xref: /linux/drivers/pci/pci.c (revision cff4fa8415a3224a5abdd2b1dd7f431e4ea49366)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm/setup.h>
26 #include "pci.h"
27 
28 const char *pci_power_names[] = {
29 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 };
31 EXPORT_SYMBOL_GPL(pci_power_names);
32 
33 int isa_dma_bridge_buggy;
34 EXPORT_SYMBOL(isa_dma_bridge_buggy);
35 
36 int pci_pci_problems;
37 EXPORT_SYMBOL(pci_pci_problems);
38 
39 unsigned int pci_pm_d3_delay;
40 
41 static void pci_pme_list_scan(struct work_struct *work);
42 
43 static LIST_HEAD(pci_pme_list);
44 static DEFINE_MUTEX(pci_pme_list_mutex);
45 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
46 
47 struct pci_pme_device {
48 	struct list_head list;
49 	struct pci_dev *dev;
50 };
51 
52 #define PME_TIMEOUT 1000 /* How long between PME checks */
53 
54 static void pci_dev_d3_sleep(struct pci_dev *dev)
55 {
56 	unsigned int delay = dev->d3_delay;
57 
58 	if (delay < pci_pm_d3_delay)
59 		delay = pci_pm_d3_delay;
60 
61 	msleep(delay);
62 }
63 
64 #ifdef CONFIG_PCI_DOMAINS
65 int pci_domains_supported = 1;
66 #endif
67 
68 #define DEFAULT_CARDBUS_IO_SIZE		(256)
69 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
70 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
71 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
72 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
73 
74 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
75 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
76 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
77 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
78 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
79 
80 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
81 
82 /*
83  * The default CLS is used if arch didn't set CLS explicitly and not
84  * all pci devices agree on the same value.  Arch can override either
85  * the dfl or actual value as it sees fit.  Don't forget this is
86  * measured in 32-bit words, not bytes.
87  */
88 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
89 u8 pci_cache_line_size;
90 
91 /**
92  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
93  * @bus: pointer to PCI bus structure to search
94  *
95  * Given a PCI bus, returns the highest PCI bus number present in the set
96  * including the given PCI bus and its list of child PCI buses.
97  */
98 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
99 {
100 	struct list_head *tmp;
101 	unsigned char max, n;
102 
103 	max = bus->subordinate;
104 	list_for_each(tmp, &bus->children) {
105 		n = pci_bus_max_busnr(pci_bus_b(tmp));
106 		if(n > max)
107 			max = n;
108 	}
109 	return max;
110 }
111 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
112 
113 #ifdef CONFIG_HAS_IOMEM
114 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
115 {
116 	/*
117 	 * Make sure the BAR is actually a memory resource, not an IO resource
118 	 */
119 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
120 		WARN_ON(1);
121 		return NULL;
122 	}
123 	return ioremap_nocache(pci_resource_start(pdev, bar),
124 				     pci_resource_len(pdev, bar));
125 }
126 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
127 #endif
128 
129 #if 0
130 /**
131  * pci_max_busnr - returns maximum PCI bus number
132  *
133  * Returns the highest PCI bus number present in the system global list of
134  * PCI buses.
135  */
136 unsigned char __devinit
137 pci_max_busnr(void)
138 {
139 	struct pci_bus *bus = NULL;
140 	unsigned char max, n;
141 
142 	max = 0;
143 	while ((bus = pci_find_next_bus(bus)) != NULL) {
144 		n = pci_bus_max_busnr(bus);
145 		if(n > max)
146 			max = n;
147 	}
148 	return max;
149 }
150 
151 #endif  /*  0  */
152 
153 #define PCI_FIND_CAP_TTL	48
154 
155 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
156 				   u8 pos, int cap, int *ttl)
157 {
158 	u8 id;
159 
160 	while ((*ttl)--) {
161 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
162 		if (pos < 0x40)
163 			break;
164 		pos &= ~3;
165 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
166 					 &id);
167 		if (id == 0xff)
168 			break;
169 		if (id == cap)
170 			return pos;
171 		pos += PCI_CAP_LIST_NEXT;
172 	}
173 	return 0;
174 }
175 
176 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
177 			       u8 pos, int cap)
178 {
179 	int ttl = PCI_FIND_CAP_TTL;
180 
181 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
182 }
183 
184 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
185 {
186 	return __pci_find_next_cap(dev->bus, dev->devfn,
187 				   pos + PCI_CAP_LIST_NEXT, cap);
188 }
189 EXPORT_SYMBOL_GPL(pci_find_next_capability);
190 
191 static int __pci_bus_find_cap_start(struct pci_bus *bus,
192 				    unsigned int devfn, u8 hdr_type)
193 {
194 	u16 status;
195 
196 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
197 	if (!(status & PCI_STATUS_CAP_LIST))
198 		return 0;
199 
200 	switch (hdr_type) {
201 	case PCI_HEADER_TYPE_NORMAL:
202 	case PCI_HEADER_TYPE_BRIDGE:
203 		return PCI_CAPABILITY_LIST;
204 	case PCI_HEADER_TYPE_CARDBUS:
205 		return PCI_CB_CAPABILITY_LIST;
206 	default:
207 		return 0;
208 	}
209 
210 	return 0;
211 }
212 
213 /**
214  * pci_find_capability - query for devices' capabilities
215  * @dev: PCI device to query
216  * @cap: capability code
217  *
218  * Tell if a device supports a given PCI capability.
219  * Returns the address of the requested capability structure within the
220  * device's PCI configuration space or 0 in case the device does not
221  * support it.  Possible values for @cap:
222  *
223  *  %PCI_CAP_ID_PM           Power Management
224  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
225  *  %PCI_CAP_ID_VPD          Vital Product Data
226  *  %PCI_CAP_ID_SLOTID       Slot Identification
227  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
228  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
229  *  %PCI_CAP_ID_PCIX         PCI-X
230  *  %PCI_CAP_ID_EXP          PCI Express
231  */
232 int pci_find_capability(struct pci_dev *dev, int cap)
233 {
234 	int pos;
235 
236 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
237 	if (pos)
238 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
239 
240 	return pos;
241 }
242 
243 /**
244  * pci_bus_find_capability - query for devices' capabilities
245  * @bus:   the PCI bus to query
246  * @devfn: PCI device to query
247  * @cap:   capability code
248  *
249  * Like pci_find_capability() but works for pci devices that do not have a
250  * pci_dev structure set up yet.
251  *
252  * Returns the address of the requested capability structure within the
253  * device's PCI configuration space or 0 in case the device does not
254  * support it.
255  */
256 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
257 {
258 	int pos;
259 	u8 hdr_type;
260 
261 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
262 
263 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
264 	if (pos)
265 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
266 
267 	return pos;
268 }
269 
270 /**
271  * pci_find_ext_capability - Find an extended capability
272  * @dev: PCI device to query
273  * @cap: capability code
274  *
275  * Returns the address of the requested extended capability structure
276  * within the device's PCI configuration space or 0 if the device does
277  * not support it.  Possible values for @cap:
278  *
279  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
280  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
281  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
282  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
283  */
284 int pci_find_ext_capability(struct pci_dev *dev, int cap)
285 {
286 	u32 header;
287 	int ttl;
288 	int pos = PCI_CFG_SPACE_SIZE;
289 
290 	/* minimum 8 bytes per capability */
291 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
292 
293 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
294 		return 0;
295 
296 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
297 		return 0;
298 
299 	/*
300 	 * If we have no capabilities, this is indicated by cap ID,
301 	 * cap version and next pointer all being 0.
302 	 */
303 	if (header == 0)
304 		return 0;
305 
306 	while (ttl-- > 0) {
307 		if (PCI_EXT_CAP_ID(header) == cap)
308 			return pos;
309 
310 		pos = PCI_EXT_CAP_NEXT(header);
311 		if (pos < PCI_CFG_SPACE_SIZE)
312 			break;
313 
314 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
315 			break;
316 	}
317 
318 	return 0;
319 }
320 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
321 
322 /**
323  * pci_bus_find_ext_capability - find an extended capability
324  * @bus:   the PCI bus to query
325  * @devfn: PCI device to query
326  * @cap:   capability code
327  *
328  * Like pci_find_ext_capability() but works for pci devices that do not have a
329  * pci_dev structure set up yet.
330  *
331  * Returns the address of the requested capability structure within the
332  * device's PCI configuration space or 0 in case the device does not
333  * support it.
334  */
335 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
336 				int cap)
337 {
338 	u32 header;
339 	int ttl;
340 	int pos = PCI_CFG_SPACE_SIZE;
341 
342 	/* minimum 8 bytes per capability */
343 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
344 
345 	if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
346 		return 0;
347 	if (header == 0xffffffff || header == 0)
348 		return 0;
349 
350 	while (ttl-- > 0) {
351 		if (PCI_EXT_CAP_ID(header) == cap)
352 			return pos;
353 
354 		pos = PCI_EXT_CAP_NEXT(header);
355 		if (pos < PCI_CFG_SPACE_SIZE)
356 			break;
357 
358 		if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
359 			break;
360 	}
361 
362 	return 0;
363 }
364 
365 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
366 {
367 	int rc, ttl = PCI_FIND_CAP_TTL;
368 	u8 cap, mask;
369 
370 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
371 		mask = HT_3BIT_CAP_MASK;
372 	else
373 		mask = HT_5BIT_CAP_MASK;
374 
375 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
376 				      PCI_CAP_ID_HT, &ttl);
377 	while (pos) {
378 		rc = pci_read_config_byte(dev, pos + 3, &cap);
379 		if (rc != PCIBIOS_SUCCESSFUL)
380 			return 0;
381 
382 		if ((cap & mask) == ht_cap)
383 			return pos;
384 
385 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
386 					      pos + PCI_CAP_LIST_NEXT,
387 					      PCI_CAP_ID_HT, &ttl);
388 	}
389 
390 	return 0;
391 }
392 /**
393  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
394  * @dev: PCI device to query
395  * @pos: Position from which to continue searching
396  * @ht_cap: Hypertransport capability code
397  *
398  * To be used in conjunction with pci_find_ht_capability() to search for
399  * all capabilities matching @ht_cap. @pos should always be a value returned
400  * from pci_find_ht_capability().
401  *
402  * NB. To be 100% safe against broken PCI devices, the caller should take
403  * steps to avoid an infinite loop.
404  */
405 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
406 {
407 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
408 }
409 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
410 
411 /**
412  * pci_find_ht_capability - query a device's Hypertransport capabilities
413  * @dev: PCI device to query
414  * @ht_cap: Hypertransport capability code
415  *
416  * Tell if a device supports a given Hypertransport capability.
417  * Returns an address within the device's PCI configuration space
418  * or 0 in case the device does not support the request capability.
419  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
420  * which has a Hypertransport capability matching @ht_cap.
421  */
422 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
423 {
424 	int pos;
425 
426 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
427 	if (pos)
428 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
429 
430 	return pos;
431 }
432 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
433 
434 /**
435  * pci_find_parent_resource - return resource region of parent bus of given region
436  * @dev: PCI device structure contains resources to be searched
437  * @res: child resource record for which parent is sought
438  *
439  *  For given resource region of given device, return the resource
440  *  region of parent bus the given region is contained in or where
441  *  it should be allocated from.
442  */
443 struct resource *
444 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
445 {
446 	const struct pci_bus *bus = dev->bus;
447 	int i;
448 	struct resource *best = NULL, *r;
449 
450 	pci_bus_for_each_resource(bus, r, i) {
451 		if (!r)
452 			continue;
453 		if (res->start && !(res->start >= r->start && res->end <= r->end))
454 			continue;	/* Not contained */
455 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
456 			continue;	/* Wrong type */
457 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
458 			return r;	/* Exact match */
459 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
460 		if (r->flags & IORESOURCE_PREFETCH)
461 			continue;
462 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
463 		if (!best)
464 			best = r;
465 	}
466 	return best;
467 }
468 
469 /**
470  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
471  * @dev: PCI device to have its BARs restored
472  *
473  * Restore the BAR values for a given device, so as to make it
474  * accessible by its driver.
475  */
476 static void
477 pci_restore_bars(struct pci_dev *dev)
478 {
479 	int i;
480 
481 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
482 		pci_update_resource(dev, i);
483 }
484 
485 static struct pci_platform_pm_ops *pci_platform_pm;
486 
487 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
488 {
489 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
490 	    || !ops->sleep_wake || !ops->can_wakeup)
491 		return -EINVAL;
492 	pci_platform_pm = ops;
493 	return 0;
494 }
495 
496 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
497 {
498 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
499 }
500 
501 static inline int platform_pci_set_power_state(struct pci_dev *dev,
502                                                 pci_power_t t)
503 {
504 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
505 }
506 
507 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
508 {
509 	return pci_platform_pm ?
510 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
511 }
512 
513 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
514 {
515 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
516 }
517 
518 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
519 {
520 	return pci_platform_pm ?
521 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
522 }
523 
524 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
525 {
526 	return pci_platform_pm ?
527 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
528 }
529 
530 /**
531  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
532  *                           given PCI device
533  * @dev: PCI device to handle.
534  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
535  *
536  * RETURN VALUE:
537  * -EINVAL if the requested state is invalid.
538  * -EIO if device does not support PCI PM or its PM capabilities register has a
539  * wrong version, or device doesn't support the requested state.
540  * 0 if device already is in the requested state.
541  * 0 if device's power state has been successfully changed.
542  */
543 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
544 {
545 	u16 pmcsr;
546 	bool need_restore = false;
547 
548 	/* Check if we're already there */
549 	if (dev->current_state == state)
550 		return 0;
551 
552 	if (!dev->pm_cap)
553 		return -EIO;
554 
555 	if (state < PCI_D0 || state > PCI_D3hot)
556 		return -EINVAL;
557 
558 	/* Validate current state:
559 	 * Can enter D0 from any state, but if we can only go deeper
560 	 * to sleep if we're already in a low power state
561 	 */
562 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
563 	    && dev->current_state > state) {
564 		dev_err(&dev->dev, "invalid power transition "
565 			"(from state %d to %d)\n", dev->current_state, state);
566 		return -EINVAL;
567 	}
568 
569 	/* check if this device supports the desired state */
570 	if ((state == PCI_D1 && !dev->d1_support)
571 	   || (state == PCI_D2 && !dev->d2_support))
572 		return -EIO;
573 
574 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
575 
576 	/* If we're (effectively) in D3, force entire word to 0.
577 	 * This doesn't affect PME_Status, disables PME_En, and
578 	 * sets PowerState to 0.
579 	 */
580 	switch (dev->current_state) {
581 	case PCI_D0:
582 	case PCI_D1:
583 	case PCI_D2:
584 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
585 		pmcsr |= state;
586 		break;
587 	case PCI_D3hot:
588 	case PCI_D3cold:
589 	case PCI_UNKNOWN: /* Boot-up */
590 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
591 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
592 			need_restore = true;
593 		/* Fall-through: force to D0 */
594 	default:
595 		pmcsr = 0;
596 		break;
597 	}
598 
599 	/* enter specified state */
600 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
601 
602 	/* Mandatory power management transition delays */
603 	/* see PCI PM 1.1 5.6.1 table 18 */
604 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
605 		pci_dev_d3_sleep(dev);
606 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
607 		udelay(PCI_PM_D2_DELAY);
608 
609 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
610 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
611 	if (dev->current_state != state && printk_ratelimit())
612 		dev_info(&dev->dev, "Refused to change power state, "
613 			"currently in D%d\n", dev->current_state);
614 
615 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
616 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
617 	 * from D3hot to D0 _may_ perform an internal reset, thereby
618 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
619 	 * For example, at least some versions of the 3c905B and the
620 	 * 3c556B exhibit this behaviour.
621 	 *
622 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
623 	 * devices in a D3hot state at boot.  Consequently, we need to
624 	 * restore at least the BARs so that the device will be
625 	 * accessible to its driver.
626 	 */
627 	if (need_restore)
628 		pci_restore_bars(dev);
629 
630 	if (dev->bus->self)
631 		pcie_aspm_pm_state_change(dev->bus->self);
632 
633 	return 0;
634 }
635 
636 /**
637  * pci_update_current_state - Read PCI power state of given device from its
638  *                            PCI PM registers and cache it
639  * @dev: PCI device to handle.
640  * @state: State to cache in case the device doesn't have the PM capability
641  */
642 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
643 {
644 	if (dev->pm_cap) {
645 		u16 pmcsr;
646 
647 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
648 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
649 	} else {
650 		dev->current_state = state;
651 	}
652 }
653 
654 /**
655  * pci_platform_power_transition - Use platform to change device power state
656  * @dev: PCI device to handle.
657  * @state: State to put the device into.
658  */
659 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
660 {
661 	int error;
662 
663 	if (platform_pci_power_manageable(dev)) {
664 		error = platform_pci_set_power_state(dev, state);
665 		if (!error)
666 			pci_update_current_state(dev, state);
667 	} else {
668 		error = -ENODEV;
669 		/* Fall back to PCI_D0 if native PM is not supported */
670 		if (!dev->pm_cap)
671 			dev->current_state = PCI_D0;
672 	}
673 
674 	return error;
675 }
676 
677 /**
678  * __pci_start_power_transition - Start power transition of a PCI device
679  * @dev: PCI device to handle.
680  * @state: State to put the device into.
681  */
682 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
683 {
684 	if (state == PCI_D0)
685 		pci_platform_power_transition(dev, PCI_D0);
686 }
687 
688 /**
689  * __pci_complete_power_transition - Complete power transition of a PCI device
690  * @dev: PCI device to handle.
691  * @state: State to put the device into.
692  *
693  * This function should not be called directly by device drivers.
694  */
695 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
696 {
697 	return state >= PCI_D0 ?
698 			pci_platform_power_transition(dev, state) : -EINVAL;
699 }
700 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
701 
702 /**
703  * pci_set_power_state - Set the power state of a PCI device
704  * @dev: PCI device to handle.
705  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
706  *
707  * Transition a device to a new power state, using the platform firmware and/or
708  * the device's PCI PM registers.
709  *
710  * RETURN VALUE:
711  * -EINVAL if the requested state is invalid.
712  * -EIO if device does not support PCI PM or its PM capabilities register has a
713  * wrong version, or device doesn't support the requested state.
714  * 0 if device already is in the requested state.
715  * 0 if device's power state has been successfully changed.
716  */
717 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
718 {
719 	int error;
720 
721 	/* bound the state we're entering */
722 	if (state > PCI_D3hot)
723 		state = PCI_D3hot;
724 	else if (state < PCI_D0)
725 		state = PCI_D0;
726 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
727 		/*
728 		 * If the device or the parent bridge do not support PCI PM,
729 		 * ignore the request if we're doing anything other than putting
730 		 * it into D0 (which would only happen on boot).
731 		 */
732 		return 0;
733 
734 	__pci_start_power_transition(dev, state);
735 
736 	/* This device is quirked not to be put into D3, so
737 	   don't put it in D3 */
738 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
739 		return 0;
740 
741 	error = pci_raw_set_power_state(dev, state);
742 
743 	if (!__pci_complete_power_transition(dev, state))
744 		error = 0;
745 	/*
746 	 * When aspm_policy is "powersave" this call ensures
747 	 * that ASPM is configured.
748 	 */
749 	if (!error && dev->bus->self)
750 		pcie_aspm_powersave_config_link(dev->bus->self);
751 
752 	return error;
753 }
754 
755 /**
756  * pci_choose_state - Choose the power state of a PCI device
757  * @dev: PCI device to be suspended
758  * @state: target sleep state for the whole system. This is the value
759  *	that is passed to suspend() function.
760  *
761  * Returns PCI power state suitable for given device and given system
762  * message.
763  */
764 
765 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
766 {
767 	pci_power_t ret;
768 
769 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
770 		return PCI_D0;
771 
772 	ret = platform_pci_choose_state(dev);
773 	if (ret != PCI_POWER_ERROR)
774 		return ret;
775 
776 	switch (state.event) {
777 	case PM_EVENT_ON:
778 		return PCI_D0;
779 	case PM_EVENT_FREEZE:
780 	case PM_EVENT_PRETHAW:
781 		/* REVISIT both freeze and pre-thaw "should" use D0 */
782 	case PM_EVENT_SUSPEND:
783 	case PM_EVENT_HIBERNATE:
784 		return PCI_D3hot;
785 	default:
786 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
787 			 state.event);
788 		BUG();
789 	}
790 	return PCI_D0;
791 }
792 
793 EXPORT_SYMBOL(pci_choose_state);
794 
795 #define PCI_EXP_SAVE_REGS	7
796 
797 #define pcie_cap_has_devctl(type, flags)	1
798 #define pcie_cap_has_lnkctl(type, flags)		\
799 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
800 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
801 		  type == PCI_EXP_TYPE_ENDPOINT ||	\
802 		  type == PCI_EXP_TYPE_LEG_END))
803 #define pcie_cap_has_sltctl(type, flags)		\
804 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
805 		 ((type == PCI_EXP_TYPE_ROOT_PORT) ||	\
806 		  (type == PCI_EXP_TYPE_DOWNSTREAM &&	\
807 		   (flags & PCI_EXP_FLAGS_SLOT))))
808 #define pcie_cap_has_rtctl(type, flags)			\
809 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
810 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
811 		  type == PCI_EXP_TYPE_RC_EC))
812 #define pcie_cap_has_devctl2(type, flags)		\
813 		((flags & PCI_EXP_FLAGS_VERS) > 1)
814 #define pcie_cap_has_lnkctl2(type, flags)		\
815 		((flags & PCI_EXP_FLAGS_VERS) > 1)
816 #define pcie_cap_has_sltctl2(type, flags)		\
817 		((flags & PCI_EXP_FLAGS_VERS) > 1)
818 
819 static int pci_save_pcie_state(struct pci_dev *dev)
820 {
821 	int pos, i = 0;
822 	struct pci_cap_saved_state *save_state;
823 	u16 *cap;
824 	u16 flags;
825 
826 	pos = pci_pcie_cap(dev);
827 	if (!pos)
828 		return 0;
829 
830 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
831 	if (!save_state) {
832 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
833 		return -ENOMEM;
834 	}
835 	cap = (u16 *)&save_state->cap.data[0];
836 
837 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
838 
839 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
840 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
841 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
842 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
843 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
844 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
845 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
846 		pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
847 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
848 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
849 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
850 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
851 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
852 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
853 
854 	return 0;
855 }
856 
857 static void pci_restore_pcie_state(struct pci_dev *dev)
858 {
859 	int i = 0, pos;
860 	struct pci_cap_saved_state *save_state;
861 	u16 *cap;
862 	u16 flags;
863 
864 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
865 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
866 	if (!save_state || pos <= 0)
867 		return;
868 	cap = (u16 *)&save_state->cap.data[0];
869 
870 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
871 
872 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
873 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
874 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
875 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
876 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
877 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
878 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
879 		pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
880 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
881 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
882 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
883 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
884 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
885 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
886 }
887 
888 
889 static int pci_save_pcix_state(struct pci_dev *dev)
890 {
891 	int pos;
892 	struct pci_cap_saved_state *save_state;
893 
894 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
895 	if (pos <= 0)
896 		return 0;
897 
898 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
899 	if (!save_state) {
900 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
901 		return -ENOMEM;
902 	}
903 
904 	pci_read_config_word(dev, pos + PCI_X_CMD,
905 			     (u16 *)save_state->cap.data);
906 
907 	return 0;
908 }
909 
910 static void pci_restore_pcix_state(struct pci_dev *dev)
911 {
912 	int i = 0, pos;
913 	struct pci_cap_saved_state *save_state;
914 	u16 *cap;
915 
916 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
917 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
918 	if (!save_state || pos <= 0)
919 		return;
920 	cap = (u16 *)&save_state->cap.data[0];
921 
922 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
923 }
924 
925 
926 /**
927  * pci_save_state - save the PCI configuration space of a device before suspending
928  * @dev: - PCI device that we're dealing with
929  */
930 int
931 pci_save_state(struct pci_dev *dev)
932 {
933 	int i;
934 	/* XXX: 100% dword access ok here? */
935 	for (i = 0; i < 16; i++)
936 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
937 	dev->state_saved = true;
938 	if ((i = pci_save_pcie_state(dev)) != 0)
939 		return i;
940 	if ((i = pci_save_pcix_state(dev)) != 0)
941 		return i;
942 	return 0;
943 }
944 
945 /**
946  * pci_restore_state - Restore the saved state of a PCI device
947  * @dev: - PCI device that we're dealing with
948  */
949 void pci_restore_state(struct pci_dev *dev)
950 {
951 	int i;
952 	u32 val;
953 
954 	if (!dev->state_saved)
955 		return;
956 
957 	/* PCI Express register must be restored first */
958 	pci_restore_pcie_state(dev);
959 
960 	/*
961 	 * The Base Address register should be programmed before the command
962 	 * register(s)
963 	 */
964 	for (i = 15; i >= 0; i--) {
965 		pci_read_config_dword(dev, i * 4, &val);
966 		if (val != dev->saved_config_space[i]) {
967 			dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
968 				"space at offset %#x (was %#x, writing %#x)\n",
969 				i, val, (int)dev->saved_config_space[i]);
970 			pci_write_config_dword(dev,i * 4,
971 				dev->saved_config_space[i]);
972 		}
973 	}
974 	pci_restore_pcix_state(dev);
975 	pci_restore_msi_state(dev);
976 	pci_restore_iov_state(dev);
977 
978 	dev->state_saved = false;
979 }
980 
981 struct pci_saved_state {
982 	u32 config_space[16];
983 	struct pci_cap_saved_data cap[0];
984 };
985 
986 /**
987  * pci_store_saved_state - Allocate and return an opaque struct containing
988  *			   the device saved state.
989  * @dev: PCI device that we're dealing with
990  *
991  * Rerturn NULL if no state or error.
992  */
993 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
994 {
995 	struct pci_saved_state *state;
996 	struct pci_cap_saved_state *tmp;
997 	struct pci_cap_saved_data *cap;
998 	struct hlist_node *pos;
999 	size_t size;
1000 
1001 	if (!dev->state_saved)
1002 		return NULL;
1003 
1004 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1005 
1006 	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1007 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1008 
1009 	state = kzalloc(size, GFP_KERNEL);
1010 	if (!state)
1011 		return NULL;
1012 
1013 	memcpy(state->config_space, dev->saved_config_space,
1014 	       sizeof(state->config_space));
1015 
1016 	cap = state->cap;
1017 	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1018 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1019 		memcpy(cap, &tmp->cap, len);
1020 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1021 	}
1022 	/* Empty cap_save terminates list */
1023 
1024 	return state;
1025 }
1026 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1027 
1028 /**
1029  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1030  * @dev: PCI device that we're dealing with
1031  * @state: Saved state returned from pci_store_saved_state()
1032  */
1033 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1034 {
1035 	struct pci_cap_saved_data *cap;
1036 
1037 	dev->state_saved = false;
1038 
1039 	if (!state)
1040 		return 0;
1041 
1042 	memcpy(dev->saved_config_space, state->config_space,
1043 	       sizeof(state->config_space));
1044 
1045 	cap = state->cap;
1046 	while (cap->size) {
1047 		struct pci_cap_saved_state *tmp;
1048 
1049 		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1050 		if (!tmp || tmp->cap.size != cap->size)
1051 			return -EINVAL;
1052 
1053 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1054 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1055 		       sizeof(struct pci_cap_saved_data) + cap->size);
1056 	}
1057 
1058 	dev->state_saved = true;
1059 	return 0;
1060 }
1061 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1062 
1063 /**
1064  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1065  *				   and free the memory allocated for it.
1066  * @dev: PCI device that we're dealing with
1067  * @state: Pointer to saved state returned from pci_store_saved_state()
1068  */
1069 int pci_load_and_free_saved_state(struct pci_dev *dev,
1070 				  struct pci_saved_state **state)
1071 {
1072 	int ret = pci_load_saved_state(dev, *state);
1073 	kfree(*state);
1074 	*state = NULL;
1075 	return ret;
1076 }
1077 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1078 
1079 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1080 {
1081 	int err;
1082 
1083 	err = pci_set_power_state(dev, PCI_D0);
1084 	if (err < 0 && err != -EIO)
1085 		return err;
1086 	err = pcibios_enable_device(dev, bars);
1087 	if (err < 0)
1088 		return err;
1089 	pci_fixup_device(pci_fixup_enable, dev);
1090 
1091 	return 0;
1092 }
1093 
1094 /**
1095  * pci_reenable_device - Resume abandoned device
1096  * @dev: PCI device to be resumed
1097  *
1098  *  Note this function is a backend of pci_default_resume and is not supposed
1099  *  to be called by normal code, write proper resume handler and use it instead.
1100  */
1101 int pci_reenable_device(struct pci_dev *dev)
1102 {
1103 	if (pci_is_enabled(dev))
1104 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1105 	return 0;
1106 }
1107 
1108 static int __pci_enable_device_flags(struct pci_dev *dev,
1109 				     resource_size_t flags)
1110 {
1111 	int err;
1112 	int i, bars = 0;
1113 
1114 	/*
1115 	 * Power state could be unknown at this point, either due to a fresh
1116 	 * boot or a device removal call.  So get the current power state
1117 	 * so that things like MSI message writing will behave as expected
1118 	 * (e.g. if the device really is in D0 at enable time).
1119 	 */
1120 	if (dev->pm_cap) {
1121 		u16 pmcsr;
1122 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1123 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1124 	}
1125 
1126 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
1127 		return 0;		/* already enabled */
1128 
1129 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1130 		if (dev->resource[i].flags & flags)
1131 			bars |= (1 << i);
1132 
1133 	err = do_pci_enable_device(dev, bars);
1134 	if (err < 0)
1135 		atomic_dec(&dev->enable_cnt);
1136 	return err;
1137 }
1138 
1139 /**
1140  * pci_enable_device_io - Initialize a device for use with IO space
1141  * @dev: PCI device to be initialized
1142  *
1143  *  Initialize device before it's used by a driver. Ask low-level code
1144  *  to enable I/O resources. Wake up the device if it was suspended.
1145  *  Beware, this function can fail.
1146  */
1147 int pci_enable_device_io(struct pci_dev *dev)
1148 {
1149 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
1150 }
1151 
1152 /**
1153  * pci_enable_device_mem - Initialize a device for use with Memory space
1154  * @dev: PCI device to be initialized
1155  *
1156  *  Initialize device before it's used by a driver. Ask low-level code
1157  *  to enable Memory resources. Wake up the device if it was suspended.
1158  *  Beware, this function can fail.
1159  */
1160 int pci_enable_device_mem(struct pci_dev *dev)
1161 {
1162 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1163 }
1164 
1165 /**
1166  * pci_enable_device - Initialize device before it's used by a driver.
1167  * @dev: PCI device to be initialized
1168  *
1169  *  Initialize device before it's used by a driver. Ask low-level code
1170  *  to enable I/O and memory. Wake up the device if it was suspended.
1171  *  Beware, this function can fail.
1172  *
1173  *  Note we don't actually enable the device many times if we call
1174  *  this function repeatedly (we just increment the count).
1175  */
1176 int pci_enable_device(struct pci_dev *dev)
1177 {
1178 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1179 }
1180 
1181 /*
1182  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1183  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1184  * there's no need to track it separately.  pci_devres is initialized
1185  * when a device is enabled using managed PCI device enable interface.
1186  */
1187 struct pci_devres {
1188 	unsigned int enabled:1;
1189 	unsigned int pinned:1;
1190 	unsigned int orig_intx:1;
1191 	unsigned int restore_intx:1;
1192 	u32 region_mask;
1193 };
1194 
1195 static void pcim_release(struct device *gendev, void *res)
1196 {
1197 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1198 	struct pci_devres *this = res;
1199 	int i;
1200 
1201 	if (dev->msi_enabled)
1202 		pci_disable_msi(dev);
1203 	if (dev->msix_enabled)
1204 		pci_disable_msix(dev);
1205 
1206 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1207 		if (this->region_mask & (1 << i))
1208 			pci_release_region(dev, i);
1209 
1210 	if (this->restore_intx)
1211 		pci_intx(dev, this->orig_intx);
1212 
1213 	if (this->enabled && !this->pinned)
1214 		pci_disable_device(dev);
1215 }
1216 
1217 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1218 {
1219 	struct pci_devres *dr, *new_dr;
1220 
1221 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1222 	if (dr)
1223 		return dr;
1224 
1225 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1226 	if (!new_dr)
1227 		return NULL;
1228 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1229 }
1230 
1231 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1232 {
1233 	if (pci_is_managed(pdev))
1234 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1235 	return NULL;
1236 }
1237 
1238 /**
1239  * pcim_enable_device - Managed pci_enable_device()
1240  * @pdev: PCI device to be initialized
1241  *
1242  * Managed pci_enable_device().
1243  */
1244 int pcim_enable_device(struct pci_dev *pdev)
1245 {
1246 	struct pci_devres *dr;
1247 	int rc;
1248 
1249 	dr = get_pci_dr(pdev);
1250 	if (unlikely(!dr))
1251 		return -ENOMEM;
1252 	if (dr->enabled)
1253 		return 0;
1254 
1255 	rc = pci_enable_device(pdev);
1256 	if (!rc) {
1257 		pdev->is_managed = 1;
1258 		dr->enabled = 1;
1259 	}
1260 	return rc;
1261 }
1262 
1263 /**
1264  * pcim_pin_device - Pin managed PCI device
1265  * @pdev: PCI device to pin
1266  *
1267  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1268  * driver detach.  @pdev must have been enabled with
1269  * pcim_enable_device().
1270  */
1271 void pcim_pin_device(struct pci_dev *pdev)
1272 {
1273 	struct pci_devres *dr;
1274 
1275 	dr = find_pci_dr(pdev);
1276 	WARN_ON(!dr || !dr->enabled);
1277 	if (dr)
1278 		dr->pinned = 1;
1279 }
1280 
1281 /**
1282  * pcibios_disable_device - disable arch specific PCI resources for device dev
1283  * @dev: the PCI device to disable
1284  *
1285  * Disables architecture specific PCI resources for the device. This
1286  * is the default implementation. Architecture implementations can
1287  * override this.
1288  */
1289 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1290 
1291 static void do_pci_disable_device(struct pci_dev *dev)
1292 {
1293 	u16 pci_command;
1294 
1295 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1296 	if (pci_command & PCI_COMMAND_MASTER) {
1297 		pci_command &= ~PCI_COMMAND_MASTER;
1298 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1299 	}
1300 
1301 	pcibios_disable_device(dev);
1302 }
1303 
1304 /**
1305  * pci_disable_enabled_device - Disable device without updating enable_cnt
1306  * @dev: PCI device to disable
1307  *
1308  * NOTE: This function is a backend of PCI power management routines and is
1309  * not supposed to be called drivers.
1310  */
1311 void pci_disable_enabled_device(struct pci_dev *dev)
1312 {
1313 	if (pci_is_enabled(dev))
1314 		do_pci_disable_device(dev);
1315 }
1316 
1317 /**
1318  * pci_disable_device - Disable PCI device after use
1319  * @dev: PCI device to be disabled
1320  *
1321  * Signal to the system that the PCI device is not in use by the system
1322  * anymore.  This only involves disabling PCI bus-mastering, if active.
1323  *
1324  * Note we don't actually disable the device until all callers of
1325  * pci_enable_device() have called pci_disable_device().
1326  */
1327 void
1328 pci_disable_device(struct pci_dev *dev)
1329 {
1330 	struct pci_devres *dr;
1331 
1332 	dr = find_pci_dr(dev);
1333 	if (dr)
1334 		dr->enabled = 0;
1335 
1336 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1337 		return;
1338 
1339 	do_pci_disable_device(dev);
1340 
1341 	dev->is_busmaster = 0;
1342 }
1343 
1344 /**
1345  * pcibios_set_pcie_reset_state - set reset state for device dev
1346  * @dev: the PCIe device reset
1347  * @state: Reset state to enter into
1348  *
1349  *
1350  * Sets the PCIe reset state for the device. This is the default
1351  * implementation. Architecture implementations can override this.
1352  */
1353 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1354 							enum pcie_reset_state state)
1355 {
1356 	return -EINVAL;
1357 }
1358 
1359 /**
1360  * pci_set_pcie_reset_state - set reset state for device dev
1361  * @dev: the PCIe device reset
1362  * @state: Reset state to enter into
1363  *
1364  *
1365  * Sets the PCI reset state for the device.
1366  */
1367 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1368 {
1369 	return pcibios_set_pcie_reset_state(dev, state);
1370 }
1371 
1372 /**
1373  * pci_check_pme_status - Check if given device has generated PME.
1374  * @dev: Device to check.
1375  *
1376  * Check the PME status of the device and if set, clear it and clear PME enable
1377  * (if set).  Return 'true' if PME status and PME enable were both set or
1378  * 'false' otherwise.
1379  */
1380 bool pci_check_pme_status(struct pci_dev *dev)
1381 {
1382 	int pmcsr_pos;
1383 	u16 pmcsr;
1384 	bool ret = false;
1385 
1386 	if (!dev->pm_cap)
1387 		return false;
1388 
1389 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1390 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1391 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1392 		return false;
1393 
1394 	/* Clear PME status. */
1395 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1396 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1397 		/* Disable PME to avoid interrupt flood. */
1398 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1399 		ret = true;
1400 	}
1401 
1402 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1409  * @dev: Device to handle.
1410  * @ign: Ignored.
1411  *
1412  * Check if @dev has generated PME and queue a resume request for it in that
1413  * case.
1414  */
1415 static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1416 {
1417 	if (pci_check_pme_status(dev)) {
1418 		pci_wakeup_event(dev);
1419 		pm_request_resume(&dev->dev);
1420 	}
1421 	return 0;
1422 }
1423 
1424 /**
1425  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1426  * @bus: Top bus of the subtree to walk.
1427  */
1428 void pci_pme_wakeup_bus(struct pci_bus *bus)
1429 {
1430 	if (bus)
1431 		pci_walk_bus(bus, pci_pme_wakeup, NULL);
1432 }
1433 
1434 /**
1435  * pci_pme_capable - check the capability of PCI device to generate PME#
1436  * @dev: PCI device to handle.
1437  * @state: PCI state from which device will issue PME#.
1438  */
1439 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1440 {
1441 	if (!dev->pm_cap)
1442 		return false;
1443 
1444 	return !!(dev->pme_support & (1 << state));
1445 }
1446 
1447 static void pci_pme_list_scan(struct work_struct *work)
1448 {
1449 	struct pci_pme_device *pme_dev;
1450 
1451 	mutex_lock(&pci_pme_list_mutex);
1452 	if (!list_empty(&pci_pme_list)) {
1453 		list_for_each_entry(pme_dev, &pci_pme_list, list)
1454 			pci_pme_wakeup(pme_dev->dev, NULL);
1455 		schedule_delayed_work(&pci_pme_work, msecs_to_jiffies(PME_TIMEOUT));
1456 	}
1457 	mutex_unlock(&pci_pme_list_mutex);
1458 }
1459 
1460 /**
1461  * pci_external_pme - is a device an external PCI PME source?
1462  * @dev: PCI device to check
1463  *
1464  */
1465 
1466 static bool pci_external_pme(struct pci_dev *dev)
1467 {
1468 	if (pci_is_pcie(dev) || dev->bus->number == 0)
1469 		return false;
1470 	return true;
1471 }
1472 
1473 /**
1474  * pci_pme_active - enable or disable PCI device's PME# function
1475  * @dev: PCI device to handle.
1476  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1477  *
1478  * The caller must verify that the device is capable of generating PME# before
1479  * calling this function with @enable equal to 'true'.
1480  */
1481 void pci_pme_active(struct pci_dev *dev, bool enable)
1482 {
1483 	u16 pmcsr;
1484 
1485 	if (!dev->pm_cap)
1486 		return;
1487 
1488 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1489 	/* Clear PME_Status by writing 1 to it and enable PME# */
1490 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1491 	if (!enable)
1492 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1493 
1494 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1495 
1496 	/* PCI (as opposed to PCIe) PME requires that the device have
1497 	   its PME# line hooked up correctly. Not all hardware vendors
1498 	   do this, so the PME never gets delivered and the device
1499 	   remains asleep. The easiest way around this is to
1500 	   periodically walk the list of suspended devices and check
1501 	   whether any have their PME flag set. The assumption is that
1502 	   we'll wake up often enough anyway that this won't be a huge
1503 	   hit, and the power savings from the devices will still be a
1504 	   win. */
1505 
1506 	if (pci_external_pme(dev)) {
1507 		struct pci_pme_device *pme_dev;
1508 		if (enable) {
1509 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1510 					  GFP_KERNEL);
1511 			if (!pme_dev)
1512 				goto out;
1513 			pme_dev->dev = dev;
1514 			mutex_lock(&pci_pme_list_mutex);
1515 			list_add(&pme_dev->list, &pci_pme_list);
1516 			if (list_is_singular(&pci_pme_list))
1517 				schedule_delayed_work(&pci_pme_work,
1518 						      msecs_to_jiffies(PME_TIMEOUT));
1519 			mutex_unlock(&pci_pme_list_mutex);
1520 		} else {
1521 			mutex_lock(&pci_pme_list_mutex);
1522 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1523 				if (pme_dev->dev == dev) {
1524 					list_del(&pme_dev->list);
1525 					kfree(pme_dev);
1526 					break;
1527 				}
1528 			}
1529 			mutex_unlock(&pci_pme_list_mutex);
1530 		}
1531 	}
1532 
1533 out:
1534 	dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1535 			enable ? "enabled" : "disabled");
1536 }
1537 
1538 /**
1539  * __pci_enable_wake - enable PCI device as wakeup event source
1540  * @dev: PCI device affected
1541  * @state: PCI state from which device will issue wakeup events
1542  * @runtime: True if the events are to be generated at run time
1543  * @enable: True to enable event generation; false to disable
1544  *
1545  * This enables the device as a wakeup event source, or disables it.
1546  * When such events involves platform-specific hooks, those hooks are
1547  * called automatically by this routine.
1548  *
1549  * Devices with legacy power management (no standard PCI PM capabilities)
1550  * always require such platform hooks.
1551  *
1552  * RETURN VALUE:
1553  * 0 is returned on success
1554  * -EINVAL is returned if device is not supposed to wake up the system
1555  * Error code depending on the platform is returned if both the platform and
1556  * the native mechanism fail to enable the generation of wake-up events
1557  */
1558 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1559 		      bool runtime, bool enable)
1560 {
1561 	int ret = 0;
1562 
1563 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1564 		return -EINVAL;
1565 
1566 	/* Don't do the same thing twice in a row for one device. */
1567 	if (!!enable == !!dev->wakeup_prepared)
1568 		return 0;
1569 
1570 	/*
1571 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1572 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1573 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1574 	 */
1575 
1576 	if (enable) {
1577 		int error;
1578 
1579 		if (pci_pme_capable(dev, state))
1580 			pci_pme_active(dev, true);
1581 		else
1582 			ret = 1;
1583 		error = runtime ? platform_pci_run_wake(dev, true) :
1584 					platform_pci_sleep_wake(dev, true);
1585 		if (ret)
1586 			ret = error;
1587 		if (!ret)
1588 			dev->wakeup_prepared = true;
1589 	} else {
1590 		if (runtime)
1591 			platform_pci_run_wake(dev, false);
1592 		else
1593 			platform_pci_sleep_wake(dev, false);
1594 		pci_pme_active(dev, false);
1595 		dev->wakeup_prepared = false;
1596 	}
1597 
1598 	return ret;
1599 }
1600 EXPORT_SYMBOL(__pci_enable_wake);
1601 
1602 /**
1603  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1604  * @dev: PCI device to prepare
1605  * @enable: True to enable wake-up event generation; false to disable
1606  *
1607  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1608  * and this function allows them to set that up cleanly - pci_enable_wake()
1609  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1610  * ordering constraints.
1611  *
1612  * This function only returns error code if the device is not capable of
1613  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1614  * enable wake-up power for it.
1615  */
1616 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1617 {
1618 	return pci_pme_capable(dev, PCI_D3cold) ?
1619 			pci_enable_wake(dev, PCI_D3cold, enable) :
1620 			pci_enable_wake(dev, PCI_D3hot, enable);
1621 }
1622 
1623 /**
1624  * pci_target_state - find an appropriate low power state for a given PCI dev
1625  * @dev: PCI device
1626  *
1627  * Use underlying platform code to find a supported low power state for @dev.
1628  * If the platform can't manage @dev, return the deepest state from which it
1629  * can generate wake events, based on any available PME info.
1630  */
1631 pci_power_t pci_target_state(struct pci_dev *dev)
1632 {
1633 	pci_power_t target_state = PCI_D3hot;
1634 
1635 	if (platform_pci_power_manageable(dev)) {
1636 		/*
1637 		 * Call the platform to choose the target state of the device
1638 		 * and enable wake-up from this state if supported.
1639 		 */
1640 		pci_power_t state = platform_pci_choose_state(dev);
1641 
1642 		switch (state) {
1643 		case PCI_POWER_ERROR:
1644 		case PCI_UNKNOWN:
1645 			break;
1646 		case PCI_D1:
1647 		case PCI_D2:
1648 			if (pci_no_d1d2(dev))
1649 				break;
1650 		default:
1651 			target_state = state;
1652 		}
1653 	} else if (!dev->pm_cap) {
1654 		target_state = PCI_D0;
1655 	} else if (device_may_wakeup(&dev->dev)) {
1656 		/*
1657 		 * Find the deepest state from which the device can generate
1658 		 * wake-up events, make it the target state and enable device
1659 		 * to generate PME#.
1660 		 */
1661 		if (dev->pme_support) {
1662 			while (target_state
1663 			      && !(dev->pme_support & (1 << target_state)))
1664 				target_state--;
1665 		}
1666 	}
1667 
1668 	return target_state;
1669 }
1670 
1671 /**
1672  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1673  * @dev: Device to handle.
1674  *
1675  * Choose the power state appropriate for the device depending on whether
1676  * it can wake up the system and/or is power manageable by the platform
1677  * (PCI_D3hot is the default) and put the device into that state.
1678  */
1679 int pci_prepare_to_sleep(struct pci_dev *dev)
1680 {
1681 	pci_power_t target_state = pci_target_state(dev);
1682 	int error;
1683 
1684 	if (target_state == PCI_POWER_ERROR)
1685 		return -EIO;
1686 
1687 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1688 
1689 	error = pci_set_power_state(dev, target_state);
1690 
1691 	if (error)
1692 		pci_enable_wake(dev, target_state, false);
1693 
1694 	return error;
1695 }
1696 
1697 /**
1698  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1699  * @dev: Device to handle.
1700  *
1701  * Disable device's system wake-up capability and put it into D0.
1702  */
1703 int pci_back_from_sleep(struct pci_dev *dev)
1704 {
1705 	pci_enable_wake(dev, PCI_D0, false);
1706 	return pci_set_power_state(dev, PCI_D0);
1707 }
1708 
1709 /**
1710  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1711  * @dev: PCI device being suspended.
1712  *
1713  * Prepare @dev to generate wake-up events at run time and put it into a low
1714  * power state.
1715  */
1716 int pci_finish_runtime_suspend(struct pci_dev *dev)
1717 {
1718 	pci_power_t target_state = pci_target_state(dev);
1719 	int error;
1720 
1721 	if (target_state == PCI_POWER_ERROR)
1722 		return -EIO;
1723 
1724 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1725 
1726 	error = pci_set_power_state(dev, target_state);
1727 
1728 	if (error)
1729 		__pci_enable_wake(dev, target_state, true, false);
1730 
1731 	return error;
1732 }
1733 
1734 /**
1735  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1736  * @dev: Device to check.
1737  *
1738  * Return true if the device itself is cabable of generating wake-up events
1739  * (through the platform or using the native PCIe PME) or if the device supports
1740  * PME and one of its upstream bridges can generate wake-up events.
1741  */
1742 bool pci_dev_run_wake(struct pci_dev *dev)
1743 {
1744 	struct pci_bus *bus = dev->bus;
1745 
1746 	if (device_run_wake(&dev->dev))
1747 		return true;
1748 
1749 	if (!dev->pme_support)
1750 		return false;
1751 
1752 	while (bus->parent) {
1753 		struct pci_dev *bridge = bus->self;
1754 
1755 		if (device_run_wake(&bridge->dev))
1756 			return true;
1757 
1758 		bus = bus->parent;
1759 	}
1760 
1761 	/* We have reached the root bus. */
1762 	if (bus->bridge)
1763 		return device_run_wake(bus->bridge);
1764 
1765 	return false;
1766 }
1767 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1768 
1769 /**
1770  * pci_pm_init - Initialize PM functions of given PCI device
1771  * @dev: PCI device to handle.
1772  */
1773 void pci_pm_init(struct pci_dev *dev)
1774 {
1775 	int pm;
1776 	u16 pmc;
1777 
1778 	pm_runtime_forbid(&dev->dev);
1779 	device_enable_async_suspend(&dev->dev);
1780 	dev->wakeup_prepared = false;
1781 
1782 	dev->pm_cap = 0;
1783 
1784 	/* find PCI PM capability in list */
1785 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1786 	if (!pm)
1787 		return;
1788 	/* Check device's ability to generate PME# */
1789 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1790 
1791 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1792 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1793 			pmc & PCI_PM_CAP_VER_MASK);
1794 		return;
1795 	}
1796 
1797 	dev->pm_cap = pm;
1798 	dev->d3_delay = PCI_PM_D3_WAIT;
1799 
1800 	dev->d1_support = false;
1801 	dev->d2_support = false;
1802 	if (!pci_no_d1d2(dev)) {
1803 		if (pmc & PCI_PM_CAP_D1)
1804 			dev->d1_support = true;
1805 		if (pmc & PCI_PM_CAP_D2)
1806 			dev->d2_support = true;
1807 
1808 		if (dev->d1_support || dev->d2_support)
1809 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1810 				   dev->d1_support ? " D1" : "",
1811 				   dev->d2_support ? " D2" : "");
1812 	}
1813 
1814 	pmc &= PCI_PM_CAP_PME_MASK;
1815 	if (pmc) {
1816 		dev_printk(KERN_DEBUG, &dev->dev,
1817 			 "PME# supported from%s%s%s%s%s\n",
1818 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1819 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1820 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1821 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1822 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1823 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1824 		/*
1825 		 * Make device's PM flags reflect the wake-up capability, but
1826 		 * let the user space enable it to wake up the system as needed.
1827 		 */
1828 		device_set_wakeup_capable(&dev->dev, true);
1829 		/* Disable the PME# generation functionality */
1830 		pci_pme_active(dev, false);
1831 	} else {
1832 		dev->pme_support = 0;
1833 	}
1834 }
1835 
1836 /**
1837  * platform_pci_wakeup_init - init platform wakeup if present
1838  * @dev: PCI device
1839  *
1840  * Some devices don't have PCI PM caps but can still generate wakeup
1841  * events through platform methods (like ACPI events).  If @dev supports
1842  * platform wakeup events, set the device flag to indicate as much.  This
1843  * may be redundant if the device also supports PCI PM caps, but double
1844  * initialization should be safe in that case.
1845  */
1846 void platform_pci_wakeup_init(struct pci_dev *dev)
1847 {
1848 	if (!platform_pci_can_wakeup(dev))
1849 		return;
1850 
1851 	device_set_wakeup_capable(&dev->dev, true);
1852 	platform_pci_sleep_wake(dev, false);
1853 }
1854 
1855 /**
1856  * pci_add_save_buffer - allocate buffer for saving given capability registers
1857  * @dev: the PCI device
1858  * @cap: the capability to allocate the buffer for
1859  * @size: requested size of the buffer
1860  */
1861 static int pci_add_cap_save_buffer(
1862 	struct pci_dev *dev, char cap, unsigned int size)
1863 {
1864 	int pos;
1865 	struct pci_cap_saved_state *save_state;
1866 
1867 	pos = pci_find_capability(dev, cap);
1868 	if (pos <= 0)
1869 		return 0;
1870 
1871 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1872 	if (!save_state)
1873 		return -ENOMEM;
1874 
1875 	save_state->cap.cap_nr = cap;
1876 	save_state->cap.size = size;
1877 	pci_add_saved_cap(dev, save_state);
1878 
1879 	return 0;
1880 }
1881 
1882 /**
1883  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1884  * @dev: the PCI device
1885  */
1886 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1887 {
1888 	int error;
1889 
1890 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1891 					PCI_EXP_SAVE_REGS * sizeof(u16));
1892 	if (error)
1893 		dev_err(&dev->dev,
1894 			"unable to preallocate PCI Express save buffer\n");
1895 
1896 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1897 	if (error)
1898 		dev_err(&dev->dev,
1899 			"unable to preallocate PCI-X save buffer\n");
1900 }
1901 
1902 /**
1903  * pci_enable_ari - enable ARI forwarding if hardware support it
1904  * @dev: the PCI device
1905  */
1906 void pci_enable_ari(struct pci_dev *dev)
1907 {
1908 	int pos;
1909 	u32 cap;
1910 	u16 flags, ctrl;
1911 	struct pci_dev *bridge;
1912 
1913 	if (!pci_is_pcie(dev) || dev->devfn)
1914 		return;
1915 
1916 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1917 	if (!pos)
1918 		return;
1919 
1920 	bridge = dev->bus->self;
1921 	if (!bridge || !pci_is_pcie(bridge))
1922 		return;
1923 
1924 	pos = pci_pcie_cap(bridge);
1925 	if (!pos)
1926 		return;
1927 
1928 	/* ARI is a PCIe v2 feature */
1929 	pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
1930 	if ((flags & PCI_EXP_FLAGS_VERS) < 2)
1931 		return;
1932 
1933 	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1934 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
1935 		return;
1936 
1937 	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1938 	ctrl |= PCI_EXP_DEVCTL2_ARI;
1939 	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1940 
1941 	bridge->ari_enabled = 1;
1942 }
1943 
1944 /**
1945  * pci_enable_ido - enable ID-based ordering on a device
1946  * @dev: the PCI device
1947  * @type: which types of IDO to enable
1948  *
1949  * Enable ID-based ordering on @dev.  @type can contain the bits
1950  * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
1951  * which types of transactions are allowed to be re-ordered.
1952  */
1953 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
1954 {
1955 	int pos;
1956 	u16 ctrl;
1957 
1958 	pos = pci_pcie_cap(dev);
1959 	if (!pos)
1960 		return;
1961 
1962 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1963 	if (type & PCI_EXP_IDO_REQUEST)
1964 		ctrl |= PCI_EXP_IDO_REQ_EN;
1965 	if (type & PCI_EXP_IDO_COMPLETION)
1966 		ctrl |= PCI_EXP_IDO_CMP_EN;
1967 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1968 }
1969 EXPORT_SYMBOL(pci_enable_ido);
1970 
1971 /**
1972  * pci_disable_ido - disable ID-based ordering on a device
1973  * @dev: the PCI device
1974  * @type: which types of IDO to disable
1975  */
1976 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
1977 {
1978 	int pos;
1979 	u16 ctrl;
1980 
1981 	if (!pci_is_pcie(dev))
1982 		return;
1983 
1984 	pos = pci_pcie_cap(dev);
1985 	if (!pos)
1986 		return;
1987 
1988 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1989 	if (type & PCI_EXP_IDO_REQUEST)
1990 		ctrl &= ~PCI_EXP_IDO_REQ_EN;
1991 	if (type & PCI_EXP_IDO_COMPLETION)
1992 		ctrl &= ~PCI_EXP_IDO_CMP_EN;
1993 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1994 }
1995 EXPORT_SYMBOL(pci_disable_ido);
1996 
1997 /**
1998  * pci_enable_obff - enable optimized buffer flush/fill
1999  * @dev: PCI device
2000  * @type: type of signaling to use
2001  *
2002  * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2003  * signaling if possible, falling back to message signaling only if
2004  * WAKE# isn't supported.  @type should indicate whether the PCIe link
2005  * be brought out of L0s or L1 to send the message.  It should be either
2006  * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2007  *
2008  * If your device can benefit from receiving all messages, even at the
2009  * power cost of bringing the link back up from a low power state, use
2010  * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2011  * preferred type).
2012  *
2013  * RETURNS:
2014  * Zero on success, appropriate error number on failure.
2015  */
2016 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2017 {
2018 	int pos;
2019 	u32 cap;
2020 	u16 ctrl;
2021 	int ret;
2022 
2023 	if (!pci_is_pcie(dev))
2024 		return -ENOTSUPP;
2025 
2026 	pos = pci_pcie_cap(dev);
2027 	if (!pos)
2028 		return -ENOTSUPP;
2029 
2030 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2031 	if (!(cap & PCI_EXP_OBFF_MASK))
2032 		return -ENOTSUPP; /* no OBFF support at all */
2033 
2034 	/* Make sure the topology supports OBFF as well */
2035 	if (dev->bus) {
2036 		ret = pci_enable_obff(dev->bus->self, type);
2037 		if (ret)
2038 			return ret;
2039 	}
2040 
2041 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2042 	if (cap & PCI_EXP_OBFF_WAKE)
2043 		ctrl |= PCI_EXP_OBFF_WAKE_EN;
2044 	else {
2045 		switch (type) {
2046 		case PCI_EXP_OBFF_SIGNAL_L0:
2047 			if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2048 				ctrl |= PCI_EXP_OBFF_MSGA_EN;
2049 			break;
2050 		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2051 			ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2052 			ctrl |= PCI_EXP_OBFF_MSGB_EN;
2053 			break;
2054 		default:
2055 			WARN(1, "bad OBFF signal type\n");
2056 			return -ENOTSUPP;
2057 		}
2058 	}
2059 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2060 
2061 	return 0;
2062 }
2063 EXPORT_SYMBOL(pci_enable_obff);
2064 
2065 /**
2066  * pci_disable_obff - disable optimized buffer flush/fill
2067  * @dev: PCI device
2068  *
2069  * Disable OBFF on @dev.
2070  */
2071 void pci_disable_obff(struct pci_dev *dev)
2072 {
2073 	int pos;
2074 	u16 ctrl;
2075 
2076 	if (!pci_is_pcie(dev))
2077 		return;
2078 
2079 	pos = pci_pcie_cap(dev);
2080 	if (!pos)
2081 		return;
2082 
2083 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2084 	ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2085 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2086 }
2087 EXPORT_SYMBOL(pci_disable_obff);
2088 
2089 /**
2090  * pci_ltr_supported - check whether a device supports LTR
2091  * @dev: PCI device
2092  *
2093  * RETURNS:
2094  * True if @dev supports latency tolerance reporting, false otherwise.
2095  */
2096 bool pci_ltr_supported(struct pci_dev *dev)
2097 {
2098 	int pos;
2099 	u32 cap;
2100 
2101 	if (!pci_is_pcie(dev))
2102 		return false;
2103 
2104 	pos = pci_pcie_cap(dev);
2105 	if (!pos)
2106 		return false;
2107 
2108 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2109 
2110 	return cap & PCI_EXP_DEVCAP2_LTR;
2111 }
2112 EXPORT_SYMBOL(pci_ltr_supported);
2113 
2114 /**
2115  * pci_enable_ltr - enable latency tolerance reporting
2116  * @dev: PCI device
2117  *
2118  * Enable LTR on @dev if possible, which means enabling it first on
2119  * upstream ports.
2120  *
2121  * RETURNS:
2122  * Zero on success, errno on failure.
2123  */
2124 int pci_enable_ltr(struct pci_dev *dev)
2125 {
2126 	int pos;
2127 	u16 ctrl;
2128 	int ret;
2129 
2130 	if (!pci_ltr_supported(dev))
2131 		return -ENOTSUPP;
2132 
2133 	pos = pci_pcie_cap(dev);
2134 	if (!pos)
2135 		return -ENOTSUPP;
2136 
2137 	/* Only primary function can enable/disable LTR */
2138 	if (PCI_FUNC(dev->devfn) != 0)
2139 		return -EINVAL;
2140 
2141 	/* Enable upstream ports first */
2142 	if (dev->bus) {
2143 		ret = pci_enable_ltr(dev->bus->self);
2144 		if (ret)
2145 			return ret;
2146 	}
2147 
2148 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2149 	ctrl |= PCI_EXP_LTR_EN;
2150 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2151 
2152 	return 0;
2153 }
2154 EXPORT_SYMBOL(pci_enable_ltr);
2155 
2156 /**
2157  * pci_disable_ltr - disable latency tolerance reporting
2158  * @dev: PCI device
2159  */
2160 void pci_disable_ltr(struct pci_dev *dev)
2161 {
2162 	int pos;
2163 	u16 ctrl;
2164 
2165 	if (!pci_ltr_supported(dev))
2166 		return;
2167 
2168 	pos = pci_pcie_cap(dev);
2169 	if (!pos)
2170 		return;
2171 
2172 	/* Only primary function can enable/disable LTR */
2173 	if (PCI_FUNC(dev->devfn) != 0)
2174 		return;
2175 
2176 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2177 	ctrl &= ~PCI_EXP_LTR_EN;
2178 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2179 }
2180 EXPORT_SYMBOL(pci_disable_ltr);
2181 
2182 static int __pci_ltr_scale(int *val)
2183 {
2184 	int scale = 0;
2185 
2186 	while (*val > 1023) {
2187 		*val = (*val + 31) / 32;
2188 		scale++;
2189 	}
2190 	return scale;
2191 }
2192 
2193 /**
2194  * pci_set_ltr - set LTR latency values
2195  * @dev: PCI device
2196  * @snoop_lat_ns: snoop latency in nanoseconds
2197  * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2198  *
2199  * Figure out the scale and set the LTR values accordingly.
2200  */
2201 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2202 {
2203 	int pos, ret, snoop_scale, nosnoop_scale;
2204 	u16 val;
2205 
2206 	if (!pci_ltr_supported(dev))
2207 		return -ENOTSUPP;
2208 
2209 	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2210 	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2211 
2212 	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2213 	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2214 		return -EINVAL;
2215 
2216 	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2217 	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2218 		return -EINVAL;
2219 
2220 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2221 	if (!pos)
2222 		return -ENOTSUPP;
2223 
2224 	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2225 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2226 	if (ret != 4)
2227 		return -EIO;
2228 
2229 	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2230 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2231 	if (ret != 4)
2232 		return -EIO;
2233 
2234 	return 0;
2235 }
2236 EXPORT_SYMBOL(pci_set_ltr);
2237 
2238 static int pci_acs_enable;
2239 
2240 /**
2241  * pci_request_acs - ask for ACS to be enabled if supported
2242  */
2243 void pci_request_acs(void)
2244 {
2245 	pci_acs_enable = 1;
2246 }
2247 
2248 /**
2249  * pci_enable_acs - enable ACS if hardware support it
2250  * @dev: the PCI device
2251  */
2252 void pci_enable_acs(struct pci_dev *dev)
2253 {
2254 	int pos;
2255 	u16 cap;
2256 	u16 ctrl;
2257 
2258 	if (!pci_acs_enable)
2259 		return;
2260 
2261 	if (!pci_is_pcie(dev))
2262 		return;
2263 
2264 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2265 	if (!pos)
2266 		return;
2267 
2268 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2269 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2270 
2271 	/* Source Validation */
2272 	ctrl |= (cap & PCI_ACS_SV);
2273 
2274 	/* P2P Request Redirect */
2275 	ctrl |= (cap & PCI_ACS_RR);
2276 
2277 	/* P2P Completion Redirect */
2278 	ctrl |= (cap & PCI_ACS_CR);
2279 
2280 	/* Upstream Forwarding */
2281 	ctrl |= (cap & PCI_ACS_UF);
2282 
2283 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2284 }
2285 
2286 /**
2287  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2288  * @dev: the PCI device
2289  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2290  *
2291  * Perform INTx swizzling for a device behind one level of bridge.  This is
2292  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2293  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2294  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2295  * the PCI Express Base Specification, Revision 2.1)
2296  */
2297 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
2298 {
2299 	int slot;
2300 
2301 	if (pci_ari_enabled(dev->bus))
2302 		slot = 0;
2303 	else
2304 		slot = PCI_SLOT(dev->devfn);
2305 
2306 	return (((pin - 1) + slot) % 4) + 1;
2307 }
2308 
2309 int
2310 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2311 {
2312 	u8 pin;
2313 
2314 	pin = dev->pin;
2315 	if (!pin)
2316 		return -1;
2317 
2318 	while (!pci_is_root_bus(dev->bus)) {
2319 		pin = pci_swizzle_interrupt_pin(dev, pin);
2320 		dev = dev->bus->self;
2321 	}
2322 	*bridge = dev;
2323 	return pin;
2324 }
2325 
2326 /**
2327  * pci_common_swizzle - swizzle INTx all the way to root bridge
2328  * @dev: the PCI device
2329  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2330  *
2331  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2332  * bridges all the way up to a PCI root bus.
2333  */
2334 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2335 {
2336 	u8 pin = *pinp;
2337 
2338 	while (!pci_is_root_bus(dev->bus)) {
2339 		pin = pci_swizzle_interrupt_pin(dev, pin);
2340 		dev = dev->bus->self;
2341 	}
2342 	*pinp = pin;
2343 	return PCI_SLOT(dev->devfn);
2344 }
2345 
2346 /**
2347  *	pci_release_region - Release a PCI bar
2348  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2349  *	@bar: BAR to release
2350  *
2351  *	Releases the PCI I/O and memory resources previously reserved by a
2352  *	successful call to pci_request_region.  Call this function only
2353  *	after all use of the PCI regions has ceased.
2354  */
2355 void pci_release_region(struct pci_dev *pdev, int bar)
2356 {
2357 	struct pci_devres *dr;
2358 
2359 	if (pci_resource_len(pdev, bar) == 0)
2360 		return;
2361 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2362 		release_region(pci_resource_start(pdev, bar),
2363 				pci_resource_len(pdev, bar));
2364 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2365 		release_mem_region(pci_resource_start(pdev, bar),
2366 				pci_resource_len(pdev, bar));
2367 
2368 	dr = find_pci_dr(pdev);
2369 	if (dr)
2370 		dr->region_mask &= ~(1 << bar);
2371 }
2372 
2373 /**
2374  *	__pci_request_region - Reserved PCI I/O and memory resource
2375  *	@pdev: PCI device whose resources are to be reserved
2376  *	@bar: BAR to be reserved
2377  *	@res_name: Name to be associated with resource.
2378  *	@exclusive: whether the region access is exclusive or not
2379  *
2380  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2381  *	being reserved by owner @res_name.  Do not access any
2382  *	address inside the PCI regions unless this call returns
2383  *	successfully.
2384  *
2385  *	If @exclusive is set, then the region is marked so that userspace
2386  *	is explicitly not allowed to map the resource via /dev/mem or
2387  * 	sysfs MMIO access.
2388  *
2389  *	Returns 0 on success, or %EBUSY on error.  A warning
2390  *	message is also printed on failure.
2391  */
2392 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2393 									int exclusive)
2394 {
2395 	struct pci_devres *dr;
2396 
2397 	if (pci_resource_len(pdev, bar) == 0)
2398 		return 0;
2399 
2400 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2401 		if (!request_region(pci_resource_start(pdev, bar),
2402 			    pci_resource_len(pdev, bar), res_name))
2403 			goto err_out;
2404 	}
2405 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2406 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2407 					pci_resource_len(pdev, bar), res_name,
2408 					exclusive))
2409 			goto err_out;
2410 	}
2411 
2412 	dr = find_pci_dr(pdev);
2413 	if (dr)
2414 		dr->region_mask |= 1 << bar;
2415 
2416 	return 0;
2417 
2418 err_out:
2419 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2420 		 &pdev->resource[bar]);
2421 	return -EBUSY;
2422 }
2423 
2424 /**
2425  *	pci_request_region - Reserve PCI I/O and memory resource
2426  *	@pdev: PCI device whose resources are to be reserved
2427  *	@bar: BAR to be reserved
2428  *	@res_name: Name to be associated with resource
2429  *
2430  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2431  *	being reserved by owner @res_name.  Do not access any
2432  *	address inside the PCI regions unless this call returns
2433  *	successfully.
2434  *
2435  *	Returns 0 on success, or %EBUSY on error.  A warning
2436  *	message is also printed on failure.
2437  */
2438 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2439 {
2440 	return __pci_request_region(pdev, bar, res_name, 0);
2441 }
2442 
2443 /**
2444  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2445  *	@pdev: PCI device whose resources are to be reserved
2446  *	@bar: BAR to be reserved
2447  *	@res_name: Name to be associated with resource.
2448  *
2449  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2450  *	being reserved by owner @res_name.  Do not access any
2451  *	address inside the PCI regions unless this call returns
2452  *	successfully.
2453  *
2454  *	Returns 0 on success, or %EBUSY on error.  A warning
2455  *	message is also printed on failure.
2456  *
2457  *	The key difference that _exclusive makes it that userspace is
2458  *	explicitly not allowed to map the resource via /dev/mem or
2459  * 	sysfs.
2460  */
2461 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2462 {
2463 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2464 }
2465 /**
2466  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2467  * @pdev: PCI device whose resources were previously reserved
2468  * @bars: Bitmask of BARs to be released
2469  *
2470  * Release selected PCI I/O and memory resources previously reserved.
2471  * Call this function only after all use of the PCI regions has ceased.
2472  */
2473 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2474 {
2475 	int i;
2476 
2477 	for (i = 0; i < 6; i++)
2478 		if (bars & (1 << i))
2479 			pci_release_region(pdev, i);
2480 }
2481 
2482 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2483 				 const char *res_name, int excl)
2484 {
2485 	int i;
2486 
2487 	for (i = 0; i < 6; i++)
2488 		if (bars & (1 << i))
2489 			if (__pci_request_region(pdev, i, res_name, excl))
2490 				goto err_out;
2491 	return 0;
2492 
2493 err_out:
2494 	while(--i >= 0)
2495 		if (bars & (1 << i))
2496 			pci_release_region(pdev, i);
2497 
2498 	return -EBUSY;
2499 }
2500 
2501 
2502 /**
2503  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2504  * @pdev: PCI device whose resources are to be reserved
2505  * @bars: Bitmask of BARs to be requested
2506  * @res_name: Name to be associated with resource
2507  */
2508 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2509 				 const char *res_name)
2510 {
2511 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2512 }
2513 
2514 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2515 				 int bars, const char *res_name)
2516 {
2517 	return __pci_request_selected_regions(pdev, bars, res_name,
2518 			IORESOURCE_EXCLUSIVE);
2519 }
2520 
2521 /**
2522  *	pci_release_regions - Release reserved PCI I/O and memory resources
2523  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2524  *
2525  *	Releases all PCI I/O and memory resources previously reserved by a
2526  *	successful call to pci_request_regions.  Call this function only
2527  *	after all use of the PCI regions has ceased.
2528  */
2529 
2530 void pci_release_regions(struct pci_dev *pdev)
2531 {
2532 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2533 }
2534 
2535 /**
2536  *	pci_request_regions - Reserved PCI I/O and memory resources
2537  *	@pdev: PCI device whose resources are to be reserved
2538  *	@res_name: Name to be associated with resource.
2539  *
2540  *	Mark all PCI regions associated with PCI device @pdev as
2541  *	being reserved by owner @res_name.  Do not access any
2542  *	address inside the PCI regions unless this call returns
2543  *	successfully.
2544  *
2545  *	Returns 0 on success, or %EBUSY on error.  A warning
2546  *	message is also printed on failure.
2547  */
2548 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2549 {
2550 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2551 }
2552 
2553 /**
2554  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2555  *	@pdev: PCI device whose resources are to be reserved
2556  *	@res_name: Name to be associated with resource.
2557  *
2558  *	Mark all PCI regions associated with PCI device @pdev as
2559  *	being reserved by owner @res_name.  Do not access any
2560  *	address inside the PCI regions unless this call returns
2561  *	successfully.
2562  *
2563  *	pci_request_regions_exclusive() will mark the region so that
2564  * 	/dev/mem and the sysfs MMIO access will not be allowed.
2565  *
2566  *	Returns 0 on success, or %EBUSY on error.  A warning
2567  *	message is also printed on failure.
2568  */
2569 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2570 {
2571 	return pci_request_selected_regions_exclusive(pdev,
2572 					((1 << 6) - 1), res_name);
2573 }
2574 
2575 static void __pci_set_master(struct pci_dev *dev, bool enable)
2576 {
2577 	u16 old_cmd, cmd;
2578 
2579 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2580 	if (enable)
2581 		cmd = old_cmd | PCI_COMMAND_MASTER;
2582 	else
2583 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2584 	if (cmd != old_cmd) {
2585 		dev_dbg(&dev->dev, "%s bus mastering\n",
2586 			enable ? "enabling" : "disabling");
2587 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2588 	}
2589 	dev->is_busmaster = enable;
2590 }
2591 
2592 /**
2593  * pci_set_master - enables bus-mastering for device dev
2594  * @dev: the PCI device to enable
2595  *
2596  * Enables bus-mastering on the device and calls pcibios_set_master()
2597  * to do the needed arch specific settings.
2598  */
2599 void pci_set_master(struct pci_dev *dev)
2600 {
2601 	__pci_set_master(dev, true);
2602 	pcibios_set_master(dev);
2603 }
2604 
2605 /**
2606  * pci_clear_master - disables bus-mastering for device dev
2607  * @dev: the PCI device to disable
2608  */
2609 void pci_clear_master(struct pci_dev *dev)
2610 {
2611 	__pci_set_master(dev, false);
2612 }
2613 
2614 /**
2615  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2616  * @dev: the PCI device for which MWI is to be enabled
2617  *
2618  * Helper function for pci_set_mwi.
2619  * Originally copied from drivers/net/acenic.c.
2620  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2621  *
2622  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2623  */
2624 int pci_set_cacheline_size(struct pci_dev *dev)
2625 {
2626 	u8 cacheline_size;
2627 
2628 	if (!pci_cache_line_size)
2629 		return -EINVAL;
2630 
2631 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2632 	   equal to or multiple of the right value. */
2633 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2634 	if (cacheline_size >= pci_cache_line_size &&
2635 	    (cacheline_size % pci_cache_line_size) == 0)
2636 		return 0;
2637 
2638 	/* Write the correct value. */
2639 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2640 	/* Read it back. */
2641 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2642 	if (cacheline_size == pci_cache_line_size)
2643 		return 0;
2644 
2645 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2646 		   "supported\n", pci_cache_line_size << 2);
2647 
2648 	return -EINVAL;
2649 }
2650 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2651 
2652 #ifdef PCI_DISABLE_MWI
2653 int pci_set_mwi(struct pci_dev *dev)
2654 {
2655 	return 0;
2656 }
2657 
2658 int pci_try_set_mwi(struct pci_dev *dev)
2659 {
2660 	return 0;
2661 }
2662 
2663 void pci_clear_mwi(struct pci_dev *dev)
2664 {
2665 }
2666 
2667 #else
2668 
2669 /**
2670  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2671  * @dev: the PCI device for which MWI is enabled
2672  *
2673  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2674  *
2675  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2676  */
2677 int
2678 pci_set_mwi(struct pci_dev *dev)
2679 {
2680 	int rc;
2681 	u16 cmd;
2682 
2683 	rc = pci_set_cacheline_size(dev);
2684 	if (rc)
2685 		return rc;
2686 
2687 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2688 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2689 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2690 		cmd |= PCI_COMMAND_INVALIDATE;
2691 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2692 	}
2693 
2694 	return 0;
2695 }
2696 
2697 /**
2698  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2699  * @dev: the PCI device for which MWI is enabled
2700  *
2701  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2702  * Callers are not required to check the return value.
2703  *
2704  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2705  */
2706 int pci_try_set_mwi(struct pci_dev *dev)
2707 {
2708 	int rc = pci_set_mwi(dev);
2709 	return rc;
2710 }
2711 
2712 /**
2713  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2714  * @dev: the PCI device to disable
2715  *
2716  * Disables PCI Memory-Write-Invalidate transaction on the device
2717  */
2718 void
2719 pci_clear_mwi(struct pci_dev *dev)
2720 {
2721 	u16 cmd;
2722 
2723 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2724 	if (cmd & PCI_COMMAND_INVALIDATE) {
2725 		cmd &= ~PCI_COMMAND_INVALIDATE;
2726 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2727 	}
2728 }
2729 #endif /* ! PCI_DISABLE_MWI */
2730 
2731 /**
2732  * pci_intx - enables/disables PCI INTx for device dev
2733  * @pdev: the PCI device to operate on
2734  * @enable: boolean: whether to enable or disable PCI INTx
2735  *
2736  * Enables/disables PCI INTx for device dev
2737  */
2738 void
2739 pci_intx(struct pci_dev *pdev, int enable)
2740 {
2741 	u16 pci_command, new;
2742 
2743 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2744 
2745 	if (enable) {
2746 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2747 	} else {
2748 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2749 	}
2750 
2751 	if (new != pci_command) {
2752 		struct pci_devres *dr;
2753 
2754 		pci_write_config_word(pdev, PCI_COMMAND, new);
2755 
2756 		dr = find_pci_dr(pdev);
2757 		if (dr && !dr->restore_intx) {
2758 			dr->restore_intx = 1;
2759 			dr->orig_intx = !enable;
2760 		}
2761 	}
2762 }
2763 
2764 /**
2765  * pci_msi_off - disables any msi or msix capabilities
2766  * @dev: the PCI device to operate on
2767  *
2768  * If you want to use msi see pci_enable_msi and friends.
2769  * This is a lower level primitive that allows us to disable
2770  * msi operation at the device level.
2771  */
2772 void pci_msi_off(struct pci_dev *dev)
2773 {
2774 	int pos;
2775 	u16 control;
2776 
2777 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2778 	if (pos) {
2779 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2780 		control &= ~PCI_MSI_FLAGS_ENABLE;
2781 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2782 	}
2783 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2784 	if (pos) {
2785 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2786 		control &= ~PCI_MSIX_FLAGS_ENABLE;
2787 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2788 	}
2789 }
2790 EXPORT_SYMBOL_GPL(pci_msi_off);
2791 
2792 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2793 {
2794 	return dma_set_max_seg_size(&dev->dev, size);
2795 }
2796 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2797 
2798 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2799 {
2800 	return dma_set_seg_boundary(&dev->dev, mask);
2801 }
2802 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2803 
2804 static int pcie_flr(struct pci_dev *dev, int probe)
2805 {
2806 	int i;
2807 	int pos;
2808 	u32 cap;
2809 	u16 status, control;
2810 
2811 	pos = pci_pcie_cap(dev);
2812 	if (!pos)
2813 		return -ENOTTY;
2814 
2815 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2816 	if (!(cap & PCI_EXP_DEVCAP_FLR))
2817 		return -ENOTTY;
2818 
2819 	if (probe)
2820 		return 0;
2821 
2822 	/* Wait for Transaction Pending bit clean */
2823 	for (i = 0; i < 4; i++) {
2824 		if (i)
2825 			msleep((1 << (i - 1)) * 100);
2826 
2827 		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2828 		if (!(status & PCI_EXP_DEVSTA_TRPND))
2829 			goto clear;
2830 	}
2831 
2832 	dev_err(&dev->dev, "transaction is not cleared; "
2833 			"proceeding with reset anyway\n");
2834 
2835 clear:
2836 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2837 	control |= PCI_EXP_DEVCTL_BCR_FLR;
2838 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2839 
2840 	msleep(100);
2841 
2842 	return 0;
2843 }
2844 
2845 static int pci_af_flr(struct pci_dev *dev, int probe)
2846 {
2847 	int i;
2848 	int pos;
2849 	u8 cap;
2850 	u8 status;
2851 
2852 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2853 	if (!pos)
2854 		return -ENOTTY;
2855 
2856 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2857 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2858 		return -ENOTTY;
2859 
2860 	if (probe)
2861 		return 0;
2862 
2863 	/* Wait for Transaction Pending bit clean */
2864 	for (i = 0; i < 4; i++) {
2865 		if (i)
2866 			msleep((1 << (i - 1)) * 100);
2867 
2868 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2869 		if (!(status & PCI_AF_STATUS_TP))
2870 			goto clear;
2871 	}
2872 
2873 	dev_err(&dev->dev, "transaction is not cleared; "
2874 			"proceeding with reset anyway\n");
2875 
2876 clear:
2877 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2878 	msleep(100);
2879 
2880 	return 0;
2881 }
2882 
2883 /**
2884  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
2885  * @dev: Device to reset.
2886  * @probe: If set, only check if the device can be reset this way.
2887  *
2888  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
2889  * unset, it will be reinitialized internally when going from PCI_D3hot to
2890  * PCI_D0.  If that's the case and the device is not in a low-power state
2891  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
2892  *
2893  * NOTE: This causes the caller to sleep for twice the device power transition
2894  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
2895  * by devault (i.e. unless the @dev's d3_delay field has a different value).
2896  * Moreover, only devices in D0 can be reset by this function.
2897  */
2898 static int pci_pm_reset(struct pci_dev *dev, int probe)
2899 {
2900 	u16 csr;
2901 
2902 	if (!dev->pm_cap)
2903 		return -ENOTTY;
2904 
2905 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2906 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2907 		return -ENOTTY;
2908 
2909 	if (probe)
2910 		return 0;
2911 
2912 	if (dev->current_state != PCI_D0)
2913 		return -EINVAL;
2914 
2915 	csr &= ~PCI_PM_CTRL_STATE_MASK;
2916 	csr |= PCI_D3hot;
2917 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2918 	pci_dev_d3_sleep(dev);
2919 
2920 	csr &= ~PCI_PM_CTRL_STATE_MASK;
2921 	csr |= PCI_D0;
2922 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2923 	pci_dev_d3_sleep(dev);
2924 
2925 	return 0;
2926 }
2927 
2928 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2929 {
2930 	u16 ctrl;
2931 	struct pci_dev *pdev;
2932 
2933 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2934 		return -ENOTTY;
2935 
2936 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2937 		if (pdev != dev)
2938 			return -ENOTTY;
2939 
2940 	if (probe)
2941 		return 0;
2942 
2943 	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2944 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2945 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2946 	msleep(100);
2947 
2948 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2949 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2950 	msleep(100);
2951 
2952 	return 0;
2953 }
2954 
2955 static int pci_dev_reset(struct pci_dev *dev, int probe)
2956 {
2957 	int rc;
2958 
2959 	might_sleep();
2960 
2961 	if (!probe) {
2962 		pci_block_user_cfg_access(dev);
2963 		/* block PM suspend, driver probe, etc. */
2964 		device_lock(&dev->dev);
2965 	}
2966 
2967 	rc = pci_dev_specific_reset(dev, probe);
2968 	if (rc != -ENOTTY)
2969 		goto done;
2970 
2971 	rc = pcie_flr(dev, probe);
2972 	if (rc != -ENOTTY)
2973 		goto done;
2974 
2975 	rc = pci_af_flr(dev, probe);
2976 	if (rc != -ENOTTY)
2977 		goto done;
2978 
2979 	rc = pci_pm_reset(dev, probe);
2980 	if (rc != -ENOTTY)
2981 		goto done;
2982 
2983 	rc = pci_parent_bus_reset(dev, probe);
2984 done:
2985 	if (!probe) {
2986 		device_unlock(&dev->dev);
2987 		pci_unblock_user_cfg_access(dev);
2988 	}
2989 
2990 	return rc;
2991 }
2992 
2993 /**
2994  * __pci_reset_function - reset a PCI device function
2995  * @dev: PCI device to reset
2996  *
2997  * Some devices allow an individual function to be reset without affecting
2998  * other functions in the same device.  The PCI device must be responsive
2999  * to PCI config space in order to use this function.
3000  *
3001  * The device function is presumed to be unused when this function is called.
3002  * Resetting the device will make the contents of PCI configuration space
3003  * random, so any caller of this must be prepared to reinitialise the
3004  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3005  * etc.
3006  *
3007  * Returns 0 if the device function was successfully reset or negative if the
3008  * device doesn't support resetting a single function.
3009  */
3010 int __pci_reset_function(struct pci_dev *dev)
3011 {
3012 	return pci_dev_reset(dev, 0);
3013 }
3014 EXPORT_SYMBOL_GPL(__pci_reset_function);
3015 
3016 /**
3017  * pci_probe_reset_function - check whether the device can be safely reset
3018  * @dev: PCI device to reset
3019  *
3020  * Some devices allow an individual function to be reset without affecting
3021  * other functions in the same device.  The PCI device must be responsive
3022  * to PCI config space in order to use this function.
3023  *
3024  * Returns 0 if the device function can be reset or negative if the
3025  * device doesn't support resetting a single function.
3026  */
3027 int pci_probe_reset_function(struct pci_dev *dev)
3028 {
3029 	return pci_dev_reset(dev, 1);
3030 }
3031 
3032 /**
3033  * pci_reset_function - quiesce and reset a PCI device function
3034  * @dev: PCI device to reset
3035  *
3036  * Some devices allow an individual function to be reset without affecting
3037  * other functions in the same device.  The PCI device must be responsive
3038  * to PCI config space in order to use this function.
3039  *
3040  * This function does not just reset the PCI portion of a device, but
3041  * clears all the state associated with the device.  This function differs
3042  * from __pci_reset_function in that it saves and restores device state
3043  * over the reset.
3044  *
3045  * Returns 0 if the device function was successfully reset or negative if the
3046  * device doesn't support resetting a single function.
3047  */
3048 int pci_reset_function(struct pci_dev *dev)
3049 {
3050 	int rc;
3051 
3052 	rc = pci_dev_reset(dev, 1);
3053 	if (rc)
3054 		return rc;
3055 
3056 	pci_save_state(dev);
3057 
3058 	/*
3059 	 * both INTx and MSI are disabled after the Interrupt Disable bit
3060 	 * is set and the Bus Master bit is cleared.
3061 	 */
3062 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3063 
3064 	rc = pci_dev_reset(dev, 0);
3065 
3066 	pci_restore_state(dev);
3067 
3068 	return rc;
3069 }
3070 EXPORT_SYMBOL_GPL(pci_reset_function);
3071 
3072 /**
3073  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3074  * @dev: PCI device to query
3075  *
3076  * Returns mmrbc: maximum designed memory read count in bytes
3077  *    or appropriate error value.
3078  */
3079 int pcix_get_max_mmrbc(struct pci_dev *dev)
3080 {
3081 	int cap;
3082 	u32 stat;
3083 
3084 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3085 	if (!cap)
3086 		return -EINVAL;
3087 
3088 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3089 		return -EINVAL;
3090 
3091 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3092 }
3093 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3094 
3095 /**
3096  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3097  * @dev: PCI device to query
3098  *
3099  * Returns mmrbc: maximum memory read count in bytes
3100  *    or appropriate error value.
3101  */
3102 int pcix_get_mmrbc(struct pci_dev *dev)
3103 {
3104 	int cap;
3105 	u16 cmd;
3106 
3107 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3108 	if (!cap)
3109 		return -EINVAL;
3110 
3111 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3112 		return -EINVAL;
3113 
3114 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3115 }
3116 EXPORT_SYMBOL(pcix_get_mmrbc);
3117 
3118 /**
3119  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3120  * @dev: PCI device to query
3121  * @mmrbc: maximum memory read count in bytes
3122  *    valid values are 512, 1024, 2048, 4096
3123  *
3124  * If possible sets maximum memory read byte count, some bridges have erratas
3125  * that prevent this.
3126  */
3127 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3128 {
3129 	int cap;
3130 	u32 stat, v, o;
3131 	u16 cmd;
3132 
3133 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3134 		return -EINVAL;
3135 
3136 	v = ffs(mmrbc) - 10;
3137 
3138 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3139 	if (!cap)
3140 		return -EINVAL;
3141 
3142 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3143 		return -EINVAL;
3144 
3145 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3146 		return -E2BIG;
3147 
3148 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3149 		return -EINVAL;
3150 
3151 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3152 	if (o != v) {
3153 		if (v > o && dev->bus &&
3154 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3155 			return -EIO;
3156 
3157 		cmd &= ~PCI_X_CMD_MAX_READ;
3158 		cmd |= v << 2;
3159 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3160 			return -EIO;
3161 	}
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL(pcix_set_mmrbc);
3165 
3166 /**
3167  * pcie_get_readrq - get PCI Express read request size
3168  * @dev: PCI device to query
3169  *
3170  * Returns maximum memory read request in bytes
3171  *    or appropriate error value.
3172  */
3173 int pcie_get_readrq(struct pci_dev *dev)
3174 {
3175 	int ret, cap;
3176 	u16 ctl;
3177 
3178 	cap = pci_pcie_cap(dev);
3179 	if (!cap)
3180 		return -EINVAL;
3181 
3182 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3183 	if (!ret)
3184 		ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3185 
3186 	return ret;
3187 }
3188 EXPORT_SYMBOL(pcie_get_readrq);
3189 
3190 /**
3191  * pcie_set_readrq - set PCI Express maximum memory read request
3192  * @dev: PCI device to query
3193  * @rq: maximum memory read count in bytes
3194  *    valid values are 128, 256, 512, 1024, 2048, 4096
3195  *
3196  * If possible sets maximum memory read request in bytes
3197  */
3198 int pcie_set_readrq(struct pci_dev *dev, int rq)
3199 {
3200 	int cap, err = -EINVAL;
3201 	u16 ctl, v;
3202 
3203 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3204 		goto out;
3205 
3206 	v = (ffs(rq) - 8) << 12;
3207 
3208 	cap = pci_pcie_cap(dev);
3209 	if (!cap)
3210 		goto out;
3211 
3212 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3213 	if (err)
3214 		goto out;
3215 
3216 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3217 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
3218 		ctl |= v;
3219 		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3220 	}
3221 
3222 out:
3223 	return err;
3224 }
3225 EXPORT_SYMBOL(pcie_set_readrq);
3226 
3227 /**
3228  * pcie_get_mps - get PCI Express maximum payload size
3229  * @dev: PCI device to query
3230  *
3231  * Returns maximum payload size in bytes
3232  *    or appropriate error value.
3233  */
3234 int pcie_get_mps(struct pci_dev *dev)
3235 {
3236 	int ret, cap;
3237 	u16 ctl;
3238 
3239 	cap = pci_pcie_cap(dev);
3240 	if (!cap)
3241 		return -EINVAL;
3242 
3243 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3244 	if (!ret)
3245 		ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3246 
3247 	return ret;
3248 }
3249 
3250 /**
3251  * pcie_set_mps - set PCI Express maximum payload size
3252  * @dev: PCI device to query
3253  * @mps: maximum payload size in bytes
3254  *    valid values are 128, 256, 512, 1024, 2048, 4096
3255  *
3256  * If possible sets maximum payload size
3257  */
3258 int pcie_set_mps(struct pci_dev *dev, int mps)
3259 {
3260 	int cap, err = -EINVAL;
3261 	u16 ctl, v;
3262 
3263 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3264 		goto out;
3265 
3266 	v = ffs(mps) - 8;
3267 	if (v > dev->pcie_mpss)
3268 		goto out;
3269 	v <<= 5;
3270 
3271 	cap = pci_pcie_cap(dev);
3272 	if (!cap)
3273 		goto out;
3274 
3275 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3276 	if (err)
3277 		goto out;
3278 
3279 	if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3280 		ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3281 		ctl |= v;
3282 		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3283 	}
3284 out:
3285 	return err;
3286 }
3287 
3288 /**
3289  * pci_select_bars - Make BAR mask from the type of resource
3290  * @dev: the PCI device for which BAR mask is made
3291  * @flags: resource type mask to be selected
3292  *
3293  * This helper routine makes bar mask from the type of resource.
3294  */
3295 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3296 {
3297 	int i, bars = 0;
3298 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
3299 		if (pci_resource_flags(dev, i) & flags)
3300 			bars |= (1 << i);
3301 	return bars;
3302 }
3303 
3304 /**
3305  * pci_resource_bar - get position of the BAR associated with a resource
3306  * @dev: the PCI device
3307  * @resno: the resource number
3308  * @type: the BAR type to be filled in
3309  *
3310  * Returns BAR position in config space, or 0 if the BAR is invalid.
3311  */
3312 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3313 {
3314 	int reg;
3315 
3316 	if (resno < PCI_ROM_RESOURCE) {
3317 		*type = pci_bar_unknown;
3318 		return PCI_BASE_ADDRESS_0 + 4 * resno;
3319 	} else if (resno == PCI_ROM_RESOURCE) {
3320 		*type = pci_bar_mem32;
3321 		return dev->rom_base_reg;
3322 	} else if (resno < PCI_BRIDGE_RESOURCES) {
3323 		/* device specific resource */
3324 		reg = pci_iov_resource_bar(dev, resno, type);
3325 		if (reg)
3326 			return reg;
3327 	}
3328 
3329 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3330 	return 0;
3331 }
3332 
3333 /* Some architectures require additional programming to enable VGA */
3334 static arch_set_vga_state_t arch_set_vga_state;
3335 
3336 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3337 {
3338 	arch_set_vga_state = func;	/* NULL disables */
3339 }
3340 
3341 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3342 		      unsigned int command_bits, u32 flags)
3343 {
3344 	if (arch_set_vga_state)
3345 		return arch_set_vga_state(dev, decode, command_bits,
3346 						flags);
3347 	return 0;
3348 }
3349 
3350 /**
3351  * pci_set_vga_state - set VGA decode state on device and parents if requested
3352  * @dev: the PCI device
3353  * @decode: true = enable decoding, false = disable decoding
3354  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3355  * @flags: traverse ancestors and change bridges
3356  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3357  */
3358 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3359 		      unsigned int command_bits, u32 flags)
3360 {
3361 	struct pci_bus *bus;
3362 	struct pci_dev *bridge;
3363 	u16 cmd;
3364 	int rc;
3365 
3366 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3367 
3368 	/* ARCH specific VGA enables */
3369 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3370 	if (rc)
3371 		return rc;
3372 
3373 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3374 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
3375 		if (decode == true)
3376 			cmd |= command_bits;
3377 		else
3378 			cmd &= ~command_bits;
3379 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3380 	}
3381 
3382 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3383 		return 0;
3384 
3385 	bus = dev->bus;
3386 	while (bus) {
3387 		bridge = bus->self;
3388 		if (bridge) {
3389 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3390 					     &cmd);
3391 			if (decode == true)
3392 				cmd |= PCI_BRIDGE_CTL_VGA;
3393 			else
3394 				cmd &= ~PCI_BRIDGE_CTL_VGA;
3395 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3396 					      cmd);
3397 		}
3398 		bus = bus->parent;
3399 	}
3400 	return 0;
3401 }
3402 
3403 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3404 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3405 static DEFINE_SPINLOCK(resource_alignment_lock);
3406 
3407 /**
3408  * pci_specified_resource_alignment - get resource alignment specified by user.
3409  * @dev: the PCI device to get
3410  *
3411  * RETURNS: Resource alignment if it is specified.
3412  *          Zero if it is not specified.
3413  */
3414 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3415 {
3416 	int seg, bus, slot, func, align_order, count;
3417 	resource_size_t align = 0;
3418 	char *p;
3419 
3420 	spin_lock(&resource_alignment_lock);
3421 	p = resource_alignment_param;
3422 	while (*p) {
3423 		count = 0;
3424 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3425 							p[count] == '@') {
3426 			p += count + 1;
3427 		} else {
3428 			align_order = -1;
3429 		}
3430 		if (sscanf(p, "%x:%x:%x.%x%n",
3431 			&seg, &bus, &slot, &func, &count) != 4) {
3432 			seg = 0;
3433 			if (sscanf(p, "%x:%x.%x%n",
3434 					&bus, &slot, &func, &count) != 3) {
3435 				/* Invalid format */
3436 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3437 					p);
3438 				break;
3439 			}
3440 		}
3441 		p += count;
3442 		if (seg == pci_domain_nr(dev->bus) &&
3443 			bus == dev->bus->number &&
3444 			slot == PCI_SLOT(dev->devfn) &&
3445 			func == PCI_FUNC(dev->devfn)) {
3446 			if (align_order == -1) {
3447 				align = PAGE_SIZE;
3448 			} else {
3449 				align = 1 << align_order;
3450 			}
3451 			/* Found */
3452 			break;
3453 		}
3454 		if (*p != ';' && *p != ',') {
3455 			/* End of param or invalid format */
3456 			break;
3457 		}
3458 		p++;
3459 	}
3460 	spin_unlock(&resource_alignment_lock);
3461 	return align;
3462 }
3463 
3464 /**
3465  * pci_is_reassigndev - check if specified PCI is target device to reassign
3466  * @dev: the PCI device to check
3467  *
3468  * RETURNS: non-zero for PCI device is a target device to reassign,
3469  *          or zero is not.
3470  */
3471 int pci_is_reassigndev(struct pci_dev *dev)
3472 {
3473 	return (pci_specified_resource_alignment(dev) != 0);
3474 }
3475 
3476 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3477 {
3478 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3479 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3480 	spin_lock(&resource_alignment_lock);
3481 	strncpy(resource_alignment_param, buf, count);
3482 	resource_alignment_param[count] = '\0';
3483 	spin_unlock(&resource_alignment_lock);
3484 	return count;
3485 }
3486 
3487 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3488 {
3489 	size_t count;
3490 	spin_lock(&resource_alignment_lock);
3491 	count = snprintf(buf, size, "%s", resource_alignment_param);
3492 	spin_unlock(&resource_alignment_lock);
3493 	return count;
3494 }
3495 
3496 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3497 {
3498 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3499 }
3500 
3501 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3502 					const char *buf, size_t count)
3503 {
3504 	return pci_set_resource_alignment_param(buf, count);
3505 }
3506 
3507 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3508 					pci_resource_alignment_store);
3509 
3510 static int __init pci_resource_alignment_sysfs_init(void)
3511 {
3512 	return bus_create_file(&pci_bus_type,
3513 					&bus_attr_resource_alignment);
3514 }
3515 
3516 late_initcall(pci_resource_alignment_sysfs_init);
3517 
3518 static void __devinit pci_no_domains(void)
3519 {
3520 #ifdef CONFIG_PCI_DOMAINS
3521 	pci_domains_supported = 0;
3522 #endif
3523 }
3524 
3525 /**
3526  * pci_ext_cfg_enabled - can we access extended PCI config space?
3527  * @dev: The PCI device of the root bridge.
3528  *
3529  * Returns 1 if we can access PCI extended config space (offsets
3530  * greater than 0xff). This is the default implementation. Architecture
3531  * implementations can override this.
3532  */
3533 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3534 {
3535 	return 1;
3536 }
3537 
3538 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3539 {
3540 }
3541 EXPORT_SYMBOL(pci_fixup_cardbus);
3542 
3543 static int __init pci_setup(char *str)
3544 {
3545 	while (str) {
3546 		char *k = strchr(str, ',');
3547 		if (k)
3548 			*k++ = 0;
3549 		if (*str && (str = pcibios_setup(str)) && *str) {
3550 			if (!strcmp(str, "nomsi")) {
3551 				pci_no_msi();
3552 			} else if (!strcmp(str, "noaer")) {
3553 				pci_no_aer();
3554 			} else if (!strncmp(str, "realloc", 7)) {
3555 				pci_realloc();
3556 			} else if (!strcmp(str, "nodomains")) {
3557 				pci_no_domains();
3558 			} else if (!strncmp(str, "cbiosize=", 9)) {
3559 				pci_cardbus_io_size = memparse(str + 9, &str);
3560 			} else if (!strncmp(str, "cbmemsize=", 10)) {
3561 				pci_cardbus_mem_size = memparse(str + 10, &str);
3562 			} else if (!strncmp(str, "resource_alignment=", 19)) {
3563 				pci_set_resource_alignment_param(str + 19,
3564 							strlen(str + 19));
3565 			} else if (!strncmp(str, "ecrc=", 5)) {
3566 				pcie_ecrc_get_policy(str + 5);
3567 			} else if (!strncmp(str, "hpiosize=", 9)) {
3568 				pci_hotplug_io_size = memparse(str + 9, &str);
3569 			} else if (!strncmp(str, "hpmemsize=", 10)) {
3570 				pci_hotplug_mem_size = memparse(str + 10, &str);
3571 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
3572 				pcie_bus_config = PCIE_BUS_SAFE;
3573 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
3574 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
3575 			} else {
3576 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3577 						str);
3578 			}
3579 		}
3580 		str = k;
3581 	}
3582 	return 0;
3583 }
3584 early_param("pci", pci_setup);
3585 
3586 EXPORT_SYMBOL(pci_reenable_device);
3587 EXPORT_SYMBOL(pci_enable_device_io);
3588 EXPORT_SYMBOL(pci_enable_device_mem);
3589 EXPORT_SYMBOL(pci_enable_device);
3590 EXPORT_SYMBOL(pcim_enable_device);
3591 EXPORT_SYMBOL(pcim_pin_device);
3592 EXPORT_SYMBOL(pci_disable_device);
3593 EXPORT_SYMBOL(pci_find_capability);
3594 EXPORT_SYMBOL(pci_bus_find_capability);
3595 EXPORT_SYMBOL(pci_release_regions);
3596 EXPORT_SYMBOL(pci_request_regions);
3597 EXPORT_SYMBOL(pci_request_regions_exclusive);
3598 EXPORT_SYMBOL(pci_release_region);
3599 EXPORT_SYMBOL(pci_request_region);
3600 EXPORT_SYMBOL(pci_request_region_exclusive);
3601 EXPORT_SYMBOL(pci_release_selected_regions);
3602 EXPORT_SYMBOL(pci_request_selected_regions);
3603 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3604 EXPORT_SYMBOL(pci_set_master);
3605 EXPORT_SYMBOL(pci_clear_master);
3606 EXPORT_SYMBOL(pci_set_mwi);
3607 EXPORT_SYMBOL(pci_try_set_mwi);
3608 EXPORT_SYMBOL(pci_clear_mwi);
3609 EXPORT_SYMBOL_GPL(pci_intx);
3610 EXPORT_SYMBOL(pci_assign_resource);
3611 EXPORT_SYMBOL(pci_find_parent_resource);
3612 EXPORT_SYMBOL(pci_select_bars);
3613 
3614 EXPORT_SYMBOL(pci_set_power_state);
3615 EXPORT_SYMBOL(pci_save_state);
3616 EXPORT_SYMBOL(pci_restore_state);
3617 EXPORT_SYMBOL(pci_pme_capable);
3618 EXPORT_SYMBOL(pci_pme_active);
3619 EXPORT_SYMBOL(pci_wake_from_d3);
3620 EXPORT_SYMBOL(pci_target_state);
3621 EXPORT_SYMBOL(pci_prepare_to_sleep);
3622 EXPORT_SYMBOL(pci_back_from_sleep);
3623 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3624