1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/log2.h> 20 #include <linux/pci-aspm.h> 21 #include <linux/pm_wakeup.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/pm_runtime.h> 25 #include <asm/setup.h> 26 #include "pci.h" 27 28 const char *pci_power_names[] = { 29 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 30 }; 31 EXPORT_SYMBOL_GPL(pci_power_names); 32 33 int isa_dma_bridge_buggy; 34 EXPORT_SYMBOL(isa_dma_bridge_buggy); 35 36 int pci_pci_problems; 37 EXPORT_SYMBOL(pci_pci_problems); 38 39 unsigned int pci_pm_d3_delay; 40 41 static void pci_dev_d3_sleep(struct pci_dev *dev) 42 { 43 unsigned int delay = dev->d3_delay; 44 45 if (delay < pci_pm_d3_delay) 46 delay = pci_pm_d3_delay; 47 48 msleep(delay); 49 } 50 51 #ifdef CONFIG_PCI_DOMAINS 52 int pci_domains_supported = 1; 53 #endif 54 55 #define DEFAULT_CARDBUS_IO_SIZE (256) 56 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 57 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 58 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 59 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 60 61 #define DEFAULT_HOTPLUG_IO_SIZE (256) 62 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 63 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 64 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 65 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 66 67 /* 68 * The default CLS is used if arch didn't set CLS explicitly and not 69 * all pci devices agree on the same value. Arch can override either 70 * the dfl or actual value as it sees fit. Don't forget this is 71 * measured in 32-bit words, not bytes. 72 */ 73 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2; 74 u8 pci_cache_line_size; 75 76 /** 77 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 78 * @bus: pointer to PCI bus structure to search 79 * 80 * Given a PCI bus, returns the highest PCI bus number present in the set 81 * including the given PCI bus and its list of child PCI buses. 82 */ 83 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 84 { 85 struct list_head *tmp; 86 unsigned char max, n; 87 88 max = bus->subordinate; 89 list_for_each(tmp, &bus->children) { 90 n = pci_bus_max_busnr(pci_bus_b(tmp)); 91 if(n > max) 92 max = n; 93 } 94 return max; 95 } 96 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 97 98 #ifdef CONFIG_HAS_IOMEM 99 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 100 { 101 /* 102 * Make sure the BAR is actually a memory resource, not an IO resource 103 */ 104 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 105 WARN_ON(1); 106 return NULL; 107 } 108 return ioremap_nocache(pci_resource_start(pdev, bar), 109 pci_resource_len(pdev, bar)); 110 } 111 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 112 #endif 113 114 #if 0 115 /** 116 * pci_max_busnr - returns maximum PCI bus number 117 * 118 * Returns the highest PCI bus number present in the system global list of 119 * PCI buses. 120 */ 121 unsigned char __devinit 122 pci_max_busnr(void) 123 { 124 struct pci_bus *bus = NULL; 125 unsigned char max, n; 126 127 max = 0; 128 while ((bus = pci_find_next_bus(bus)) != NULL) { 129 n = pci_bus_max_busnr(bus); 130 if(n > max) 131 max = n; 132 } 133 return max; 134 } 135 136 #endif /* 0 */ 137 138 #define PCI_FIND_CAP_TTL 48 139 140 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 141 u8 pos, int cap, int *ttl) 142 { 143 u8 id; 144 145 while ((*ttl)--) { 146 pci_bus_read_config_byte(bus, devfn, pos, &pos); 147 if (pos < 0x40) 148 break; 149 pos &= ~3; 150 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 151 &id); 152 if (id == 0xff) 153 break; 154 if (id == cap) 155 return pos; 156 pos += PCI_CAP_LIST_NEXT; 157 } 158 return 0; 159 } 160 161 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 162 u8 pos, int cap) 163 { 164 int ttl = PCI_FIND_CAP_TTL; 165 166 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 167 } 168 169 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 170 { 171 return __pci_find_next_cap(dev->bus, dev->devfn, 172 pos + PCI_CAP_LIST_NEXT, cap); 173 } 174 EXPORT_SYMBOL_GPL(pci_find_next_capability); 175 176 static int __pci_bus_find_cap_start(struct pci_bus *bus, 177 unsigned int devfn, u8 hdr_type) 178 { 179 u16 status; 180 181 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 182 if (!(status & PCI_STATUS_CAP_LIST)) 183 return 0; 184 185 switch (hdr_type) { 186 case PCI_HEADER_TYPE_NORMAL: 187 case PCI_HEADER_TYPE_BRIDGE: 188 return PCI_CAPABILITY_LIST; 189 case PCI_HEADER_TYPE_CARDBUS: 190 return PCI_CB_CAPABILITY_LIST; 191 default: 192 return 0; 193 } 194 195 return 0; 196 } 197 198 /** 199 * pci_find_capability - query for devices' capabilities 200 * @dev: PCI device to query 201 * @cap: capability code 202 * 203 * Tell if a device supports a given PCI capability. 204 * Returns the address of the requested capability structure within the 205 * device's PCI configuration space or 0 in case the device does not 206 * support it. Possible values for @cap: 207 * 208 * %PCI_CAP_ID_PM Power Management 209 * %PCI_CAP_ID_AGP Accelerated Graphics Port 210 * %PCI_CAP_ID_VPD Vital Product Data 211 * %PCI_CAP_ID_SLOTID Slot Identification 212 * %PCI_CAP_ID_MSI Message Signalled Interrupts 213 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 214 * %PCI_CAP_ID_PCIX PCI-X 215 * %PCI_CAP_ID_EXP PCI Express 216 */ 217 int pci_find_capability(struct pci_dev *dev, int cap) 218 { 219 int pos; 220 221 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 222 if (pos) 223 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 224 225 return pos; 226 } 227 228 /** 229 * pci_bus_find_capability - query for devices' capabilities 230 * @bus: the PCI bus to query 231 * @devfn: PCI device to query 232 * @cap: capability code 233 * 234 * Like pci_find_capability() but works for pci devices that do not have a 235 * pci_dev structure set up yet. 236 * 237 * Returns the address of the requested capability structure within the 238 * device's PCI configuration space or 0 in case the device does not 239 * support it. 240 */ 241 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 242 { 243 int pos; 244 u8 hdr_type; 245 246 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 247 248 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 249 if (pos) 250 pos = __pci_find_next_cap(bus, devfn, pos, cap); 251 252 return pos; 253 } 254 255 /** 256 * pci_find_ext_capability - Find an extended capability 257 * @dev: PCI device to query 258 * @cap: capability code 259 * 260 * Returns the address of the requested extended capability structure 261 * within the device's PCI configuration space or 0 if the device does 262 * not support it. Possible values for @cap: 263 * 264 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 265 * %PCI_EXT_CAP_ID_VC Virtual Channel 266 * %PCI_EXT_CAP_ID_DSN Device Serial Number 267 * %PCI_EXT_CAP_ID_PWR Power Budgeting 268 */ 269 int pci_find_ext_capability(struct pci_dev *dev, int cap) 270 { 271 u32 header; 272 int ttl; 273 int pos = PCI_CFG_SPACE_SIZE; 274 275 /* minimum 8 bytes per capability */ 276 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 277 278 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 279 return 0; 280 281 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 282 return 0; 283 284 /* 285 * If we have no capabilities, this is indicated by cap ID, 286 * cap version and next pointer all being 0. 287 */ 288 if (header == 0) 289 return 0; 290 291 while (ttl-- > 0) { 292 if (PCI_EXT_CAP_ID(header) == cap) 293 return pos; 294 295 pos = PCI_EXT_CAP_NEXT(header); 296 if (pos < PCI_CFG_SPACE_SIZE) 297 break; 298 299 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 300 break; 301 } 302 303 return 0; 304 } 305 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 306 307 /** 308 * pci_bus_find_ext_capability - find an extended capability 309 * @bus: the PCI bus to query 310 * @devfn: PCI device to query 311 * @cap: capability code 312 * 313 * Like pci_find_ext_capability() but works for pci devices that do not have a 314 * pci_dev structure set up yet. 315 * 316 * Returns the address of the requested capability structure within the 317 * device's PCI configuration space or 0 in case the device does not 318 * support it. 319 */ 320 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn, 321 int cap) 322 { 323 u32 header; 324 int ttl; 325 int pos = PCI_CFG_SPACE_SIZE; 326 327 /* minimum 8 bytes per capability */ 328 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 329 330 if (!pci_bus_read_config_dword(bus, devfn, pos, &header)) 331 return 0; 332 if (header == 0xffffffff || header == 0) 333 return 0; 334 335 while (ttl-- > 0) { 336 if (PCI_EXT_CAP_ID(header) == cap) 337 return pos; 338 339 pos = PCI_EXT_CAP_NEXT(header); 340 if (pos < PCI_CFG_SPACE_SIZE) 341 break; 342 343 if (!pci_bus_read_config_dword(bus, devfn, pos, &header)) 344 break; 345 } 346 347 return 0; 348 } 349 350 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 351 { 352 int rc, ttl = PCI_FIND_CAP_TTL; 353 u8 cap, mask; 354 355 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 356 mask = HT_3BIT_CAP_MASK; 357 else 358 mask = HT_5BIT_CAP_MASK; 359 360 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 361 PCI_CAP_ID_HT, &ttl); 362 while (pos) { 363 rc = pci_read_config_byte(dev, pos + 3, &cap); 364 if (rc != PCIBIOS_SUCCESSFUL) 365 return 0; 366 367 if ((cap & mask) == ht_cap) 368 return pos; 369 370 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 371 pos + PCI_CAP_LIST_NEXT, 372 PCI_CAP_ID_HT, &ttl); 373 } 374 375 return 0; 376 } 377 /** 378 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 379 * @dev: PCI device to query 380 * @pos: Position from which to continue searching 381 * @ht_cap: Hypertransport capability code 382 * 383 * To be used in conjunction with pci_find_ht_capability() to search for 384 * all capabilities matching @ht_cap. @pos should always be a value returned 385 * from pci_find_ht_capability(). 386 * 387 * NB. To be 100% safe against broken PCI devices, the caller should take 388 * steps to avoid an infinite loop. 389 */ 390 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 391 { 392 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 393 } 394 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 395 396 /** 397 * pci_find_ht_capability - query a device's Hypertransport capabilities 398 * @dev: PCI device to query 399 * @ht_cap: Hypertransport capability code 400 * 401 * Tell if a device supports a given Hypertransport capability. 402 * Returns an address within the device's PCI configuration space 403 * or 0 in case the device does not support the request capability. 404 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 405 * which has a Hypertransport capability matching @ht_cap. 406 */ 407 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 408 { 409 int pos; 410 411 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 412 if (pos) 413 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 414 415 return pos; 416 } 417 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 418 419 /** 420 * pci_find_parent_resource - return resource region of parent bus of given region 421 * @dev: PCI device structure contains resources to be searched 422 * @res: child resource record for which parent is sought 423 * 424 * For given resource region of given device, return the resource 425 * region of parent bus the given region is contained in or where 426 * it should be allocated from. 427 */ 428 struct resource * 429 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 430 { 431 const struct pci_bus *bus = dev->bus; 432 int i; 433 struct resource *best = NULL, *r; 434 435 pci_bus_for_each_resource(bus, r, i) { 436 if (!r) 437 continue; 438 if (res->start && !(res->start >= r->start && res->end <= r->end)) 439 continue; /* Not contained */ 440 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) 441 continue; /* Wrong type */ 442 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) 443 return r; /* Exact match */ 444 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */ 445 if (r->flags & IORESOURCE_PREFETCH) 446 continue; 447 /* .. but we can put a prefetchable resource inside a non-prefetchable one */ 448 if (!best) 449 best = r; 450 } 451 return best; 452 } 453 454 /** 455 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 456 * @dev: PCI device to have its BARs restored 457 * 458 * Restore the BAR values for a given device, so as to make it 459 * accessible by its driver. 460 */ 461 static void 462 pci_restore_bars(struct pci_dev *dev) 463 { 464 int i; 465 466 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 467 pci_update_resource(dev, i); 468 } 469 470 static struct pci_platform_pm_ops *pci_platform_pm; 471 472 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 473 { 474 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 475 || !ops->sleep_wake || !ops->can_wakeup) 476 return -EINVAL; 477 pci_platform_pm = ops; 478 return 0; 479 } 480 481 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 482 { 483 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 484 } 485 486 static inline int platform_pci_set_power_state(struct pci_dev *dev, 487 pci_power_t t) 488 { 489 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 490 } 491 492 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 493 { 494 return pci_platform_pm ? 495 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 496 } 497 498 static inline bool platform_pci_can_wakeup(struct pci_dev *dev) 499 { 500 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false; 501 } 502 503 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 504 { 505 return pci_platform_pm ? 506 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 507 } 508 509 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 510 { 511 return pci_platform_pm ? 512 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 513 } 514 515 /** 516 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 517 * given PCI device 518 * @dev: PCI device to handle. 519 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 520 * 521 * RETURN VALUE: 522 * -EINVAL if the requested state is invalid. 523 * -EIO if device does not support PCI PM or its PM capabilities register has a 524 * wrong version, or device doesn't support the requested state. 525 * 0 if device already is in the requested state. 526 * 0 if device's power state has been successfully changed. 527 */ 528 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 529 { 530 u16 pmcsr; 531 bool need_restore = false; 532 533 /* Check if we're already there */ 534 if (dev->current_state == state) 535 return 0; 536 537 if (!dev->pm_cap) 538 return -EIO; 539 540 if (state < PCI_D0 || state > PCI_D3hot) 541 return -EINVAL; 542 543 /* Validate current state: 544 * Can enter D0 from any state, but if we can only go deeper 545 * to sleep if we're already in a low power state 546 */ 547 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 548 && dev->current_state > state) { 549 dev_err(&dev->dev, "invalid power transition " 550 "(from state %d to %d)\n", dev->current_state, state); 551 return -EINVAL; 552 } 553 554 /* check if this device supports the desired state */ 555 if ((state == PCI_D1 && !dev->d1_support) 556 || (state == PCI_D2 && !dev->d2_support)) 557 return -EIO; 558 559 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 560 561 /* If we're (effectively) in D3, force entire word to 0. 562 * This doesn't affect PME_Status, disables PME_En, and 563 * sets PowerState to 0. 564 */ 565 switch (dev->current_state) { 566 case PCI_D0: 567 case PCI_D1: 568 case PCI_D2: 569 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 570 pmcsr |= state; 571 break; 572 case PCI_D3hot: 573 case PCI_D3cold: 574 case PCI_UNKNOWN: /* Boot-up */ 575 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 576 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 577 need_restore = true; 578 /* Fall-through: force to D0 */ 579 default: 580 pmcsr = 0; 581 break; 582 } 583 584 /* enter specified state */ 585 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 586 587 /* Mandatory power management transition delays */ 588 /* see PCI PM 1.1 5.6.1 table 18 */ 589 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 590 pci_dev_d3_sleep(dev); 591 else if (state == PCI_D2 || dev->current_state == PCI_D2) 592 udelay(PCI_PM_D2_DELAY); 593 594 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 595 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 596 if (dev->current_state != state && printk_ratelimit()) 597 dev_info(&dev->dev, "Refused to change power state, " 598 "currently in D%d\n", dev->current_state); 599 600 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 601 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 602 * from D3hot to D0 _may_ perform an internal reset, thereby 603 * going to "D0 Uninitialized" rather than "D0 Initialized". 604 * For example, at least some versions of the 3c905B and the 605 * 3c556B exhibit this behaviour. 606 * 607 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 608 * devices in a D3hot state at boot. Consequently, we need to 609 * restore at least the BARs so that the device will be 610 * accessible to its driver. 611 */ 612 if (need_restore) 613 pci_restore_bars(dev); 614 615 if (dev->bus->self) 616 pcie_aspm_pm_state_change(dev->bus->self); 617 618 return 0; 619 } 620 621 /** 622 * pci_update_current_state - Read PCI power state of given device from its 623 * PCI PM registers and cache it 624 * @dev: PCI device to handle. 625 * @state: State to cache in case the device doesn't have the PM capability 626 */ 627 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 628 { 629 if (dev->pm_cap) { 630 u16 pmcsr; 631 632 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 633 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 634 } else { 635 dev->current_state = state; 636 } 637 } 638 639 /** 640 * pci_platform_power_transition - Use platform to change device power state 641 * @dev: PCI device to handle. 642 * @state: State to put the device into. 643 */ 644 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 645 { 646 int error; 647 648 if (platform_pci_power_manageable(dev)) { 649 error = platform_pci_set_power_state(dev, state); 650 if (!error) 651 pci_update_current_state(dev, state); 652 } else { 653 error = -ENODEV; 654 /* Fall back to PCI_D0 if native PM is not supported */ 655 if (!dev->pm_cap) 656 dev->current_state = PCI_D0; 657 } 658 659 return error; 660 } 661 662 /** 663 * __pci_start_power_transition - Start power transition of a PCI device 664 * @dev: PCI device to handle. 665 * @state: State to put the device into. 666 */ 667 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 668 { 669 if (state == PCI_D0) 670 pci_platform_power_transition(dev, PCI_D0); 671 } 672 673 /** 674 * __pci_complete_power_transition - Complete power transition of a PCI device 675 * @dev: PCI device to handle. 676 * @state: State to put the device into. 677 * 678 * This function should not be called directly by device drivers. 679 */ 680 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 681 { 682 return state >= PCI_D0 ? 683 pci_platform_power_transition(dev, state) : -EINVAL; 684 } 685 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 686 687 /** 688 * pci_set_power_state - Set the power state of a PCI device 689 * @dev: PCI device to handle. 690 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 691 * 692 * Transition a device to a new power state, using the platform firmware and/or 693 * the device's PCI PM registers. 694 * 695 * RETURN VALUE: 696 * -EINVAL if the requested state is invalid. 697 * -EIO if device does not support PCI PM or its PM capabilities register has a 698 * wrong version, or device doesn't support the requested state. 699 * 0 if device already is in the requested state. 700 * 0 if device's power state has been successfully changed. 701 */ 702 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 703 { 704 int error; 705 706 /* bound the state we're entering */ 707 if (state > PCI_D3hot) 708 state = PCI_D3hot; 709 else if (state < PCI_D0) 710 state = PCI_D0; 711 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 712 /* 713 * If the device or the parent bridge do not support PCI PM, 714 * ignore the request if we're doing anything other than putting 715 * it into D0 (which would only happen on boot). 716 */ 717 return 0; 718 719 __pci_start_power_transition(dev, state); 720 721 /* This device is quirked not to be put into D3, so 722 don't put it in D3 */ 723 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 724 return 0; 725 726 error = pci_raw_set_power_state(dev, state); 727 728 if (!__pci_complete_power_transition(dev, state)) 729 error = 0; 730 731 return error; 732 } 733 734 /** 735 * pci_choose_state - Choose the power state of a PCI device 736 * @dev: PCI device to be suspended 737 * @state: target sleep state for the whole system. This is the value 738 * that is passed to suspend() function. 739 * 740 * Returns PCI power state suitable for given device and given system 741 * message. 742 */ 743 744 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 745 { 746 pci_power_t ret; 747 748 if (!pci_find_capability(dev, PCI_CAP_ID_PM)) 749 return PCI_D0; 750 751 ret = platform_pci_choose_state(dev); 752 if (ret != PCI_POWER_ERROR) 753 return ret; 754 755 switch (state.event) { 756 case PM_EVENT_ON: 757 return PCI_D0; 758 case PM_EVENT_FREEZE: 759 case PM_EVENT_PRETHAW: 760 /* REVISIT both freeze and pre-thaw "should" use D0 */ 761 case PM_EVENT_SUSPEND: 762 case PM_EVENT_HIBERNATE: 763 return PCI_D3hot; 764 default: 765 dev_info(&dev->dev, "unrecognized suspend event %d\n", 766 state.event); 767 BUG(); 768 } 769 return PCI_D0; 770 } 771 772 EXPORT_SYMBOL(pci_choose_state); 773 774 #define PCI_EXP_SAVE_REGS 7 775 776 #define pcie_cap_has_devctl(type, flags) 1 777 #define pcie_cap_has_lnkctl(type, flags) \ 778 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 779 (type == PCI_EXP_TYPE_ROOT_PORT || \ 780 type == PCI_EXP_TYPE_ENDPOINT || \ 781 type == PCI_EXP_TYPE_LEG_END)) 782 #define pcie_cap_has_sltctl(type, flags) \ 783 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 784 ((type == PCI_EXP_TYPE_ROOT_PORT) || \ 785 (type == PCI_EXP_TYPE_DOWNSTREAM && \ 786 (flags & PCI_EXP_FLAGS_SLOT)))) 787 #define pcie_cap_has_rtctl(type, flags) \ 788 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 789 (type == PCI_EXP_TYPE_ROOT_PORT || \ 790 type == PCI_EXP_TYPE_RC_EC)) 791 #define pcie_cap_has_devctl2(type, flags) \ 792 ((flags & PCI_EXP_FLAGS_VERS) > 1) 793 #define pcie_cap_has_lnkctl2(type, flags) \ 794 ((flags & PCI_EXP_FLAGS_VERS) > 1) 795 #define pcie_cap_has_sltctl2(type, flags) \ 796 ((flags & PCI_EXP_FLAGS_VERS) > 1) 797 798 static int pci_save_pcie_state(struct pci_dev *dev) 799 { 800 int pos, i = 0; 801 struct pci_cap_saved_state *save_state; 802 u16 *cap; 803 u16 flags; 804 805 pos = pci_pcie_cap(dev); 806 if (!pos) 807 return 0; 808 809 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 810 if (!save_state) { 811 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 812 return -ENOMEM; 813 } 814 cap = (u16 *)&save_state->data[0]; 815 816 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags); 817 818 if (pcie_cap_has_devctl(dev->pcie_type, flags)) 819 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]); 820 if (pcie_cap_has_lnkctl(dev->pcie_type, flags)) 821 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]); 822 if (pcie_cap_has_sltctl(dev->pcie_type, flags)) 823 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]); 824 if (pcie_cap_has_rtctl(dev->pcie_type, flags)) 825 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]); 826 if (pcie_cap_has_devctl2(dev->pcie_type, flags)) 827 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]); 828 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags)) 829 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]); 830 if (pcie_cap_has_sltctl2(dev->pcie_type, flags)) 831 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]); 832 833 return 0; 834 } 835 836 static void pci_restore_pcie_state(struct pci_dev *dev) 837 { 838 int i = 0, pos; 839 struct pci_cap_saved_state *save_state; 840 u16 *cap; 841 u16 flags; 842 843 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 844 pos = pci_find_capability(dev, PCI_CAP_ID_EXP); 845 if (!save_state || pos <= 0) 846 return; 847 cap = (u16 *)&save_state->data[0]; 848 849 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags); 850 851 if (pcie_cap_has_devctl(dev->pcie_type, flags)) 852 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]); 853 if (pcie_cap_has_lnkctl(dev->pcie_type, flags)) 854 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]); 855 if (pcie_cap_has_sltctl(dev->pcie_type, flags)) 856 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]); 857 if (pcie_cap_has_rtctl(dev->pcie_type, flags)) 858 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]); 859 if (pcie_cap_has_devctl2(dev->pcie_type, flags)) 860 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]); 861 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags)) 862 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]); 863 if (pcie_cap_has_sltctl2(dev->pcie_type, flags)) 864 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]); 865 } 866 867 868 static int pci_save_pcix_state(struct pci_dev *dev) 869 { 870 int pos; 871 struct pci_cap_saved_state *save_state; 872 873 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 874 if (pos <= 0) 875 return 0; 876 877 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 878 if (!save_state) { 879 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 880 return -ENOMEM; 881 } 882 883 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data); 884 885 return 0; 886 } 887 888 static void pci_restore_pcix_state(struct pci_dev *dev) 889 { 890 int i = 0, pos; 891 struct pci_cap_saved_state *save_state; 892 u16 *cap; 893 894 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 895 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 896 if (!save_state || pos <= 0) 897 return; 898 cap = (u16 *)&save_state->data[0]; 899 900 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 901 } 902 903 904 /** 905 * pci_save_state - save the PCI configuration space of a device before suspending 906 * @dev: - PCI device that we're dealing with 907 */ 908 int 909 pci_save_state(struct pci_dev *dev) 910 { 911 int i; 912 /* XXX: 100% dword access ok here? */ 913 for (i = 0; i < 16; i++) 914 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 915 dev->state_saved = true; 916 if ((i = pci_save_pcie_state(dev)) != 0) 917 return i; 918 if ((i = pci_save_pcix_state(dev)) != 0) 919 return i; 920 return 0; 921 } 922 923 /** 924 * pci_restore_state - Restore the saved state of a PCI device 925 * @dev: - PCI device that we're dealing with 926 */ 927 int 928 pci_restore_state(struct pci_dev *dev) 929 { 930 int i; 931 u32 val; 932 933 if (!dev->state_saved) 934 return 0; 935 936 /* PCI Express register must be restored first */ 937 pci_restore_pcie_state(dev); 938 939 /* 940 * The Base Address register should be programmed before the command 941 * register(s) 942 */ 943 for (i = 15; i >= 0; i--) { 944 pci_read_config_dword(dev, i * 4, &val); 945 if (val != dev->saved_config_space[i]) { 946 dev_printk(KERN_DEBUG, &dev->dev, "restoring config " 947 "space at offset %#x (was %#x, writing %#x)\n", 948 i, val, (int)dev->saved_config_space[i]); 949 pci_write_config_dword(dev,i * 4, 950 dev->saved_config_space[i]); 951 } 952 } 953 pci_restore_pcix_state(dev); 954 pci_restore_msi_state(dev); 955 pci_restore_iov_state(dev); 956 957 dev->state_saved = false; 958 959 return 0; 960 } 961 962 static int do_pci_enable_device(struct pci_dev *dev, int bars) 963 { 964 int err; 965 966 err = pci_set_power_state(dev, PCI_D0); 967 if (err < 0 && err != -EIO) 968 return err; 969 err = pcibios_enable_device(dev, bars); 970 if (err < 0) 971 return err; 972 pci_fixup_device(pci_fixup_enable, dev); 973 974 return 0; 975 } 976 977 /** 978 * pci_reenable_device - Resume abandoned device 979 * @dev: PCI device to be resumed 980 * 981 * Note this function is a backend of pci_default_resume and is not supposed 982 * to be called by normal code, write proper resume handler and use it instead. 983 */ 984 int pci_reenable_device(struct pci_dev *dev) 985 { 986 if (pci_is_enabled(dev)) 987 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 988 return 0; 989 } 990 991 static int __pci_enable_device_flags(struct pci_dev *dev, 992 resource_size_t flags) 993 { 994 int err; 995 int i, bars = 0; 996 997 if (atomic_add_return(1, &dev->enable_cnt) > 1) 998 return 0; /* already enabled */ 999 1000 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1001 if (dev->resource[i].flags & flags) 1002 bars |= (1 << i); 1003 1004 err = do_pci_enable_device(dev, bars); 1005 if (err < 0) 1006 atomic_dec(&dev->enable_cnt); 1007 return err; 1008 } 1009 1010 /** 1011 * pci_enable_device_io - Initialize a device for use with IO space 1012 * @dev: PCI device to be initialized 1013 * 1014 * Initialize device before it's used by a driver. Ask low-level code 1015 * to enable I/O resources. Wake up the device if it was suspended. 1016 * Beware, this function can fail. 1017 */ 1018 int pci_enable_device_io(struct pci_dev *dev) 1019 { 1020 return __pci_enable_device_flags(dev, IORESOURCE_IO); 1021 } 1022 1023 /** 1024 * pci_enable_device_mem - Initialize a device for use with Memory space 1025 * @dev: PCI device to be initialized 1026 * 1027 * Initialize device before it's used by a driver. Ask low-level code 1028 * to enable Memory resources. Wake up the device if it was suspended. 1029 * Beware, this function can fail. 1030 */ 1031 int pci_enable_device_mem(struct pci_dev *dev) 1032 { 1033 return __pci_enable_device_flags(dev, IORESOURCE_MEM); 1034 } 1035 1036 /** 1037 * pci_enable_device - Initialize device before it's used by a driver. 1038 * @dev: PCI device to be initialized 1039 * 1040 * Initialize device before it's used by a driver. Ask low-level code 1041 * to enable I/O and memory. Wake up the device if it was suspended. 1042 * Beware, this function can fail. 1043 * 1044 * Note we don't actually enable the device many times if we call 1045 * this function repeatedly (we just increment the count). 1046 */ 1047 int pci_enable_device(struct pci_dev *dev) 1048 { 1049 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1050 } 1051 1052 /* 1053 * Managed PCI resources. This manages device on/off, intx/msi/msix 1054 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1055 * there's no need to track it separately. pci_devres is initialized 1056 * when a device is enabled using managed PCI device enable interface. 1057 */ 1058 struct pci_devres { 1059 unsigned int enabled:1; 1060 unsigned int pinned:1; 1061 unsigned int orig_intx:1; 1062 unsigned int restore_intx:1; 1063 u32 region_mask; 1064 }; 1065 1066 static void pcim_release(struct device *gendev, void *res) 1067 { 1068 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1069 struct pci_devres *this = res; 1070 int i; 1071 1072 if (dev->msi_enabled) 1073 pci_disable_msi(dev); 1074 if (dev->msix_enabled) 1075 pci_disable_msix(dev); 1076 1077 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1078 if (this->region_mask & (1 << i)) 1079 pci_release_region(dev, i); 1080 1081 if (this->restore_intx) 1082 pci_intx(dev, this->orig_intx); 1083 1084 if (this->enabled && !this->pinned) 1085 pci_disable_device(dev); 1086 } 1087 1088 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 1089 { 1090 struct pci_devres *dr, *new_dr; 1091 1092 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1093 if (dr) 1094 return dr; 1095 1096 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1097 if (!new_dr) 1098 return NULL; 1099 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1100 } 1101 1102 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 1103 { 1104 if (pci_is_managed(pdev)) 1105 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1106 return NULL; 1107 } 1108 1109 /** 1110 * pcim_enable_device - Managed pci_enable_device() 1111 * @pdev: PCI device to be initialized 1112 * 1113 * Managed pci_enable_device(). 1114 */ 1115 int pcim_enable_device(struct pci_dev *pdev) 1116 { 1117 struct pci_devres *dr; 1118 int rc; 1119 1120 dr = get_pci_dr(pdev); 1121 if (unlikely(!dr)) 1122 return -ENOMEM; 1123 if (dr->enabled) 1124 return 0; 1125 1126 rc = pci_enable_device(pdev); 1127 if (!rc) { 1128 pdev->is_managed = 1; 1129 dr->enabled = 1; 1130 } 1131 return rc; 1132 } 1133 1134 /** 1135 * pcim_pin_device - Pin managed PCI device 1136 * @pdev: PCI device to pin 1137 * 1138 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1139 * driver detach. @pdev must have been enabled with 1140 * pcim_enable_device(). 1141 */ 1142 void pcim_pin_device(struct pci_dev *pdev) 1143 { 1144 struct pci_devres *dr; 1145 1146 dr = find_pci_dr(pdev); 1147 WARN_ON(!dr || !dr->enabled); 1148 if (dr) 1149 dr->pinned = 1; 1150 } 1151 1152 /** 1153 * pcibios_disable_device - disable arch specific PCI resources for device dev 1154 * @dev: the PCI device to disable 1155 * 1156 * Disables architecture specific PCI resources for the device. This 1157 * is the default implementation. Architecture implementations can 1158 * override this. 1159 */ 1160 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {} 1161 1162 static void do_pci_disable_device(struct pci_dev *dev) 1163 { 1164 u16 pci_command; 1165 1166 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1167 if (pci_command & PCI_COMMAND_MASTER) { 1168 pci_command &= ~PCI_COMMAND_MASTER; 1169 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1170 } 1171 1172 pcibios_disable_device(dev); 1173 } 1174 1175 /** 1176 * pci_disable_enabled_device - Disable device without updating enable_cnt 1177 * @dev: PCI device to disable 1178 * 1179 * NOTE: This function is a backend of PCI power management routines and is 1180 * not supposed to be called drivers. 1181 */ 1182 void pci_disable_enabled_device(struct pci_dev *dev) 1183 { 1184 if (pci_is_enabled(dev)) 1185 do_pci_disable_device(dev); 1186 } 1187 1188 /** 1189 * pci_disable_device - Disable PCI device after use 1190 * @dev: PCI device to be disabled 1191 * 1192 * Signal to the system that the PCI device is not in use by the system 1193 * anymore. This only involves disabling PCI bus-mastering, if active. 1194 * 1195 * Note we don't actually disable the device until all callers of 1196 * pci_enable_device() have called pci_disable_device(). 1197 */ 1198 void 1199 pci_disable_device(struct pci_dev *dev) 1200 { 1201 struct pci_devres *dr; 1202 1203 dr = find_pci_dr(dev); 1204 if (dr) 1205 dr->enabled = 0; 1206 1207 if (atomic_sub_return(1, &dev->enable_cnt) != 0) 1208 return; 1209 1210 do_pci_disable_device(dev); 1211 1212 dev->is_busmaster = 0; 1213 } 1214 1215 /** 1216 * pcibios_set_pcie_reset_state - set reset state for device dev 1217 * @dev: the PCIe device reset 1218 * @state: Reset state to enter into 1219 * 1220 * 1221 * Sets the PCIe reset state for the device. This is the default 1222 * implementation. Architecture implementations can override this. 1223 */ 1224 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev, 1225 enum pcie_reset_state state) 1226 { 1227 return -EINVAL; 1228 } 1229 1230 /** 1231 * pci_set_pcie_reset_state - set reset state for device dev 1232 * @dev: the PCIe device reset 1233 * @state: Reset state to enter into 1234 * 1235 * 1236 * Sets the PCI reset state for the device. 1237 */ 1238 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1239 { 1240 return pcibios_set_pcie_reset_state(dev, state); 1241 } 1242 1243 /** 1244 * pci_check_pme_status - Check if given device has generated PME. 1245 * @dev: Device to check. 1246 * 1247 * Check the PME status of the device and if set, clear it and clear PME enable 1248 * (if set). Return 'true' if PME status and PME enable were both set or 1249 * 'false' otherwise. 1250 */ 1251 bool pci_check_pme_status(struct pci_dev *dev) 1252 { 1253 int pmcsr_pos; 1254 u16 pmcsr; 1255 bool ret = false; 1256 1257 if (!dev->pm_cap) 1258 return false; 1259 1260 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1261 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1262 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1263 return false; 1264 1265 /* Clear PME status. */ 1266 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1267 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1268 /* Disable PME to avoid interrupt flood. */ 1269 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1270 ret = true; 1271 } 1272 1273 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1274 1275 return ret; 1276 } 1277 1278 /* 1279 * Time to wait before the system can be put into a sleep state after reporting 1280 * a wakeup event signaled by a PCI device. 1281 */ 1282 #define PCI_WAKEUP_COOLDOWN 100 1283 1284 /** 1285 * pci_wakeup_event - Report a wakeup event related to a given PCI device. 1286 * @dev: Device to report the wakeup event for. 1287 */ 1288 void pci_wakeup_event(struct pci_dev *dev) 1289 { 1290 if (device_may_wakeup(&dev->dev)) 1291 pm_wakeup_event(&dev->dev, PCI_WAKEUP_COOLDOWN); 1292 } 1293 1294 /** 1295 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1296 * @dev: Device to handle. 1297 * @ign: Ignored. 1298 * 1299 * Check if @dev has generated PME and queue a resume request for it in that 1300 * case. 1301 */ 1302 static int pci_pme_wakeup(struct pci_dev *dev, void *ign) 1303 { 1304 if (pci_check_pme_status(dev)) { 1305 pm_request_resume(&dev->dev); 1306 pci_wakeup_event(dev); 1307 } 1308 return 0; 1309 } 1310 1311 /** 1312 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1313 * @bus: Top bus of the subtree to walk. 1314 */ 1315 void pci_pme_wakeup_bus(struct pci_bus *bus) 1316 { 1317 if (bus) 1318 pci_walk_bus(bus, pci_pme_wakeup, NULL); 1319 } 1320 1321 /** 1322 * pci_pme_capable - check the capability of PCI device to generate PME# 1323 * @dev: PCI device to handle. 1324 * @state: PCI state from which device will issue PME#. 1325 */ 1326 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1327 { 1328 if (!dev->pm_cap) 1329 return false; 1330 1331 return !!(dev->pme_support & (1 << state)); 1332 } 1333 1334 /** 1335 * pci_pme_active - enable or disable PCI device's PME# function 1336 * @dev: PCI device to handle. 1337 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1338 * 1339 * The caller must verify that the device is capable of generating PME# before 1340 * calling this function with @enable equal to 'true'. 1341 */ 1342 void pci_pme_active(struct pci_dev *dev, bool enable) 1343 { 1344 u16 pmcsr; 1345 1346 if (!dev->pm_cap) 1347 return; 1348 1349 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1350 /* Clear PME_Status by writing 1 to it and enable PME# */ 1351 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1352 if (!enable) 1353 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1354 1355 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1356 1357 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n", 1358 enable ? "enabled" : "disabled"); 1359 } 1360 1361 /** 1362 * __pci_enable_wake - enable PCI device as wakeup event source 1363 * @dev: PCI device affected 1364 * @state: PCI state from which device will issue wakeup events 1365 * @runtime: True if the events are to be generated at run time 1366 * @enable: True to enable event generation; false to disable 1367 * 1368 * This enables the device as a wakeup event source, or disables it. 1369 * When such events involves platform-specific hooks, those hooks are 1370 * called automatically by this routine. 1371 * 1372 * Devices with legacy power management (no standard PCI PM capabilities) 1373 * always require such platform hooks. 1374 * 1375 * RETURN VALUE: 1376 * 0 is returned on success 1377 * -EINVAL is returned if device is not supposed to wake up the system 1378 * Error code depending on the platform is returned if both the platform and 1379 * the native mechanism fail to enable the generation of wake-up events 1380 */ 1381 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1382 bool runtime, bool enable) 1383 { 1384 int ret = 0; 1385 1386 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1387 return -EINVAL; 1388 1389 /* Don't do the same thing twice in a row for one device. */ 1390 if (!!enable == !!dev->wakeup_prepared) 1391 return 0; 1392 1393 /* 1394 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1395 * Anderson we should be doing PME# wake enable followed by ACPI wake 1396 * enable. To disable wake-up we call the platform first, for symmetry. 1397 */ 1398 1399 if (enable) { 1400 int error; 1401 1402 if (pci_pme_capable(dev, state)) 1403 pci_pme_active(dev, true); 1404 else 1405 ret = 1; 1406 error = runtime ? platform_pci_run_wake(dev, true) : 1407 platform_pci_sleep_wake(dev, true); 1408 if (ret) 1409 ret = error; 1410 if (!ret) 1411 dev->wakeup_prepared = true; 1412 } else { 1413 if (runtime) 1414 platform_pci_run_wake(dev, false); 1415 else 1416 platform_pci_sleep_wake(dev, false); 1417 pci_pme_active(dev, false); 1418 dev->wakeup_prepared = false; 1419 } 1420 1421 return ret; 1422 } 1423 EXPORT_SYMBOL(__pci_enable_wake); 1424 1425 /** 1426 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1427 * @dev: PCI device to prepare 1428 * @enable: True to enable wake-up event generation; false to disable 1429 * 1430 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1431 * and this function allows them to set that up cleanly - pci_enable_wake() 1432 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1433 * ordering constraints. 1434 * 1435 * This function only returns error code if the device is not capable of 1436 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1437 * enable wake-up power for it. 1438 */ 1439 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1440 { 1441 return pci_pme_capable(dev, PCI_D3cold) ? 1442 pci_enable_wake(dev, PCI_D3cold, enable) : 1443 pci_enable_wake(dev, PCI_D3hot, enable); 1444 } 1445 1446 /** 1447 * pci_target_state - find an appropriate low power state for a given PCI dev 1448 * @dev: PCI device 1449 * 1450 * Use underlying platform code to find a supported low power state for @dev. 1451 * If the platform can't manage @dev, return the deepest state from which it 1452 * can generate wake events, based on any available PME info. 1453 */ 1454 pci_power_t pci_target_state(struct pci_dev *dev) 1455 { 1456 pci_power_t target_state = PCI_D3hot; 1457 1458 if (platform_pci_power_manageable(dev)) { 1459 /* 1460 * Call the platform to choose the target state of the device 1461 * and enable wake-up from this state if supported. 1462 */ 1463 pci_power_t state = platform_pci_choose_state(dev); 1464 1465 switch (state) { 1466 case PCI_POWER_ERROR: 1467 case PCI_UNKNOWN: 1468 break; 1469 case PCI_D1: 1470 case PCI_D2: 1471 if (pci_no_d1d2(dev)) 1472 break; 1473 default: 1474 target_state = state; 1475 } 1476 } else if (!dev->pm_cap) { 1477 target_state = PCI_D0; 1478 } else if (device_may_wakeup(&dev->dev)) { 1479 /* 1480 * Find the deepest state from which the device can generate 1481 * wake-up events, make it the target state and enable device 1482 * to generate PME#. 1483 */ 1484 if (dev->pme_support) { 1485 while (target_state 1486 && !(dev->pme_support & (1 << target_state))) 1487 target_state--; 1488 } 1489 } 1490 1491 return target_state; 1492 } 1493 1494 /** 1495 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1496 * @dev: Device to handle. 1497 * 1498 * Choose the power state appropriate for the device depending on whether 1499 * it can wake up the system and/or is power manageable by the platform 1500 * (PCI_D3hot is the default) and put the device into that state. 1501 */ 1502 int pci_prepare_to_sleep(struct pci_dev *dev) 1503 { 1504 pci_power_t target_state = pci_target_state(dev); 1505 int error; 1506 1507 if (target_state == PCI_POWER_ERROR) 1508 return -EIO; 1509 1510 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1511 1512 error = pci_set_power_state(dev, target_state); 1513 1514 if (error) 1515 pci_enable_wake(dev, target_state, false); 1516 1517 return error; 1518 } 1519 1520 /** 1521 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1522 * @dev: Device to handle. 1523 * 1524 * Disable device's system wake-up capability and put it into D0. 1525 */ 1526 int pci_back_from_sleep(struct pci_dev *dev) 1527 { 1528 pci_enable_wake(dev, PCI_D0, false); 1529 return pci_set_power_state(dev, PCI_D0); 1530 } 1531 1532 /** 1533 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1534 * @dev: PCI device being suspended. 1535 * 1536 * Prepare @dev to generate wake-up events at run time and put it into a low 1537 * power state. 1538 */ 1539 int pci_finish_runtime_suspend(struct pci_dev *dev) 1540 { 1541 pci_power_t target_state = pci_target_state(dev); 1542 int error; 1543 1544 if (target_state == PCI_POWER_ERROR) 1545 return -EIO; 1546 1547 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1548 1549 error = pci_set_power_state(dev, target_state); 1550 1551 if (error) 1552 __pci_enable_wake(dev, target_state, true, false); 1553 1554 return error; 1555 } 1556 1557 /** 1558 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1559 * @dev: Device to check. 1560 * 1561 * Return true if the device itself is cabable of generating wake-up events 1562 * (through the platform or using the native PCIe PME) or if the device supports 1563 * PME and one of its upstream bridges can generate wake-up events. 1564 */ 1565 bool pci_dev_run_wake(struct pci_dev *dev) 1566 { 1567 struct pci_bus *bus = dev->bus; 1568 1569 if (device_run_wake(&dev->dev)) 1570 return true; 1571 1572 if (!dev->pme_support) 1573 return false; 1574 1575 while (bus->parent) { 1576 struct pci_dev *bridge = bus->self; 1577 1578 if (device_run_wake(&bridge->dev)) 1579 return true; 1580 1581 bus = bus->parent; 1582 } 1583 1584 /* We have reached the root bus. */ 1585 if (bus->bridge) 1586 return device_run_wake(bus->bridge); 1587 1588 return false; 1589 } 1590 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 1591 1592 /** 1593 * pci_pm_init - Initialize PM functions of given PCI device 1594 * @dev: PCI device to handle. 1595 */ 1596 void pci_pm_init(struct pci_dev *dev) 1597 { 1598 int pm; 1599 u16 pmc; 1600 1601 pm_runtime_forbid(&dev->dev); 1602 device_enable_async_suspend(&dev->dev); 1603 dev->wakeup_prepared = false; 1604 1605 dev->pm_cap = 0; 1606 1607 /* find PCI PM capability in list */ 1608 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 1609 if (!pm) 1610 return; 1611 /* Check device's ability to generate PME# */ 1612 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 1613 1614 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 1615 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 1616 pmc & PCI_PM_CAP_VER_MASK); 1617 return; 1618 } 1619 1620 dev->pm_cap = pm; 1621 dev->d3_delay = PCI_PM_D3_WAIT; 1622 1623 dev->d1_support = false; 1624 dev->d2_support = false; 1625 if (!pci_no_d1d2(dev)) { 1626 if (pmc & PCI_PM_CAP_D1) 1627 dev->d1_support = true; 1628 if (pmc & PCI_PM_CAP_D2) 1629 dev->d2_support = true; 1630 1631 if (dev->d1_support || dev->d2_support) 1632 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 1633 dev->d1_support ? " D1" : "", 1634 dev->d2_support ? " D2" : ""); 1635 } 1636 1637 pmc &= PCI_PM_CAP_PME_MASK; 1638 if (pmc) { 1639 dev_printk(KERN_DEBUG, &dev->dev, 1640 "PME# supported from%s%s%s%s%s\n", 1641 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 1642 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 1643 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 1644 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 1645 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 1646 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 1647 /* 1648 * Make device's PM flags reflect the wake-up capability, but 1649 * let the user space enable it to wake up the system as needed. 1650 */ 1651 device_set_wakeup_capable(&dev->dev, true); 1652 /* Disable the PME# generation functionality */ 1653 pci_pme_active(dev, false); 1654 } else { 1655 dev->pme_support = 0; 1656 } 1657 } 1658 1659 /** 1660 * platform_pci_wakeup_init - init platform wakeup if present 1661 * @dev: PCI device 1662 * 1663 * Some devices don't have PCI PM caps but can still generate wakeup 1664 * events through platform methods (like ACPI events). If @dev supports 1665 * platform wakeup events, set the device flag to indicate as much. This 1666 * may be redundant if the device also supports PCI PM caps, but double 1667 * initialization should be safe in that case. 1668 */ 1669 void platform_pci_wakeup_init(struct pci_dev *dev) 1670 { 1671 if (!platform_pci_can_wakeup(dev)) 1672 return; 1673 1674 device_set_wakeup_capable(&dev->dev, true); 1675 platform_pci_sleep_wake(dev, false); 1676 } 1677 1678 /** 1679 * pci_add_save_buffer - allocate buffer for saving given capability registers 1680 * @dev: the PCI device 1681 * @cap: the capability to allocate the buffer for 1682 * @size: requested size of the buffer 1683 */ 1684 static int pci_add_cap_save_buffer( 1685 struct pci_dev *dev, char cap, unsigned int size) 1686 { 1687 int pos; 1688 struct pci_cap_saved_state *save_state; 1689 1690 pos = pci_find_capability(dev, cap); 1691 if (pos <= 0) 1692 return 0; 1693 1694 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 1695 if (!save_state) 1696 return -ENOMEM; 1697 1698 save_state->cap_nr = cap; 1699 pci_add_saved_cap(dev, save_state); 1700 1701 return 0; 1702 } 1703 1704 /** 1705 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 1706 * @dev: the PCI device 1707 */ 1708 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 1709 { 1710 int error; 1711 1712 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 1713 PCI_EXP_SAVE_REGS * sizeof(u16)); 1714 if (error) 1715 dev_err(&dev->dev, 1716 "unable to preallocate PCI Express save buffer\n"); 1717 1718 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 1719 if (error) 1720 dev_err(&dev->dev, 1721 "unable to preallocate PCI-X save buffer\n"); 1722 } 1723 1724 /** 1725 * pci_enable_ari - enable ARI forwarding if hardware support it 1726 * @dev: the PCI device 1727 */ 1728 void pci_enable_ari(struct pci_dev *dev) 1729 { 1730 int pos; 1731 u32 cap; 1732 u16 ctrl; 1733 struct pci_dev *bridge; 1734 1735 if (!pci_is_pcie(dev) || dev->devfn) 1736 return; 1737 1738 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI); 1739 if (!pos) 1740 return; 1741 1742 bridge = dev->bus->self; 1743 if (!bridge || !pci_is_pcie(bridge)) 1744 return; 1745 1746 pos = pci_pcie_cap(bridge); 1747 if (!pos) 1748 return; 1749 1750 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap); 1751 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 1752 return; 1753 1754 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl); 1755 ctrl |= PCI_EXP_DEVCTL2_ARI; 1756 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl); 1757 1758 bridge->ari_enabled = 1; 1759 } 1760 1761 static int pci_acs_enable; 1762 1763 /** 1764 * pci_request_acs - ask for ACS to be enabled if supported 1765 */ 1766 void pci_request_acs(void) 1767 { 1768 pci_acs_enable = 1; 1769 } 1770 1771 /** 1772 * pci_enable_acs - enable ACS if hardware support it 1773 * @dev: the PCI device 1774 */ 1775 void pci_enable_acs(struct pci_dev *dev) 1776 { 1777 int pos; 1778 u16 cap; 1779 u16 ctrl; 1780 1781 if (!pci_acs_enable) 1782 return; 1783 1784 if (!pci_is_pcie(dev)) 1785 return; 1786 1787 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 1788 if (!pos) 1789 return; 1790 1791 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 1792 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 1793 1794 /* Source Validation */ 1795 ctrl |= (cap & PCI_ACS_SV); 1796 1797 /* P2P Request Redirect */ 1798 ctrl |= (cap & PCI_ACS_RR); 1799 1800 /* P2P Completion Redirect */ 1801 ctrl |= (cap & PCI_ACS_CR); 1802 1803 /* Upstream Forwarding */ 1804 ctrl |= (cap & PCI_ACS_UF); 1805 1806 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 1807 } 1808 1809 /** 1810 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 1811 * @dev: the PCI device 1812 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD) 1813 * 1814 * Perform INTx swizzling for a device behind one level of bridge. This is 1815 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 1816 * behind bridges on add-in cards. For devices with ARI enabled, the slot 1817 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 1818 * the PCI Express Base Specification, Revision 2.1) 1819 */ 1820 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin) 1821 { 1822 int slot; 1823 1824 if (pci_ari_enabled(dev->bus)) 1825 slot = 0; 1826 else 1827 slot = PCI_SLOT(dev->devfn); 1828 1829 return (((pin - 1) + slot) % 4) + 1; 1830 } 1831 1832 int 1833 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 1834 { 1835 u8 pin; 1836 1837 pin = dev->pin; 1838 if (!pin) 1839 return -1; 1840 1841 while (!pci_is_root_bus(dev->bus)) { 1842 pin = pci_swizzle_interrupt_pin(dev, pin); 1843 dev = dev->bus->self; 1844 } 1845 *bridge = dev; 1846 return pin; 1847 } 1848 1849 /** 1850 * pci_common_swizzle - swizzle INTx all the way to root bridge 1851 * @dev: the PCI device 1852 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 1853 * 1854 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 1855 * bridges all the way up to a PCI root bus. 1856 */ 1857 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 1858 { 1859 u8 pin = *pinp; 1860 1861 while (!pci_is_root_bus(dev->bus)) { 1862 pin = pci_swizzle_interrupt_pin(dev, pin); 1863 dev = dev->bus->self; 1864 } 1865 *pinp = pin; 1866 return PCI_SLOT(dev->devfn); 1867 } 1868 1869 /** 1870 * pci_release_region - Release a PCI bar 1871 * @pdev: PCI device whose resources were previously reserved by pci_request_region 1872 * @bar: BAR to release 1873 * 1874 * Releases the PCI I/O and memory resources previously reserved by a 1875 * successful call to pci_request_region. Call this function only 1876 * after all use of the PCI regions has ceased. 1877 */ 1878 void pci_release_region(struct pci_dev *pdev, int bar) 1879 { 1880 struct pci_devres *dr; 1881 1882 if (pci_resource_len(pdev, bar) == 0) 1883 return; 1884 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 1885 release_region(pci_resource_start(pdev, bar), 1886 pci_resource_len(pdev, bar)); 1887 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 1888 release_mem_region(pci_resource_start(pdev, bar), 1889 pci_resource_len(pdev, bar)); 1890 1891 dr = find_pci_dr(pdev); 1892 if (dr) 1893 dr->region_mask &= ~(1 << bar); 1894 } 1895 1896 /** 1897 * __pci_request_region - Reserved PCI I/O and memory resource 1898 * @pdev: PCI device whose resources are to be reserved 1899 * @bar: BAR to be reserved 1900 * @res_name: Name to be associated with resource. 1901 * @exclusive: whether the region access is exclusive or not 1902 * 1903 * Mark the PCI region associated with PCI device @pdev BR @bar as 1904 * being reserved by owner @res_name. Do not access any 1905 * address inside the PCI regions unless this call returns 1906 * successfully. 1907 * 1908 * If @exclusive is set, then the region is marked so that userspace 1909 * is explicitly not allowed to map the resource via /dev/mem or 1910 * sysfs MMIO access. 1911 * 1912 * Returns 0 on success, or %EBUSY on error. A warning 1913 * message is also printed on failure. 1914 */ 1915 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 1916 int exclusive) 1917 { 1918 struct pci_devres *dr; 1919 1920 if (pci_resource_len(pdev, bar) == 0) 1921 return 0; 1922 1923 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 1924 if (!request_region(pci_resource_start(pdev, bar), 1925 pci_resource_len(pdev, bar), res_name)) 1926 goto err_out; 1927 } 1928 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 1929 if (!__request_mem_region(pci_resource_start(pdev, bar), 1930 pci_resource_len(pdev, bar), res_name, 1931 exclusive)) 1932 goto err_out; 1933 } 1934 1935 dr = find_pci_dr(pdev); 1936 if (dr) 1937 dr->region_mask |= 1 << bar; 1938 1939 return 0; 1940 1941 err_out: 1942 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 1943 &pdev->resource[bar]); 1944 return -EBUSY; 1945 } 1946 1947 /** 1948 * pci_request_region - Reserve PCI I/O and memory resource 1949 * @pdev: PCI device whose resources are to be reserved 1950 * @bar: BAR to be reserved 1951 * @res_name: Name to be associated with resource 1952 * 1953 * Mark the PCI region associated with PCI device @pdev BAR @bar as 1954 * being reserved by owner @res_name. Do not access any 1955 * address inside the PCI regions unless this call returns 1956 * successfully. 1957 * 1958 * Returns 0 on success, or %EBUSY on error. A warning 1959 * message is also printed on failure. 1960 */ 1961 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 1962 { 1963 return __pci_request_region(pdev, bar, res_name, 0); 1964 } 1965 1966 /** 1967 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 1968 * @pdev: PCI device whose resources are to be reserved 1969 * @bar: BAR to be reserved 1970 * @res_name: Name to be associated with resource. 1971 * 1972 * Mark the PCI region associated with PCI device @pdev BR @bar as 1973 * being reserved by owner @res_name. Do not access any 1974 * address inside the PCI regions unless this call returns 1975 * successfully. 1976 * 1977 * Returns 0 on success, or %EBUSY on error. A warning 1978 * message is also printed on failure. 1979 * 1980 * The key difference that _exclusive makes it that userspace is 1981 * explicitly not allowed to map the resource via /dev/mem or 1982 * sysfs. 1983 */ 1984 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name) 1985 { 1986 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 1987 } 1988 /** 1989 * pci_release_selected_regions - Release selected PCI I/O and memory resources 1990 * @pdev: PCI device whose resources were previously reserved 1991 * @bars: Bitmask of BARs to be released 1992 * 1993 * Release selected PCI I/O and memory resources previously reserved. 1994 * Call this function only after all use of the PCI regions has ceased. 1995 */ 1996 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 1997 { 1998 int i; 1999 2000 for (i = 0; i < 6; i++) 2001 if (bars & (1 << i)) 2002 pci_release_region(pdev, i); 2003 } 2004 2005 int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2006 const char *res_name, int excl) 2007 { 2008 int i; 2009 2010 for (i = 0; i < 6; i++) 2011 if (bars & (1 << i)) 2012 if (__pci_request_region(pdev, i, res_name, excl)) 2013 goto err_out; 2014 return 0; 2015 2016 err_out: 2017 while(--i >= 0) 2018 if (bars & (1 << i)) 2019 pci_release_region(pdev, i); 2020 2021 return -EBUSY; 2022 } 2023 2024 2025 /** 2026 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2027 * @pdev: PCI device whose resources are to be reserved 2028 * @bars: Bitmask of BARs to be requested 2029 * @res_name: Name to be associated with resource 2030 */ 2031 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2032 const char *res_name) 2033 { 2034 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2035 } 2036 2037 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, 2038 int bars, const char *res_name) 2039 { 2040 return __pci_request_selected_regions(pdev, bars, res_name, 2041 IORESOURCE_EXCLUSIVE); 2042 } 2043 2044 /** 2045 * pci_release_regions - Release reserved PCI I/O and memory resources 2046 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2047 * 2048 * Releases all PCI I/O and memory resources previously reserved by a 2049 * successful call to pci_request_regions. Call this function only 2050 * after all use of the PCI regions has ceased. 2051 */ 2052 2053 void pci_release_regions(struct pci_dev *pdev) 2054 { 2055 pci_release_selected_regions(pdev, (1 << 6) - 1); 2056 } 2057 2058 /** 2059 * pci_request_regions - Reserved PCI I/O and memory resources 2060 * @pdev: PCI device whose resources are to be reserved 2061 * @res_name: Name to be associated with resource. 2062 * 2063 * Mark all PCI regions associated with PCI device @pdev as 2064 * being reserved by owner @res_name. Do not access any 2065 * address inside the PCI regions unless this call returns 2066 * successfully. 2067 * 2068 * Returns 0 on success, or %EBUSY on error. A warning 2069 * message is also printed on failure. 2070 */ 2071 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2072 { 2073 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2074 } 2075 2076 /** 2077 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2078 * @pdev: PCI device whose resources are to be reserved 2079 * @res_name: Name to be associated with resource. 2080 * 2081 * Mark all PCI regions associated with PCI device @pdev as 2082 * being reserved by owner @res_name. Do not access any 2083 * address inside the PCI regions unless this call returns 2084 * successfully. 2085 * 2086 * pci_request_regions_exclusive() will mark the region so that 2087 * /dev/mem and the sysfs MMIO access will not be allowed. 2088 * 2089 * Returns 0 on success, or %EBUSY on error. A warning 2090 * message is also printed on failure. 2091 */ 2092 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2093 { 2094 return pci_request_selected_regions_exclusive(pdev, 2095 ((1 << 6) - 1), res_name); 2096 } 2097 2098 static void __pci_set_master(struct pci_dev *dev, bool enable) 2099 { 2100 u16 old_cmd, cmd; 2101 2102 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2103 if (enable) 2104 cmd = old_cmd | PCI_COMMAND_MASTER; 2105 else 2106 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2107 if (cmd != old_cmd) { 2108 dev_dbg(&dev->dev, "%s bus mastering\n", 2109 enable ? "enabling" : "disabling"); 2110 pci_write_config_word(dev, PCI_COMMAND, cmd); 2111 } 2112 dev->is_busmaster = enable; 2113 } 2114 2115 /** 2116 * pci_set_master - enables bus-mastering for device dev 2117 * @dev: the PCI device to enable 2118 * 2119 * Enables bus-mastering on the device and calls pcibios_set_master() 2120 * to do the needed arch specific settings. 2121 */ 2122 void pci_set_master(struct pci_dev *dev) 2123 { 2124 __pci_set_master(dev, true); 2125 pcibios_set_master(dev); 2126 } 2127 2128 /** 2129 * pci_clear_master - disables bus-mastering for device dev 2130 * @dev: the PCI device to disable 2131 */ 2132 void pci_clear_master(struct pci_dev *dev) 2133 { 2134 __pci_set_master(dev, false); 2135 } 2136 2137 /** 2138 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2139 * @dev: the PCI device for which MWI is to be enabled 2140 * 2141 * Helper function for pci_set_mwi. 2142 * Originally copied from drivers/net/acenic.c. 2143 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2144 * 2145 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2146 */ 2147 int pci_set_cacheline_size(struct pci_dev *dev) 2148 { 2149 u8 cacheline_size; 2150 2151 if (!pci_cache_line_size) 2152 return -EINVAL; 2153 2154 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2155 equal to or multiple of the right value. */ 2156 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2157 if (cacheline_size >= pci_cache_line_size && 2158 (cacheline_size % pci_cache_line_size) == 0) 2159 return 0; 2160 2161 /* Write the correct value. */ 2162 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2163 /* Read it back. */ 2164 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2165 if (cacheline_size == pci_cache_line_size) 2166 return 0; 2167 2168 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not " 2169 "supported\n", pci_cache_line_size << 2); 2170 2171 return -EINVAL; 2172 } 2173 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2174 2175 #ifdef PCI_DISABLE_MWI 2176 int pci_set_mwi(struct pci_dev *dev) 2177 { 2178 return 0; 2179 } 2180 2181 int pci_try_set_mwi(struct pci_dev *dev) 2182 { 2183 return 0; 2184 } 2185 2186 void pci_clear_mwi(struct pci_dev *dev) 2187 { 2188 } 2189 2190 #else 2191 2192 /** 2193 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2194 * @dev: the PCI device for which MWI is enabled 2195 * 2196 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2197 * 2198 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2199 */ 2200 int 2201 pci_set_mwi(struct pci_dev *dev) 2202 { 2203 int rc; 2204 u16 cmd; 2205 2206 rc = pci_set_cacheline_size(dev); 2207 if (rc) 2208 return rc; 2209 2210 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2211 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 2212 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2213 cmd |= PCI_COMMAND_INVALIDATE; 2214 pci_write_config_word(dev, PCI_COMMAND, cmd); 2215 } 2216 2217 return 0; 2218 } 2219 2220 /** 2221 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2222 * @dev: the PCI device for which MWI is enabled 2223 * 2224 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2225 * Callers are not required to check the return value. 2226 * 2227 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2228 */ 2229 int pci_try_set_mwi(struct pci_dev *dev) 2230 { 2231 int rc = pci_set_mwi(dev); 2232 return rc; 2233 } 2234 2235 /** 2236 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2237 * @dev: the PCI device to disable 2238 * 2239 * Disables PCI Memory-Write-Invalidate transaction on the device 2240 */ 2241 void 2242 pci_clear_mwi(struct pci_dev *dev) 2243 { 2244 u16 cmd; 2245 2246 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2247 if (cmd & PCI_COMMAND_INVALIDATE) { 2248 cmd &= ~PCI_COMMAND_INVALIDATE; 2249 pci_write_config_word(dev, PCI_COMMAND, cmd); 2250 } 2251 } 2252 #endif /* ! PCI_DISABLE_MWI */ 2253 2254 /** 2255 * pci_intx - enables/disables PCI INTx for device dev 2256 * @pdev: the PCI device to operate on 2257 * @enable: boolean: whether to enable or disable PCI INTx 2258 * 2259 * Enables/disables PCI INTx for device dev 2260 */ 2261 void 2262 pci_intx(struct pci_dev *pdev, int enable) 2263 { 2264 u16 pci_command, new; 2265 2266 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 2267 2268 if (enable) { 2269 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 2270 } else { 2271 new = pci_command | PCI_COMMAND_INTX_DISABLE; 2272 } 2273 2274 if (new != pci_command) { 2275 struct pci_devres *dr; 2276 2277 pci_write_config_word(pdev, PCI_COMMAND, new); 2278 2279 dr = find_pci_dr(pdev); 2280 if (dr && !dr->restore_intx) { 2281 dr->restore_intx = 1; 2282 dr->orig_intx = !enable; 2283 } 2284 } 2285 } 2286 2287 /** 2288 * pci_msi_off - disables any msi or msix capabilities 2289 * @dev: the PCI device to operate on 2290 * 2291 * If you want to use msi see pci_enable_msi and friends. 2292 * This is a lower level primitive that allows us to disable 2293 * msi operation at the device level. 2294 */ 2295 void pci_msi_off(struct pci_dev *dev) 2296 { 2297 int pos; 2298 u16 control; 2299 2300 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 2301 if (pos) { 2302 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 2303 control &= ~PCI_MSI_FLAGS_ENABLE; 2304 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 2305 } 2306 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 2307 if (pos) { 2308 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 2309 control &= ~PCI_MSIX_FLAGS_ENABLE; 2310 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 2311 } 2312 } 2313 EXPORT_SYMBOL_GPL(pci_msi_off); 2314 2315 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 2316 { 2317 return dma_set_max_seg_size(&dev->dev, size); 2318 } 2319 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 2320 2321 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 2322 { 2323 return dma_set_seg_boundary(&dev->dev, mask); 2324 } 2325 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 2326 2327 static int pcie_flr(struct pci_dev *dev, int probe) 2328 { 2329 int i; 2330 int pos; 2331 u32 cap; 2332 u16 status, control; 2333 2334 pos = pci_pcie_cap(dev); 2335 if (!pos) 2336 return -ENOTTY; 2337 2338 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap); 2339 if (!(cap & PCI_EXP_DEVCAP_FLR)) 2340 return -ENOTTY; 2341 2342 if (probe) 2343 return 0; 2344 2345 /* Wait for Transaction Pending bit clean */ 2346 for (i = 0; i < 4; i++) { 2347 if (i) 2348 msleep((1 << (i - 1)) * 100); 2349 2350 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status); 2351 if (!(status & PCI_EXP_DEVSTA_TRPND)) 2352 goto clear; 2353 } 2354 2355 dev_err(&dev->dev, "transaction is not cleared; " 2356 "proceeding with reset anyway\n"); 2357 2358 clear: 2359 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control); 2360 control |= PCI_EXP_DEVCTL_BCR_FLR; 2361 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control); 2362 2363 msleep(100); 2364 2365 return 0; 2366 } 2367 2368 static int pci_af_flr(struct pci_dev *dev, int probe) 2369 { 2370 int i; 2371 int pos; 2372 u8 cap; 2373 u8 status; 2374 2375 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 2376 if (!pos) 2377 return -ENOTTY; 2378 2379 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 2380 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 2381 return -ENOTTY; 2382 2383 if (probe) 2384 return 0; 2385 2386 /* Wait for Transaction Pending bit clean */ 2387 for (i = 0; i < 4; i++) { 2388 if (i) 2389 msleep((1 << (i - 1)) * 100); 2390 2391 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status); 2392 if (!(status & PCI_AF_STATUS_TP)) 2393 goto clear; 2394 } 2395 2396 dev_err(&dev->dev, "transaction is not cleared; " 2397 "proceeding with reset anyway\n"); 2398 2399 clear: 2400 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 2401 msleep(100); 2402 2403 return 0; 2404 } 2405 2406 static int pci_pm_reset(struct pci_dev *dev, int probe) 2407 { 2408 u16 csr; 2409 2410 if (!dev->pm_cap) 2411 return -ENOTTY; 2412 2413 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 2414 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 2415 return -ENOTTY; 2416 2417 if (probe) 2418 return 0; 2419 2420 if (dev->current_state != PCI_D0) 2421 return -EINVAL; 2422 2423 csr &= ~PCI_PM_CTRL_STATE_MASK; 2424 csr |= PCI_D3hot; 2425 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 2426 pci_dev_d3_sleep(dev); 2427 2428 csr &= ~PCI_PM_CTRL_STATE_MASK; 2429 csr |= PCI_D0; 2430 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 2431 pci_dev_d3_sleep(dev); 2432 2433 return 0; 2434 } 2435 2436 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 2437 { 2438 u16 ctrl; 2439 struct pci_dev *pdev; 2440 2441 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self) 2442 return -ENOTTY; 2443 2444 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 2445 if (pdev != dev) 2446 return -ENOTTY; 2447 2448 if (probe) 2449 return 0; 2450 2451 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl); 2452 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 2453 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl); 2454 msleep(100); 2455 2456 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 2457 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl); 2458 msleep(100); 2459 2460 return 0; 2461 } 2462 2463 static int pci_dev_reset(struct pci_dev *dev, int probe) 2464 { 2465 int rc; 2466 2467 might_sleep(); 2468 2469 if (!probe) { 2470 pci_block_user_cfg_access(dev); 2471 /* block PM suspend, driver probe, etc. */ 2472 device_lock(&dev->dev); 2473 } 2474 2475 rc = pci_dev_specific_reset(dev, probe); 2476 if (rc != -ENOTTY) 2477 goto done; 2478 2479 rc = pcie_flr(dev, probe); 2480 if (rc != -ENOTTY) 2481 goto done; 2482 2483 rc = pci_af_flr(dev, probe); 2484 if (rc != -ENOTTY) 2485 goto done; 2486 2487 rc = pci_pm_reset(dev, probe); 2488 if (rc != -ENOTTY) 2489 goto done; 2490 2491 rc = pci_parent_bus_reset(dev, probe); 2492 done: 2493 if (!probe) { 2494 device_unlock(&dev->dev); 2495 pci_unblock_user_cfg_access(dev); 2496 } 2497 2498 return rc; 2499 } 2500 2501 /** 2502 * __pci_reset_function - reset a PCI device function 2503 * @dev: PCI device to reset 2504 * 2505 * Some devices allow an individual function to be reset without affecting 2506 * other functions in the same device. The PCI device must be responsive 2507 * to PCI config space in order to use this function. 2508 * 2509 * The device function is presumed to be unused when this function is called. 2510 * Resetting the device will make the contents of PCI configuration space 2511 * random, so any caller of this must be prepared to reinitialise the 2512 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 2513 * etc. 2514 * 2515 * Returns 0 if the device function was successfully reset or negative if the 2516 * device doesn't support resetting a single function. 2517 */ 2518 int __pci_reset_function(struct pci_dev *dev) 2519 { 2520 return pci_dev_reset(dev, 0); 2521 } 2522 EXPORT_SYMBOL_GPL(__pci_reset_function); 2523 2524 /** 2525 * pci_probe_reset_function - check whether the device can be safely reset 2526 * @dev: PCI device to reset 2527 * 2528 * Some devices allow an individual function to be reset without affecting 2529 * other functions in the same device. The PCI device must be responsive 2530 * to PCI config space in order to use this function. 2531 * 2532 * Returns 0 if the device function can be reset or negative if the 2533 * device doesn't support resetting a single function. 2534 */ 2535 int pci_probe_reset_function(struct pci_dev *dev) 2536 { 2537 return pci_dev_reset(dev, 1); 2538 } 2539 2540 /** 2541 * pci_reset_function - quiesce and reset a PCI device function 2542 * @dev: PCI device to reset 2543 * 2544 * Some devices allow an individual function to be reset without affecting 2545 * other functions in the same device. The PCI device must be responsive 2546 * to PCI config space in order to use this function. 2547 * 2548 * This function does not just reset the PCI portion of a device, but 2549 * clears all the state associated with the device. This function differs 2550 * from __pci_reset_function in that it saves and restores device state 2551 * over the reset. 2552 * 2553 * Returns 0 if the device function was successfully reset or negative if the 2554 * device doesn't support resetting a single function. 2555 */ 2556 int pci_reset_function(struct pci_dev *dev) 2557 { 2558 int rc; 2559 2560 rc = pci_dev_reset(dev, 1); 2561 if (rc) 2562 return rc; 2563 2564 pci_save_state(dev); 2565 2566 /* 2567 * both INTx and MSI are disabled after the Interrupt Disable bit 2568 * is set and the Bus Master bit is cleared. 2569 */ 2570 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 2571 2572 rc = pci_dev_reset(dev, 0); 2573 2574 pci_restore_state(dev); 2575 2576 return rc; 2577 } 2578 EXPORT_SYMBOL_GPL(pci_reset_function); 2579 2580 /** 2581 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 2582 * @dev: PCI device to query 2583 * 2584 * Returns mmrbc: maximum designed memory read count in bytes 2585 * or appropriate error value. 2586 */ 2587 int pcix_get_max_mmrbc(struct pci_dev *dev) 2588 { 2589 int cap; 2590 u32 stat; 2591 2592 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 2593 if (!cap) 2594 return -EINVAL; 2595 2596 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 2597 return -EINVAL; 2598 2599 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 2600 } 2601 EXPORT_SYMBOL(pcix_get_max_mmrbc); 2602 2603 /** 2604 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 2605 * @dev: PCI device to query 2606 * 2607 * Returns mmrbc: maximum memory read count in bytes 2608 * or appropriate error value. 2609 */ 2610 int pcix_get_mmrbc(struct pci_dev *dev) 2611 { 2612 int cap; 2613 u16 cmd; 2614 2615 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 2616 if (!cap) 2617 return -EINVAL; 2618 2619 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 2620 return -EINVAL; 2621 2622 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 2623 } 2624 EXPORT_SYMBOL(pcix_get_mmrbc); 2625 2626 /** 2627 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 2628 * @dev: PCI device to query 2629 * @mmrbc: maximum memory read count in bytes 2630 * valid values are 512, 1024, 2048, 4096 2631 * 2632 * If possible sets maximum memory read byte count, some bridges have erratas 2633 * that prevent this. 2634 */ 2635 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 2636 { 2637 int cap; 2638 u32 stat, v, o; 2639 u16 cmd; 2640 2641 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 2642 return -EINVAL; 2643 2644 v = ffs(mmrbc) - 10; 2645 2646 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 2647 if (!cap) 2648 return -EINVAL; 2649 2650 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 2651 return -EINVAL; 2652 2653 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 2654 return -E2BIG; 2655 2656 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 2657 return -EINVAL; 2658 2659 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 2660 if (o != v) { 2661 if (v > o && dev->bus && 2662 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 2663 return -EIO; 2664 2665 cmd &= ~PCI_X_CMD_MAX_READ; 2666 cmd |= v << 2; 2667 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 2668 return -EIO; 2669 } 2670 return 0; 2671 } 2672 EXPORT_SYMBOL(pcix_set_mmrbc); 2673 2674 /** 2675 * pcie_get_readrq - get PCI Express read request size 2676 * @dev: PCI device to query 2677 * 2678 * Returns maximum memory read request in bytes 2679 * or appropriate error value. 2680 */ 2681 int pcie_get_readrq(struct pci_dev *dev) 2682 { 2683 int ret, cap; 2684 u16 ctl; 2685 2686 cap = pci_pcie_cap(dev); 2687 if (!cap) 2688 return -EINVAL; 2689 2690 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 2691 if (!ret) 2692 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 2693 2694 return ret; 2695 } 2696 EXPORT_SYMBOL(pcie_get_readrq); 2697 2698 /** 2699 * pcie_set_readrq - set PCI Express maximum memory read request 2700 * @dev: PCI device to query 2701 * @rq: maximum memory read count in bytes 2702 * valid values are 128, 256, 512, 1024, 2048, 4096 2703 * 2704 * If possible sets maximum read byte count 2705 */ 2706 int pcie_set_readrq(struct pci_dev *dev, int rq) 2707 { 2708 int cap, err = -EINVAL; 2709 u16 ctl, v; 2710 2711 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 2712 goto out; 2713 2714 v = (ffs(rq) - 8) << 12; 2715 2716 cap = pci_pcie_cap(dev); 2717 if (!cap) 2718 goto out; 2719 2720 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 2721 if (err) 2722 goto out; 2723 2724 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) { 2725 ctl &= ~PCI_EXP_DEVCTL_READRQ; 2726 ctl |= v; 2727 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl); 2728 } 2729 2730 out: 2731 return err; 2732 } 2733 EXPORT_SYMBOL(pcie_set_readrq); 2734 2735 /** 2736 * pci_select_bars - Make BAR mask from the type of resource 2737 * @dev: the PCI device for which BAR mask is made 2738 * @flags: resource type mask to be selected 2739 * 2740 * This helper routine makes bar mask from the type of resource. 2741 */ 2742 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 2743 { 2744 int i, bars = 0; 2745 for (i = 0; i < PCI_NUM_RESOURCES; i++) 2746 if (pci_resource_flags(dev, i) & flags) 2747 bars |= (1 << i); 2748 return bars; 2749 } 2750 2751 /** 2752 * pci_resource_bar - get position of the BAR associated with a resource 2753 * @dev: the PCI device 2754 * @resno: the resource number 2755 * @type: the BAR type to be filled in 2756 * 2757 * Returns BAR position in config space, or 0 if the BAR is invalid. 2758 */ 2759 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 2760 { 2761 int reg; 2762 2763 if (resno < PCI_ROM_RESOURCE) { 2764 *type = pci_bar_unknown; 2765 return PCI_BASE_ADDRESS_0 + 4 * resno; 2766 } else if (resno == PCI_ROM_RESOURCE) { 2767 *type = pci_bar_mem32; 2768 return dev->rom_base_reg; 2769 } else if (resno < PCI_BRIDGE_RESOURCES) { 2770 /* device specific resource */ 2771 reg = pci_iov_resource_bar(dev, resno, type); 2772 if (reg) 2773 return reg; 2774 } 2775 2776 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 2777 return 0; 2778 } 2779 2780 /* Some architectures require additional programming to enable VGA */ 2781 static arch_set_vga_state_t arch_set_vga_state; 2782 2783 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 2784 { 2785 arch_set_vga_state = func; /* NULL disables */ 2786 } 2787 2788 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 2789 unsigned int command_bits, bool change_bridge) 2790 { 2791 if (arch_set_vga_state) 2792 return arch_set_vga_state(dev, decode, command_bits, 2793 change_bridge); 2794 return 0; 2795 } 2796 2797 /** 2798 * pci_set_vga_state - set VGA decode state on device and parents if requested 2799 * @dev: the PCI device 2800 * @decode: true = enable decoding, false = disable decoding 2801 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 2802 * @change_bridge: traverse ancestors and change bridges 2803 */ 2804 int pci_set_vga_state(struct pci_dev *dev, bool decode, 2805 unsigned int command_bits, bool change_bridge) 2806 { 2807 struct pci_bus *bus; 2808 struct pci_dev *bridge; 2809 u16 cmd; 2810 int rc; 2811 2812 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)); 2813 2814 /* ARCH specific VGA enables */ 2815 rc = pci_set_vga_state_arch(dev, decode, command_bits, change_bridge); 2816 if (rc) 2817 return rc; 2818 2819 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2820 if (decode == true) 2821 cmd |= command_bits; 2822 else 2823 cmd &= ~command_bits; 2824 pci_write_config_word(dev, PCI_COMMAND, cmd); 2825 2826 if (change_bridge == false) 2827 return 0; 2828 2829 bus = dev->bus; 2830 while (bus) { 2831 bridge = bus->self; 2832 if (bridge) { 2833 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 2834 &cmd); 2835 if (decode == true) 2836 cmd |= PCI_BRIDGE_CTL_VGA; 2837 else 2838 cmd &= ~PCI_BRIDGE_CTL_VGA; 2839 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 2840 cmd); 2841 } 2842 bus = bus->parent; 2843 } 2844 return 0; 2845 } 2846 2847 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 2848 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 2849 static DEFINE_SPINLOCK(resource_alignment_lock); 2850 2851 /** 2852 * pci_specified_resource_alignment - get resource alignment specified by user. 2853 * @dev: the PCI device to get 2854 * 2855 * RETURNS: Resource alignment if it is specified. 2856 * Zero if it is not specified. 2857 */ 2858 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 2859 { 2860 int seg, bus, slot, func, align_order, count; 2861 resource_size_t align = 0; 2862 char *p; 2863 2864 spin_lock(&resource_alignment_lock); 2865 p = resource_alignment_param; 2866 while (*p) { 2867 count = 0; 2868 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 2869 p[count] == '@') { 2870 p += count + 1; 2871 } else { 2872 align_order = -1; 2873 } 2874 if (sscanf(p, "%x:%x:%x.%x%n", 2875 &seg, &bus, &slot, &func, &count) != 4) { 2876 seg = 0; 2877 if (sscanf(p, "%x:%x.%x%n", 2878 &bus, &slot, &func, &count) != 3) { 2879 /* Invalid format */ 2880 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 2881 p); 2882 break; 2883 } 2884 } 2885 p += count; 2886 if (seg == pci_domain_nr(dev->bus) && 2887 bus == dev->bus->number && 2888 slot == PCI_SLOT(dev->devfn) && 2889 func == PCI_FUNC(dev->devfn)) { 2890 if (align_order == -1) { 2891 align = PAGE_SIZE; 2892 } else { 2893 align = 1 << align_order; 2894 } 2895 /* Found */ 2896 break; 2897 } 2898 if (*p != ';' && *p != ',') { 2899 /* End of param or invalid format */ 2900 break; 2901 } 2902 p++; 2903 } 2904 spin_unlock(&resource_alignment_lock); 2905 return align; 2906 } 2907 2908 /** 2909 * pci_is_reassigndev - check if specified PCI is target device to reassign 2910 * @dev: the PCI device to check 2911 * 2912 * RETURNS: non-zero for PCI device is a target device to reassign, 2913 * or zero is not. 2914 */ 2915 int pci_is_reassigndev(struct pci_dev *dev) 2916 { 2917 return (pci_specified_resource_alignment(dev) != 0); 2918 } 2919 2920 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 2921 { 2922 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 2923 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 2924 spin_lock(&resource_alignment_lock); 2925 strncpy(resource_alignment_param, buf, count); 2926 resource_alignment_param[count] = '\0'; 2927 spin_unlock(&resource_alignment_lock); 2928 return count; 2929 } 2930 2931 ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 2932 { 2933 size_t count; 2934 spin_lock(&resource_alignment_lock); 2935 count = snprintf(buf, size, "%s", resource_alignment_param); 2936 spin_unlock(&resource_alignment_lock); 2937 return count; 2938 } 2939 2940 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 2941 { 2942 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 2943 } 2944 2945 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 2946 const char *buf, size_t count) 2947 { 2948 return pci_set_resource_alignment_param(buf, count); 2949 } 2950 2951 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 2952 pci_resource_alignment_store); 2953 2954 static int __init pci_resource_alignment_sysfs_init(void) 2955 { 2956 return bus_create_file(&pci_bus_type, 2957 &bus_attr_resource_alignment); 2958 } 2959 2960 late_initcall(pci_resource_alignment_sysfs_init); 2961 2962 static void __devinit pci_no_domains(void) 2963 { 2964 #ifdef CONFIG_PCI_DOMAINS 2965 pci_domains_supported = 0; 2966 #endif 2967 } 2968 2969 /** 2970 * pci_ext_cfg_enabled - can we access extended PCI config space? 2971 * @dev: The PCI device of the root bridge. 2972 * 2973 * Returns 1 if we can access PCI extended config space (offsets 2974 * greater than 0xff). This is the default implementation. Architecture 2975 * implementations can override this. 2976 */ 2977 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev) 2978 { 2979 return 1; 2980 } 2981 2982 void __weak pci_fixup_cardbus(struct pci_bus *bus) 2983 { 2984 } 2985 EXPORT_SYMBOL(pci_fixup_cardbus); 2986 2987 static int __init pci_setup(char *str) 2988 { 2989 while (str) { 2990 char *k = strchr(str, ','); 2991 if (k) 2992 *k++ = 0; 2993 if (*str && (str = pcibios_setup(str)) && *str) { 2994 if (!strcmp(str, "nomsi")) { 2995 pci_no_msi(); 2996 } else if (!strcmp(str, "noaer")) { 2997 pci_no_aer(); 2998 } else if (!strcmp(str, "nodomains")) { 2999 pci_no_domains(); 3000 } else if (!strncmp(str, "cbiosize=", 9)) { 3001 pci_cardbus_io_size = memparse(str + 9, &str); 3002 } else if (!strncmp(str, "cbmemsize=", 10)) { 3003 pci_cardbus_mem_size = memparse(str + 10, &str); 3004 } else if (!strncmp(str, "resource_alignment=", 19)) { 3005 pci_set_resource_alignment_param(str + 19, 3006 strlen(str + 19)); 3007 } else if (!strncmp(str, "ecrc=", 5)) { 3008 pcie_ecrc_get_policy(str + 5); 3009 } else if (!strncmp(str, "hpiosize=", 9)) { 3010 pci_hotplug_io_size = memparse(str + 9, &str); 3011 } else if (!strncmp(str, "hpmemsize=", 10)) { 3012 pci_hotplug_mem_size = memparse(str + 10, &str); 3013 } else { 3014 printk(KERN_ERR "PCI: Unknown option `%s'\n", 3015 str); 3016 } 3017 } 3018 str = k; 3019 } 3020 return 0; 3021 } 3022 early_param("pci", pci_setup); 3023 3024 EXPORT_SYMBOL(pci_reenable_device); 3025 EXPORT_SYMBOL(pci_enable_device_io); 3026 EXPORT_SYMBOL(pci_enable_device_mem); 3027 EXPORT_SYMBOL(pci_enable_device); 3028 EXPORT_SYMBOL(pcim_enable_device); 3029 EXPORT_SYMBOL(pcim_pin_device); 3030 EXPORT_SYMBOL(pci_disable_device); 3031 EXPORT_SYMBOL(pci_find_capability); 3032 EXPORT_SYMBOL(pci_bus_find_capability); 3033 EXPORT_SYMBOL(pci_release_regions); 3034 EXPORT_SYMBOL(pci_request_regions); 3035 EXPORT_SYMBOL(pci_request_regions_exclusive); 3036 EXPORT_SYMBOL(pci_release_region); 3037 EXPORT_SYMBOL(pci_request_region); 3038 EXPORT_SYMBOL(pci_request_region_exclusive); 3039 EXPORT_SYMBOL(pci_release_selected_regions); 3040 EXPORT_SYMBOL(pci_request_selected_regions); 3041 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3042 EXPORT_SYMBOL(pci_set_master); 3043 EXPORT_SYMBOL(pci_clear_master); 3044 EXPORT_SYMBOL(pci_set_mwi); 3045 EXPORT_SYMBOL(pci_try_set_mwi); 3046 EXPORT_SYMBOL(pci_clear_mwi); 3047 EXPORT_SYMBOL_GPL(pci_intx); 3048 EXPORT_SYMBOL(pci_assign_resource); 3049 EXPORT_SYMBOL(pci_find_parent_resource); 3050 EXPORT_SYMBOL(pci_select_bars); 3051 3052 EXPORT_SYMBOL(pci_set_power_state); 3053 EXPORT_SYMBOL(pci_save_state); 3054 EXPORT_SYMBOL(pci_restore_state); 3055 EXPORT_SYMBOL(pci_pme_capable); 3056 EXPORT_SYMBOL(pci_pme_active); 3057 EXPORT_SYMBOL(pci_wake_from_d3); 3058 EXPORT_SYMBOL(pci_target_state); 3059 EXPORT_SYMBOL(pci_prepare_to_sleep); 3060 EXPORT_SYMBOL(pci_back_from_sleep); 3061 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 3062