1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/string.h> 18 #include <linux/log2.h> 19 #include <linux/pci-aspm.h> 20 #include <linux/pm_wakeup.h> 21 #include <linux/interrupt.h> 22 #include <asm/dma.h> /* isa_dma_bridge_buggy */ 23 #include <linux/device.h> 24 #include <asm/setup.h> 25 #include "pci.h" 26 27 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT; 28 29 #ifdef CONFIG_PCI_DOMAINS 30 int pci_domains_supported = 1; 31 #endif 32 33 #define DEFAULT_CARDBUS_IO_SIZE (256) 34 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 35 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 36 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 37 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 38 39 /** 40 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 41 * @bus: pointer to PCI bus structure to search 42 * 43 * Given a PCI bus, returns the highest PCI bus number present in the set 44 * including the given PCI bus and its list of child PCI buses. 45 */ 46 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 47 { 48 struct list_head *tmp; 49 unsigned char max, n; 50 51 max = bus->subordinate; 52 list_for_each(tmp, &bus->children) { 53 n = pci_bus_max_busnr(pci_bus_b(tmp)); 54 if(n > max) 55 max = n; 56 } 57 return max; 58 } 59 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 60 61 #ifdef CONFIG_HAS_IOMEM 62 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 63 { 64 /* 65 * Make sure the BAR is actually a memory resource, not an IO resource 66 */ 67 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 68 WARN_ON(1); 69 return NULL; 70 } 71 return ioremap_nocache(pci_resource_start(pdev, bar), 72 pci_resource_len(pdev, bar)); 73 } 74 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 75 #endif 76 77 #if 0 78 /** 79 * pci_max_busnr - returns maximum PCI bus number 80 * 81 * Returns the highest PCI bus number present in the system global list of 82 * PCI buses. 83 */ 84 unsigned char __devinit 85 pci_max_busnr(void) 86 { 87 struct pci_bus *bus = NULL; 88 unsigned char max, n; 89 90 max = 0; 91 while ((bus = pci_find_next_bus(bus)) != NULL) { 92 n = pci_bus_max_busnr(bus); 93 if(n > max) 94 max = n; 95 } 96 return max; 97 } 98 99 #endif /* 0 */ 100 101 #define PCI_FIND_CAP_TTL 48 102 103 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 104 u8 pos, int cap, int *ttl) 105 { 106 u8 id; 107 108 while ((*ttl)--) { 109 pci_bus_read_config_byte(bus, devfn, pos, &pos); 110 if (pos < 0x40) 111 break; 112 pos &= ~3; 113 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 114 &id); 115 if (id == 0xff) 116 break; 117 if (id == cap) 118 return pos; 119 pos += PCI_CAP_LIST_NEXT; 120 } 121 return 0; 122 } 123 124 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 125 u8 pos, int cap) 126 { 127 int ttl = PCI_FIND_CAP_TTL; 128 129 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 130 } 131 132 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 133 { 134 return __pci_find_next_cap(dev->bus, dev->devfn, 135 pos + PCI_CAP_LIST_NEXT, cap); 136 } 137 EXPORT_SYMBOL_GPL(pci_find_next_capability); 138 139 static int __pci_bus_find_cap_start(struct pci_bus *bus, 140 unsigned int devfn, u8 hdr_type) 141 { 142 u16 status; 143 144 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 145 if (!(status & PCI_STATUS_CAP_LIST)) 146 return 0; 147 148 switch (hdr_type) { 149 case PCI_HEADER_TYPE_NORMAL: 150 case PCI_HEADER_TYPE_BRIDGE: 151 return PCI_CAPABILITY_LIST; 152 case PCI_HEADER_TYPE_CARDBUS: 153 return PCI_CB_CAPABILITY_LIST; 154 default: 155 return 0; 156 } 157 158 return 0; 159 } 160 161 /** 162 * pci_find_capability - query for devices' capabilities 163 * @dev: PCI device to query 164 * @cap: capability code 165 * 166 * Tell if a device supports a given PCI capability. 167 * Returns the address of the requested capability structure within the 168 * device's PCI configuration space or 0 in case the device does not 169 * support it. Possible values for @cap: 170 * 171 * %PCI_CAP_ID_PM Power Management 172 * %PCI_CAP_ID_AGP Accelerated Graphics Port 173 * %PCI_CAP_ID_VPD Vital Product Data 174 * %PCI_CAP_ID_SLOTID Slot Identification 175 * %PCI_CAP_ID_MSI Message Signalled Interrupts 176 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 177 * %PCI_CAP_ID_PCIX PCI-X 178 * %PCI_CAP_ID_EXP PCI Express 179 */ 180 int pci_find_capability(struct pci_dev *dev, int cap) 181 { 182 int pos; 183 184 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 185 if (pos) 186 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 187 188 return pos; 189 } 190 191 /** 192 * pci_bus_find_capability - query for devices' capabilities 193 * @bus: the PCI bus to query 194 * @devfn: PCI device to query 195 * @cap: capability code 196 * 197 * Like pci_find_capability() but works for pci devices that do not have a 198 * pci_dev structure set up yet. 199 * 200 * Returns the address of the requested capability structure within the 201 * device's PCI configuration space or 0 in case the device does not 202 * support it. 203 */ 204 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 205 { 206 int pos; 207 u8 hdr_type; 208 209 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 210 211 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 212 if (pos) 213 pos = __pci_find_next_cap(bus, devfn, pos, cap); 214 215 return pos; 216 } 217 218 /** 219 * pci_find_ext_capability - Find an extended capability 220 * @dev: PCI device to query 221 * @cap: capability code 222 * 223 * Returns the address of the requested extended capability structure 224 * within the device's PCI configuration space or 0 if the device does 225 * not support it. Possible values for @cap: 226 * 227 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 228 * %PCI_EXT_CAP_ID_VC Virtual Channel 229 * %PCI_EXT_CAP_ID_DSN Device Serial Number 230 * %PCI_EXT_CAP_ID_PWR Power Budgeting 231 */ 232 int pci_find_ext_capability(struct pci_dev *dev, int cap) 233 { 234 u32 header; 235 int ttl; 236 int pos = PCI_CFG_SPACE_SIZE; 237 238 /* minimum 8 bytes per capability */ 239 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 240 241 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 242 return 0; 243 244 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 245 return 0; 246 247 /* 248 * If we have no capabilities, this is indicated by cap ID, 249 * cap version and next pointer all being 0. 250 */ 251 if (header == 0) 252 return 0; 253 254 while (ttl-- > 0) { 255 if (PCI_EXT_CAP_ID(header) == cap) 256 return pos; 257 258 pos = PCI_EXT_CAP_NEXT(header); 259 if (pos < PCI_CFG_SPACE_SIZE) 260 break; 261 262 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 263 break; 264 } 265 266 return 0; 267 } 268 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 269 270 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 271 { 272 int rc, ttl = PCI_FIND_CAP_TTL; 273 u8 cap, mask; 274 275 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 276 mask = HT_3BIT_CAP_MASK; 277 else 278 mask = HT_5BIT_CAP_MASK; 279 280 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 281 PCI_CAP_ID_HT, &ttl); 282 while (pos) { 283 rc = pci_read_config_byte(dev, pos + 3, &cap); 284 if (rc != PCIBIOS_SUCCESSFUL) 285 return 0; 286 287 if ((cap & mask) == ht_cap) 288 return pos; 289 290 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 291 pos + PCI_CAP_LIST_NEXT, 292 PCI_CAP_ID_HT, &ttl); 293 } 294 295 return 0; 296 } 297 /** 298 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 299 * @dev: PCI device to query 300 * @pos: Position from which to continue searching 301 * @ht_cap: Hypertransport capability code 302 * 303 * To be used in conjunction with pci_find_ht_capability() to search for 304 * all capabilities matching @ht_cap. @pos should always be a value returned 305 * from pci_find_ht_capability(). 306 * 307 * NB. To be 100% safe against broken PCI devices, the caller should take 308 * steps to avoid an infinite loop. 309 */ 310 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 311 { 312 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 313 } 314 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 315 316 /** 317 * pci_find_ht_capability - query a device's Hypertransport capabilities 318 * @dev: PCI device to query 319 * @ht_cap: Hypertransport capability code 320 * 321 * Tell if a device supports a given Hypertransport capability. 322 * Returns an address within the device's PCI configuration space 323 * or 0 in case the device does not support the request capability. 324 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 325 * which has a Hypertransport capability matching @ht_cap. 326 */ 327 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 328 { 329 int pos; 330 331 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 332 if (pos) 333 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 334 335 return pos; 336 } 337 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 338 339 /** 340 * pci_find_parent_resource - return resource region of parent bus of given region 341 * @dev: PCI device structure contains resources to be searched 342 * @res: child resource record for which parent is sought 343 * 344 * For given resource region of given device, return the resource 345 * region of parent bus the given region is contained in or where 346 * it should be allocated from. 347 */ 348 struct resource * 349 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 350 { 351 const struct pci_bus *bus = dev->bus; 352 int i; 353 struct resource *best = NULL; 354 355 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) { 356 struct resource *r = bus->resource[i]; 357 if (!r) 358 continue; 359 if (res->start && !(res->start >= r->start && res->end <= r->end)) 360 continue; /* Not contained */ 361 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) 362 continue; /* Wrong type */ 363 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) 364 return r; /* Exact match */ 365 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH)) 366 best = r; /* Approximating prefetchable by non-prefetchable */ 367 } 368 return best; 369 } 370 371 /** 372 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 373 * @dev: PCI device to have its BARs restored 374 * 375 * Restore the BAR values for a given device, so as to make it 376 * accessible by its driver. 377 */ 378 static void 379 pci_restore_bars(struct pci_dev *dev) 380 { 381 int i; 382 383 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 384 pci_update_resource(dev, i); 385 } 386 387 static struct pci_platform_pm_ops *pci_platform_pm; 388 389 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 390 { 391 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 392 || !ops->sleep_wake || !ops->can_wakeup) 393 return -EINVAL; 394 pci_platform_pm = ops; 395 return 0; 396 } 397 398 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 399 { 400 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 401 } 402 403 static inline int platform_pci_set_power_state(struct pci_dev *dev, 404 pci_power_t t) 405 { 406 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 407 } 408 409 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 410 { 411 return pci_platform_pm ? 412 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 413 } 414 415 static inline bool platform_pci_can_wakeup(struct pci_dev *dev) 416 { 417 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false; 418 } 419 420 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 421 { 422 return pci_platform_pm ? 423 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 424 } 425 426 /** 427 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 428 * given PCI device 429 * @dev: PCI device to handle. 430 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 431 * 432 * RETURN VALUE: 433 * -EINVAL if the requested state is invalid. 434 * -EIO if device does not support PCI PM or its PM capabilities register has a 435 * wrong version, or device doesn't support the requested state. 436 * 0 if device already is in the requested state. 437 * 0 if device's power state has been successfully changed. 438 */ 439 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 440 { 441 u16 pmcsr; 442 bool need_restore = false; 443 444 /* Check if we're already there */ 445 if (dev->current_state == state) 446 return 0; 447 448 if (!dev->pm_cap) 449 return -EIO; 450 451 if (state < PCI_D0 || state > PCI_D3hot) 452 return -EINVAL; 453 454 /* Validate current state: 455 * Can enter D0 from any state, but if we can only go deeper 456 * to sleep if we're already in a low power state 457 */ 458 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 459 && dev->current_state > state) { 460 dev_err(&dev->dev, "invalid power transition " 461 "(from state %d to %d)\n", dev->current_state, state); 462 return -EINVAL; 463 } 464 465 /* check if this device supports the desired state */ 466 if ((state == PCI_D1 && !dev->d1_support) 467 || (state == PCI_D2 && !dev->d2_support)) 468 return -EIO; 469 470 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 471 472 /* If we're (effectively) in D3, force entire word to 0. 473 * This doesn't affect PME_Status, disables PME_En, and 474 * sets PowerState to 0. 475 */ 476 switch (dev->current_state) { 477 case PCI_D0: 478 case PCI_D1: 479 case PCI_D2: 480 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 481 pmcsr |= state; 482 break; 483 case PCI_UNKNOWN: /* Boot-up */ 484 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 485 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 486 need_restore = true; 487 /* Fall-through: force to D0 */ 488 default: 489 pmcsr = 0; 490 break; 491 } 492 493 /* enter specified state */ 494 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 495 496 /* Mandatory power management transition delays */ 497 /* see PCI PM 1.1 5.6.1 table 18 */ 498 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 499 msleep(pci_pm_d3_delay); 500 else if (state == PCI_D2 || dev->current_state == PCI_D2) 501 udelay(PCI_PM_D2_DELAY); 502 503 dev->current_state = state; 504 505 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 506 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 507 * from D3hot to D0 _may_ perform an internal reset, thereby 508 * going to "D0 Uninitialized" rather than "D0 Initialized". 509 * For example, at least some versions of the 3c905B and the 510 * 3c556B exhibit this behaviour. 511 * 512 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 513 * devices in a D3hot state at boot. Consequently, we need to 514 * restore at least the BARs so that the device will be 515 * accessible to its driver. 516 */ 517 if (need_restore) 518 pci_restore_bars(dev); 519 520 if (dev->bus->self) 521 pcie_aspm_pm_state_change(dev->bus->self); 522 523 return 0; 524 } 525 526 /** 527 * pci_update_current_state - Read PCI power state of given device from its 528 * PCI PM registers and cache it 529 * @dev: PCI device to handle. 530 * @state: State to cache in case the device doesn't have the PM capability 531 */ 532 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 533 { 534 if (dev->pm_cap) { 535 u16 pmcsr; 536 537 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 538 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 539 } else { 540 dev->current_state = state; 541 } 542 } 543 544 /** 545 * pci_platform_power_transition - Use platform to change device power state 546 * @dev: PCI device to handle. 547 * @state: State to put the device into. 548 */ 549 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 550 { 551 int error; 552 553 if (platform_pci_power_manageable(dev)) { 554 error = platform_pci_set_power_state(dev, state); 555 if (!error) 556 pci_update_current_state(dev, state); 557 } else { 558 error = -ENODEV; 559 /* Fall back to PCI_D0 if native PM is not supported */ 560 pci_update_current_state(dev, PCI_D0); 561 } 562 563 return error; 564 } 565 566 /** 567 * __pci_start_power_transition - Start power transition of a PCI device 568 * @dev: PCI device to handle. 569 * @state: State to put the device into. 570 */ 571 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 572 { 573 if (state == PCI_D0) 574 pci_platform_power_transition(dev, PCI_D0); 575 } 576 577 /** 578 * __pci_complete_power_transition - Complete power transition of a PCI device 579 * @dev: PCI device to handle. 580 * @state: State to put the device into. 581 * 582 * This function should not be called directly by device drivers. 583 */ 584 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 585 { 586 return state > PCI_D0 ? 587 pci_platform_power_transition(dev, state) : -EINVAL; 588 } 589 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 590 591 /** 592 * pci_set_power_state - Set the power state of a PCI device 593 * @dev: PCI device to handle. 594 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 595 * 596 * Transition a device to a new power state, using the platform firmware and/or 597 * the device's PCI PM registers. 598 * 599 * RETURN VALUE: 600 * -EINVAL if the requested state is invalid. 601 * -EIO if device does not support PCI PM or its PM capabilities register has a 602 * wrong version, or device doesn't support the requested state. 603 * 0 if device already is in the requested state. 604 * 0 if device's power state has been successfully changed. 605 */ 606 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 607 { 608 int error; 609 610 /* bound the state we're entering */ 611 if (state > PCI_D3hot) 612 state = PCI_D3hot; 613 else if (state < PCI_D0) 614 state = PCI_D0; 615 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 616 /* 617 * If the device or the parent bridge do not support PCI PM, 618 * ignore the request if we're doing anything other than putting 619 * it into D0 (which would only happen on boot). 620 */ 621 return 0; 622 623 /* Check if we're already there */ 624 if (dev->current_state == state) 625 return 0; 626 627 __pci_start_power_transition(dev, state); 628 629 /* This device is quirked not to be put into D3, so 630 don't put it in D3 */ 631 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 632 return 0; 633 634 error = pci_raw_set_power_state(dev, state); 635 636 if (!__pci_complete_power_transition(dev, state)) 637 error = 0; 638 639 return error; 640 } 641 642 /** 643 * pci_choose_state - Choose the power state of a PCI device 644 * @dev: PCI device to be suspended 645 * @state: target sleep state for the whole system. This is the value 646 * that is passed to suspend() function. 647 * 648 * Returns PCI power state suitable for given device and given system 649 * message. 650 */ 651 652 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 653 { 654 pci_power_t ret; 655 656 if (!pci_find_capability(dev, PCI_CAP_ID_PM)) 657 return PCI_D0; 658 659 ret = platform_pci_choose_state(dev); 660 if (ret != PCI_POWER_ERROR) 661 return ret; 662 663 switch (state.event) { 664 case PM_EVENT_ON: 665 return PCI_D0; 666 case PM_EVENT_FREEZE: 667 case PM_EVENT_PRETHAW: 668 /* REVISIT both freeze and pre-thaw "should" use D0 */ 669 case PM_EVENT_SUSPEND: 670 case PM_EVENT_HIBERNATE: 671 return PCI_D3hot; 672 default: 673 dev_info(&dev->dev, "unrecognized suspend event %d\n", 674 state.event); 675 BUG(); 676 } 677 return PCI_D0; 678 } 679 680 EXPORT_SYMBOL(pci_choose_state); 681 682 #define PCI_EXP_SAVE_REGS 7 683 684 #define pcie_cap_has_devctl(type, flags) 1 685 #define pcie_cap_has_lnkctl(type, flags) \ 686 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 687 (type == PCI_EXP_TYPE_ROOT_PORT || \ 688 type == PCI_EXP_TYPE_ENDPOINT || \ 689 type == PCI_EXP_TYPE_LEG_END)) 690 #define pcie_cap_has_sltctl(type, flags) \ 691 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 692 ((type == PCI_EXP_TYPE_ROOT_PORT) || \ 693 (type == PCI_EXP_TYPE_DOWNSTREAM && \ 694 (flags & PCI_EXP_FLAGS_SLOT)))) 695 #define pcie_cap_has_rtctl(type, flags) \ 696 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 697 (type == PCI_EXP_TYPE_ROOT_PORT || \ 698 type == PCI_EXP_TYPE_RC_EC)) 699 #define pcie_cap_has_devctl2(type, flags) \ 700 ((flags & PCI_EXP_FLAGS_VERS) > 1) 701 #define pcie_cap_has_lnkctl2(type, flags) \ 702 ((flags & PCI_EXP_FLAGS_VERS) > 1) 703 #define pcie_cap_has_sltctl2(type, flags) \ 704 ((flags & PCI_EXP_FLAGS_VERS) > 1) 705 706 static int pci_save_pcie_state(struct pci_dev *dev) 707 { 708 int pos, i = 0; 709 struct pci_cap_saved_state *save_state; 710 u16 *cap; 711 u16 flags; 712 713 pos = pci_find_capability(dev, PCI_CAP_ID_EXP); 714 if (pos <= 0) 715 return 0; 716 717 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 718 if (!save_state) { 719 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 720 return -ENOMEM; 721 } 722 cap = (u16 *)&save_state->data[0]; 723 724 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags); 725 726 if (pcie_cap_has_devctl(dev->pcie_type, flags)) 727 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]); 728 if (pcie_cap_has_lnkctl(dev->pcie_type, flags)) 729 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]); 730 if (pcie_cap_has_sltctl(dev->pcie_type, flags)) 731 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]); 732 if (pcie_cap_has_rtctl(dev->pcie_type, flags)) 733 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]); 734 if (pcie_cap_has_devctl2(dev->pcie_type, flags)) 735 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]); 736 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags)) 737 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]); 738 if (pcie_cap_has_sltctl2(dev->pcie_type, flags)) 739 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]); 740 741 return 0; 742 } 743 744 static void pci_restore_pcie_state(struct pci_dev *dev) 745 { 746 int i = 0, pos; 747 struct pci_cap_saved_state *save_state; 748 u16 *cap; 749 u16 flags; 750 751 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 752 pos = pci_find_capability(dev, PCI_CAP_ID_EXP); 753 if (!save_state || pos <= 0) 754 return; 755 cap = (u16 *)&save_state->data[0]; 756 757 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags); 758 759 if (pcie_cap_has_devctl(dev->pcie_type, flags)) 760 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]); 761 if (pcie_cap_has_lnkctl(dev->pcie_type, flags)) 762 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]); 763 if (pcie_cap_has_sltctl(dev->pcie_type, flags)) 764 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]); 765 if (pcie_cap_has_rtctl(dev->pcie_type, flags)) 766 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]); 767 if (pcie_cap_has_devctl2(dev->pcie_type, flags)) 768 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]); 769 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags)) 770 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]); 771 if (pcie_cap_has_sltctl2(dev->pcie_type, flags)) 772 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]); 773 } 774 775 776 static int pci_save_pcix_state(struct pci_dev *dev) 777 { 778 int pos; 779 struct pci_cap_saved_state *save_state; 780 781 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 782 if (pos <= 0) 783 return 0; 784 785 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 786 if (!save_state) { 787 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 788 return -ENOMEM; 789 } 790 791 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data); 792 793 return 0; 794 } 795 796 static void pci_restore_pcix_state(struct pci_dev *dev) 797 { 798 int i = 0, pos; 799 struct pci_cap_saved_state *save_state; 800 u16 *cap; 801 802 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 803 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 804 if (!save_state || pos <= 0) 805 return; 806 cap = (u16 *)&save_state->data[0]; 807 808 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 809 } 810 811 812 /** 813 * pci_save_state - save the PCI configuration space of a device before suspending 814 * @dev: - PCI device that we're dealing with 815 */ 816 int 817 pci_save_state(struct pci_dev *dev) 818 { 819 int i; 820 /* XXX: 100% dword access ok here? */ 821 for (i = 0; i < 16; i++) 822 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]); 823 dev->state_saved = true; 824 if ((i = pci_save_pcie_state(dev)) != 0) 825 return i; 826 if ((i = pci_save_pcix_state(dev)) != 0) 827 return i; 828 return 0; 829 } 830 831 /** 832 * pci_restore_state - Restore the saved state of a PCI device 833 * @dev: - PCI device that we're dealing with 834 */ 835 int 836 pci_restore_state(struct pci_dev *dev) 837 { 838 int i; 839 u32 val; 840 841 /* PCI Express register must be restored first */ 842 pci_restore_pcie_state(dev); 843 844 /* 845 * The Base Address register should be programmed before the command 846 * register(s) 847 */ 848 for (i = 15; i >= 0; i--) { 849 pci_read_config_dword(dev, i * 4, &val); 850 if (val != dev->saved_config_space[i]) { 851 dev_printk(KERN_DEBUG, &dev->dev, "restoring config " 852 "space at offset %#x (was %#x, writing %#x)\n", 853 i, val, (int)dev->saved_config_space[i]); 854 pci_write_config_dword(dev,i * 4, 855 dev->saved_config_space[i]); 856 } 857 } 858 pci_restore_pcix_state(dev); 859 pci_restore_msi_state(dev); 860 pci_restore_iov_state(dev); 861 862 return 0; 863 } 864 865 static int do_pci_enable_device(struct pci_dev *dev, int bars) 866 { 867 int err; 868 869 err = pci_set_power_state(dev, PCI_D0); 870 if (err < 0 && err != -EIO) 871 return err; 872 err = pcibios_enable_device(dev, bars); 873 if (err < 0) 874 return err; 875 pci_fixup_device(pci_fixup_enable, dev); 876 877 return 0; 878 } 879 880 /** 881 * pci_reenable_device - Resume abandoned device 882 * @dev: PCI device to be resumed 883 * 884 * Note this function is a backend of pci_default_resume and is not supposed 885 * to be called by normal code, write proper resume handler and use it instead. 886 */ 887 int pci_reenable_device(struct pci_dev *dev) 888 { 889 if (pci_is_enabled(dev)) 890 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 891 return 0; 892 } 893 894 static int __pci_enable_device_flags(struct pci_dev *dev, 895 resource_size_t flags) 896 { 897 int err; 898 int i, bars = 0; 899 900 if (atomic_add_return(1, &dev->enable_cnt) > 1) 901 return 0; /* already enabled */ 902 903 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 904 if (dev->resource[i].flags & flags) 905 bars |= (1 << i); 906 907 err = do_pci_enable_device(dev, bars); 908 if (err < 0) 909 atomic_dec(&dev->enable_cnt); 910 return err; 911 } 912 913 /** 914 * pci_enable_device_io - Initialize a device for use with IO space 915 * @dev: PCI device to be initialized 916 * 917 * Initialize device before it's used by a driver. Ask low-level code 918 * to enable I/O resources. Wake up the device if it was suspended. 919 * Beware, this function can fail. 920 */ 921 int pci_enable_device_io(struct pci_dev *dev) 922 { 923 return __pci_enable_device_flags(dev, IORESOURCE_IO); 924 } 925 926 /** 927 * pci_enable_device_mem - Initialize a device for use with Memory space 928 * @dev: PCI device to be initialized 929 * 930 * Initialize device before it's used by a driver. Ask low-level code 931 * to enable Memory resources. Wake up the device if it was suspended. 932 * Beware, this function can fail. 933 */ 934 int pci_enable_device_mem(struct pci_dev *dev) 935 { 936 return __pci_enable_device_flags(dev, IORESOURCE_MEM); 937 } 938 939 /** 940 * pci_enable_device - Initialize device before it's used by a driver. 941 * @dev: PCI device to be initialized 942 * 943 * Initialize device before it's used by a driver. Ask low-level code 944 * to enable I/O and memory. Wake up the device if it was suspended. 945 * Beware, this function can fail. 946 * 947 * Note we don't actually enable the device many times if we call 948 * this function repeatedly (we just increment the count). 949 */ 950 int pci_enable_device(struct pci_dev *dev) 951 { 952 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 953 } 954 955 /* 956 * Managed PCI resources. This manages device on/off, intx/msi/msix 957 * on/off and BAR regions. pci_dev itself records msi/msix status, so 958 * there's no need to track it separately. pci_devres is initialized 959 * when a device is enabled using managed PCI device enable interface. 960 */ 961 struct pci_devres { 962 unsigned int enabled:1; 963 unsigned int pinned:1; 964 unsigned int orig_intx:1; 965 unsigned int restore_intx:1; 966 u32 region_mask; 967 }; 968 969 static void pcim_release(struct device *gendev, void *res) 970 { 971 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 972 struct pci_devres *this = res; 973 int i; 974 975 if (dev->msi_enabled) 976 pci_disable_msi(dev); 977 if (dev->msix_enabled) 978 pci_disable_msix(dev); 979 980 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 981 if (this->region_mask & (1 << i)) 982 pci_release_region(dev, i); 983 984 if (this->restore_intx) 985 pci_intx(dev, this->orig_intx); 986 987 if (this->enabled && !this->pinned) 988 pci_disable_device(dev); 989 } 990 991 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 992 { 993 struct pci_devres *dr, *new_dr; 994 995 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 996 if (dr) 997 return dr; 998 999 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1000 if (!new_dr) 1001 return NULL; 1002 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1003 } 1004 1005 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 1006 { 1007 if (pci_is_managed(pdev)) 1008 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1009 return NULL; 1010 } 1011 1012 /** 1013 * pcim_enable_device - Managed pci_enable_device() 1014 * @pdev: PCI device to be initialized 1015 * 1016 * Managed pci_enable_device(). 1017 */ 1018 int pcim_enable_device(struct pci_dev *pdev) 1019 { 1020 struct pci_devres *dr; 1021 int rc; 1022 1023 dr = get_pci_dr(pdev); 1024 if (unlikely(!dr)) 1025 return -ENOMEM; 1026 if (dr->enabled) 1027 return 0; 1028 1029 rc = pci_enable_device(pdev); 1030 if (!rc) { 1031 pdev->is_managed = 1; 1032 dr->enabled = 1; 1033 } 1034 return rc; 1035 } 1036 1037 /** 1038 * pcim_pin_device - Pin managed PCI device 1039 * @pdev: PCI device to pin 1040 * 1041 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1042 * driver detach. @pdev must have been enabled with 1043 * pcim_enable_device(). 1044 */ 1045 void pcim_pin_device(struct pci_dev *pdev) 1046 { 1047 struct pci_devres *dr; 1048 1049 dr = find_pci_dr(pdev); 1050 WARN_ON(!dr || !dr->enabled); 1051 if (dr) 1052 dr->pinned = 1; 1053 } 1054 1055 /** 1056 * pcibios_disable_device - disable arch specific PCI resources for device dev 1057 * @dev: the PCI device to disable 1058 * 1059 * Disables architecture specific PCI resources for the device. This 1060 * is the default implementation. Architecture implementations can 1061 * override this. 1062 */ 1063 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {} 1064 1065 static void do_pci_disable_device(struct pci_dev *dev) 1066 { 1067 u16 pci_command; 1068 1069 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1070 if (pci_command & PCI_COMMAND_MASTER) { 1071 pci_command &= ~PCI_COMMAND_MASTER; 1072 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1073 } 1074 1075 pcibios_disable_device(dev); 1076 } 1077 1078 /** 1079 * pci_disable_enabled_device - Disable device without updating enable_cnt 1080 * @dev: PCI device to disable 1081 * 1082 * NOTE: This function is a backend of PCI power management routines and is 1083 * not supposed to be called drivers. 1084 */ 1085 void pci_disable_enabled_device(struct pci_dev *dev) 1086 { 1087 if (pci_is_enabled(dev)) 1088 do_pci_disable_device(dev); 1089 } 1090 1091 /** 1092 * pci_disable_device - Disable PCI device after use 1093 * @dev: PCI device to be disabled 1094 * 1095 * Signal to the system that the PCI device is not in use by the system 1096 * anymore. This only involves disabling PCI bus-mastering, if active. 1097 * 1098 * Note we don't actually disable the device until all callers of 1099 * pci_device_enable() have called pci_device_disable(). 1100 */ 1101 void 1102 pci_disable_device(struct pci_dev *dev) 1103 { 1104 struct pci_devres *dr; 1105 1106 dr = find_pci_dr(dev); 1107 if (dr) 1108 dr->enabled = 0; 1109 1110 if (atomic_sub_return(1, &dev->enable_cnt) != 0) 1111 return; 1112 1113 do_pci_disable_device(dev); 1114 1115 dev->is_busmaster = 0; 1116 } 1117 1118 /** 1119 * pcibios_set_pcie_reset_state - set reset state for device dev 1120 * @dev: the PCI-E device reset 1121 * @state: Reset state to enter into 1122 * 1123 * 1124 * Sets the PCI-E reset state for the device. This is the default 1125 * implementation. Architecture implementations can override this. 1126 */ 1127 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev, 1128 enum pcie_reset_state state) 1129 { 1130 return -EINVAL; 1131 } 1132 1133 /** 1134 * pci_set_pcie_reset_state - set reset state for device dev 1135 * @dev: the PCI-E device reset 1136 * @state: Reset state to enter into 1137 * 1138 * 1139 * Sets the PCI reset state for the device. 1140 */ 1141 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1142 { 1143 return pcibios_set_pcie_reset_state(dev, state); 1144 } 1145 1146 /** 1147 * pci_pme_capable - check the capability of PCI device to generate PME# 1148 * @dev: PCI device to handle. 1149 * @state: PCI state from which device will issue PME#. 1150 */ 1151 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1152 { 1153 if (!dev->pm_cap) 1154 return false; 1155 1156 return !!(dev->pme_support & (1 << state)); 1157 } 1158 1159 /** 1160 * pci_pme_active - enable or disable PCI device's PME# function 1161 * @dev: PCI device to handle. 1162 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1163 * 1164 * The caller must verify that the device is capable of generating PME# before 1165 * calling this function with @enable equal to 'true'. 1166 */ 1167 void pci_pme_active(struct pci_dev *dev, bool enable) 1168 { 1169 u16 pmcsr; 1170 1171 if (!dev->pm_cap) 1172 return; 1173 1174 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1175 /* Clear PME_Status by writing 1 to it and enable PME# */ 1176 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1177 if (!enable) 1178 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1179 1180 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1181 1182 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n", 1183 enable ? "enabled" : "disabled"); 1184 } 1185 1186 /** 1187 * pci_enable_wake - enable PCI device as wakeup event source 1188 * @dev: PCI device affected 1189 * @state: PCI state from which device will issue wakeup events 1190 * @enable: True to enable event generation; false to disable 1191 * 1192 * This enables the device as a wakeup event source, or disables it. 1193 * When such events involves platform-specific hooks, those hooks are 1194 * called automatically by this routine. 1195 * 1196 * Devices with legacy power management (no standard PCI PM capabilities) 1197 * always require such platform hooks. 1198 * 1199 * RETURN VALUE: 1200 * 0 is returned on success 1201 * -EINVAL is returned if device is not supposed to wake up the system 1202 * Error code depending on the platform is returned if both the platform and 1203 * the native mechanism fail to enable the generation of wake-up events 1204 */ 1205 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable) 1206 { 1207 int error = 0; 1208 bool pme_done = false; 1209 1210 if (enable && !device_may_wakeup(&dev->dev)) 1211 return -EINVAL; 1212 1213 /* 1214 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1215 * Anderson we should be doing PME# wake enable followed by ACPI wake 1216 * enable. To disable wake-up we call the platform first, for symmetry. 1217 */ 1218 1219 if (!enable && platform_pci_can_wakeup(dev)) 1220 error = platform_pci_sleep_wake(dev, false); 1221 1222 if (!enable || pci_pme_capable(dev, state)) { 1223 pci_pme_active(dev, enable); 1224 pme_done = true; 1225 } 1226 1227 if (enable && platform_pci_can_wakeup(dev)) 1228 error = platform_pci_sleep_wake(dev, true); 1229 1230 return pme_done ? 0 : error; 1231 } 1232 1233 /** 1234 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1235 * @dev: PCI device to prepare 1236 * @enable: True to enable wake-up event generation; false to disable 1237 * 1238 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1239 * and this function allows them to set that up cleanly - pci_enable_wake() 1240 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1241 * ordering constraints. 1242 * 1243 * This function only returns error code if the device is not capable of 1244 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1245 * enable wake-up power for it. 1246 */ 1247 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1248 { 1249 return pci_pme_capable(dev, PCI_D3cold) ? 1250 pci_enable_wake(dev, PCI_D3cold, enable) : 1251 pci_enable_wake(dev, PCI_D3hot, enable); 1252 } 1253 1254 /** 1255 * pci_target_state - find an appropriate low power state for a given PCI dev 1256 * @dev: PCI device 1257 * 1258 * Use underlying platform code to find a supported low power state for @dev. 1259 * If the platform can't manage @dev, return the deepest state from which it 1260 * can generate wake events, based on any available PME info. 1261 */ 1262 pci_power_t pci_target_state(struct pci_dev *dev) 1263 { 1264 pci_power_t target_state = PCI_D3hot; 1265 1266 if (platform_pci_power_manageable(dev)) { 1267 /* 1268 * Call the platform to choose the target state of the device 1269 * and enable wake-up from this state if supported. 1270 */ 1271 pci_power_t state = platform_pci_choose_state(dev); 1272 1273 switch (state) { 1274 case PCI_POWER_ERROR: 1275 case PCI_UNKNOWN: 1276 break; 1277 case PCI_D1: 1278 case PCI_D2: 1279 if (pci_no_d1d2(dev)) 1280 break; 1281 default: 1282 target_state = state; 1283 } 1284 } else if (device_may_wakeup(&dev->dev)) { 1285 /* 1286 * Find the deepest state from which the device can generate 1287 * wake-up events, make it the target state and enable device 1288 * to generate PME#. 1289 */ 1290 if (!dev->pm_cap) 1291 return PCI_POWER_ERROR; 1292 1293 if (dev->pme_support) { 1294 while (target_state 1295 && !(dev->pme_support & (1 << target_state))) 1296 target_state--; 1297 } 1298 } 1299 1300 return target_state; 1301 } 1302 1303 /** 1304 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1305 * @dev: Device to handle. 1306 * 1307 * Choose the power state appropriate for the device depending on whether 1308 * it can wake up the system and/or is power manageable by the platform 1309 * (PCI_D3hot is the default) and put the device into that state. 1310 */ 1311 int pci_prepare_to_sleep(struct pci_dev *dev) 1312 { 1313 pci_power_t target_state = pci_target_state(dev); 1314 int error; 1315 1316 if (target_state == PCI_POWER_ERROR) 1317 return -EIO; 1318 1319 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1320 1321 error = pci_set_power_state(dev, target_state); 1322 1323 if (error) 1324 pci_enable_wake(dev, target_state, false); 1325 1326 return error; 1327 } 1328 1329 /** 1330 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1331 * @dev: Device to handle. 1332 * 1333 * Disable device's sytem wake-up capability and put it into D0. 1334 */ 1335 int pci_back_from_sleep(struct pci_dev *dev) 1336 { 1337 pci_enable_wake(dev, PCI_D0, false); 1338 return pci_set_power_state(dev, PCI_D0); 1339 } 1340 1341 /** 1342 * pci_pm_init - Initialize PM functions of given PCI device 1343 * @dev: PCI device to handle. 1344 */ 1345 void pci_pm_init(struct pci_dev *dev) 1346 { 1347 int pm; 1348 u16 pmc; 1349 1350 dev->pm_cap = 0; 1351 1352 /* find PCI PM capability in list */ 1353 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 1354 if (!pm) 1355 return; 1356 /* Check device's ability to generate PME# */ 1357 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 1358 1359 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 1360 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 1361 pmc & PCI_PM_CAP_VER_MASK); 1362 return; 1363 } 1364 1365 dev->pm_cap = pm; 1366 1367 dev->d1_support = false; 1368 dev->d2_support = false; 1369 if (!pci_no_d1d2(dev)) { 1370 if (pmc & PCI_PM_CAP_D1) 1371 dev->d1_support = true; 1372 if (pmc & PCI_PM_CAP_D2) 1373 dev->d2_support = true; 1374 1375 if (dev->d1_support || dev->d2_support) 1376 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 1377 dev->d1_support ? " D1" : "", 1378 dev->d2_support ? " D2" : ""); 1379 } 1380 1381 pmc &= PCI_PM_CAP_PME_MASK; 1382 if (pmc) { 1383 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n", 1384 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 1385 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 1386 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 1387 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 1388 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 1389 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 1390 /* 1391 * Make device's PM flags reflect the wake-up capability, but 1392 * let the user space enable it to wake up the system as needed. 1393 */ 1394 device_set_wakeup_capable(&dev->dev, true); 1395 device_set_wakeup_enable(&dev->dev, false); 1396 /* Disable the PME# generation functionality */ 1397 pci_pme_active(dev, false); 1398 } else { 1399 dev->pme_support = 0; 1400 } 1401 } 1402 1403 /** 1404 * platform_pci_wakeup_init - init platform wakeup if present 1405 * @dev: PCI device 1406 * 1407 * Some devices don't have PCI PM caps but can still generate wakeup 1408 * events through platform methods (like ACPI events). If @dev supports 1409 * platform wakeup events, set the device flag to indicate as much. This 1410 * may be redundant if the device also supports PCI PM caps, but double 1411 * initialization should be safe in that case. 1412 */ 1413 void platform_pci_wakeup_init(struct pci_dev *dev) 1414 { 1415 if (!platform_pci_can_wakeup(dev)) 1416 return; 1417 1418 device_set_wakeup_capable(&dev->dev, true); 1419 device_set_wakeup_enable(&dev->dev, false); 1420 platform_pci_sleep_wake(dev, false); 1421 } 1422 1423 /** 1424 * pci_add_save_buffer - allocate buffer for saving given capability registers 1425 * @dev: the PCI device 1426 * @cap: the capability to allocate the buffer for 1427 * @size: requested size of the buffer 1428 */ 1429 static int pci_add_cap_save_buffer( 1430 struct pci_dev *dev, char cap, unsigned int size) 1431 { 1432 int pos; 1433 struct pci_cap_saved_state *save_state; 1434 1435 pos = pci_find_capability(dev, cap); 1436 if (pos <= 0) 1437 return 0; 1438 1439 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 1440 if (!save_state) 1441 return -ENOMEM; 1442 1443 save_state->cap_nr = cap; 1444 pci_add_saved_cap(dev, save_state); 1445 1446 return 0; 1447 } 1448 1449 /** 1450 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 1451 * @dev: the PCI device 1452 */ 1453 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 1454 { 1455 int error; 1456 1457 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 1458 PCI_EXP_SAVE_REGS * sizeof(u16)); 1459 if (error) 1460 dev_err(&dev->dev, 1461 "unable to preallocate PCI Express save buffer\n"); 1462 1463 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 1464 if (error) 1465 dev_err(&dev->dev, 1466 "unable to preallocate PCI-X save buffer\n"); 1467 } 1468 1469 /** 1470 * pci_enable_ari - enable ARI forwarding if hardware support it 1471 * @dev: the PCI device 1472 */ 1473 void pci_enable_ari(struct pci_dev *dev) 1474 { 1475 int pos; 1476 u32 cap; 1477 u16 ctrl; 1478 struct pci_dev *bridge; 1479 1480 if (!dev->is_pcie || dev->devfn) 1481 return; 1482 1483 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI); 1484 if (!pos) 1485 return; 1486 1487 bridge = dev->bus->self; 1488 if (!bridge || !bridge->is_pcie) 1489 return; 1490 1491 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP); 1492 if (!pos) 1493 return; 1494 1495 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap); 1496 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 1497 return; 1498 1499 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl); 1500 ctrl |= PCI_EXP_DEVCTL2_ARI; 1501 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl); 1502 1503 bridge->ari_enabled = 1; 1504 } 1505 1506 /** 1507 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 1508 * @dev: the PCI device 1509 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD) 1510 * 1511 * Perform INTx swizzling for a device behind one level of bridge. This is 1512 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 1513 * behind bridges on add-in cards. 1514 */ 1515 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin) 1516 { 1517 return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1; 1518 } 1519 1520 int 1521 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 1522 { 1523 u8 pin; 1524 1525 pin = dev->pin; 1526 if (!pin) 1527 return -1; 1528 1529 while (dev->bus->parent) { 1530 pin = pci_swizzle_interrupt_pin(dev, pin); 1531 dev = dev->bus->self; 1532 } 1533 *bridge = dev; 1534 return pin; 1535 } 1536 1537 /** 1538 * pci_common_swizzle - swizzle INTx all the way to root bridge 1539 * @dev: the PCI device 1540 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 1541 * 1542 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 1543 * bridges all the way up to a PCI root bus. 1544 */ 1545 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 1546 { 1547 u8 pin = *pinp; 1548 1549 while (dev->bus->parent) { 1550 pin = pci_swizzle_interrupt_pin(dev, pin); 1551 dev = dev->bus->self; 1552 } 1553 *pinp = pin; 1554 return PCI_SLOT(dev->devfn); 1555 } 1556 1557 /** 1558 * pci_release_region - Release a PCI bar 1559 * @pdev: PCI device whose resources were previously reserved by pci_request_region 1560 * @bar: BAR to release 1561 * 1562 * Releases the PCI I/O and memory resources previously reserved by a 1563 * successful call to pci_request_region. Call this function only 1564 * after all use of the PCI regions has ceased. 1565 */ 1566 void pci_release_region(struct pci_dev *pdev, int bar) 1567 { 1568 struct pci_devres *dr; 1569 1570 if (pci_resource_len(pdev, bar) == 0) 1571 return; 1572 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 1573 release_region(pci_resource_start(pdev, bar), 1574 pci_resource_len(pdev, bar)); 1575 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 1576 release_mem_region(pci_resource_start(pdev, bar), 1577 pci_resource_len(pdev, bar)); 1578 1579 dr = find_pci_dr(pdev); 1580 if (dr) 1581 dr->region_mask &= ~(1 << bar); 1582 } 1583 1584 /** 1585 * __pci_request_region - Reserved PCI I/O and memory resource 1586 * @pdev: PCI device whose resources are to be reserved 1587 * @bar: BAR to be reserved 1588 * @res_name: Name to be associated with resource. 1589 * @exclusive: whether the region access is exclusive or not 1590 * 1591 * Mark the PCI region associated with PCI device @pdev BR @bar as 1592 * being reserved by owner @res_name. Do not access any 1593 * address inside the PCI regions unless this call returns 1594 * successfully. 1595 * 1596 * If @exclusive is set, then the region is marked so that userspace 1597 * is explicitly not allowed to map the resource via /dev/mem or 1598 * sysfs MMIO access. 1599 * 1600 * Returns 0 on success, or %EBUSY on error. A warning 1601 * message is also printed on failure. 1602 */ 1603 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 1604 int exclusive) 1605 { 1606 struct pci_devres *dr; 1607 1608 if (pci_resource_len(pdev, bar) == 0) 1609 return 0; 1610 1611 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 1612 if (!request_region(pci_resource_start(pdev, bar), 1613 pci_resource_len(pdev, bar), res_name)) 1614 goto err_out; 1615 } 1616 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 1617 if (!__request_mem_region(pci_resource_start(pdev, bar), 1618 pci_resource_len(pdev, bar), res_name, 1619 exclusive)) 1620 goto err_out; 1621 } 1622 1623 dr = find_pci_dr(pdev); 1624 if (dr) 1625 dr->region_mask |= 1 << bar; 1626 1627 return 0; 1628 1629 err_out: 1630 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n", 1631 bar, 1632 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem", 1633 &pdev->resource[bar]); 1634 return -EBUSY; 1635 } 1636 1637 /** 1638 * pci_request_region - Reserve PCI I/O and memory resource 1639 * @pdev: PCI device whose resources are to be reserved 1640 * @bar: BAR to be reserved 1641 * @res_name: Name to be associated with resource 1642 * 1643 * Mark the PCI region associated with PCI device @pdev BAR @bar as 1644 * being reserved by owner @res_name. Do not access any 1645 * address inside the PCI regions unless this call returns 1646 * successfully. 1647 * 1648 * Returns 0 on success, or %EBUSY on error. A warning 1649 * message is also printed on failure. 1650 */ 1651 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 1652 { 1653 return __pci_request_region(pdev, bar, res_name, 0); 1654 } 1655 1656 /** 1657 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 1658 * @pdev: PCI device whose resources are to be reserved 1659 * @bar: BAR to be reserved 1660 * @res_name: Name to be associated with resource. 1661 * 1662 * Mark the PCI region associated with PCI device @pdev BR @bar as 1663 * being reserved by owner @res_name. Do not access any 1664 * address inside the PCI regions unless this call returns 1665 * successfully. 1666 * 1667 * Returns 0 on success, or %EBUSY on error. A warning 1668 * message is also printed on failure. 1669 * 1670 * The key difference that _exclusive makes it that userspace is 1671 * explicitly not allowed to map the resource via /dev/mem or 1672 * sysfs. 1673 */ 1674 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name) 1675 { 1676 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 1677 } 1678 /** 1679 * pci_release_selected_regions - Release selected PCI I/O and memory resources 1680 * @pdev: PCI device whose resources were previously reserved 1681 * @bars: Bitmask of BARs to be released 1682 * 1683 * Release selected PCI I/O and memory resources previously reserved. 1684 * Call this function only after all use of the PCI regions has ceased. 1685 */ 1686 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 1687 { 1688 int i; 1689 1690 for (i = 0; i < 6; i++) 1691 if (bars & (1 << i)) 1692 pci_release_region(pdev, i); 1693 } 1694 1695 int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 1696 const char *res_name, int excl) 1697 { 1698 int i; 1699 1700 for (i = 0; i < 6; i++) 1701 if (bars & (1 << i)) 1702 if (__pci_request_region(pdev, i, res_name, excl)) 1703 goto err_out; 1704 return 0; 1705 1706 err_out: 1707 while(--i >= 0) 1708 if (bars & (1 << i)) 1709 pci_release_region(pdev, i); 1710 1711 return -EBUSY; 1712 } 1713 1714 1715 /** 1716 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 1717 * @pdev: PCI device whose resources are to be reserved 1718 * @bars: Bitmask of BARs to be requested 1719 * @res_name: Name to be associated with resource 1720 */ 1721 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 1722 const char *res_name) 1723 { 1724 return __pci_request_selected_regions(pdev, bars, res_name, 0); 1725 } 1726 1727 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, 1728 int bars, const char *res_name) 1729 { 1730 return __pci_request_selected_regions(pdev, bars, res_name, 1731 IORESOURCE_EXCLUSIVE); 1732 } 1733 1734 /** 1735 * pci_release_regions - Release reserved PCI I/O and memory resources 1736 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 1737 * 1738 * Releases all PCI I/O and memory resources previously reserved by a 1739 * successful call to pci_request_regions. Call this function only 1740 * after all use of the PCI regions has ceased. 1741 */ 1742 1743 void pci_release_regions(struct pci_dev *pdev) 1744 { 1745 pci_release_selected_regions(pdev, (1 << 6) - 1); 1746 } 1747 1748 /** 1749 * pci_request_regions - Reserved PCI I/O and memory resources 1750 * @pdev: PCI device whose resources are to be reserved 1751 * @res_name: Name to be associated with resource. 1752 * 1753 * Mark all PCI regions associated with PCI device @pdev as 1754 * being reserved by owner @res_name. Do not access any 1755 * address inside the PCI regions unless this call returns 1756 * successfully. 1757 * 1758 * Returns 0 on success, or %EBUSY on error. A warning 1759 * message is also printed on failure. 1760 */ 1761 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 1762 { 1763 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 1764 } 1765 1766 /** 1767 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 1768 * @pdev: PCI device whose resources are to be reserved 1769 * @res_name: Name to be associated with resource. 1770 * 1771 * Mark all PCI regions associated with PCI device @pdev as 1772 * being reserved by owner @res_name. Do not access any 1773 * address inside the PCI regions unless this call returns 1774 * successfully. 1775 * 1776 * pci_request_regions_exclusive() will mark the region so that 1777 * /dev/mem and the sysfs MMIO access will not be allowed. 1778 * 1779 * Returns 0 on success, or %EBUSY on error. A warning 1780 * message is also printed on failure. 1781 */ 1782 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 1783 { 1784 return pci_request_selected_regions_exclusive(pdev, 1785 ((1 << 6) - 1), res_name); 1786 } 1787 1788 static void __pci_set_master(struct pci_dev *dev, bool enable) 1789 { 1790 u16 old_cmd, cmd; 1791 1792 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 1793 if (enable) 1794 cmd = old_cmd | PCI_COMMAND_MASTER; 1795 else 1796 cmd = old_cmd & ~PCI_COMMAND_MASTER; 1797 if (cmd != old_cmd) { 1798 dev_dbg(&dev->dev, "%s bus mastering\n", 1799 enable ? "enabling" : "disabling"); 1800 pci_write_config_word(dev, PCI_COMMAND, cmd); 1801 } 1802 dev->is_busmaster = enable; 1803 } 1804 1805 /** 1806 * pci_set_master - enables bus-mastering for device dev 1807 * @dev: the PCI device to enable 1808 * 1809 * Enables bus-mastering on the device and calls pcibios_set_master() 1810 * to do the needed arch specific settings. 1811 */ 1812 void pci_set_master(struct pci_dev *dev) 1813 { 1814 __pci_set_master(dev, true); 1815 pcibios_set_master(dev); 1816 } 1817 1818 /** 1819 * pci_clear_master - disables bus-mastering for device dev 1820 * @dev: the PCI device to disable 1821 */ 1822 void pci_clear_master(struct pci_dev *dev) 1823 { 1824 __pci_set_master(dev, false); 1825 } 1826 1827 #ifdef PCI_DISABLE_MWI 1828 int pci_set_mwi(struct pci_dev *dev) 1829 { 1830 return 0; 1831 } 1832 1833 int pci_try_set_mwi(struct pci_dev *dev) 1834 { 1835 return 0; 1836 } 1837 1838 void pci_clear_mwi(struct pci_dev *dev) 1839 { 1840 } 1841 1842 #else 1843 1844 #ifndef PCI_CACHE_LINE_BYTES 1845 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES 1846 #endif 1847 1848 /* This can be overridden by arch code. */ 1849 /* Don't forget this is measured in 32-bit words, not bytes */ 1850 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4; 1851 1852 /** 1853 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 1854 * @dev: the PCI device for which MWI is to be enabled 1855 * 1856 * Helper function for pci_set_mwi. 1857 * Originally copied from drivers/net/acenic.c. 1858 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 1859 * 1860 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 1861 */ 1862 static int 1863 pci_set_cacheline_size(struct pci_dev *dev) 1864 { 1865 u8 cacheline_size; 1866 1867 if (!pci_cache_line_size) 1868 return -EINVAL; /* The system doesn't support MWI. */ 1869 1870 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 1871 equal to or multiple of the right value. */ 1872 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 1873 if (cacheline_size >= pci_cache_line_size && 1874 (cacheline_size % pci_cache_line_size) == 0) 1875 return 0; 1876 1877 /* Write the correct value. */ 1878 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 1879 /* Read it back. */ 1880 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 1881 if (cacheline_size == pci_cache_line_size) 1882 return 0; 1883 1884 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not " 1885 "supported\n", pci_cache_line_size << 2); 1886 1887 return -EINVAL; 1888 } 1889 1890 /** 1891 * pci_set_mwi - enables memory-write-invalidate PCI transaction 1892 * @dev: the PCI device for which MWI is enabled 1893 * 1894 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 1895 * 1896 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 1897 */ 1898 int 1899 pci_set_mwi(struct pci_dev *dev) 1900 { 1901 int rc; 1902 u16 cmd; 1903 1904 rc = pci_set_cacheline_size(dev); 1905 if (rc) 1906 return rc; 1907 1908 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1909 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 1910 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 1911 cmd |= PCI_COMMAND_INVALIDATE; 1912 pci_write_config_word(dev, PCI_COMMAND, cmd); 1913 } 1914 1915 return 0; 1916 } 1917 1918 /** 1919 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 1920 * @dev: the PCI device for which MWI is enabled 1921 * 1922 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 1923 * Callers are not required to check the return value. 1924 * 1925 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 1926 */ 1927 int pci_try_set_mwi(struct pci_dev *dev) 1928 { 1929 int rc = pci_set_mwi(dev); 1930 return rc; 1931 } 1932 1933 /** 1934 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 1935 * @dev: the PCI device to disable 1936 * 1937 * Disables PCI Memory-Write-Invalidate transaction on the device 1938 */ 1939 void 1940 pci_clear_mwi(struct pci_dev *dev) 1941 { 1942 u16 cmd; 1943 1944 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1945 if (cmd & PCI_COMMAND_INVALIDATE) { 1946 cmd &= ~PCI_COMMAND_INVALIDATE; 1947 pci_write_config_word(dev, PCI_COMMAND, cmd); 1948 } 1949 } 1950 #endif /* ! PCI_DISABLE_MWI */ 1951 1952 /** 1953 * pci_intx - enables/disables PCI INTx for device dev 1954 * @pdev: the PCI device to operate on 1955 * @enable: boolean: whether to enable or disable PCI INTx 1956 * 1957 * Enables/disables PCI INTx for device dev 1958 */ 1959 void 1960 pci_intx(struct pci_dev *pdev, int enable) 1961 { 1962 u16 pci_command, new; 1963 1964 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 1965 1966 if (enable) { 1967 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 1968 } else { 1969 new = pci_command | PCI_COMMAND_INTX_DISABLE; 1970 } 1971 1972 if (new != pci_command) { 1973 struct pci_devres *dr; 1974 1975 pci_write_config_word(pdev, PCI_COMMAND, new); 1976 1977 dr = find_pci_dr(pdev); 1978 if (dr && !dr->restore_intx) { 1979 dr->restore_intx = 1; 1980 dr->orig_intx = !enable; 1981 } 1982 } 1983 } 1984 1985 /** 1986 * pci_msi_off - disables any msi or msix capabilities 1987 * @dev: the PCI device to operate on 1988 * 1989 * If you want to use msi see pci_enable_msi and friends. 1990 * This is a lower level primitive that allows us to disable 1991 * msi operation at the device level. 1992 */ 1993 void pci_msi_off(struct pci_dev *dev) 1994 { 1995 int pos; 1996 u16 control; 1997 1998 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 1999 if (pos) { 2000 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 2001 control &= ~PCI_MSI_FLAGS_ENABLE; 2002 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 2003 } 2004 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 2005 if (pos) { 2006 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 2007 control &= ~PCI_MSIX_FLAGS_ENABLE; 2008 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 2009 } 2010 } 2011 2012 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK 2013 /* 2014 * These can be overridden by arch-specific implementations 2015 */ 2016 int 2017 pci_set_dma_mask(struct pci_dev *dev, u64 mask) 2018 { 2019 if (!pci_dma_supported(dev, mask)) 2020 return -EIO; 2021 2022 dev->dma_mask = mask; 2023 2024 return 0; 2025 } 2026 2027 int 2028 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask) 2029 { 2030 if (!pci_dma_supported(dev, mask)) 2031 return -EIO; 2032 2033 dev->dev.coherent_dma_mask = mask; 2034 2035 return 0; 2036 } 2037 #endif 2038 2039 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE 2040 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 2041 { 2042 return dma_set_max_seg_size(&dev->dev, size); 2043 } 2044 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 2045 #endif 2046 2047 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY 2048 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 2049 { 2050 return dma_set_seg_boundary(&dev->dev, mask); 2051 } 2052 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 2053 #endif 2054 2055 static int __pcie_flr(struct pci_dev *dev, int probe) 2056 { 2057 u16 status; 2058 u32 cap; 2059 int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP); 2060 2061 if (!exppos) 2062 return -ENOTTY; 2063 pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap); 2064 if (!(cap & PCI_EXP_DEVCAP_FLR)) 2065 return -ENOTTY; 2066 2067 if (probe) 2068 return 0; 2069 2070 pci_block_user_cfg_access(dev); 2071 2072 /* Wait for Transaction Pending bit clean */ 2073 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status); 2074 if (!(status & PCI_EXP_DEVSTA_TRPND)) 2075 goto transaction_done; 2076 2077 msleep(100); 2078 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status); 2079 if (!(status & PCI_EXP_DEVSTA_TRPND)) 2080 goto transaction_done; 2081 2082 dev_info(&dev->dev, "Busy after 100ms while trying to reset; " 2083 "sleeping for 1 second\n"); 2084 ssleep(1); 2085 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status); 2086 if (status & PCI_EXP_DEVSTA_TRPND) 2087 dev_info(&dev->dev, "Still busy after 1s; " 2088 "proceeding with reset anyway\n"); 2089 2090 transaction_done: 2091 pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL, 2092 PCI_EXP_DEVCTL_BCR_FLR); 2093 mdelay(100); 2094 2095 pci_unblock_user_cfg_access(dev); 2096 return 0; 2097 } 2098 2099 static int __pci_af_flr(struct pci_dev *dev, int probe) 2100 { 2101 int cappos = pci_find_capability(dev, PCI_CAP_ID_AF); 2102 u8 status; 2103 u8 cap; 2104 2105 if (!cappos) 2106 return -ENOTTY; 2107 pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap); 2108 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 2109 return -ENOTTY; 2110 2111 if (probe) 2112 return 0; 2113 2114 pci_block_user_cfg_access(dev); 2115 2116 /* Wait for Transaction Pending bit clean */ 2117 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status); 2118 if (!(status & PCI_AF_STATUS_TP)) 2119 goto transaction_done; 2120 2121 msleep(100); 2122 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status); 2123 if (!(status & PCI_AF_STATUS_TP)) 2124 goto transaction_done; 2125 2126 dev_info(&dev->dev, "Busy after 100ms while trying to" 2127 " reset; sleeping for 1 second\n"); 2128 ssleep(1); 2129 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status); 2130 if (status & PCI_AF_STATUS_TP) 2131 dev_info(&dev->dev, "Still busy after 1s; " 2132 "proceeding with reset anyway\n"); 2133 2134 transaction_done: 2135 pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 2136 mdelay(100); 2137 2138 pci_unblock_user_cfg_access(dev); 2139 return 0; 2140 } 2141 2142 static int __pci_reset_function(struct pci_dev *pdev, int probe) 2143 { 2144 int res; 2145 2146 res = __pcie_flr(pdev, probe); 2147 if (res != -ENOTTY) 2148 return res; 2149 2150 res = __pci_af_flr(pdev, probe); 2151 if (res != -ENOTTY) 2152 return res; 2153 2154 return res; 2155 } 2156 2157 /** 2158 * pci_execute_reset_function() - Reset a PCI device function 2159 * @dev: Device function to reset 2160 * 2161 * Some devices allow an individual function to be reset without affecting 2162 * other functions in the same device. The PCI device must be responsive 2163 * to PCI config space in order to use this function. 2164 * 2165 * The device function is presumed to be unused when this function is called. 2166 * Resetting the device will make the contents of PCI configuration space 2167 * random, so any caller of this must be prepared to reinitialise the 2168 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 2169 * etc. 2170 * 2171 * Returns 0 if the device function was successfully reset or -ENOTTY if the 2172 * device doesn't support resetting a single function. 2173 */ 2174 int pci_execute_reset_function(struct pci_dev *dev) 2175 { 2176 return __pci_reset_function(dev, 0); 2177 } 2178 EXPORT_SYMBOL_GPL(pci_execute_reset_function); 2179 2180 /** 2181 * pci_reset_function() - quiesce and reset a PCI device function 2182 * @dev: Device function to reset 2183 * 2184 * Some devices allow an individual function to be reset without affecting 2185 * other functions in the same device. The PCI device must be responsive 2186 * to PCI config space in order to use this function. 2187 * 2188 * This function does not just reset the PCI portion of a device, but 2189 * clears all the state associated with the device. This function differs 2190 * from pci_execute_reset_function in that it saves and restores device state 2191 * over the reset. 2192 * 2193 * Returns 0 if the device function was successfully reset or -ENOTTY if the 2194 * device doesn't support resetting a single function. 2195 */ 2196 int pci_reset_function(struct pci_dev *dev) 2197 { 2198 int r = __pci_reset_function(dev, 1); 2199 2200 if (r < 0) 2201 return r; 2202 2203 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0) 2204 disable_irq(dev->irq); 2205 pci_save_state(dev); 2206 2207 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 2208 2209 r = pci_execute_reset_function(dev); 2210 2211 pci_restore_state(dev); 2212 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0) 2213 enable_irq(dev->irq); 2214 2215 return r; 2216 } 2217 EXPORT_SYMBOL_GPL(pci_reset_function); 2218 2219 /** 2220 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 2221 * @dev: PCI device to query 2222 * 2223 * Returns mmrbc: maximum designed memory read count in bytes 2224 * or appropriate error value. 2225 */ 2226 int pcix_get_max_mmrbc(struct pci_dev *dev) 2227 { 2228 int err, cap; 2229 u32 stat; 2230 2231 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 2232 if (!cap) 2233 return -EINVAL; 2234 2235 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat); 2236 if (err) 2237 return -EINVAL; 2238 2239 return (stat & PCI_X_STATUS_MAX_READ) >> 12; 2240 } 2241 EXPORT_SYMBOL(pcix_get_max_mmrbc); 2242 2243 /** 2244 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 2245 * @dev: PCI device to query 2246 * 2247 * Returns mmrbc: maximum memory read count in bytes 2248 * or appropriate error value. 2249 */ 2250 int pcix_get_mmrbc(struct pci_dev *dev) 2251 { 2252 int ret, cap; 2253 u32 cmd; 2254 2255 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 2256 if (!cap) 2257 return -EINVAL; 2258 2259 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd); 2260 if (!ret) 2261 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 2262 2263 return ret; 2264 } 2265 EXPORT_SYMBOL(pcix_get_mmrbc); 2266 2267 /** 2268 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 2269 * @dev: PCI device to query 2270 * @mmrbc: maximum memory read count in bytes 2271 * valid values are 512, 1024, 2048, 4096 2272 * 2273 * If possible sets maximum memory read byte count, some bridges have erratas 2274 * that prevent this. 2275 */ 2276 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 2277 { 2278 int cap, err = -EINVAL; 2279 u32 stat, cmd, v, o; 2280 2281 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 2282 goto out; 2283 2284 v = ffs(mmrbc) - 10; 2285 2286 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 2287 if (!cap) 2288 goto out; 2289 2290 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat); 2291 if (err) 2292 goto out; 2293 2294 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 2295 return -E2BIG; 2296 2297 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd); 2298 if (err) 2299 goto out; 2300 2301 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 2302 if (o != v) { 2303 if (v > o && dev->bus && 2304 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 2305 return -EIO; 2306 2307 cmd &= ~PCI_X_CMD_MAX_READ; 2308 cmd |= v << 2; 2309 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd); 2310 } 2311 out: 2312 return err; 2313 } 2314 EXPORT_SYMBOL(pcix_set_mmrbc); 2315 2316 /** 2317 * pcie_get_readrq - get PCI Express read request size 2318 * @dev: PCI device to query 2319 * 2320 * Returns maximum memory read request in bytes 2321 * or appropriate error value. 2322 */ 2323 int pcie_get_readrq(struct pci_dev *dev) 2324 { 2325 int ret, cap; 2326 u16 ctl; 2327 2328 cap = pci_find_capability(dev, PCI_CAP_ID_EXP); 2329 if (!cap) 2330 return -EINVAL; 2331 2332 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 2333 if (!ret) 2334 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 2335 2336 return ret; 2337 } 2338 EXPORT_SYMBOL(pcie_get_readrq); 2339 2340 /** 2341 * pcie_set_readrq - set PCI Express maximum memory read request 2342 * @dev: PCI device to query 2343 * @rq: maximum memory read count in bytes 2344 * valid values are 128, 256, 512, 1024, 2048, 4096 2345 * 2346 * If possible sets maximum read byte count 2347 */ 2348 int pcie_set_readrq(struct pci_dev *dev, int rq) 2349 { 2350 int cap, err = -EINVAL; 2351 u16 ctl, v; 2352 2353 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 2354 goto out; 2355 2356 v = (ffs(rq) - 8) << 12; 2357 2358 cap = pci_find_capability(dev, PCI_CAP_ID_EXP); 2359 if (!cap) 2360 goto out; 2361 2362 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 2363 if (err) 2364 goto out; 2365 2366 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) { 2367 ctl &= ~PCI_EXP_DEVCTL_READRQ; 2368 ctl |= v; 2369 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl); 2370 } 2371 2372 out: 2373 return err; 2374 } 2375 EXPORT_SYMBOL(pcie_set_readrq); 2376 2377 /** 2378 * pci_select_bars - Make BAR mask from the type of resource 2379 * @dev: the PCI device for which BAR mask is made 2380 * @flags: resource type mask to be selected 2381 * 2382 * This helper routine makes bar mask from the type of resource. 2383 */ 2384 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 2385 { 2386 int i, bars = 0; 2387 for (i = 0; i < PCI_NUM_RESOURCES; i++) 2388 if (pci_resource_flags(dev, i) & flags) 2389 bars |= (1 << i); 2390 return bars; 2391 } 2392 2393 /** 2394 * pci_resource_bar - get position of the BAR associated with a resource 2395 * @dev: the PCI device 2396 * @resno: the resource number 2397 * @type: the BAR type to be filled in 2398 * 2399 * Returns BAR position in config space, or 0 if the BAR is invalid. 2400 */ 2401 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 2402 { 2403 int reg; 2404 2405 if (resno < PCI_ROM_RESOURCE) { 2406 *type = pci_bar_unknown; 2407 return PCI_BASE_ADDRESS_0 + 4 * resno; 2408 } else if (resno == PCI_ROM_RESOURCE) { 2409 *type = pci_bar_mem32; 2410 return dev->rom_base_reg; 2411 } else if (resno < PCI_BRIDGE_RESOURCES) { 2412 /* device specific resource */ 2413 reg = pci_iov_resource_bar(dev, resno, type); 2414 if (reg) 2415 return reg; 2416 } 2417 2418 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno); 2419 return 0; 2420 } 2421 2422 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 2423 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 2424 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED; 2425 2426 /** 2427 * pci_specified_resource_alignment - get resource alignment specified by user. 2428 * @dev: the PCI device to get 2429 * 2430 * RETURNS: Resource alignment if it is specified. 2431 * Zero if it is not specified. 2432 */ 2433 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 2434 { 2435 int seg, bus, slot, func, align_order, count; 2436 resource_size_t align = 0; 2437 char *p; 2438 2439 spin_lock(&resource_alignment_lock); 2440 p = resource_alignment_param; 2441 while (*p) { 2442 count = 0; 2443 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 2444 p[count] == '@') { 2445 p += count + 1; 2446 } else { 2447 align_order = -1; 2448 } 2449 if (sscanf(p, "%x:%x:%x.%x%n", 2450 &seg, &bus, &slot, &func, &count) != 4) { 2451 seg = 0; 2452 if (sscanf(p, "%x:%x.%x%n", 2453 &bus, &slot, &func, &count) != 3) { 2454 /* Invalid format */ 2455 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 2456 p); 2457 break; 2458 } 2459 } 2460 p += count; 2461 if (seg == pci_domain_nr(dev->bus) && 2462 bus == dev->bus->number && 2463 slot == PCI_SLOT(dev->devfn) && 2464 func == PCI_FUNC(dev->devfn)) { 2465 if (align_order == -1) { 2466 align = PAGE_SIZE; 2467 } else { 2468 align = 1 << align_order; 2469 } 2470 /* Found */ 2471 break; 2472 } 2473 if (*p != ';' && *p != ',') { 2474 /* End of param or invalid format */ 2475 break; 2476 } 2477 p++; 2478 } 2479 spin_unlock(&resource_alignment_lock); 2480 return align; 2481 } 2482 2483 /** 2484 * pci_is_reassigndev - check if specified PCI is target device to reassign 2485 * @dev: the PCI device to check 2486 * 2487 * RETURNS: non-zero for PCI device is a target device to reassign, 2488 * or zero is not. 2489 */ 2490 int pci_is_reassigndev(struct pci_dev *dev) 2491 { 2492 return (pci_specified_resource_alignment(dev) != 0); 2493 } 2494 2495 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 2496 { 2497 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 2498 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 2499 spin_lock(&resource_alignment_lock); 2500 strncpy(resource_alignment_param, buf, count); 2501 resource_alignment_param[count] = '\0'; 2502 spin_unlock(&resource_alignment_lock); 2503 return count; 2504 } 2505 2506 ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 2507 { 2508 size_t count; 2509 spin_lock(&resource_alignment_lock); 2510 count = snprintf(buf, size, "%s", resource_alignment_param); 2511 spin_unlock(&resource_alignment_lock); 2512 return count; 2513 } 2514 2515 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 2516 { 2517 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 2518 } 2519 2520 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 2521 const char *buf, size_t count) 2522 { 2523 return pci_set_resource_alignment_param(buf, count); 2524 } 2525 2526 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 2527 pci_resource_alignment_store); 2528 2529 static int __init pci_resource_alignment_sysfs_init(void) 2530 { 2531 return bus_create_file(&pci_bus_type, 2532 &bus_attr_resource_alignment); 2533 } 2534 2535 late_initcall(pci_resource_alignment_sysfs_init); 2536 2537 static void __devinit pci_no_domains(void) 2538 { 2539 #ifdef CONFIG_PCI_DOMAINS 2540 pci_domains_supported = 0; 2541 #endif 2542 } 2543 2544 /** 2545 * pci_ext_cfg_enabled - can we access extended PCI config space? 2546 * @dev: The PCI device of the root bridge. 2547 * 2548 * Returns 1 if we can access PCI extended config space (offsets 2549 * greater than 0xff). This is the default implementation. Architecture 2550 * implementations can override this. 2551 */ 2552 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev) 2553 { 2554 return 1; 2555 } 2556 2557 static int __devinit pci_init(void) 2558 { 2559 struct pci_dev *dev = NULL; 2560 2561 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { 2562 pci_fixup_device(pci_fixup_final, dev); 2563 } 2564 2565 return 0; 2566 } 2567 2568 static int __init pci_setup(char *str) 2569 { 2570 while (str) { 2571 char *k = strchr(str, ','); 2572 if (k) 2573 *k++ = 0; 2574 if (*str && (str = pcibios_setup(str)) && *str) { 2575 if (!strcmp(str, "nomsi")) { 2576 pci_no_msi(); 2577 } else if (!strcmp(str, "noaer")) { 2578 pci_no_aer(); 2579 } else if (!strcmp(str, "nodomains")) { 2580 pci_no_domains(); 2581 } else if (!strncmp(str, "cbiosize=", 9)) { 2582 pci_cardbus_io_size = memparse(str + 9, &str); 2583 } else if (!strncmp(str, "cbmemsize=", 10)) { 2584 pci_cardbus_mem_size = memparse(str + 10, &str); 2585 } else if (!strncmp(str, "resource_alignment=", 19)) { 2586 pci_set_resource_alignment_param(str + 19, 2587 strlen(str + 19)); 2588 } else { 2589 printk(KERN_ERR "PCI: Unknown option `%s'\n", 2590 str); 2591 } 2592 } 2593 str = k; 2594 } 2595 return 0; 2596 } 2597 early_param("pci", pci_setup); 2598 2599 device_initcall(pci_init); 2600 2601 EXPORT_SYMBOL(pci_reenable_device); 2602 EXPORT_SYMBOL(pci_enable_device_io); 2603 EXPORT_SYMBOL(pci_enable_device_mem); 2604 EXPORT_SYMBOL(pci_enable_device); 2605 EXPORT_SYMBOL(pcim_enable_device); 2606 EXPORT_SYMBOL(pcim_pin_device); 2607 EXPORT_SYMBOL(pci_disable_device); 2608 EXPORT_SYMBOL(pci_find_capability); 2609 EXPORT_SYMBOL(pci_bus_find_capability); 2610 EXPORT_SYMBOL(pci_release_regions); 2611 EXPORT_SYMBOL(pci_request_regions); 2612 EXPORT_SYMBOL(pci_request_regions_exclusive); 2613 EXPORT_SYMBOL(pci_release_region); 2614 EXPORT_SYMBOL(pci_request_region); 2615 EXPORT_SYMBOL(pci_request_region_exclusive); 2616 EXPORT_SYMBOL(pci_release_selected_regions); 2617 EXPORT_SYMBOL(pci_request_selected_regions); 2618 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 2619 EXPORT_SYMBOL(pci_set_master); 2620 EXPORT_SYMBOL(pci_clear_master); 2621 EXPORT_SYMBOL(pci_set_mwi); 2622 EXPORT_SYMBOL(pci_try_set_mwi); 2623 EXPORT_SYMBOL(pci_clear_mwi); 2624 EXPORT_SYMBOL_GPL(pci_intx); 2625 EXPORT_SYMBOL(pci_set_dma_mask); 2626 EXPORT_SYMBOL(pci_set_consistent_dma_mask); 2627 EXPORT_SYMBOL(pci_assign_resource); 2628 EXPORT_SYMBOL(pci_find_parent_resource); 2629 EXPORT_SYMBOL(pci_select_bars); 2630 2631 EXPORT_SYMBOL(pci_set_power_state); 2632 EXPORT_SYMBOL(pci_save_state); 2633 EXPORT_SYMBOL(pci_restore_state); 2634 EXPORT_SYMBOL(pci_pme_capable); 2635 EXPORT_SYMBOL(pci_pme_active); 2636 EXPORT_SYMBOL(pci_enable_wake); 2637 EXPORT_SYMBOL(pci_wake_from_d3); 2638 EXPORT_SYMBOL(pci_target_state); 2639 EXPORT_SYMBOL(pci_prepare_to_sleep); 2640 EXPORT_SYMBOL(pci_back_from_sleep); 2641 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2642 2643