1074 	if (dr)
1075 		dr->pinned = 1;
1076 }
1077 
1078 /**
1079  * pcibios_disable_device - disable arch specific PCI resources for device dev
1080  * @dev: the PCI device to disable
1081  *
1082  * Disables architecture specific PCI resources for the device. This
1083  * is the default implementation. Architecture implementations can
1084  * override this.
1085  */
1086 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1087 
1088 static void do_pci_disable_device(struct pci_dev *dev)
1089 {
1090 	u16 pci_command;
1091 
1092 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1093 	if (pci_command & PCI_COMMAND_MASTER) {
1094 		pci_command &= ~PCI_COMMAND_MASTER;
1095 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1096 	}
1097 
1098 	pcibios_disable_device(dev);
1099 }
1100 
1101 /**
1102  * pci_disable_enabled_device - Disable device without updating enable_cnt
1103  * @dev: PCI device to disable
1104  *
1105  * NOTE: This function is a backend of PCI power management routines and is
1106  * not supposed to be called drivers.
1107  */
1108 void pci_disable_enabled_device(struct pci_dev *dev)
1109 {
1110 	if (pci_is_enabled(dev))
1111 		do_pci_disable_device(dev);
1112 }
1113 
1114 /**
1115  * pci_disable_device - Disable PCI device after use
1116  * @dev: PCI device to be disabled
1117  *
1118  * Signal to the system that the PCI device is not in use by the system
1119  * anymore.  This only involves disabling PCI bus-mastering, if active.
1120  *
1121  * Note we don't actually disable the device until all callers of
1122  * pci_device_enable() have called pci_device_disable().
1123  */
1124 void
1125 pci_disable_device(struct pci_dev *dev)
1126 {
1127 	struct pci_devres *dr;
1128 
1129 	dr = find_pci_dr(dev);
1130 	if (dr)
1131 		dr->enabled = 0;
1132 
1133 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1134 		return;
1135 
1136 	do_pci_disable_device(dev);
1137 
1138 	dev->is_busmaster = 0;
1139 }
1140 
1141 /**
1142  * pcibios_set_pcie_reset_state - set reset state for device dev
1143  * @dev: the PCI-E device reset
1144  * @state: Reset state to enter into
1145  *
1146  *
1147  * Sets the PCI-E reset state for the device. This is the default
1148  * implementation. Architecture implementations can override this.
1149  */
1150 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1151 							enum pcie_reset_state state)
1152 {
1153 	return -EINVAL;
1154 }
1155 
1156 /**
1157  * pci_set_pcie_reset_state - set reset state for device dev
1158  * @dev: the PCI-E device reset
1159  * @state: Reset state to enter into
1160  *
1161  *
1162  * Sets the PCI reset state for the device.
1163  */
1164 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1165 {
1166 	return pcibios_set_pcie_reset_state(dev, state);
1167 }
1168 
1169 /**
1170  * pci_pme_capable - check the capability of PCI device to generate PME#
1171  * @dev: PCI device to handle.
1172  * @state: PCI state from which device will issue PME#.
1173  */
1174 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1175 {
1176 	if (!dev->pm_cap)
1177 		return false;
1178 
1179 	return !!(dev->pme_support & (1 << state));
1180 }
1181 
1182 /**
1183  * pci_pme_active - enable or disable PCI device's PME# function
1184  * @dev: PCI device to handle.
1185  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1186  *
1187  * The caller must verify that the device is capable of generating PME# before
1188  * calling this function with @enable equal to 'true'.
1189  */
1190 void pci_pme_active(struct pci_dev *dev, bool enable)
1191 {
1192 	u16 pmcsr;
1193 
1194 	if (!dev->pm_cap)
1195 		return;
1196 
1197 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1198 	/* Clear PME_Status by writing 1 to it and enable PME# */
1199 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1200 	if (!enable)
1201 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1202 
1203 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1204 
1205 	dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1206 			enable ? "enabled" : "disabled");
1207 }
1208 
1209 /**
1210  * pci_enable_wake - enable PCI device as wakeup event source
1211  * @dev: PCI device affected
1212  * @state: PCI state from which device will issue wakeup events
1213  * @enable: True to enable event generation; false to disable
1214  *
1215  * This enables the device as a wakeup event source, or disables it.
1216  * When such events involves platform-specific hooks, those hooks are
1217  * called automatically by this routine.
1218  *
1219  * Devices with legacy power management (no standard PCI PM capabilities)
1220  * always require such platform hooks.
1221  *
1222  * RETURN VALUE:
1223  * 0 is returned on success
1224  * -EINVAL is returned if device is not supposed to wake up the system
1225  * Error code depending on the platform is returned if both the platform and
1226  * the native mechanism fail to enable the generation of wake-up events
1227  */
1228 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1229 {
1230 	int ret = 0;
1231 
1232 	if (enable && !device_may_wakeup(&dev->dev))
1233 		return -EINVAL;
1234 
1235 	/* Don't do the same thing twice in a row for one device. */
1236 	if (!!enable == !!dev->wakeup_prepared)
1237 		return 0;
1238 
1239 	/*
1240 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1241 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1242 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1243 	 */
1244 
1245 	if (enable) {
1246 		int error;
1247 
1248 		if (pci_pme_capable(dev, state))
1249 			pci_pme_active(dev, true);
1250 		else
1251 			ret = 1;
1252 		error = platform_pci_sleep_wake(dev, true);
1253 		if (ret)
1254 			ret = error;
1255 		if (!ret)
1256 			dev->wakeup_prepared = true;
1257 	} else {
1258 		platform_pci_sleep_wake(dev, false);
1259 		pci_pme_active(dev, false);
1260 		dev->wakeup_prepared = false;
1261 	}
1262 
1263 	return ret;
1264 }
1265 
1266 /**
1267  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1268  * @dev: PCI device to prepare
1269  * @enable: True to enable wake-up event generation; false to disable
1270  *
1271  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1272  * and this function allows them to set that up cleanly - pci_enable_wake()
1273  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1274  * ordering constraints.
1275  *
1276  * This function only returns error code if the device is not capable of
1277  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1278  * enable wake-up power for it.
1279  */
1280 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1281 {
1282 	return pci_pme_capable(dev, PCI_D3cold) ?
1283 			pci_enable_wake(dev, PCI_D3cold, enable) :
1284 			pci_enable_wake(dev, PCI_D3hot, enable);
1285 }
1286 
1287 /**
1288  * pci_target_state - find an appropriate low power state for a given PCI dev
1289  * @dev: PCI device
1290  *
1291  * Use underlying platform code to find a supported low power state for @dev.
1292  * If the platform can't manage @dev, return the deepest state from which it
1293  * can generate wake events, based on any available PME info.
1294  */
1295 pci_power_t pci_target_state(struct pci_dev *dev)
1296 {
1297 	pci_power_t target_state = PCI_D3hot;
1298 
1299 	if (platform_pci_power_manageable(dev)) {
1300 		/*
1301 		 * Call the platform to choose the target state of the device
1302 		 * and enable wake-up from this state if supported.
1303 		 */
1304 		pci_power_t state = platform_pci_choose_state(dev);
1305 
1306 		switch (state) {
1307 		case PCI_POWER_ERROR:
1308 		case PCI_UNKNOWN:
1309 			break;
1310 		case PCI_D1:
1311 		case PCI_D2:
1312 			if (pci_no_d1d2(dev))
1313 				break;
1314 		default:
1315 			target_state = state;
1316 		}
1317 	} else if (!dev->pm_cap) {
1318 		target_state = PCI_D0;
1319 	} else if (device_may_wakeup(&dev->dev)) {
1320 		/*
1321 		 * Find the deepest state from which the device can generate
1322 		 * wake-up events, make it the target state and enable device
1323 		 * to generate PME#.
1324 		 */
1325 		if (dev->pme_support) {
1326 			while (target_state
1327 			      && !(dev->pme_support & (1 << target_state)))
1328 				target_state--;
1329 		}
1330 	}
1331 
1332 	return target_state;
1333 }
1334 
1335 /**
1336  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1337  * @dev: Device to handle.
1338  *
1339  * Choose the power state appropriate for the device depending on whether
1340  * it can wake up the system and/or is power manageable by the platform
1341  * (PCI_D3hot is the default) and put the device into that state.
1342  */
1343 int pci_prepare_to_sleep(struct pci_dev *dev)
1344 {
1345 	pci_power_t target_state = pci_target_state(dev);
1346 	int error;
1347 
1348 	if (target_state == PCI_POWER_ERROR)
1349 		return -EIO;
1350 
1351 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1352 
1353 	error = pci_set_power_state(dev, target_state);
1354 
1355 	if (error)
1356 		pci_enable_wake(dev, target_state, false);
1357 
1358 	return error;
1359 }
1360 
1361 /**
1362  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1363  * @dev: Device to handle.
1364  *
1365  * Disable device's sytem wake-up capability and put it into D0.
1366  */
1367 int pci_back_from_sleep(struct pci_dev *dev)
1368 {
1369 	pci_enable_wake(dev, PCI_D0, false);
1370 	return pci_set_power_state(dev, PCI_D0);
1371 }
1372 
1373 /**
1374  * pci_pm_init - Initialize PM functions of given PCI device
1375  * @dev: PCI device to handle.
1376  */
1377 void pci_pm_init(struct pci_dev *dev)
1378 {
1379 	int pm;
1380 	u16 pmc;
1381 
1382 	dev->wakeup_prepared = false;
1383 	dev->pm_cap = 0;
1384 
1385 	/* find PCI PM capability in list */
1386 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1387 	if (!pm)
1388 		return;
1389 	/* Check device's ability to generate PME# */
1390 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1391 
1392 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1393 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1394 			pmc & PCI_PM_CAP_VER_MASK);
1395 		return;
1396 	}
1397 
1398 	dev->pm_cap = pm;
1399 
1400 	dev->d1_support = false;
1401 	dev->d2_support = false;
1402 	if (!pci_no_d1d2(dev)) {
1403 		if (pmc & PCI_PM_CAP_D1)
1404 			dev->d1_support = true;
1405 		if (pmc & PCI_PM_CAP_D2)
1406 			dev->d2_support = true;
1407 
1408 		if (dev->d1_support || dev->d2_support)
1409 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1410 				   dev->d1_support ? " D1" : "",
1411 				   dev->d2_support ? " D2" : "");
1412 	}
1413 
1414 	pmc &= PCI_PM_CAP_PME_MASK;
1415 	if (pmc) {
1416 		dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1417 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1418 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1419 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1420 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1421 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1422 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1423 		/*
1424 		 * Make device's PM flags reflect the wake-up capability, but
1425 		 * let the user space enable it to wake up the system as needed.
1426 		 */
1427 		device_set_wakeup_capable(&dev->dev, true);
1428 		device_set_wakeup_enable(&dev->dev, false);
1429 		/* Disable the PME# generation functionality */
1430 		pci_pme_active(dev, false);
1431 	} else {
1432 		dev->pme_support = 0;
1433 	}
1434 }
1435 
1436 /**
1437  * platform_pci_wakeup_init - init platform wakeup if present
1438  * @dev: PCI device
1439  *
1440  * Some devices don't have PCI PM caps but can still generate wakeup
1441  * events through platform methods (like ACPI events).  If @dev supports
1442  * platform wakeup events, set the device flag to indicate as much.  This
1443  * may be redundant if the device also supports PCI PM caps, but double
1444  * initialization should be safe in that case.
1445  */
1446 void platform_pci_wakeup_init(struct pci_dev *dev)
1447 {
1448 	if (!platform_pci_can_wakeup(dev))
1449 		return;
1450 
1451 	device_set_wakeup_capable(&dev->dev, true);
1452 	device_set_wakeup_enable(&dev->dev, false);
1453 	platform_pci_sleep_wake(dev, false);
1454 }
1455 
1456 /**
1457  * pci_add_save_buffer - allocate buffer for saving given capability registers
1458  * @dev: the PCI device
1459  * @cap: the capability to allocate the buffer for
1460  * @size: requested size of the buffer
1461  */
1462 static int pci_add_cap_save_buffer(
1463 	struct pci_dev *dev, char cap, unsigned int size)
1464 {
1465 	int pos;
1466 	struct pci_cap_saved_state *save_state;
1467 
1468 	pos = pci_find_capability(dev, cap);
1469 	if (pos <= 0)
1470 		return 0;
1471 
1472 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1473 	if (!save_state)
1474 		return -ENOMEM;
1475 
1476 	save_state->cap_nr = cap;
1477 	pci_add_saved_cap(dev, save_state);
1478 
1479 	return 0;
1480 }
1481 
1482 /**
1483  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1484  * @dev: the PCI device
1485  */
1486 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1487 {
1488 	int error;
1489 
1490 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1491 					PCI_EXP_SAVE_REGS * sizeof(u16));
1492 	if (error)
1493 		dev_err(&dev->dev,
1494 			"unable to preallocate PCI Express save buffer\n");
1495 
1496 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1497 	if (error)
1498 		dev_err(&dev->dev,
1499 			"unable to preallocate PCI-X save buffer\n");
1500 }
1501 
1502 /**
1503  * pci_enable_ari - enable ARI forwarding if hardware support it
1504  * @dev: the PCI device
1505  */
1506 void pci_enable_ari(struct pci_dev *dev)
1507 {
1508 	int pos;
1509 	u32 cap;
1510 	u16 ctrl;
1511 	struct pci_dev *bridge;
1512 
1513 	if (!dev->is_pcie || dev->devfn)
1514 		return;
1515 
1516 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1517 	if (!pos)
1518 		return;
1519 
1520 	bridge = dev->bus->self;
1521 	if (!bridge || !bridge->is_pcie)
1522 		return;
1523 
1524 	pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1525 	if (!pos)
1526 		return;
1527 
1528 	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1529 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
1530 		return;
1531 
1532 	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1533 	ctrl |= PCI_EXP_DEVCTL2_ARI;
1534 	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1535 
1536 	bridge->ari_enabled = 1;
1537 }
1538 
1539 /**
1540  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1541  * @dev: the PCI device
1542  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1543  *
1544  * Perform INTx swizzling for a device behind one level of bridge.  This is
1545  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1546  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
1547  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1548  * the PCI Express Base Specification, Revision 2.1)
1549  */
1550 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1551 {
1552 	int slot;
1553 
1554 	if (pci_ari_enabled(dev->bus))
1555 		slot = 0;
1556 	else
1557 		slot = PCI_SLOT(dev->devfn);
1558 
1559 	return (((pin - 1) + slot) % 4) + 1;
1560 }
1561 
1562 int
1563 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1564 {
1565 	u8 pin;
1566 
1567 	pin = dev->pin;
1568 	if (!pin)
1569 		return -1;
1570 
1571 	while (!pci_is_root_bus(dev->bus)) {
1572 		pin = pci_swizzle_interrupt_pin(dev, pin);
1573 		dev = dev->bus->self;
1574 	}
1575 	*bridge = dev;
1576 	return pin;
1577 }
1578 
1579 /**
1580  * pci_common_swizzle - swizzle INTx all the way to root bridge
1581  * @dev: the PCI device
1582  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1583  *
1584  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
1585  * bridges all the way up to a PCI root bus.
1586  */
1587 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1588 {
1589 	u8 pin = *pinp;
1590 
1591 	while (!pci_is_root_bus(dev->bus)) {
1592 		pin = pci_swizzle_interrupt_pin(dev, pin);
1593 		dev = dev->bus->self;
1594 	}
1595 	*pinp = pin;
1596 	return PCI_SLOT(dev->devfn);
1597 }
1598 
1599 /**
1600  *	pci_release_region - Release a PCI bar
1601  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
1602  *	@bar: BAR to release
1603  *
1604  *	Releases the PCI I/O and memory resources previously reserved by a
1605  *	successful call to pci_request_region.  Call this function only
1606  *	after all use of the PCI regions has ceased.
1607  */
1608 void pci_release_region(struct pci_dev *pdev, int bar)
1609 {
1610 	struct pci_devres *dr;
1611 
1612 	if (pci_resource_len(pdev, bar) == 0)
1613 		return;
1614 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1615 		release_region(pci_resource_start(pdev, bar),
1616 				pci_resource_len(pdev, bar));
1617 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1618 		release_mem_region(pci_resource_start(pdev, bar),
1619 				pci_resource_len(pdev, bar));
1620 
1621 	dr = find_pci_dr(pdev);
1622 	if (dr)
1623 		dr->region_mask &= ~(1 << bar);
1624 }
1625 
1626 /**
1627  *	__pci_request_region - Reserved PCI I/O and memory resource
1628  *	@pdev: PCI device whose resources are to be reserved
1629  *	@bar: BAR to be reserved
1630  *	@res_name: Name to be associated with resource.
1631  *	@exclusive: whether the region access is exclusive or not
1632  *
1633  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1634  *	being reserved by owner @res_name.  Do not access any
1635  *	address inside the PCI regions unless this call returns
1636  *	successfully.
1637  *
1638  *	If @exclusive is set, then the region is marked so that userspace
1639  *	is explicitly not allowed to map the resource via /dev/mem or
1640  * 	sysfs MMIO access.
1641  *
1642  *	Returns 0 on success, or %EBUSY on error.  A warning
1643  *	message is also printed on failure.
1644  */
1645 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1646 									int exclusive)
1647 {
1648 	struct pci_devres *dr;
1649 
1650 	if (pci_resource_len(pdev, bar) == 0)
1651 		return 0;
1652 
1653 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1654 		if (!request_region(pci_resource_start(pdev, bar),
1655 			    pci_resource_len(pdev, bar), res_name))
1656 			goto err_out;
1657 	}
1658 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1659 		if (!__request_mem_region(pci_resource_start(pdev, bar),
1660 					pci_resource_len(pdev, bar), res_name,
1661 					exclusive))
1662 			goto err_out;
1663 	}
1664 
1665 	dr = find_pci_dr(pdev);
1666 	if (dr)
1667 		dr->region_mask |= 1 << bar;
1668 
1669 	return 0;
1670 
1671 err_out:
1672 	dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1673 		 bar,
1674 		 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1675 		 &pdev->resource[bar]);
1676 	return -EBUSY;
1677 }
1678 
1679 /**
1680  *	pci_request_region - Reserve PCI I/O and memory resource
1681  *	@pdev: PCI device whose resources are to be reserved
1682  *	@bar: BAR to be reserved
1683  *	@res_name: Name to be associated with resource
1684  *
1685  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
1686  *	being reserved by owner @res_name.  Do not access any
1687  *	address inside the PCI regions unless this call returns
1688  *	successfully.
1689  *
1690  *	Returns 0 on success, or %EBUSY on error.  A warning
1691  *	message is also printed on failure.
1692  */
1693 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1694 {
1695 	return __pci_request_region(pdev, bar, res_name, 0);
1696 }
1697 
1698 /**
1699  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
1700  *	@pdev: PCI device whose resources are to be reserved
1701  *	@bar: BAR to be reserved
1702  *	@res_name: Name to be associated with resource.
1703  *
1704  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1705  *	being reserved by owner @res_name.  Do not access any
1706  *	address inside the PCI regions unless this call returns
1707  *	successfully.
1708  *
1709  *	Returns 0 on success, or %EBUSY on error.  A warning
1710  *	message is also printed on failure.
1711  *
1712  *	The key difference that _exclusive makes it that userspace is
1713  *	explicitly not allowed to map the resource via /dev/mem or
1714  * 	sysfs.
1715  */
1716 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1717 {
1718 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1719 }
1720 /**
1721  * pci_release_selected_regions - Release selected PCI I/O and memory resources
1722  * @pdev: PCI device whose resources were previously reserved
1723  * @bars: Bitmask of BARs to be released
1724  *
1725  * Release selected PCI I/O and memory resources previously reserved.
1726  * Call this function only after all use of the PCI regions has ceased.
1727  */
1728 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1729 {
1730 	int i;
1731 
1732 	for (i = 0; i < 6; i++)
1733 		if (bars & (1 << i))
1734 			pci_release_region(pdev, i);
1735 }
1736 
1737 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1738 				 const char *res_name, int excl)
1739 {
1740 	int i;
1741 
1742 	for (i = 0; i < 6; i++)
1743 		if (bars & (1 << i))
1744 			if (__pci_request_region(pdev, i, res_name, excl))
1745 				goto err_out;
1746 	return 0;
1747 
1748 err_out:
1749 	while(--i >= 0)
1750 		if (bars & (1 << i))
1751 			pci_release_region(pdev, i);
1752 
1753 	return -EBUSY;
1754 }
1755 
1756 
1757 /**
1758  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1759  * @pdev: PCI device whose resources are to be reserved
1760  * @bars: Bitmask of BARs to be requested
1761  * @res_name: Name to be associated with resource
1762  */
1763 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1764 				 const char *res_name)
1765 {
1766 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
1767 }
1768 
1769 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1770 				 int bars, const char *res_name)
1771 {
1772 	return __pci_request_selected_regions(pdev, bars, res_name,
1773 			IORESOURCE_EXCLUSIVE);
1774 }
1775 
1776 /**
1777  *	pci_release_regions - Release reserved PCI I/O and memory resources
1778  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
1779  *
1780  *	Releases all PCI I/O and memory resources previously reserved by a
1781  *	successful call to pci_request_regions.  Call this function only
1782  *	after all use of the PCI regions has ceased.
1783  */
1784 
1785 void pci_release_regions(struct pci_dev *pdev)
1786 {
1787 	pci_release_selected_regions(pdev, (1 << 6) - 1);
1788 }
1789 
1790 /**
1791  *	pci_request_regions - Reserved PCI I/O and memory resources
1792  *	@pdev: PCI device whose resources are to be reserved
1793  *	@res_name: Name to be associated with resource.
1794  *
1795  *	Mark all PCI regions associated with PCI device @pdev as
1796  *	being reserved by owner @res_name.  Do not access any
1797  *	address inside the PCI regions unless this call returns
1798  *	successfully.
1799  *
1800  *	Returns 0 on success, or %EBUSY on error.  A warning
1801  *	message is also printed on failure.
1802  */
1803 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1804 {
1805 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1806 }
1807 
1808 /**
1809  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1810  *	@pdev: PCI device whose resources are to be reserved
1811  *	@res_name: Name to be associated with resource.
1812  *
1813  *	Mark all PCI regions associated with PCI device @pdev as
1814  *	being reserved by owner @res_name.  Do not access any
1815  *	address inside the PCI regions unless this call returns
1816  *	successfully.
1817  *
1818  *	pci_request_regions_exclusive() will mark the region so that
1819  * 	/dev/mem and the sysfs MMIO access will not be allowed.
1820  *
1821  *	Returns 0 on success, or %EBUSY on error.  A warning
1822  *	message is also printed on failure.
1823  */
1824 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1825 {
1826 	return pci_request_selected_regions_exclusive(pdev,
1827 					((1 << 6) - 1), res_name);
1828 }
1829 
1830 static void __pci_set_master(struct pci_dev *dev, bool enable)
1831 {
1832 	u16 old_cmd, cmd;
1833 
1834 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1835 	if (enable)
1836 		cmd = old_cmd | PCI_COMMAND_MASTER;
1837 	else
1838 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
1839 	if (cmd != old_cmd) {
1840 		dev_dbg(&dev->dev, "%s bus mastering\n",
1841 			enable ? "enabling" : "disabling");
1842 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1843 	}
1844 	dev->is_busmaster = enable;
1845 }
1846 
1847 /**
1848  * pci_set_master - enables bus-mastering for device dev
1849  * @dev: the PCI device to enable
1850  *
1851  * Enables bus-mastering on the device and calls pcibios_set_master()
1852  * to do the needed arch specific settings.
1853  */
1854 void pci_set_master(struct pci_dev *dev)
1855 {
1856 	__pci_set_master(dev, true);
1857 	pcibios_set_master(dev);
1858 }
1859 
1860 /**
1861  * pci_clear_master - disables bus-mastering for device dev
1862  * @dev: the PCI device to disable
1863  */
1864 void pci_clear_master(struct pci_dev *dev)
1865 {
1866 	__pci_set_master(dev, false);
1867 }
1868 
1869 #ifdef PCI_DISABLE_MWI
1870 int pci_set_mwi(struct pci_dev *dev)
1871 {
1872 	return 0;
1873 }
1874 
1875 int pci_try_set_mwi(struct pci_dev *dev)
1876 {
1877 	return 0;
1878 }
1879 
1880 void pci_clear_mwi(struct pci_dev *dev)
1881 {
1882 }
1883 
1884 #else
1885 
1886 #ifndef PCI_CACHE_LINE_BYTES
1887 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1888 #endif
1889 
1890 /* This can be overridden by arch code. */
1891 /* Don't forget this is measured in 32-bit words, not bytes */
1892 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1893 
1894 /**
1895  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1896  * @dev: the PCI device for which MWI is to be enabled
1897  *
1898  * Helper function for pci_set_mwi.
1899  * Originally copied from drivers/net/acenic.c.
1900  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1901  *
1902  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1903  */
1904 static int
1905 pci_set_cacheline_size(struct pci_dev *dev)
1906 {
1907 	u8 cacheline_size;
1908 
1909 	if (!pci_cache_line_size)
1910 		return -EINVAL;		/* The system doesn't support MWI. */
1911 
1912 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1913 	   equal to or multiple of the right value. */
1914 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1915 	if (cacheline_size >= pci_cache_line_size &&
1916 	    (cacheline_size % pci_cache_line_size) == 0)
1917 		return 0;
1918 
1919 	/* Write the correct value. */
1920 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1921 	/* Read it back. */
1922 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1923 	if (cacheline_size == pci_cache_line_size)
1924 		return 0;
1925 
1926 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1927 		   "supported\n", pci_cache_line_size << 2);
1928 
1929 	return -EINVAL;
1930 }
1931 
1932 /**
1933  * pci_set_mwi - enables memory-write-invalidate PCI transaction
1934  * @dev: the PCI device for which MWI is enabled
1935  *
1936  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1937  *
1938  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1939  */
1940 int
1941 pci_set_mwi(struct pci_dev *dev)
1942 {
1943 	int rc;
1944 	u16 cmd;
1945 
1946 	rc = pci_set_cacheline_size(dev);
1947 	if (rc)
1948 		return rc;
1949 
1950 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1951 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1952 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1953 		cmd |= PCI_COMMAND_INVALIDATE;
1954 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 /**
1961  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1962  * @dev: the PCI device for which MWI is enabled
1963  *
1964  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1965  * Callers are not required to check the return value.
1966  *
1967  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1968  */
1969 int pci_try_set_mwi(struct pci_dev *dev)
1970 {
1971 	int rc = pci_set_mwi(dev);
1972 	return rc;
1973 }
1974 
1975 /**
1976  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1977  * @dev: the PCI device to disable
1978  *
1979  * Disables PCI Memory-Write-Invalidate transaction on the device
1980  */
1981 void
1982 pci_clear_mwi(struct pci_dev *dev)
1983 {
1984 	u16 cmd;
1985 
1986 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1987 	if (cmd & PCI_COMMAND_INVALIDATE) {
1988 		cmd &= ~PCI_COMMAND_INVALIDATE;
1989 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1990 	}
1991 }
1992 #endif /* ! PCI_DISABLE_MWI */
1993 
1994 /**
1995  * pci_intx - enables/disables PCI INTx for device dev
1996  * @pdev: the PCI device to operate on
1997  * @enable: boolean: whether to enable or disable PCI INTx
1998  *
1999  * Enables/disables PCI INTx for device dev
2000  */
2001 void
2002 pci_intx(struct pci_dev *pdev, int enable)
2003 {
2004 	u16 pci_command, new;
2005 
2006 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2007 
2008 	if (enable) {
2009 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2010 	} else {
2011 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2012 	}
2013 
2014 	if (new != pci_command) {
2015 		struct pci_devres *dr;
2016 
2017 		pci_write_config_word(pdev, PCI_COMMAND, new);
2018 
2019 		dr = find_pci_dr(pdev);
2020 		if (dr && !dr->restore_intx) {
2021 			dr->restore_intx = 1;
2022 			dr->orig_intx = !enable;
2023 		}
2024 	}
2025 }
2026 
2027 /**
2028  * pci_msi_off - disables any msi or msix capabilities
2029  * @dev: the PCI device to operate on
2030  *
2031  * If you want to use msi see pci_enable_msi and friends.
2032  * This is a lower level primitive that allows us to disable
2033  * msi operation at the device level.
2034  */
2035 void pci_msi_off(struct pci_dev *dev)
2036 {
2037 	int pos;
2038 	u16 control;
2039 
2040 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2041 	if (pos) {
2042 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2043 		control &= ~PCI_MSI_FLAGS_ENABLE;
2044 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2045 	}
2046 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2047 	if (pos) {
2048 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2049 		control &= ~PCI_MSIX_FLAGS_ENABLE;
2050 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2051 	}
2052 }
2053 
2054 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2055 /*
2056  * These can be overridden by arch-specific implementations
2057  */
2058 int
2059 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2060 {
2061 	if (!pci_dma_supported(dev, mask))
2062 		return -EIO;
2063 
2064 	dev->dma_mask = mask;
2065 
2066 	return 0;
2067 }
2068 
2069 int
2070 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2071 {
2072 	if (!pci_dma_supported(dev, mask))
2073 		return -EIO;
2074 
2075 	dev->dev.coherent_dma_mask = mask;
2076 
2077 	return 0;
2078 }
2079 #endif
2080 
2081 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2082 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2083 {
2084 	return dma_set_max_seg_size(&dev->dev, size);
2085 }
2086 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2087 #endif
2088 
2089 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2090 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2091 {
2092 	return dma_set_seg_boundary(&dev->dev, mask);
2093 }
2094 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2095 #endif
2096 
2097 static int pcie_flr(struct pci_dev *dev, int probe)
2098 {
2099 	int i;
2100 	int pos;
2101 	u32 cap;
2102 	u16 status;
2103 
2104 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2105 	if (!pos)
2106 		return -ENOTTY;
2107 
2108 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2109 	if (!(cap & PCI_EXP_DEVCAP_FLR))
2110 		return -ENOTTY;
2111 
2112 	if (probe)
2113 		return 0;
2114 
2115 	/* Wait for Transaction Pending bit clean */
2116 	for (i = 0; i < 4; i++) {
2117 		if (i)
2118 			msleep((1 << (i - 1)) * 100);
2119 
2120 		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2121 		if (!(status & PCI_EXP_DEVSTA_TRPND))
2122 			goto clear;
2123 	}
2124 
2125 	dev_err(&dev->dev, "transaction is not cleared; "
2126 			"proceeding with reset anyway\n");
2127 
2128 clear:
2129 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL,
2130 				PCI_EXP_DEVCTL_BCR_FLR);
2131 	msleep(100);
2132 
2133 	return 0;
2134 }
2135 
2136 static int pci_af_flr(struct pci_dev *dev, int probe)
2137 {
2138 	int i;
2139 	int pos;
2140 	u8 cap;
2141 	u8 status;
2142 
2143 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2144 	if (!pos)
2145 		return -ENOTTY;
2146 
2147 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2148 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2149 		return -ENOTTY;
2150 
2151 	if (probe)
2152 		return 0;
2153 
2154 	/* Wait for Transaction Pending bit clean */
2155 	for (i = 0; i < 4; i++) {
2156 		if (i)
2157 			msleep((1 << (i - 1)) * 100);
2158 
2159 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2160 		if (!(status & PCI_AF_STATUS_TP))
2161 			goto clear;
2162 	}
2163 
2164 	dev_err(&dev->dev, "transaction is not cleared; "
2165 			"proceeding with reset anyway\n");
2166 
2167 clear:
2168 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2169 	msleep(100);
2170 
2171 	return 0;
2172 }
2173 
2174 static int pci_pm_reset(struct pci_dev *dev, int probe)
2175 {
2176 	u16 csr;
2177 
2178 	if (!dev->pm_cap)
2179 		return -ENOTTY;
2180 
2181 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2182 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2183 		return -ENOTTY;
2184 
2185 	if (probe)
2186 		return 0;
2187 
2188 	if (dev->current_state != PCI_D0)
2189 		return -EINVAL;
2190 
2191 	csr &= ~PCI_PM_CTRL_STATE_MASK;
2192 	csr |= PCI_D3hot;
2193 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2194 	msleep(pci_pm_d3_delay);
2195 
2196 	csr &= ~PCI_PM_CTRL_STATE_MASK;
2197 	csr |= PCI_D0;
2198 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2199 	msleep(pci_pm_d3_delay);
2200 
2201 	return 0;
2202 }
2203 
2204 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2205 {
2206 	u16 ctrl;
2207 	struct pci_dev *pdev;
2208 
2209 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2210 		return -ENOTTY;
2211 
2212 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2213 		if (pdev != dev)
2214 			return -ENOTTY;
2215 
2216 	if (probe)
2217 		return 0;
2218 
2219 	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2220 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2221 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2222 	msleep(100);
2223 
2224 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2225 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2226 	msleep(100);
2227 
2228 	return 0;
2229 }
2230 
2231 static int pci_dev_reset(struct pci_dev *dev, int probe)
2232 {
2233 	int rc;
2234 
2235 	might_sleep();
2236 
2237 	if (!probe) {
2238 		pci_block_user_cfg_access(dev);
2239 		/* block PM suspend, driver probe, etc. */
2240 		down(&dev->dev.sem);
2241 	}
2242 
2243 	rc = pcie_flr(dev, probe);
2244 	if (rc != -ENOTTY)
2245 		goto done;
2246 
2247 	rc = pci_af_flr(dev, probe);
2248 	if (rc != -ENOTTY)
2249 		goto done;
2250 
2251 	rc = pci_pm_reset(dev, probe);
2252 	if (rc != -ENOTTY)
2253 		goto done;
2254 
2255 	rc = pci_parent_bus_reset(dev, probe);
2256 done:
2257 	if (!probe) {
2258 		up(&dev->dev.sem);
2259 		pci_unblock_user_cfg_access(dev);
2260 	}
2261 
2262 	return rc;
2263 }
2264 
2265 /**
2266  * __pci_reset_function - reset a PCI device function
2267  * @dev: PCI device to reset
2268  *
2269  * Some devices allow an individual function to be reset without affecting
2270  * other functions in the same device.  The PCI device must be responsive
2271  * to PCI config space in order to use this function.
2272  *
2273  * The device function is presumed to be unused when this function is called.
2274  * Resetting the device will make the contents of PCI configuration space
2275  * random, so any caller of this must be prepared to reinitialise the
2276  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2277  * etc.
2278  *
2279  * Returns 0 if the device function was successfully reset or negative if the
2280  * device doesn't support resetting a single function.
2281  */
2282 int __pci_reset_function(struct pci_dev *dev)
2283 {
2284 	return pci_dev_reset(dev, 0);
2285 }
2286 EXPORT_SYMBOL_GPL(__pci_reset_function);
2287 
2288 /**
2289  * pci_probe_reset_function - check whether the device can be safely reset
2290  * @dev: PCI device to reset
2291  *
2292  * Some devices allow an individual function to be reset without affecting
2293  * other functions in the same device.  The PCI device must be responsive
2294  * to PCI config space in order to use this function.
2295  *
2296  * Returns 0 if the device function can be reset or negative if the
2297  * device doesn't support resetting a single function.
2298  */
2299 int pci_probe_reset_function(struct pci_dev *dev)
2300 {
2301 	return pci_dev_reset(dev, 1);
2302 }
2303 
2304 /**
2305  * pci_reset_function - quiesce and reset a PCI device function
2306  * @dev: PCI device to reset
2307  *
2308  * Some devices allow an individual function to be reset without affecting
2309  * other functions in the same device.  The PCI device must be responsive
2310  * to PCI config space in order to use this function.
2311  *
2312  * This function does not just reset the PCI portion of a device, but
2313  * clears all the state associated with the device.  This function differs
2314  * from __pci_reset_function in that it saves and restores device state
2315  * over the reset.
2316  *
2317  * Returns 0 if the device function was successfully reset or negative if the
2318  * device doesn't support resetting a single function.
2319  */
2320 int pci_reset_function(struct pci_dev *dev)
2321 {
2322 	int rc;
2323 
2324 	rc = pci_dev_reset(dev, 1);
2325 	if (rc)
2326 		return rc;
2327 
2328 	pci_save_state(dev);
2329 
2330 	/*
2331 	 * both INTx and MSI are disabled after the Interrupt Disable bit
2332 	 * is set and the Bus Master bit is cleared.
2333 	 */
2334 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2335 
2336 	rc = pci_dev_reset(dev, 0);
2337 
2338 	pci_restore_state(dev);
2339 
2340 	return rc;
2341 }
2342 EXPORT_SYMBOL_GPL(pci_reset_function);
2343 
2344 /**
2345  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2346  * @dev: PCI device to query
2347  *
2348  * Returns mmrbc: maximum designed memory read count in bytes
2349  *    or appropriate error value.
2350  */
2351 int pcix_get_max_mmrbc(struct pci_dev *dev)
2352 {
2353 	int err, cap;
2354 	u32 stat;
2355 
2356 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2357 	if (!cap)
2358 		return -EINVAL;
2359 
2360 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2361 	if (err)
2362 		return -EINVAL;
2363 
2364 	return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2365 }
2366 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2367 
2368 /**
2369  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2370  * @dev: PCI device to query
2371  *
2372  * Returns mmrbc: maximum memory read count in bytes
2373  *    or appropriate error value.
2374  */
2375 int pcix_get_mmrbc(struct pci_dev *dev)
2376 {
2377 	int ret, cap;
2378 	u32 cmd;
2379 
2380 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2381 	if (!cap)
2382 		return -EINVAL;
2383 
2384 	ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2385 	if (!ret)
2386 		ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2387 
2388 	return ret;
2389 }
2390 EXPORT_SYMBOL(pcix_get_mmrbc);
2391 
2392 /**
2393  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2394  * @dev: PCI device to query
2395  * @mmrbc: maximum memory read count in bytes
2396  *    valid values are 512, 1024, 2048, 4096
2397  *
2398  * If possible sets maximum memory read byte count, some bridges have erratas
2399  * that prevent this.
2400  */
2401 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2402 {
2403 	int cap, err = -EINVAL;
2404 	u32 stat, cmd, v, o;
2405 
2406 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2407 		goto out;
2408 
2409 	v = ffs(mmrbc) - 10;
2410 
2411 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2412 	if (!cap)
2413 		goto out;
2414 
2415 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2416 	if (err)
2417 		goto out;
2418 
2419 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2420 		return -E2BIG;
2421 
2422 	err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2423 	if (err)
2424 		goto out;
2425 
2426 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2427 	if (o != v) {
2428 		if (v > o && dev->bus &&
2429 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2430 			return -EIO;
2431 
2432 		cmd &= ~PCI_X_CMD_MAX_READ;
2433 		cmd |= v << 2;
2434 		err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2435 	}
2436 out:
2437 	return err;
2438 }
2439 EXPORT_SYMBOL(pcix_set_mmrbc);
2440 
2441 /**
2442  * pcie_get_readrq - get PCI Express read request size
2443  * @dev: PCI device to query
2444  *
2445  * Returns maximum memory read request in bytes
2446  *    or appropriate error value.
2447  */
2448 int pcie_get_readrq(struct pci_dev *dev)
2449 {
2450 	int ret, cap;
2451 	u16 ctl;
2452 
2453 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2454 	if (!cap)
2455 		return -EINVAL;
2456 
2457 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2458 	if (!ret)
2459 	ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2460 
2461 	return ret;
2462 }
2463 EXPORT_SYMBOL(pcie_get_readrq);
2464 
2465 /**
2466  * pcie_set_readrq - set PCI Express maximum memory read request
2467  * @dev: PCI device to query
2468  * @rq: maximum memory read count in bytes
2469  *    valid values are 128, 256, 512, 1024, 2048, 4096
2470  *
2471  * If possible sets maximum read byte count
2472  */
2473 int pcie_set_readrq(struct pci_dev *dev, int rq)
2474 {
2475 	int cap, err = -EINVAL;
2476 	u16 ctl, v;
2477 
2478 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2479 		goto out;
2480 
2481 	v = (ffs(rq) - 8) << 12;
2482 
2483 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2484 	if (!cap)
2485 		goto out;
2486 
2487 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2488 	if (err)
2489 		goto out;
2490 
2491 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2492 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
2493 		ctl |= v;
2494 		err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2495 	}
2496 
2497 out:
2498 	return err;
2499 }
2500 EXPORT_SYMBOL(pcie_set_readrq);
2501 
2502 /**
2503  * pci_select_bars - Make BAR mask from the type of resource
2504  * @dev: the PCI device for which BAR mask is made
2505  * @flags: resource type mask to be selected
2506  *
2507  * This helper routine makes bar mask from the type of resource.
2508  */
2509 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2510 {
2511 	int i, bars = 0;
2512 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
2513 		if (pci_resource_flags(dev, i) & flags)
2514 			bars |= (1 << i);
2515 	return bars;
2516 }
2517 
2518 /**
2519  * pci_resource_bar - get position of the BAR associated with a resource
2520  * @dev: the PCI device
2521  * @resno: the resource number
2522  * @type: the BAR type to be filled in
2523  *
2524  * Returns BAR position in config space, or 0 if the BAR is invalid.
2525  */
2526 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2527 {
2528 	int reg;
2529 
2530 	if (resno < PCI_ROM_RESOURCE) {
2531 		*type = pci_bar_unknown;
2532 		return PCI_BASE_ADDRESS_0 + 4 * resno;
2533 	} else if (resno == PCI_ROM_RESOURCE) {
2534 		*type = pci_bar_mem32;
2535 		return dev->rom_base_reg;
2536 	} else if (resno < PCI_BRIDGE_RESOURCES) {
2537 		/* device specific resource */
2538 		reg = pci_iov_resource_bar(dev, resno, type);
2539 		if (reg)
2540 			return reg;
2541 	}
2542 
2543 	dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2544 	return 0;
2545 }
2546 
2547 /**
2548  * pci_set_vga_state - set VGA decode state on device and parents if requested
2549  * @dev: the PCI device
2550  * @decode: true = enable decoding, false = disable decoding
2551  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2552  * @change_bridge: traverse ancestors and change bridges
2553  */
2554 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2555 		      unsigned int command_bits, bool change_bridge)
2556 {
2557 	struct pci_bus *bus;
2558 	struct pci_dev *bridge;
2559 	u16 cmd;
2560 
2561 	WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2562 
2563 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2564 	if (decode == true)
2565 		cmd |= command_bits;
2566 	else
2567 		cmd &= ~command_bits;
2568 	pci_write_config_word(dev, PCI_COMMAND, cmd);
2569 
2570 	if (change_bridge == false)
2571 		return 0;
2572 
2573 	bus = dev->bus;
2574 	while (bus) {
2575 		bridge = bus->self;
2576 		if (bridge) {
2577 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2578 					     &cmd);
2579 			if (decode == true)
2580 				cmd |= PCI_BRIDGE_CTL_VGA;
2581 			else
2582 				cmd &= ~PCI_BRIDGE_CTL_VGA;
2583 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2584 					      cmd);
2585 		}
2586 		bus = bus->parent;
2587 	}
2588 	return 0;
2589 }
2590 
2591 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2592 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2593 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2594 
2595 /**
2596  * pci_specified_resource_alignment - get resource alignment specified by user.
2597  * @dev: the PCI device to get
2598  *
2599  * RETURNS: Resource alignment if it is specified.
2600  *          Zero if it is not specified.
2601  */
2602 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2603 {
2604 	int seg, bus, slot, func, align_order, count;
2605 	resource_size_t align = 0;
2606 	char *p;
2607 
2608 	spin_lock(&resource_alignment_lock);
2609 	p = resource_alignment_param;
2610 	while (*p) {
2611 		count = 0;
2612 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2613 							p[count] == '@') {
2614 			p += count + 1;
2615 		} else {
2616 			align_order = -1;
2617 		}
2618 		if (sscanf(p, "%x:%x:%x.%x%n",
2619 			&seg, &bus, &slot, &func, &count) != 4) {
2620 			seg = 0;
2621 			if (sscanf(p, "%x:%x.%x%n",
2622 					&bus, &slot, &func, &count) != 3) {
2623 				/* Invalid format */
2624 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2625 					p);
2626 				break;
2627 			}
2628 		}
2629 		p += count;
2630 		if (seg == pci_domain_nr(dev->bus) &&
2631 			bus == dev->bus->number &&
2632 			slot == PCI_SLOT(dev->devfn) &&
2633 			func == PCI_FUNC(dev->devfn)) {
2634 			if (align_order == -1) {
2635 				align = PAGE_SIZE;
2636 			} else {
2637 				align = 1 << align_order;
2638 			}
2639 			/* Found */
2640 			break;
2641 		}
2642 		if (*p != ';' && *p != ',') {
2643 			/* End of param or invalid format */
2644 			break;
2645 		}
2646 		p++;
2647 	}
2648 	spin_unlock(&resource_alignment_lock);
2649 	return align;
2650 }
2651 
2652 /**
2653  * pci_is_reassigndev - check if specified PCI is target device to reassign
2654  * @dev: the PCI device to check
2655  *
2656  * RETURNS: non-zero for PCI device is a target device to reassign,
2657  *          or zero is not.
2658  */
2659 int pci_is_reassigndev(struct pci_dev *dev)
2660 {
2661 	return (pci_specified_resource_alignment(dev) != 0);
2662 }
2663 
2664 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2665 {
2666 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2667 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2668 	spin_lock(&resource_alignment_lock);
2669 	strncpy(resource_alignment_param, buf, count);
2670 	resource_alignment_param[count] = '\0';
2671 	spin_unlock(&resource_alignment_lock);
2672 	return count;
2673 }
2674 
2675 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2676 {
2677 	size_t count;
2678 	spin_lock(&resource_alignment_lock);
2679 	count = snprintf(buf, size, "%s", resource_alignment_param);
2680 	spin_unlock(&resource_alignment_lock);
2681 	return count;
2682 }
2683 
2684 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2685 {
2686 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2687 }
2688 
2689 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2690 					const char *buf, size_t count)
2691 {
2692 	return pci_set_resource_alignment_param(buf, count);
2693 }
2694 
2695 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2696 					pci_resource_alignment_store);
2697 
2698 static int __init pci_resource_alignment_sysfs_init(void)
2699 {
2700 	return bus_create_file(&pci_bus_type,
2701 					&bus_attr_resource_alignment);
2702 }
2703 
2704 late_initcall(pci_resource_alignment_sysfs_init);
2705 
2706 static void __devinit pci_no_domains(void)
2707 {
2708 #ifdef CONFIG_PCI_DOMAINS
2709 	pci_domains_supported = 0;
2710 #endif
2711 }
2712 
2713 /**
2714  * pci_ext_cfg_enabled - can we access extended PCI config space?
2715  * @dev: The PCI device of the root bridge.
2716  *
2717  * Returns 1 if we can access PCI extended config space (offsets
2718  * greater than 0xff). This is the default implementation. Architecture
2719  * implementations can override this.
2720  */
2721 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2722 {
2723 	return 1;
2724 }
2725 
2726 static int __init pci_setup(char *str)
2727 {
2728 	while (str) {
2729 		char *k = strchr(str, ',');
2730 		if (k)
2731 			*k++ = 0;
2732 		if (*str && (str = pcibios_setup(str)) && *str) {
2733 			if (!strcmp(str, "nomsi")) {
2734 				pci_no_msi();
2735 			} else if (!strcmp(str, "noaer")) {
2736 				pci_no_aer();
2737 			} else if (!strcmp(str, "nodomains")) {
2738 				pci_no_domains();
2739 			} else if (!strncmp(str, "cbiosize=", 9)) {
2740 				pci_cardbus_io_size = memparse(str + 9, &str);
2741 			} else if (!strncmp(str, "cbmemsize=", 10)) {
2742 				pci_cardbus_mem_size = memparse(str + 10, &str);
2743 			} else if (!strncmp(str, "resource_alignment=", 19)) {
2744 				pci_set_resource_alignment_param(str + 19,
2745 							strlen(str + 19));
2746 			} else if (!strncmp(str, "ecrc=", 5)) {
2747 				pcie_ecrc_get_policy(str + 5);
2748 			} else if (!strncmp(str, "hpiosize=", 9)) {
2749 				pci_hotplug_io_size = memparse(str + 9, &str);
2750 			} else if (!strncmp(str, "hpmemsize=", 10)) {
2751 				pci_hotplug_mem_size = memparse(str + 10, &str);
2752 			} else {
2753 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
2754 						str);
2755 			}
2756 		}
2757 		str = k;
2758 	}
2759 	return 0;
2760 }
2761 early_param("pci", pci_setup);
2762 
2763 EXPORT_SYMBOL(pci_reenable_device);
2764 EXPORT_SYMBOL(pci_enable_device_io);
2765 EXPORT_SYMBOL(pci_enable_device_mem);
2766 EXPORT_SYMBOL(pci_enable_device);
2767 EXPORT_SYMBOL(pcim_enable_device);
2768 EXPORT_SYMBOL(pcim_pin_device);
2769 EXPORT_SYMBOL(pci_disable_device);
2770 EXPORT_SYMBOL(pci_find_capability);
2771 EXPORT_SYMBOL(pci_bus_find_capability);
2772 EXPORT_SYMBOL(pci_release_regions);
2773 EXPORT_SYMBOL(pci_request_regions);
2774 EXPORT_SYMBOL(pci_request_regions_exclusive);
2775 EXPORT_SYMBOL(pci_release_region);
2776 EXPORT_SYMBOL(pci_request_region);
2777 EXPORT_SYMBOL(pci_request_region_exclusive);
2778 EXPORT_SYMBOL(pci_release_selected_regions);
2779 EXPORT_SYMBOL(pci_request_selected_regions);
2780 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2781 EXPORT_SYMBOL(pci_set_master);
2782 EXPORT_SYMBOL(pci_clear_master);
2783 EXPORT_SYMBOL(pci_set_mwi);
2784 EXPORT_SYMBOL(pci_try_set_mwi);
2785 EXPORT_SYMBOL(pci_clear_mwi);
2786 EXPORT_SYMBOL_GPL(pci_intx);
2787 EXPORT_SYMBOL(pci_set_dma_mask);
2788 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2789 EXPORT_SYMBOL(pci_assign_resource);
2790 EXPORT_SYMBOL(pci_find_parent_resource);
2791 EXPORT_SYMBOL(pci_select_bars);
2792 
2793 EXPORT_SYMBOL(pci_set_power_state);
2794 EXPORT_SYMBOL(pci_save_state);
2795 EXPORT_SYMBOL(pci_restore_state);
2796 EXPORT_SYMBOL(pci_pme_capable);
2797 EXPORT_SYMBOL(pci_pme_active);
2798 EXPORT_SYMBOL(pci_enable_wake);
2799 EXPORT_SYMBOL(pci_wake_from_d3);
2800 EXPORT_SYMBOL(pci_target_state);
2801 EXPORT_SYMBOL(pci_prepare_to_sleep);
2802 EXPORT_SYMBOL(pci_back_from_sleep);
2803 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2804 
2805