xref: /linux/drivers/pci/pci.c (revision d80498398276ca8eee7ebdbe0d47e06d01317439)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h>	/* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26 
27 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
28 
29 #ifdef CONFIG_PCI_DOMAINS
30 int pci_domains_supported = 1;
31 #endif
32 
33 #define DEFAULT_CARDBUS_IO_SIZE		(256)
34 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
35 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
36 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
37 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
38 
39 /**
40  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
41  * @bus: pointer to PCI bus structure to search
42  *
43  * Given a PCI bus, returns the highest PCI bus number present in the set
44  * including the given PCI bus and its list of child PCI buses.
45  */
46 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
47 {
48 	struct list_head *tmp;
49 	unsigned char max, n;
50 
51 	max = bus->subordinate;
52 	list_for_each(tmp, &bus->children) {
53 		n = pci_bus_max_busnr(pci_bus_b(tmp));
54 		if(n > max)
55 			max = n;
56 	}
57 	return max;
58 }
59 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
60 
61 #ifdef CONFIG_HAS_IOMEM
62 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
63 {
64 	/*
65 	 * Make sure the BAR is actually a memory resource, not an IO resource
66 	 */
67 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
68 		WARN_ON(1);
69 		return NULL;
70 	}
71 	return ioremap_nocache(pci_resource_start(pdev, bar),
72 				     pci_resource_len(pdev, bar));
73 }
74 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
75 #endif
76 
77 #if 0
78 /**
79  * pci_max_busnr - returns maximum PCI bus number
80  *
81  * Returns the highest PCI bus number present in the system global list of
82  * PCI buses.
83  */
84 unsigned char __devinit
85 pci_max_busnr(void)
86 {
87 	struct pci_bus *bus = NULL;
88 	unsigned char max, n;
89 
90 	max = 0;
91 	while ((bus = pci_find_next_bus(bus)) != NULL) {
92 		n = pci_bus_max_busnr(bus);
93 		if(n > max)
94 			max = n;
95 	}
96 	return max;
97 }
98 
99 #endif  /*  0  */
100 
101 #define PCI_FIND_CAP_TTL	48
102 
103 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
104 				   u8 pos, int cap, int *ttl)
105 {
106 	u8 id;
107 
108 	while ((*ttl)--) {
109 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
110 		if (pos < 0x40)
111 			break;
112 		pos &= ~3;
113 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
114 					 &id);
115 		if (id == 0xff)
116 			break;
117 		if (id == cap)
118 			return pos;
119 		pos += PCI_CAP_LIST_NEXT;
120 	}
121 	return 0;
122 }
123 
124 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
125 			       u8 pos, int cap)
126 {
127 	int ttl = PCI_FIND_CAP_TTL;
128 
129 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
130 }
131 
132 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
133 {
134 	return __pci_find_next_cap(dev->bus, dev->devfn,
135 				   pos + PCI_CAP_LIST_NEXT, cap);
136 }
137 EXPORT_SYMBOL_GPL(pci_find_next_capability);
138 
139 static int __pci_bus_find_cap_start(struct pci_bus *bus,
140 				    unsigned int devfn, u8 hdr_type)
141 {
142 	u16 status;
143 
144 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
145 	if (!(status & PCI_STATUS_CAP_LIST))
146 		return 0;
147 
148 	switch (hdr_type) {
149 	case PCI_HEADER_TYPE_NORMAL:
150 	case PCI_HEADER_TYPE_BRIDGE:
151 		return PCI_CAPABILITY_LIST;
152 	case PCI_HEADER_TYPE_CARDBUS:
153 		return PCI_CB_CAPABILITY_LIST;
154 	default:
155 		return 0;
156 	}
157 
158 	return 0;
159 }
160 
161 /**
162  * pci_find_capability - query for devices' capabilities
163  * @dev: PCI device to query
164  * @cap: capability code
165  *
166  * Tell if a device supports a given PCI capability.
167  * Returns the address of the requested capability structure within the
168  * device's PCI configuration space or 0 in case the device does not
169  * support it.  Possible values for @cap:
170  *
171  *  %PCI_CAP_ID_PM           Power Management
172  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
173  *  %PCI_CAP_ID_VPD          Vital Product Data
174  *  %PCI_CAP_ID_SLOTID       Slot Identification
175  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
176  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
177  *  %PCI_CAP_ID_PCIX         PCI-X
178  *  %PCI_CAP_ID_EXP          PCI Express
179  */
180 int pci_find_capability(struct pci_dev *dev, int cap)
181 {
182 	int pos;
183 
184 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
185 	if (pos)
186 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
187 
188 	return pos;
189 }
190 
191 /**
192  * pci_bus_find_capability - query for devices' capabilities
193  * @bus:   the PCI bus to query
194  * @devfn: PCI device to query
195  * @cap:   capability code
196  *
197  * Like pci_find_capability() but works for pci devices that do not have a
198  * pci_dev structure set up yet.
199  *
200  * Returns the address of the requested capability structure within the
201  * device's PCI configuration space or 0 in case the device does not
202  * support it.
203  */
204 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
205 {
206 	int pos;
207 	u8 hdr_type;
208 
209 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
210 
211 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
212 	if (pos)
213 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
214 
215 	return pos;
216 }
217 
218 /**
219  * pci_find_ext_capability - Find an extended capability
220  * @dev: PCI device to query
221  * @cap: capability code
222  *
223  * Returns the address of the requested extended capability structure
224  * within the device's PCI configuration space or 0 if the device does
225  * not support it.  Possible values for @cap:
226  *
227  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
228  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
229  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
230  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
231  */
232 int pci_find_ext_capability(struct pci_dev *dev, int cap)
233 {
234 	u32 header;
235 	int ttl;
236 	int pos = PCI_CFG_SPACE_SIZE;
237 
238 	/* minimum 8 bytes per capability */
239 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
240 
241 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
242 		return 0;
243 
244 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
245 		return 0;
246 
247 	/*
248 	 * If we have no capabilities, this is indicated by cap ID,
249 	 * cap version and next pointer all being 0.
250 	 */
251 	if (header == 0)
252 		return 0;
253 
254 	while (ttl-- > 0) {
255 		if (PCI_EXT_CAP_ID(header) == cap)
256 			return pos;
257 
258 		pos = PCI_EXT_CAP_NEXT(header);
259 		if (pos < PCI_CFG_SPACE_SIZE)
260 			break;
261 
262 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
263 			break;
264 	}
265 
266 	return 0;
267 }
268 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
269 
270 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
271 {
272 	int rc, ttl = PCI_FIND_CAP_TTL;
273 	u8 cap, mask;
274 
275 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
276 		mask = HT_3BIT_CAP_MASK;
277 	else
278 		mask = HT_5BIT_CAP_MASK;
279 
280 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
281 				      PCI_CAP_ID_HT, &ttl);
282 	while (pos) {
283 		rc = pci_read_config_byte(dev, pos + 3, &cap);
284 		if (rc != PCIBIOS_SUCCESSFUL)
285 			return 0;
286 
287 		if ((cap & mask) == ht_cap)
288 			return pos;
289 
290 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
291 					      pos + PCI_CAP_LIST_NEXT,
292 					      PCI_CAP_ID_HT, &ttl);
293 	}
294 
295 	return 0;
296 }
297 /**
298  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
299  * @dev: PCI device to query
300  * @pos: Position from which to continue searching
301  * @ht_cap: Hypertransport capability code
302  *
303  * To be used in conjunction with pci_find_ht_capability() to search for
304  * all capabilities matching @ht_cap. @pos should always be a value returned
305  * from pci_find_ht_capability().
306  *
307  * NB. To be 100% safe against broken PCI devices, the caller should take
308  * steps to avoid an infinite loop.
309  */
310 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
311 {
312 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
313 }
314 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
315 
316 /**
317  * pci_find_ht_capability - query a device's Hypertransport capabilities
318  * @dev: PCI device to query
319  * @ht_cap: Hypertransport capability code
320  *
321  * Tell if a device supports a given Hypertransport capability.
322  * Returns an address within the device's PCI configuration space
323  * or 0 in case the device does not support the request capability.
324  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
325  * which has a Hypertransport capability matching @ht_cap.
326  */
327 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
328 {
329 	int pos;
330 
331 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
332 	if (pos)
333 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
334 
335 	return pos;
336 }
337 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
338 
339 /**
340  * pci_find_parent_resource - return resource region of parent bus of given region
341  * @dev: PCI device structure contains resources to be searched
342  * @res: child resource record for which parent is sought
343  *
344  *  For given resource region of given device, return the resource
345  *  region of parent bus the given region is contained in or where
346  *  it should be allocated from.
347  */
348 struct resource *
349 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
350 {
351 	const struct pci_bus *bus = dev->bus;
352 	int i;
353 	struct resource *best = NULL;
354 
355 	for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
356 		struct resource *r = bus->resource[i];
357 		if (!r)
358 			continue;
359 		if (res->start && !(res->start >= r->start && res->end <= r->end))
360 			continue;	/* Not contained */
361 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
362 			continue;	/* Wrong type */
363 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
364 			return r;	/* Exact match */
365 		if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
366 			best = r;	/* Approximating prefetchable by non-prefetchable */
367 	}
368 	return best;
369 }
370 
371 /**
372  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
373  * @dev: PCI device to have its BARs restored
374  *
375  * Restore the BAR values for a given device, so as to make it
376  * accessible by its driver.
377  */
378 static void
379 pci_restore_bars(struct pci_dev *dev)
380 {
381 	int i;
382 
383 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
384 		pci_update_resource(dev, i);
385 }
386 
387 static struct pci_platform_pm_ops *pci_platform_pm;
388 
389 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
390 {
391 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
392 	    || !ops->sleep_wake || !ops->can_wakeup)
393 		return -EINVAL;
394 	pci_platform_pm = ops;
395 	return 0;
396 }
397 
398 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
399 {
400 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
401 }
402 
403 static inline int platform_pci_set_power_state(struct pci_dev *dev,
404                                                 pci_power_t t)
405 {
406 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
407 }
408 
409 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
410 {
411 	return pci_platform_pm ?
412 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
413 }
414 
415 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
416 {
417 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
418 }
419 
420 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
421 {
422 	return pci_platform_pm ?
423 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
424 }
425 
426 /**
427  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
428  *                           given PCI device
429  * @dev: PCI device to handle.
430  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
431  *
432  * RETURN VALUE:
433  * -EINVAL if the requested state is invalid.
434  * -EIO if device does not support PCI PM or its PM capabilities register has a
435  * wrong version, or device doesn't support the requested state.
436  * 0 if device already is in the requested state.
437  * 0 if device's power state has been successfully changed.
438  */
439 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
440 {
441 	u16 pmcsr;
442 	bool need_restore = false;
443 
444 	/* Check if we're already there */
445 	if (dev->current_state == state)
446 		return 0;
447 
448 	if (!dev->pm_cap)
449 		return -EIO;
450 
451 	if (state < PCI_D0 || state > PCI_D3hot)
452 		return -EINVAL;
453 
454 	/* Validate current state:
455 	 * Can enter D0 from any state, but if we can only go deeper
456 	 * to sleep if we're already in a low power state
457 	 */
458 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
459 	    && dev->current_state > state) {
460 		dev_err(&dev->dev, "invalid power transition "
461 			"(from state %d to %d)\n", dev->current_state, state);
462 		return -EINVAL;
463 	}
464 
465 	/* check if this device supports the desired state */
466 	if ((state == PCI_D1 && !dev->d1_support)
467 	   || (state == PCI_D2 && !dev->d2_support))
468 		return -EIO;
469 
470 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
471 
472 	/* If we're (effectively) in D3, force entire word to 0.
473 	 * This doesn't affect PME_Status, disables PME_En, and
474 	 * sets PowerState to 0.
475 	 */
476 	switch (dev->current_state) {
477 	case PCI_D0:
478 	case PCI_D1:
479 	case PCI_D2:
480 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
481 		pmcsr |= state;
482 		break;
483 	case PCI_UNKNOWN: /* Boot-up */
484 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
485 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
486 			need_restore = true;
487 		/* Fall-through: force to D0 */
488 	default:
489 		pmcsr = 0;
490 		break;
491 	}
492 
493 	/* enter specified state */
494 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
495 
496 	/* Mandatory power management transition delays */
497 	/* see PCI PM 1.1 5.6.1 table 18 */
498 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
499 		msleep(pci_pm_d3_delay);
500 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
501 		udelay(PCI_PM_D2_DELAY);
502 
503 	dev->current_state = state;
504 
505 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
506 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
507 	 * from D3hot to D0 _may_ perform an internal reset, thereby
508 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
509 	 * For example, at least some versions of the 3c905B and the
510 	 * 3c556B exhibit this behaviour.
511 	 *
512 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
513 	 * devices in a D3hot state at boot.  Consequently, we need to
514 	 * restore at least the BARs so that the device will be
515 	 * accessible to its driver.
516 	 */
517 	if (need_restore)
518 		pci_restore_bars(dev);
519 
520 	if (dev->bus->self)
521 		pcie_aspm_pm_state_change(dev->bus->self);
522 
523 	return 0;
524 }
525 
526 /**
527  * pci_update_current_state - Read PCI power state of given device from its
528  *                            PCI PM registers and cache it
529  * @dev: PCI device to handle.
530  * @state: State to cache in case the device doesn't have the PM capability
531  */
532 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
533 {
534 	if (dev->pm_cap) {
535 		u16 pmcsr;
536 
537 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
538 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
539 	} else {
540 		dev->current_state = state;
541 	}
542 }
543 
544 /**
545  * pci_platform_power_transition - Use platform to change device power state
546  * @dev: PCI device to handle.
547  * @state: State to put the device into.
548  */
549 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
550 {
551 	int error;
552 
553 	if (platform_pci_power_manageable(dev)) {
554 		error = platform_pci_set_power_state(dev, state);
555 		if (!error)
556 			pci_update_current_state(dev, state);
557 	} else {
558 		error = -ENODEV;
559 		/* Fall back to PCI_D0 if native PM is not supported */
560 		pci_update_current_state(dev, PCI_D0);
561 	}
562 
563 	return error;
564 }
565 
566 /**
567  * __pci_start_power_transition - Start power transition of a PCI device
568  * @dev: PCI device to handle.
569  * @state: State to put the device into.
570  */
571 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
572 {
573 	if (state == PCI_D0)
574 		pci_platform_power_transition(dev, PCI_D0);
575 }
576 
577 /**
578  * __pci_complete_power_transition - Complete power transition of a PCI device
579  * @dev: PCI device to handle.
580  * @state: State to put the device into.
581  *
582  * This function should not be called directly by device drivers.
583  */
584 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
585 {
586 	return state > PCI_D0 ?
587 			pci_platform_power_transition(dev, state) : -EINVAL;
588 }
589 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
590 
591 /**
592  * pci_set_power_state - Set the power state of a PCI device
593  * @dev: PCI device to handle.
594  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
595  *
596  * Transition a device to a new power state, using the platform firmware and/or
597  * the device's PCI PM registers.
598  *
599  * RETURN VALUE:
600  * -EINVAL if the requested state is invalid.
601  * -EIO if device does not support PCI PM or its PM capabilities register has a
602  * wrong version, or device doesn't support the requested state.
603  * 0 if device already is in the requested state.
604  * 0 if device's power state has been successfully changed.
605  */
606 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
607 {
608 	int error;
609 
610 	/* bound the state we're entering */
611 	if (state > PCI_D3hot)
612 		state = PCI_D3hot;
613 	else if (state < PCI_D0)
614 		state = PCI_D0;
615 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
616 		/*
617 		 * If the device or the parent bridge do not support PCI PM,
618 		 * ignore the request if we're doing anything other than putting
619 		 * it into D0 (which would only happen on boot).
620 		 */
621 		return 0;
622 
623 	/* Check if we're already there */
624 	if (dev->current_state == state)
625 		return 0;
626 
627 	__pci_start_power_transition(dev, state);
628 
629 	/* This device is quirked not to be put into D3, so
630 	   don't put it in D3 */
631 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
632 		return 0;
633 
634 	error = pci_raw_set_power_state(dev, state);
635 
636 	if (!__pci_complete_power_transition(dev, state))
637 		error = 0;
638 
639 	return error;
640 }
641 
642 /**
643  * pci_choose_state - Choose the power state of a PCI device
644  * @dev: PCI device to be suspended
645  * @state: target sleep state for the whole system. This is the value
646  *	that is passed to suspend() function.
647  *
648  * Returns PCI power state suitable for given device and given system
649  * message.
650  */
651 
652 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
653 {
654 	pci_power_t ret;
655 
656 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
657 		return PCI_D0;
658 
659 	ret = platform_pci_choose_state(dev);
660 	if (ret != PCI_POWER_ERROR)
661 		return ret;
662 
663 	switch (state.event) {
664 	case PM_EVENT_ON:
665 		return PCI_D0;
666 	case PM_EVENT_FREEZE:
667 	case PM_EVENT_PRETHAW:
668 		/* REVISIT both freeze and pre-thaw "should" use D0 */
669 	case PM_EVENT_SUSPEND:
670 	case PM_EVENT_HIBERNATE:
671 		return PCI_D3hot;
672 	default:
673 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
674 			 state.event);
675 		BUG();
676 	}
677 	return PCI_D0;
678 }
679 
680 EXPORT_SYMBOL(pci_choose_state);
681 
682 #define PCI_EXP_SAVE_REGS	7
683 
684 #define pcie_cap_has_devctl(type, flags)	1
685 #define pcie_cap_has_lnkctl(type, flags)		\
686 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
687 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
688 		  type == PCI_EXP_TYPE_ENDPOINT ||	\
689 		  type == PCI_EXP_TYPE_LEG_END))
690 #define pcie_cap_has_sltctl(type, flags)		\
691 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
692 		 ((type == PCI_EXP_TYPE_ROOT_PORT) ||	\
693 		  (type == PCI_EXP_TYPE_DOWNSTREAM &&	\
694 		   (flags & PCI_EXP_FLAGS_SLOT))))
695 #define pcie_cap_has_rtctl(type, flags)			\
696 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
697 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
698 		  type == PCI_EXP_TYPE_RC_EC))
699 #define pcie_cap_has_devctl2(type, flags)		\
700 		((flags & PCI_EXP_FLAGS_VERS) > 1)
701 #define pcie_cap_has_lnkctl2(type, flags)		\
702 		((flags & PCI_EXP_FLAGS_VERS) > 1)
703 #define pcie_cap_has_sltctl2(type, flags)		\
704 		((flags & PCI_EXP_FLAGS_VERS) > 1)
705 
706 static int pci_save_pcie_state(struct pci_dev *dev)
707 {
708 	int pos, i = 0;
709 	struct pci_cap_saved_state *save_state;
710 	u16 *cap;
711 	u16 flags;
712 
713 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
714 	if (pos <= 0)
715 		return 0;
716 
717 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
718 	if (!save_state) {
719 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
720 		return -ENOMEM;
721 	}
722 	cap = (u16 *)&save_state->data[0];
723 
724 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
725 
726 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
727 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
728 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
729 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
730 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
731 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
732 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
733 		pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
734 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
735 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
736 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
737 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
738 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
739 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
740 
741 	return 0;
742 }
743 
744 static void pci_restore_pcie_state(struct pci_dev *dev)
745 {
746 	int i = 0, pos;
747 	struct pci_cap_saved_state *save_state;
748 	u16 *cap;
749 	u16 flags;
750 
751 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
752 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
753 	if (!save_state || pos <= 0)
754 		return;
755 	cap = (u16 *)&save_state->data[0];
756 
757 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
758 
759 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
760 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
761 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
762 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
763 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
764 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
765 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
766 		pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
767 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
768 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
769 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
770 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
771 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
772 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
773 }
774 
775 
776 static int pci_save_pcix_state(struct pci_dev *dev)
777 {
778 	int pos;
779 	struct pci_cap_saved_state *save_state;
780 
781 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
782 	if (pos <= 0)
783 		return 0;
784 
785 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
786 	if (!save_state) {
787 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
788 		return -ENOMEM;
789 	}
790 
791 	pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
792 
793 	return 0;
794 }
795 
796 static void pci_restore_pcix_state(struct pci_dev *dev)
797 {
798 	int i = 0, pos;
799 	struct pci_cap_saved_state *save_state;
800 	u16 *cap;
801 
802 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
803 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
804 	if (!save_state || pos <= 0)
805 		return;
806 	cap = (u16 *)&save_state->data[0];
807 
808 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
809 }
810 
811 
812 /**
813  * pci_save_state - save the PCI configuration space of a device before suspending
814  * @dev: - PCI device that we're dealing with
815  */
816 int
817 pci_save_state(struct pci_dev *dev)
818 {
819 	int i;
820 	/* XXX: 100% dword access ok here? */
821 	for (i = 0; i < 16; i++)
822 		pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
823 	dev->state_saved = true;
824 	if ((i = pci_save_pcie_state(dev)) != 0)
825 		return i;
826 	if ((i = pci_save_pcix_state(dev)) != 0)
827 		return i;
828 	return 0;
829 }
830 
831 /**
832  * pci_restore_state - Restore the saved state of a PCI device
833  * @dev: - PCI device that we're dealing with
834  */
835 int
836 pci_restore_state(struct pci_dev *dev)
837 {
838 	int i;
839 	u32 val;
840 
841 	/* PCI Express register must be restored first */
842 	pci_restore_pcie_state(dev);
843 
844 	/*
845 	 * The Base Address register should be programmed before the command
846 	 * register(s)
847 	 */
848 	for (i = 15; i >= 0; i--) {
849 		pci_read_config_dword(dev, i * 4, &val);
850 		if (val != dev->saved_config_space[i]) {
851 			dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
852 				"space at offset %#x (was %#x, writing %#x)\n",
853 				i, val, (int)dev->saved_config_space[i]);
854 			pci_write_config_dword(dev,i * 4,
855 				dev->saved_config_space[i]);
856 		}
857 	}
858 	pci_restore_pcix_state(dev);
859 	pci_restore_msi_state(dev);
860 	pci_restore_iov_state(dev);
861 
862 	return 0;
863 }
864 
865 static int do_pci_enable_device(struct pci_dev *dev, int bars)
866 {
867 	int err;
868 
869 	err = pci_set_power_state(dev, PCI_D0);
870 	if (err < 0 && err != -EIO)
871 		return err;
872 	err = pcibios_enable_device(dev, bars);
873 	if (err < 0)
874 		return err;
875 	pci_fixup_device(pci_fixup_enable, dev);
876 
877 	return 0;
878 }
879 
880 /**
881  * pci_reenable_device - Resume abandoned device
882  * @dev: PCI device to be resumed
883  *
884  *  Note this function is a backend of pci_default_resume and is not supposed
885  *  to be called by normal code, write proper resume handler and use it instead.
886  */
887 int pci_reenable_device(struct pci_dev *dev)
888 {
889 	if (pci_is_enabled(dev))
890 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
891 	return 0;
892 }
893 
894 static int __pci_enable_device_flags(struct pci_dev *dev,
895 				     resource_size_t flags)
896 {
897 	int err;
898 	int i, bars = 0;
899 
900 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
901 		return 0;		/* already enabled */
902 
903 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
904 		if (dev->resource[i].flags & flags)
905 			bars |= (1 << i);
906 
907 	err = do_pci_enable_device(dev, bars);
908 	if (err < 0)
909 		atomic_dec(&dev->enable_cnt);
910 	return err;
911 }
912 
913 /**
914  * pci_enable_device_io - Initialize a device for use with IO space
915  * @dev: PCI device to be initialized
916  *
917  *  Initialize device before it's used by a driver. Ask low-level code
918  *  to enable I/O resources. Wake up the device if it was suspended.
919  *  Beware, this function can fail.
920  */
921 int pci_enable_device_io(struct pci_dev *dev)
922 {
923 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
924 }
925 
926 /**
927  * pci_enable_device_mem - Initialize a device for use with Memory space
928  * @dev: PCI device to be initialized
929  *
930  *  Initialize device before it's used by a driver. Ask low-level code
931  *  to enable Memory resources. Wake up the device if it was suspended.
932  *  Beware, this function can fail.
933  */
934 int pci_enable_device_mem(struct pci_dev *dev)
935 {
936 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
937 }
938 
939 /**
940  * pci_enable_device - Initialize device before it's used by a driver.
941  * @dev: PCI device to be initialized
942  *
943  *  Initialize device before it's used by a driver. Ask low-level code
944  *  to enable I/O and memory. Wake up the device if it was suspended.
945  *  Beware, this function can fail.
946  *
947  *  Note we don't actually enable the device many times if we call
948  *  this function repeatedly (we just increment the count).
949  */
950 int pci_enable_device(struct pci_dev *dev)
951 {
952 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
953 }
954 
955 /*
956  * Managed PCI resources.  This manages device on/off, intx/msi/msix
957  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
958  * there's no need to track it separately.  pci_devres is initialized
959  * when a device is enabled using managed PCI device enable interface.
960  */
961 struct pci_devres {
962 	unsigned int enabled:1;
963 	unsigned int pinned:1;
964 	unsigned int orig_intx:1;
965 	unsigned int restore_intx:1;
966 	u32 region_mask;
967 };
968 
969 static void pcim_release(struct device *gendev, void *res)
970 {
971 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
972 	struct pci_devres *this = res;
973 	int i;
974 
975 	if (dev->msi_enabled)
976 		pci_disable_msi(dev);
977 	if (dev->msix_enabled)
978 		pci_disable_msix(dev);
979 
980 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
981 		if (this->region_mask & (1 << i))
982 			pci_release_region(dev, i);
983 
984 	if (this->restore_intx)
985 		pci_intx(dev, this->orig_intx);
986 
987 	if (this->enabled && !this->pinned)
988 		pci_disable_device(dev);
989 }
990 
991 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
992 {
993 	struct pci_devres *dr, *new_dr;
994 
995 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
996 	if (dr)
997 		return dr;
998 
999 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1000 	if (!new_dr)
1001 		return NULL;
1002 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1003 }
1004 
1005 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1006 {
1007 	if (pci_is_managed(pdev))
1008 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1009 	return NULL;
1010 }
1011 
1012 /**
1013  * pcim_enable_device - Managed pci_enable_device()
1014  * @pdev: PCI device to be initialized
1015  *
1016  * Managed pci_enable_device().
1017  */
1018 int pcim_enable_device(struct pci_dev *pdev)
1019 {
1020 	struct pci_devres *dr;
1021 	int rc;
1022 
1023 	dr = get_pci_dr(pdev);
1024 	if (unlikely(!dr))
1025 		return -ENOMEM;
1026 	if (dr->enabled)
1027 		return 0;
1028 
1029 	rc = pci_enable_device(pdev);
1030 	if (!rc) {
1031 		pdev->is_managed = 1;
1032 		dr->enabled = 1;
1033 	}
1034 	return rc;
1035 }
1036 
1037 /**
1038  * pcim_pin_device - Pin managed PCI device
1039  * @pdev: PCI device to pin
1040  *
1041  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1042  * driver detach.  @pdev must have been enabled with
1043  * pcim_enable_device().
1044  */
1045 void pcim_pin_device(struct pci_dev *pdev)
1046 {
1047 	struct pci_devres *dr;
1048 
1049 	dr = find_pci_dr(pdev);
1050 	WARN_ON(!dr || !dr->enabled);
1051 	if (dr)
1052 		dr->pinned = 1;
1053 }
1054 
1055 /**
1056  * pcibios_disable_device - disable arch specific PCI resources for device dev
1057  * @dev: the PCI device to disable
1058  *
1059  * Disables architecture specific PCI resources for the device. This
1060  * is the default implementation. Architecture implementations can
1061  * override this.
1062  */
1063 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1064 
1065 static void do_pci_disable_device(struct pci_dev *dev)
1066 {
1067 	u16 pci_command;
1068 
1069 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1070 	if (pci_command & PCI_COMMAND_MASTER) {
1071 		pci_command &= ~PCI_COMMAND_MASTER;
1072 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1073 	}
1074 
1075 	pcibios_disable_device(dev);
1076 }
1077 
1078 /**
1079  * pci_disable_enabled_device - Disable device without updating enable_cnt
1080  * @dev: PCI device to disable
1081  *
1082  * NOTE: This function is a backend of PCI power management routines and is
1083  * not supposed to be called drivers.
1084  */
1085 void pci_disable_enabled_device(struct pci_dev *dev)
1086 {
1087 	if (pci_is_enabled(dev))
1088 		do_pci_disable_device(dev);
1089 }
1090 
1091 /**
1092  * pci_disable_device - Disable PCI device after use
1093  * @dev: PCI device to be disabled
1094  *
1095  * Signal to the system that the PCI device is not in use by the system
1096  * anymore.  This only involves disabling PCI bus-mastering, if active.
1097  *
1098  * Note we don't actually disable the device until all callers of
1099  * pci_device_enable() have called pci_device_disable().
1100  */
1101 void
1102 pci_disable_device(struct pci_dev *dev)
1103 {
1104 	struct pci_devres *dr;
1105 
1106 	dr = find_pci_dr(dev);
1107 	if (dr)
1108 		dr->enabled = 0;
1109 
1110 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1111 		return;
1112 
1113 	do_pci_disable_device(dev);
1114 
1115 	dev->is_busmaster = 0;
1116 }
1117 
1118 /**
1119  * pcibios_set_pcie_reset_state - set reset state for device dev
1120  * @dev: the PCI-E device reset
1121  * @state: Reset state to enter into
1122  *
1123  *
1124  * Sets the PCI-E reset state for the device. This is the default
1125  * implementation. Architecture implementations can override this.
1126  */
1127 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1128 							enum pcie_reset_state state)
1129 {
1130 	return -EINVAL;
1131 }
1132 
1133 /**
1134  * pci_set_pcie_reset_state - set reset state for device dev
1135  * @dev: the PCI-E device reset
1136  * @state: Reset state to enter into
1137  *
1138  *
1139  * Sets the PCI reset state for the device.
1140  */
1141 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1142 {
1143 	return pcibios_set_pcie_reset_state(dev, state);
1144 }
1145 
1146 /**
1147  * pci_pme_capable - check the capability of PCI device to generate PME#
1148  * @dev: PCI device to handle.
1149  * @state: PCI state from which device will issue PME#.
1150  */
1151 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1152 {
1153 	if (!dev->pm_cap)
1154 		return false;
1155 
1156 	return !!(dev->pme_support & (1 << state));
1157 }
1158 
1159 /**
1160  * pci_pme_active - enable or disable PCI device's PME# function
1161  * @dev: PCI device to handle.
1162  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1163  *
1164  * The caller must verify that the device is capable of generating PME# before
1165  * calling this function with @enable equal to 'true'.
1166  */
1167 void pci_pme_active(struct pci_dev *dev, bool enable)
1168 {
1169 	u16 pmcsr;
1170 
1171 	if (!dev->pm_cap)
1172 		return;
1173 
1174 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1175 	/* Clear PME_Status by writing 1 to it and enable PME# */
1176 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1177 	if (!enable)
1178 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1179 
1180 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1181 
1182 	dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1183 			enable ? "enabled" : "disabled");
1184 }
1185 
1186 /**
1187  * pci_enable_wake - enable PCI device as wakeup event source
1188  * @dev: PCI device affected
1189  * @state: PCI state from which device will issue wakeup events
1190  * @enable: True to enable event generation; false to disable
1191  *
1192  * This enables the device as a wakeup event source, or disables it.
1193  * When such events involves platform-specific hooks, those hooks are
1194  * called automatically by this routine.
1195  *
1196  * Devices with legacy power management (no standard PCI PM capabilities)
1197  * always require such platform hooks.
1198  *
1199  * RETURN VALUE:
1200  * 0 is returned on success
1201  * -EINVAL is returned if device is not supposed to wake up the system
1202  * Error code depending on the platform is returned if both the platform and
1203  * the native mechanism fail to enable the generation of wake-up events
1204  */
1205 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1206 {
1207 	int error = 0;
1208 	bool pme_done = false;
1209 
1210 	if (enable && !device_may_wakeup(&dev->dev))
1211 		return -EINVAL;
1212 
1213 	/*
1214 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1215 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1216 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1217 	 */
1218 
1219 	if (!enable && platform_pci_can_wakeup(dev))
1220 		error = platform_pci_sleep_wake(dev, false);
1221 
1222 	if (!enable || pci_pme_capable(dev, state)) {
1223 		pci_pme_active(dev, enable);
1224 		pme_done = true;
1225 	}
1226 
1227 	if (enable && platform_pci_can_wakeup(dev))
1228 		error = platform_pci_sleep_wake(dev, true);
1229 
1230 	return pme_done ? 0 : error;
1231 }
1232 
1233 /**
1234  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1235  * @dev: PCI device to prepare
1236  * @enable: True to enable wake-up event generation; false to disable
1237  *
1238  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1239  * and this function allows them to set that up cleanly - pci_enable_wake()
1240  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1241  * ordering constraints.
1242  *
1243  * This function only returns error code if the device is not capable of
1244  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1245  * enable wake-up power for it.
1246  */
1247 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1248 {
1249 	return pci_pme_capable(dev, PCI_D3cold) ?
1250 			pci_enable_wake(dev, PCI_D3cold, enable) :
1251 			pci_enable_wake(dev, PCI_D3hot, enable);
1252 }
1253 
1254 /**
1255  * pci_target_state - find an appropriate low power state for a given PCI dev
1256  * @dev: PCI device
1257  *
1258  * Use underlying platform code to find a supported low power state for @dev.
1259  * If the platform can't manage @dev, return the deepest state from which it
1260  * can generate wake events, based on any available PME info.
1261  */
1262 pci_power_t pci_target_state(struct pci_dev *dev)
1263 {
1264 	pci_power_t target_state = PCI_D3hot;
1265 
1266 	if (platform_pci_power_manageable(dev)) {
1267 		/*
1268 		 * Call the platform to choose the target state of the device
1269 		 * and enable wake-up from this state if supported.
1270 		 */
1271 		pci_power_t state = platform_pci_choose_state(dev);
1272 
1273 		switch (state) {
1274 		case PCI_POWER_ERROR:
1275 		case PCI_UNKNOWN:
1276 			break;
1277 		case PCI_D1:
1278 		case PCI_D2:
1279 			if (pci_no_d1d2(dev))
1280 				break;
1281 		default:
1282 			target_state = state;
1283 		}
1284 	} else if (device_may_wakeup(&dev->dev)) {
1285 		/*
1286 		 * Find the deepest state from which the device can generate
1287 		 * wake-up events, make it the target state and enable device
1288 		 * to generate PME#.
1289 		 */
1290 		if (!dev->pm_cap)
1291 			return PCI_POWER_ERROR;
1292 
1293 		if (dev->pme_support) {
1294 			while (target_state
1295 			      && !(dev->pme_support & (1 << target_state)))
1296 				target_state--;
1297 		}
1298 	}
1299 
1300 	return target_state;
1301 }
1302 
1303 /**
1304  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1305  * @dev: Device to handle.
1306  *
1307  * Choose the power state appropriate for the device depending on whether
1308  * it can wake up the system and/or is power manageable by the platform
1309  * (PCI_D3hot is the default) and put the device into that state.
1310  */
1311 int pci_prepare_to_sleep(struct pci_dev *dev)
1312 {
1313 	pci_power_t target_state = pci_target_state(dev);
1314 	int error;
1315 
1316 	if (target_state == PCI_POWER_ERROR)
1317 		return -EIO;
1318 
1319 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1320 
1321 	error = pci_set_power_state(dev, target_state);
1322 
1323 	if (error)
1324 		pci_enable_wake(dev, target_state, false);
1325 
1326 	return error;
1327 }
1328 
1329 /**
1330  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1331  * @dev: Device to handle.
1332  *
1333  * Disable device's sytem wake-up capability and put it into D0.
1334  */
1335 int pci_back_from_sleep(struct pci_dev *dev)
1336 {
1337 	pci_enable_wake(dev, PCI_D0, false);
1338 	return pci_set_power_state(dev, PCI_D0);
1339 }
1340 
1341 /**
1342  * pci_pm_init - Initialize PM functions of given PCI device
1343  * @dev: PCI device to handle.
1344  */
1345 void pci_pm_init(struct pci_dev *dev)
1346 {
1347 	int pm;
1348 	u16 pmc;
1349 
1350 	dev->pm_cap = 0;
1351 
1352 	/* find PCI PM capability in list */
1353 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1354 	if (!pm)
1355 		return;
1356 	/* Check device's ability to generate PME# */
1357 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1358 
1359 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1360 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1361 			pmc & PCI_PM_CAP_VER_MASK);
1362 		return;
1363 	}
1364 
1365 	dev->pm_cap = pm;
1366 
1367 	dev->d1_support = false;
1368 	dev->d2_support = false;
1369 	if (!pci_no_d1d2(dev)) {
1370 		if (pmc & PCI_PM_CAP_D1)
1371 			dev->d1_support = true;
1372 		if (pmc & PCI_PM_CAP_D2)
1373 			dev->d2_support = true;
1374 
1375 		if (dev->d1_support || dev->d2_support)
1376 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1377 				   dev->d1_support ? " D1" : "",
1378 				   dev->d2_support ? " D2" : "");
1379 	}
1380 
1381 	pmc &= PCI_PM_CAP_PME_MASK;
1382 	if (pmc) {
1383 		dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1384 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1385 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1386 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1387 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1388 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1389 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1390 		/*
1391 		 * Make device's PM flags reflect the wake-up capability, but
1392 		 * let the user space enable it to wake up the system as needed.
1393 		 */
1394 		device_set_wakeup_capable(&dev->dev, true);
1395 		device_set_wakeup_enable(&dev->dev, false);
1396 		/* Disable the PME# generation functionality */
1397 		pci_pme_active(dev, false);
1398 	} else {
1399 		dev->pme_support = 0;
1400 	}
1401 }
1402 
1403 /**
1404  * platform_pci_wakeup_init - init platform wakeup if present
1405  * @dev: PCI device
1406  *
1407  * Some devices don't have PCI PM caps but can still generate wakeup
1408  * events through platform methods (like ACPI events).  If @dev supports
1409  * platform wakeup events, set the device flag to indicate as much.  This
1410  * may be redundant if the device also supports PCI PM caps, but double
1411  * initialization should be safe in that case.
1412  */
1413 void platform_pci_wakeup_init(struct pci_dev *dev)
1414 {
1415 	if (!platform_pci_can_wakeup(dev))
1416 		return;
1417 
1418 	device_set_wakeup_capable(&dev->dev, true);
1419 	device_set_wakeup_enable(&dev->dev, false);
1420 	platform_pci_sleep_wake(dev, false);
1421 }
1422 
1423 /**
1424  * pci_add_save_buffer - allocate buffer for saving given capability registers
1425  * @dev: the PCI device
1426  * @cap: the capability to allocate the buffer for
1427  * @size: requested size of the buffer
1428  */
1429 static int pci_add_cap_save_buffer(
1430 	struct pci_dev *dev, char cap, unsigned int size)
1431 {
1432 	int pos;
1433 	struct pci_cap_saved_state *save_state;
1434 
1435 	pos = pci_find_capability(dev, cap);
1436 	if (pos <= 0)
1437 		return 0;
1438 
1439 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1440 	if (!save_state)
1441 		return -ENOMEM;
1442 
1443 	save_state->cap_nr = cap;
1444 	pci_add_saved_cap(dev, save_state);
1445 
1446 	return 0;
1447 }
1448 
1449 /**
1450  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1451  * @dev: the PCI device
1452  */
1453 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1454 {
1455 	int error;
1456 
1457 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1458 					PCI_EXP_SAVE_REGS * sizeof(u16));
1459 	if (error)
1460 		dev_err(&dev->dev,
1461 			"unable to preallocate PCI Express save buffer\n");
1462 
1463 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1464 	if (error)
1465 		dev_err(&dev->dev,
1466 			"unable to preallocate PCI-X save buffer\n");
1467 }
1468 
1469 /**
1470  * pci_enable_ari - enable ARI forwarding if hardware support it
1471  * @dev: the PCI device
1472  */
1473 void pci_enable_ari(struct pci_dev *dev)
1474 {
1475 	int pos;
1476 	u32 cap;
1477 	u16 ctrl;
1478 	struct pci_dev *bridge;
1479 
1480 	if (!dev->is_pcie || dev->devfn)
1481 		return;
1482 
1483 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1484 	if (!pos)
1485 		return;
1486 
1487 	bridge = dev->bus->self;
1488 	if (!bridge || !bridge->is_pcie)
1489 		return;
1490 
1491 	pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1492 	if (!pos)
1493 		return;
1494 
1495 	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1496 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
1497 		return;
1498 
1499 	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1500 	ctrl |= PCI_EXP_DEVCTL2_ARI;
1501 	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1502 
1503 	bridge->ari_enabled = 1;
1504 }
1505 
1506 /**
1507  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1508  * @dev: the PCI device
1509  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1510  *
1511  * Perform INTx swizzling for a device behind one level of bridge.  This is
1512  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1513  * behind bridges on add-in cards.
1514  */
1515 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1516 {
1517 	return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1518 }
1519 
1520 int
1521 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1522 {
1523 	u8 pin;
1524 
1525 	pin = dev->pin;
1526 	if (!pin)
1527 		return -1;
1528 
1529 	while (dev->bus->parent) {
1530 		pin = pci_swizzle_interrupt_pin(dev, pin);
1531 		dev = dev->bus->self;
1532 	}
1533 	*bridge = dev;
1534 	return pin;
1535 }
1536 
1537 /**
1538  * pci_common_swizzle - swizzle INTx all the way to root bridge
1539  * @dev: the PCI device
1540  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1541  *
1542  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
1543  * bridges all the way up to a PCI root bus.
1544  */
1545 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1546 {
1547 	u8 pin = *pinp;
1548 
1549 	while (dev->bus->parent) {
1550 		pin = pci_swizzle_interrupt_pin(dev, pin);
1551 		dev = dev->bus->self;
1552 	}
1553 	*pinp = pin;
1554 	return PCI_SLOT(dev->devfn);
1555 }
1556 
1557 /**
1558  *	pci_release_region - Release a PCI bar
1559  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
1560  *	@bar: BAR to release
1561  *
1562  *	Releases the PCI I/O and memory resources previously reserved by a
1563  *	successful call to pci_request_region.  Call this function only
1564  *	after all use of the PCI regions has ceased.
1565  */
1566 void pci_release_region(struct pci_dev *pdev, int bar)
1567 {
1568 	struct pci_devres *dr;
1569 
1570 	if (pci_resource_len(pdev, bar) == 0)
1571 		return;
1572 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1573 		release_region(pci_resource_start(pdev, bar),
1574 				pci_resource_len(pdev, bar));
1575 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1576 		release_mem_region(pci_resource_start(pdev, bar),
1577 				pci_resource_len(pdev, bar));
1578 
1579 	dr = find_pci_dr(pdev);
1580 	if (dr)
1581 		dr->region_mask &= ~(1 << bar);
1582 }
1583 
1584 /**
1585  *	__pci_request_region - Reserved PCI I/O and memory resource
1586  *	@pdev: PCI device whose resources are to be reserved
1587  *	@bar: BAR to be reserved
1588  *	@res_name: Name to be associated with resource.
1589  *	@exclusive: whether the region access is exclusive or not
1590  *
1591  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1592  *	being reserved by owner @res_name.  Do not access any
1593  *	address inside the PCI regions unless this call returns
1594  *	successfully.
1595  *
1596  *	If @exclusive is set, then the region is marked so that userspace
1597  *	is explicitly not allowed to map the resource via /dev/mem or
1598  * 	sysfs MMIO access.
1599  *
1600  *	Returns 0 on success, or %EBUSY on error.  A warning
1601  *	message is also printed on failure.
1602  */
1603 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1604 									int exclusive)
1605 {
1606 	struct pci_devres *dr;
1607 
1608 	if (pci_resource_len(pdev, bar) == 0)
1609 		return 0;
1610 
1611 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1612 		if (!request_region(pci_resource_start(pdev, bar),
1613 			    pci_resource_len(pdev, bar), res_name))
1614 			goto err_out;
1615 	}
1616 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1617 		if (!__request_mem_region(pci_resource_start(pdev, bar),
1618 					pci_resource_len(pdev, bar), res_name,
1619 					exclusive))
1620 			goto err_out;
1621 	}
1622 
1623 	dr = find_pci_dr(pdev);
1624 	if (dr)
1625 		dr->region_mask |= 1 << bar;
1626 
1627 	return 0;
1628 
1629 err_out:
1630 	dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1631 		 bar,
1632 		 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1633 		 &pdev->resource[bar]);
1634 	return -EBUSY;
1635 }
1636 
1637 /**
1638  *	pci_request_region - Reserve PCI I/O and memory resource
1639  *	@pdev: PCI device whose resources are to be reserved
1640  *	@bar: BAR to be reserved
1641  *	@res_name: Name to be associated with resource
1642  *
1643  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
1644  *	being reserved by owner @res_name.  Do not access any
1645  *	address inside the PCI regions unless this call returns
1646  *	successfully.
1647  *
1648  *	Returns 0 on success, or %EBUSY on error.  A warning
1649  *	message is also printed on failure.
1650  */
1651 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1652 {
1653 	return __pci_request_region(pdev, bar, res_name, 0);
1654 }
1655 
1656 /**
1657  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
1658  *	@pdev: PCI device whose resources are to be reserved
1659  *	@bar: BAR to be reserved
1660  *	@res_name: Name to be associated with resource.
1661  *
1662  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1663  *	being reserved by owner @res_name.  Do not access any
1664  *	address inside the PCI regions unless this call returns
1665  *	successfully.
1666  *
1667  *	Returns 0 on success, or %EBUSY on error.  A warning
1668  *	message is also printed on failure.
1669  *
1670  *	The key difference that _exclusive makes it that userspace is
1671  *	explicitly not allowed to map the resource via /dev/mem or
1672  * 	sysfs.
1673  */
1674 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1675 {
1676 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1677 }
1678 /**
1679  * pci_release_selected_regions - Release selected PCI I/O and memory resources
1680  * @pdev: PCI device whose resources were previously reserved
1681  * @bars: Bitmask of BARs to be released
1682  *
1683  * Release selected PCI I/O and memory resources previously reserved.
1684  * Call this function only after all use of the PCI regions has ceased.
1685  */
1686 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1687 {
1688 	int i;
1689 
1690 	for (i = 0; i < 6; i++)
1691 		if (bars & (1 << i))
1692 			pci_release_region(pdev, i);
1693 }
1694 
1695 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1696 				 const char *res_name, int excl)
1697 {
1698 	int i;
1699 
1700 	for (i = 0; i < 6; i++)
1701 		if (bars & (1 << i))
1702 			if (__pci_request_region(pdev, i, res_name, excl))
1703 				goto err_out;
1704 	return 0;
1705 
1706 err_out:
1707 	while(--i >= 0)
1708 		if (bars & (1 << i))
1709 			pci_release_region(pdev, i);
1710 
1711 	return -EBUSY;
1712 }
1713 
1714 
1715 /**
1716  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1717  * @pdev: PCI device whose resources are to be reserved
1718  * @bars: Bitmask of BARs to be requested
1719  * @res_name: Name to be associated with resource
1720  */
1721 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1722 				 const char *res_name)
1723 {
1724 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
1725 }
1726 
1727 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1728 				 int bars, const char *res_name)
1729 {
1730 	return __pci_request_selected_regions(pdev, bars, res_name,
1731 			IORESOURCE_EXCLUSIVE);
1732 }
1733 
1734 /**
1735  *	pci_release_regions - Release reserved PCI I/O and memory resources
1736  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
1737  *
1738  *	Releases all PCI I/O and memory resources previously reserved by a
1739  *	successful call to pci_request_regions.  Call this function only
1740  *	after all use of the PCI regions has ceased.
1741  */
1742 
1743 void pci_release_regions(struct pci_dev *pdev)
1744 {
1745 	pci_release_selected_regions(pdev, (1 << 6) - 1);
1746 }
1747 
1748 /**
1749  *	pci_request_regions - Reserved PCI I/O and memory resources
1750  *	@pdev: PCI device whose resources are to be reserved
1751  *	@res_name: Name to be associated with resource.
1752  *
1753  *	Mark all PCI regions associated with PCI device @pdev as
1754  *	being reserved by owner @res_name.  Do not access any
1755  *	address inside the PCI regions unless this call returns
1756  *	successfully.
1757  *
1758  *	Returns 0 on success, or %EBUSY on error.  A warning
1759  *	message is also printed on failure.
1760  */
1761 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1762 {
1763 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1764 }
1765 
1766 /**
1767  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1768  *	@pdev: PCI device whose resources are to be reserved
1769  *	@res_name: Name to be associated with resource.
1770  *
1771  *	Mark all PCI regions associated with PCI device @pdev as
1772  *	being reserved by owner @res_name.  Do not access any
1773  *	address inside the PCI regions unless this call returns
1774  *	successfully.
1775  *
1776  *	pci_request_regions_exclusive() will mark the region so that
1777  * 	/dev/mem and the sysfs MMIO access will not be allowed.
1778  *
1779  *	Returns 0 on success, or %EBUSY on error.  A warning
1780  *	message is also printed on failure.
1781  */
1782 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1783 {
1784 	return pci_request_selected_regions_exclusive(pdev,
1785 					((1 << 6) - 1), res_name);
1786 }
1787 
1788 static void __pci_set_master(struct pci_dev *dev, bool enable)
1789 {
1790 	u16 old_cmd, cmd;
1791 
1792 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1793 	if (enable)
1794 		cmd = old_cmd | PCI_COMMAND_MASTER;
1795 	else
1796 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
1797 	if (cmd != old_cmd) {
1798 		dev_dbg(&dev->dev, "%s bus mastering\n",
1799 			enable ? "enabling" : "disabling");
1800 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1801 	}
1802 	dev->is_busmaster = enable;
1803 }
1804 
1805 /**
1806  * pci_set_master - enables bus-mastering for device dev
1807  * @dev: the PCI device to enable
1808  *
1809  * Enables bus-mastering on the device and calls pcibios_set_master()
1810  * to do the needed arch specific settings.
1811  */
1812 void pci_set_master(struct pci_dev *dev)
1813 {
1814 	__pci_set_master(dev, true);
1815 	pcibios_set_master(dev);
1816 }
1817 
1818 /**
1819  * pci_clear_master - disables bus-mastering for device dev
1820  * @dev: the PCI device to disable
1821  */
1822 void pci_clear_master(struct pci_dev *dev)
1823 {
1824 	__pci_set_master(dev, false);
1825 }
1826 
1827 #ifdef PCI_DISABLE_MWI
1828 int pci_set_mwi(struct pci_dev *dev)
1829 {
1830 	return 0;
1831 }
1832 
1833 int pci_try_set_mwi(struct pci_dev *dev)
1834 {
1835 	return 0;
1836 }
1837 
1838 void pci_clear_mwi(struct pci_dev *dev)
1839 {
1840 }
1841 
1842 #else
1843 
1844 #ifndef PCI_CACHE_LINE_BYTES
1845 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1846 #endif
1847 
1848 /* This can be overridden by arch code. */
1849 /* Don't forget this is measured in 32-bit words, not bytes */
1850 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1851 
1852 /**
1853  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1854  * @dev: the PCI device for which MWI is to be enabled
1855  *
1856  * Helper function for pci_set_mwi.
1857  * Originally copied from drivers/net/acenic.c.
1858  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1859  *
1860  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1861  */
1862 static int
1863 pci_set_cacheline_size(struct pci_dev *dev)
1864 {
1865 	u8 cacheline_size;
1866 
1867 	if (!pci_cache_line_size)
1868 		return -EINVAL;		/* The system doesn't support MWI. */
1869 
1870 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1871 	   equal to or multiple of the right value. */
1872 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1873 	if (cacheline_size >= pci_cache_line_size &&
1874 	    (cacheline_size % pci_cache_line_size) == 0)
1875 		return 0;
1876 
1877 	/* Write the correct value. */
1878 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1879 	/* Read it back. */
1880 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1881 	if (cacheline_size == pci_cache_line_size)
1882 		return 0;
1883 
1884 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1885 		   "supported\n", pci_cache_line_size << 2);
1886 
1887 	return -EINVAL;
1888 }
1889 
1890 /**
1891  * pci_set_mwi - enables memory-write-invalidate PCI transaction
1892  * @dev: the PCI device for which MWI is enabled
1893  *
1894  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1895  *
1896  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1897  */
1898 int
1899 pci_set_mwi(struct pci_dev *dev)
1900 {
1901 	int rc;
1902 	u16 cmd;
1903 
1904 	rc = pci_set_cacheline_size(dev);
1905 	if (rc)
1906 		return rc;
1907 
1908 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1909 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1910 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1911 		cmd |= PCI_COMMAND_INVALIDATE;
1912 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1913 	}
1914 
1915 	return 0;
1916 }
1917 
1918 /**
1919  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1920  * @dev: the PCI device for which MWI is enabled
1921  *
1922  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1923  * Callers are not required to check the return value.
1924  *
1925  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1926  */
1927 int pci_try_set_mwi(struct pci_dev *dev)
1928 {
1929 	int rc = pci_set_mwi(dev);
1930 	return rc;
1931 }
1932 
1933 /**
1934  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1935  * @dev: the PCI device to disable
1936  *
1937  * Disables PCI Memory-Write-Invalidate transaction on the device
1938  */
1939 void
1940 pci_clear_mwi(struct pci_dev *dev)
1941 {
1942 	u16 cmd;
1943 
1944 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1945 	if (cmd & PCI_COMMAND_INVALIDATE) {
1946 		cmd &= ~PCI_COMMAND_INVALIDATE;
1947 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1948 	}
1949 }
1950 #endif /* ! PCI_DISABLE_MWI */
1951 
1952 /**
1953  * pci_intx - enables/disables PCI INTx for device dev
1954  * @pdev: the PCI device to operate on
1955  * @enable: boolean: whether to enable or disable PCI INTx
1956  *
1957  * Enables/disables PCI INTx for device dev
1958  */
1959 void
1960 pci_intx(struct pci_dev *pdev, int enable)
1961 {
1962 	u16 pci_command, new;
1963 
1964 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1965 
1966 	if (enable) {
1967 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1968 	} else {
1969 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
1970 	}
1971 
1972 	if (new != pci_command) {
1973 		struct pci_devres *dr;
1974 
1975 		pci_write_config_word(pdev, PCI_COMMAND, new);
1976 
1977 		dr = find_pci_dr(pdev);
1978 		if (dr && !dr->restore_intx) {
1979 			dr->restore_intx = 1;
1980 			dr->orig_intx = !enable;
1981 		}
1982 	}
1983 }
1984 
1985 /**
1986  * pci_msi_off - disables any msi or msix capabilities
1987  * @dev: the PCI device to operate on
1988  *
1989  * If you want to use msi see pci_enable_msi and friends.
1990  * This is a lower level primitive that allows us to disable
1991  * msi operation at the device level.
1992  */
1993 void pci_msi_off(struct pci_dev *dev)
1994 {
1995 	int pos;
1996 	u16 control;
1997 
1998 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1999 	if (pos) {
2000 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2001 		control &= ~PCI_MSI_FLAGS_ENABLE;
2002 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2003 	}
2004 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2005 	if (pos) {
2006 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2007 		control &= ~PCI_MSIX_FLAGS_ENABLE;
2008 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2009 	}
2010 }
2011 
2012 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2013 /*
2014  * These can be overridden by arch-specific implementations
2015  */
2016 int
2017 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2018 {
2019 	if (!pci_dma_supported(dev, mask))
2020 		return -EIO;
2021 
2022 	dev->dma_mask = mask;
2023 
2024 	return 0;
2025 }
2026 
2027 int
2028 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2029 {
2030 	if (!pci_dma_supported(dev, mask))
2031 		return -EIO;
2032 
2033 	dev->dev.coherent_dma_mask = mask;
2034 
2035 	return 0;
2036 }
2037 #endif
2038 
2039 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2040 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2041 {
2042 	return dma_set_max_seg_size(&dev->dev, size);
2043 }
2044 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2045 #endif
2046 
2047 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2048 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2049 {
2050 	return dma_set_seg_boundary(&dev->dev, mask);
2051 }
2052 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2053 #endif
2054 
2055 static int __pcie_flr(struct pci_dev *dev, int probe)
2056 {
2057 	u16 status;
2058 	u32 cap;
2059 	int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2060 
2061 	if (!exppos)
2062 		return -ENOTTY;
2063 	pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
2064 	if (!(cap & PCI_EXP_DEVCAP_FLR))
2065 		return -ENOTTY;
2066 
2067 	if (probe)
2068 		return 0;
2069 
2070 	pci_block_user_cfg_access(dev);
2071 
2072 	/* Wait for Transaction Pending bit clean */
2073 	pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2074 	if (!(status & PCI_EXP_DEVSTA_TRPND))
2075 		goto transaction_done;
2076 
2077 	msleep(100);
2078 	pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2079 	if (!(status & PCI_EXP_DEVSTA_TRPND))
2080 		goto transaction_done;
2081 
2082 	dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
2083 			"sleeping for 1 second\n");
2084 	ssleep(1);
2085 	pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2086 	if (status & PCI_EXP_DEVSTA_TRPND)
2087 		dev_info(&dev->dev, "Still busy after 1s; "
2088 				"proceeding with reset anyway\n");
2089 
2090 transaction_done:
2091 	pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
2092 				PCI_EXP_DEVCTL_BCR_FLR);
2093 	mdelay(100);
2094 
2095 	pci_unblock_user_cfg_access(dev);
2096 	return 0;
2097 }
2098 
2099 static int __pci_af_flr(struct pci_dev *dev, int probe)
2100 {
2101 	int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
2102 	u8 status;
2103 	u8 cap;
2104 
2105 	if (!cappos)
2106 		return -ENOTTY;
2107 	pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
2108 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2109 		return -ENOTTY;
2110 
2111 	if (probe)
2112 		return 0;
2113 
2114 	pci_block_user_cfg_access(dev);
2115 
2116 	/* Wait for Transaction Pending bit clean */
2117 	pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2118 	if (!(status & PCI_AF_STATUS_TP))
2119 		goto transaction_done;
2120 
2121 	msleep(100);
2122 	pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2123 	if (!(status & PCI_AF_STATUS_TP))
2124 		goto transaction_done;
2125 
2126 	dev_info(&dev->dev, "Busy after 100ms while trying to"
2127 			" reset; sleeping for 1 second\n");
2128 	ssleep(1);
2129 	pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2130 	if (status & PCI_AF_STATUS_TP)
2131 		dev_info(&dev->dev, "Still busy after 1s; "
2132 				"proceeding with reset anyway\n");
2133 
2134 transaction_done:
2135 	pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2136 	mdelay(100);
2137 
2138 	pci_unblock_user_cfg_access(dev);
2139 	return 0;
2140 }
2141 
2142 static int __pci_reset_function(struct pci_dev *pdev, int probe)
2143 {
2144 	int res;
2145 
2146 	res = __pcie_flr(pdev, probe);
2147 	if (res != -ENOTTY)
2148 		return res;
2149 
2150 	res = __pci_af_flr(pdev, probe);
2151 	if (res != -ENOTTY)
2152 		return res;
2153 
2154 	return res;
2155 }
2156 
2157 /**
2158  * pci_execute_reset_function() - Reset a PCI device function
2159  * @dev: Device function to reset
2160  *
2161  * Some devices allow an individual function to be reset without affecting
2162  * other functions in the same device.  The PCI device must be responsive
2163  * to PCI config space in order to use this function.
2164  *
2165  * The device function is presumed to be unused when this function is called.
2166  * Resetting the device will make the contents of PCI configuration space
2167  * random, so any caller of this must be prepared to reinitialise the
2168  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2169  * etc.
2170  *
2171  * Returns 0 if the device function was successfully reset or -ENOTTY if the
2172  * device doesn't support resetting a single function.
2173  */
2174 int pci_execute_reset_function(struct pci_dev *dev)
2175 {
2176 	return __pci_reset_function(dev, 0);
2177 }
2178 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
2179 
2180 /**
2181  * pci_reset_function() - quiesce and reset a PCI device function
2182  * @dev: Device function to reset
2183  *
2184  * Some devices allow an individual function to be reset without affecting
2185  * other functions in the same device.  The PCI device must be responsive
2186  * to PCI config space in order to use this function.
2187  *
2188  * This function does not just reset the PCI portion of a device, but
2189  * clears all the state associated with the device.  This function differs
2190  * from pci_execute_reset_function in that it saves and restores device state
2191  * over the reset.
2192  *
2193  * Returns 0 if the device function was successfully reset or -ENOTTY if the
2194  * device doesn't support resetting a single function.
2195  */
2196 int pci_reset_function(struct pci_dev *dev)
2197 {
2198 	int r = __pci_reset_function(dev, 1);
2199 
2200 	if (r < 0)
2201 		return r;
2202 
2203 	if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2204 		disable_irq(dev->irq);
2205 	pci_save_state(dev);
2206 
2207 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2208 
2209 	r = pci_execute_reset_function(dev);
2210 
2211 	pci_restore_state(dev);
2212 	if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2213 		enable_irq(dev->irq);
2214 
2215 	return r;
2216 }
2217 EXPORT_SYMBOL_GPL(pci_reset_function);
2218 
2219 /**
2220  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2221  * @dev: PCI device to query
2222  *
2223  * Returns mmrbc: maximum designed memory read count in bytes
2224  *    or appropriate error value.
2225  */
2226 int pcix_get_max_mmrbc(struct pci_dev *dev)
2227 {
2228 	int err, cap;
2229 	u32 stat;
2230 
2231 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2232 	if (!cap)
2233 		return -EINVAL;
2234 
2235 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2236 	if (err)
2237 		return -EINVAL;
2238 
2239 	return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2240 }
2241 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2242 
2243 /**
2244  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2245  * @dev: PCI device to query
2246  *
2247  * Returns mmrbc: maximum memory read count in bytes
2248  *    or appropriate error value.
2249  */
2250 int pcix_get_mmrbc(struct pci_dev *dev)
2251 {
2252 	int ret, cap;
2253 	u32 cmd;
2254 
2255 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2256 	if (!cap)
2257 		return -EINVAL;
2258 
2259 	ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2260 	if (!ret)
2261 		ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2262 
2263 	return ret;
2264 }
2265 EXPORT_SYMBOL(pcix_get_mmrbc);
2266 
2267 /**
2268  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2269  * @dev: PCI device to query
2270  * @mmrbc: maximum memory read count in bytes
2271  *    valid values are 512, 1024, 2048, 4096
2272  *
2273  * If possible sets maximum memory read byte count, some bridges have erratas
2274  * that prevent this.
2275  */
2276 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2277 {
2278 	int cap, err = -EINVAL;
2279 	u32 stat, cmd, v, o;
2280 
2281 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2282 		goto out;
2283 
2284 	v = ffs(mmrbc) - 10;
2285 
2286 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2287 	if (!cap)
2288 		goto out;
2289 
2290 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2291 	if (err)
2292 		goto out;
2293 
2294 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2295 		return -E2BIG;
2296 
2297 	err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2298 	if (err)
2299 		goto out;
2300 
2301 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2302 	if (o != v) {
2303 		if (v > o && dev->bus &&
2304 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2305 			return -EIO;
2306 
2307 		cmd &= ~PCI_X_CMD_MAX_READ;
2308 		cmd |= v << 2;
2309 		err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2310 	}
2311 out:
2312 	return err;
2313 }
2314 EXPORT_SYMBOL(pcix_set_mmrbc);
2315 
2316 /**
2317  * pcie_get_readrq - get PCI Express read request size
2318  * @dev: PCI device to query
2319  *
2320  * Returns maximum memory read request in bytes
2321  *    or appropriate error value.
2322  */
2323 int pcie_get_readrq(struct pci_dev *dev)
2324 {
2325 	int ret, cap;
2326 	u16 ctl;
2327 
2328 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2329 	if (!cap)
2330 		return -EINVAL;
2331 
2332 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2333 	if (!ret)
2334 	ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2335 
2336 	return ret;
2337 }
2338 EXPORT_SYMBOL(pcie_get_readrq);
2339 
2340 /**
2341  * pcie_set_readrq - set PCI Express maximum memory read request
2342  * @dev: PCI device to query
2343  * @rq: maximum memory read count in bytes
2344  *    valid values are 128, 256, 512, 1024, 2048, 4096
2345  *
2346  * If possible sets maximum read byte count
2347  */
2348 int pcie_set_readrq(struct pci_dev *dev, int rq)
2349 {
2350 	int cap, err = -EINVAL;
2351 	u16 ctl, v;
2352 
2353 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2354 		goto out;
2355 
2356 	v = (ffs(rq) - 8) << 12;
2357 
2358 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2359 	if (!cap)
2360 		goto out;
2361 
2362 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2363 	if (err)
2364 		goto out;
2365 
2366 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2367 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
2368 		ctl |= v;
2369 		err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2370 	}
2371 
2372 out:
2373 	return err;
2374 }
2375 EXPORT_SYMBOL(pcie_set_readrq);
2376 
2377 /**
2378  * pci_select_bars - Make BAR mask from the type of resource
2379  * @dev: the PCI device for which BAR mask is made
2380  * @flags: resource type mask to be selected
2381  *
2382  * This helper routine makes bar mask from the type of resource.
2383  */
2384 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2385 {
2386 	int i, bars = 0;
2387 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
2388 		if (pci_resource_flags(dev, i) & flags)
2389 			bars |= (1 << i);
2390 	return bars;
2391 }
2392 
2393 /**
2394  * pci_resource_bar - get position of the BAR associated with a resource
2395  * @dev: the PCI device
2396  * @resno: the resource number
2397  * @type: the BAR type to be filled in
2398  *
2399  * Returns BAR position in config space, or 0 if the BAR is invalid.
2400  */
2401 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2402 {
2403 	int reg;
2404 
2405 	if (resno < PCI_ROM_RESOURCE) {
2406 		*type = pci_bar_unknown;
2407 		return PCI_BASE_ADDRESS_0 + 4 * resno;
2408 	} else if (resno == PCI_ROM_RESOURCE) {
2409 		*type = pci_bar_mem32;
2410 		return dev->rom_base_reg;
2411 	} else if (resno < PCI_BRIDGE_RESOURCES) {
2412 		/* device specific resource */
2413 		reg = pci_iov_resource_bar(dev, resno, type);
2414 		if (reg)
2415 			return reg;
2416 	}
2417 
2418 	dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2419 	return 0;
2420 }
2421 
2422 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2423 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2424 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2425 
2426 /**
2427  * pci_specified_resource_alignment - get resource alignment specified by user.
2428  * @dev: the PCI device to get
2429  *
2430  * RETURNS: Resource alignment if it is specified.
2431  *          Zero if it is not specified.
2432  */
2433 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2434 {
2435 	int seg, bus, slot, func, align_order, count;
2436 	resource_size_t align = 0;
2437 	char *p;
2438 
2439 	spin_lock(&resource_alignment_lock);
2440 	p = resource_alignment_param;
2441 	while (*p) {
2442 		count = 0;
2443 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2444 							p[count] == '@') {
2445 			p += count + 1;
2446 		} else {
2447 			align_order = -1;
2448 		}
2449 		if (sscanf(p, "%x:%x:%x.%x%n",
2450 			&seg, &bus, &slot, &func, &count) != 4) {
2451 			seg = 0;
2452 			if (sscanf(p, "%x:%x.%x%n",
2453 					&bus, &slot, &func, &count) != 3) {
2454 				/* Invalid format */
2455 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2456 					p);
2457 				break;
2458 			}
2459 		}
2460 		p += count;
2461 		if (seg == pci_domain_nr(dev->bus) &&
2462 			bus == dev->bus->number &&
2463 			slot == PCI_SLOT(dev->devfn) &&
2464 			func == PCI_FUNC(dev->devfn)) {
2465 			if (align_order == -1) {
2466 				align = PAGE_SIZE;
2467 			} else {
2468 				align = 1 << align_order;
2469 			}
2470 			/* Found */
2471 			break;
2472 		}
2473 		if (*p != ';' && *p != ',') {
2474 			/* End of param or invalid format */
2475 			break;
2476 		}
2477 		p++;
2478 	}
2479 	spin_unlock(&resource_alignment_lock);
2480 	return align;
2481 }
2482 
2483 /**
2484  * pci_is_reassigndev - check if specified PCI is target device to reassign
2485  * @dev: the PCI device to check
2486  *
2487  * RETURNS: non-zero for PCI device is a target device to reassign,
2488  *          or zero is not.
2489  */
2490 int pci_is_reassigndev(struct pci_dev *dev)
2491 {
2492 	return (pci_specified_resource_alignment(dev) != 0);
2493 }
2494 
2495 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2496 {
2497 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2498 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2499 	spin_lock(&resource_alignment_lock);
2500 	strncpy(resource_alignment_param, buf, count);
2501 	resource_alignment_param[count] = '\0';
2502 	spin_unlock(&resource_alignment_lock);
2503 	return count;
2504 }
2505 
2506 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2507 {
2508 	size_t count;
2509 	spin_lock(&resource_alignment_lock);
2510 	count = snprintf(buf, size, "%s", resource_alignment_param);
2511 	spin_unlock(&resource_alignment_lock);
2512 	return count;
2513 }
2514 
2515 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2516 {
2517 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2518 }
2519 
2520 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2521 					const char *buf, size_t count)
2522 {
2523 	return pci_set_resource_alignment_param(buf, count);
2524 }
2525 
2526 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2527 					pci_resource_alignment_store);
2528 
2529 static int __init pci_resource_alignment_sysfs_init(void)
2530 {
2531 	return bus_create_file(&pci_bus_type,
2532 					&bus_attr_resource_alignment);
2533 }
2534 
2535 late_initcall(pci_resource_alignment_sysfs_init);
2536 
2537 static void __devinit pci_no_domains(void)
2538 {
2539 #ifdef CONFIG_PCI_DOMAINS
2540 	pci_domains_supported = 0;
2541 #endif
2542 }
2543 
2544 /**
2545  * pci_ext_cfg_enabled - can we access extended PCI config space?
2546  * @dev: The PCI device of the root bridge.
2547  *
2548  * Returns 1 if we can access PCI extended config space (offsets
2549  * greater than 0xff). This is the default implementation. Architecture
2550  * implementations can override this.
2551  */
2552 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2553 {
2554 	return 1;
2555 }
2556 
2557 static int __devinit pci_init(void)
2558 {
2559 	struct pci_dev *dev = NULL;
2560 
2561 	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2562 		pci_fixup_device(pci_fixup_final, dev);
2563 	}
2564 
2565 	return 0;
2566 }
2567 
2568 static int __init pci_setup(char *str)
2569 {
2570 	while (str) {
2571 		char *k = strchr(str, ',');
2572 		if (k)
2573 			*k++ = 0;
2574 		if (*str && (str = pcibios_setup(str)) && *str) {
2575 			if (!strcmp(str, "nomsi")) {
2576 				pci_no_msi();
2577 			} else if (!strcmp(str, "noaer")) {
2578 				pci_no_aer();
2579 			} else if (!strcmp(str, "nodomains")) {
2580 				pci_no_domains();
2581 			} else if (!strncmp(str, "cbiosize=", 9)) {
2582 				pci_cardbus_io_size = memparse(str + 9, &str);
2583 			} else if (!strncmp(str, "cbmemsize=", 10)) {
2584 				pci_cardbus_mem_size = memparse(str + 10, &str);
2585 			} else if (!strncmp(str, "resource_alignment=", 19)) {
2586 				pci_set_resource_alignment_param(str + 19,
2587 							strlen(str + 19));
2588 			} else {
2589 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
2590 						str);
2591 			}
2592 		}
2593 		str = k;
2594 	}
2595 	return 0;
2596 }
2597 early_param("pci", pci_setup);
2598 
2599 device_initcall(pci_init);
2600 
2601 EXPORT_SYMBOL(pci_reenable_device);
2602 EXPORT_SYMBOL(pci_enable_device_io);
2603 EXPORT_SYMBOL(pci_enable_device_mem);
2604 EXPORT_SYMBOL(pci_enable_device);
2605 EXPORT_SYMBOL(pcim_enable_device);
2606 EXPORT_SYMBOL(pcim_pin_device);
2607 EXPORT_SYMBOL(pci_disable_device);
2608 EXPORT_SYMBOL(pci_find_capability);
2609 EXPORT_SYMBOL(pci_bus_find_capability);
2610 EXPORT_SYMBOL(pci_release_regions);
2611 EXPORT_SYMBOL(pci_request_regions);
2612 EXPORT_SYMBOL(pci_request_regions_exclusive);
2613 EXPORT_SYMBOL(pci_release_region);
2614 EXPORT_SYMBOL(pci_request_region);
2615 EXPORT_SYMBOL(pci_request_region_exclusive);
2616 EXPORT_SYMBOL(pci_release_selected_regions);
2617 EXPORT_SYMBOL(pci_request_selected_regions);
2618 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2619 EXPORT_SYMBOL(pci_set_master);
2620 EXPORT_SYMBOL(pci_clear_master);
2621 EXPORT_SYMBOL(pci_set_mwi);
2622 EXPORT_SYMBOL(pci_try_set_mwi);
2623 EXPORT_SYMBOL(pci_clear_mwi);
2624 EXPORT_SYMBOL_GPL(pci_intx);
2625 EXPORT_SYMBOL(pci_set_dma_mask);
2626 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2627 EXPORT_SYMBOL(pci_assign_resource);
2628 EXPORT_SYMBOL(pci_find_parent_resource);
2629 EXPORT_SYMBOL(pci_select_bars);
2630 
2631 EXPORT_SYMBOL(pci_set_power_state);
2632 EXPORT_SYMBOL(pci_save_state);
2633 EXPORT_SYMBOL(pci_restore_state);
2634 EXPORT_SYMBOL(pci_pme_capable);
2635 EXPORT_SYMBOL(pci_pme_active);
2636 EXPORT_SYMBOL(pci_enable_wake);
2637 EXPORT_SYMBOL(pci_wake_from_d3);
2638 EXPORT_SYMBOL(pci_target_state);
2639 EXPORT_SYMBOL(pci_prepare_to_sleep);
2640 EXPORT_SYMBOL(pci_back_from_sleep);
2641 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2642 
2643