1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Following exit from Conventional Reset, devices must be ready within 1 sec 69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 70 * Reset (PCIe r6.0 sec 5.8). 71 */ 72 #define PCI_RESET_WAIT 1000 /* msec */ 73 74 /* 75 * Devices may extend the 1 sec period through Request Retry Status 76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 77 * limit, but 60 sec ought to be enough for any device to become 78 * responsive. 79 */ 80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 81 82 static void pci_dev_d3_sleep(struct pci_dev *dev) 83 { 84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 85 unsigned int upper; 86 87 if (delay_ms) { 88 /* Use a 20% upper bound, 1ms minimum */ 89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 90 usleep_range(delay_ms * USEC_PER_MSEC, 91 (delay_ms + upper) * USEC_PER_MSEC); 92 } 93 } 94 95 bool pci_reset_supported(struct pci_dev *dev) 96 { 97 return dev->reset_methods[0] != 0; 98 } 99 100 #ifdef CONFIG_PCI_DOMAINS 101 int pci_domains_supported = 1; 102 #endif 103 104 #define DEFAULT_CARDBUS_IO_SIZE (256) 105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 109 110 #define DEFAULT_HOTPLUG_IO_SIZE (256) 111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 113 /* hpiosize=nn can override this */ 114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 115 /* 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 118 * pci=hpmemsize=nnM overrides both 119 */ 120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 122 123 #define DEFAULT_HOTPLUG_BUS_SIZE 1 124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 125 126 127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 130 #elif defined CONFIG_PCIE_BUS_SAFE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 134 #elif defined CONFIG_PCIE_BUS_PEER2PEER 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 136 #else 137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 138 #endif 139 140 /* 141 * The default CLS is used if arch didn't set CLS explicitly and not 142 * all pci devices agree on the same value. Arch can override either 143 * the dfl or actual value as it sees fit. Don't forget this is 144 * measured in 32-bit words, not bytes. 145 */ 146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 147 u8 pci_cache_line_size; 148 149 /* 150 * If we set up a device for bus mastering, we need to check the latency 151 * timer as certain BIOSes forget to set it properly. 152 */ 153 unsigned int pcibios_max_latency = 255; 154 155 /* If set, the PCIe ARI capability will not be used. */ 156 static bool pcie_ari_disabled; 157 158 /* If set, the PCIe ATS capability will not be used. */ 159 static bool pcie_ats_disabled; 160 161 /* If set, the PCI config space of each device is printed during boot. */ 162 bool pci_early_dump; 163 164 bool pci_ats_disabled(void) 165 { 166 return pcie_ats_disabled; 167 } 168 EXPORT_SYMBOL_GPL(pci_ats_disabled); 169 170 /* Disable bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_disable; 172 /* Force bridge_d3 for all PCIe ports */ 173 static bool pci_bridge_d3_force; 174 175 static int __init pcie_port_pm_setup(char *str) 176 { 177 if (!strcmp(str, "off")) 178 pci_bridge_d3_disable = true; 179 else if (!strcmp(str, "force")) 180 pci_bridge_d3_force = true; 181 return 1; 182 } 183 __setup("pcie_port_pm=", pcie_port_pm_setup); 184 185 /** 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 187 * @bus: pointer to PCI bus structure to search 188 * 189 * Given a PCI bus, returns the highest PCI bus number present in the set 190 * including the given PCI bus and its list of child PCI buses. 191 */ 192 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 193 { 194 struct pci_bus *tmp; 195 unsigned char max, n; 196 197 max = bus->busn_res.end; 198 list_for_each_entry(tmp, &bus->children, node) { 199 n = pci_bus_max_busnr(tmp); 200 if (n > max) 201 max = n; 202 } 203 return max; 204 } 205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 206 207 /** 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 209 * @pdev: the PCI device 210 * 211 * Returns error bits set in PCI_STATUS and clears them. 212 */ 213 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 214 { 215 u16 status; 216 int ret; 217 218 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 219 if (ret != PCIBIOS_SUCCESSFUL) 220 return -EIO; 221 222 status &= PCI_STATUS_ERROR_BITS; 223 if (status) 224 pci_write_config_word(pdev, PCI_STATUS, status); 225 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 229 230 #ifdef CONFIG_HAS_IOMEM 231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 232 bool write_combine) 233 { 234 struct resource *res = &pdev->resource[bar]; 235 resource_size_t start = res->start; 236 resource_size_t size = resource_size(res); 237 238 /* 239 * Make sure the BAR is actually a memory resource, not an IO resource 240 */ 241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 243 return NULL; 244 } 245 246 if (write_combine) 247 return ioremap_wc(start, size); 248 249 return ioremap(start, size); 250 } 251 252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 253 { 254 return __pci_ioremap_resource(pdev, bar, false); 255 } 256 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 257 258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 259 { 260 return __pci_ioremap_resource(pdev, bar, true); 261 } 262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 263 #endif 264 265 /** 266 * pci_dev_str_match_path - test if a path string matches a device 267 * @dev: the PCI device to test 268 * @path: string to match the device against 269 * @endptr: pointer to the string after the match 270 * 271 * Test if a string (typically from a kernel parameter) formatted as a 272 * path of device/function addresses matches a PCI device. The string must 273 * be of the form: 274 * 275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 276 * 277 * A path for a device can be obtained using 'lspci -t'. Using a path 278 * is more robust against bus renumbering than using only a single bus, 279 * device and function address. 280 * 281 * Returns 1 if the string matches the device, 0 if it does not and 282 * a negative error code if it fails to parse the string. 283 */ 284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 285 const char **endptr) 286 { 287 int ret; 288 unsigned int seg, bus, slot, func; 289 char *wpath, *p; 290 char end; 291 292 *endptr = strchrnul(path, ';'); 293 294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 295 if (!wpath) 296 return -ENOMEM; 297 298 while (1) { 299 p = strrchr(wpath, '/'); 300 if (!p) 301 break; 302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 303 if (ret != 2) { 304 ret = -EINVAL; 305 goto free_and_exit; 306 } 307 308 if (dev->devfn != PCI_DEVFN(slot, func)) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 /* 314 * Note: we don't need to get a reference to the upstream 315 * bridge because we hold a reference to the top level 316 * device which should hold a reference to the bridge, 317 * and so on. 318 */ 319 dev = pci_upstream_bridge(dev); 320 if (!dev) { 321 ret = 0; 322 goto free_and_exit; 323 } 324 325 *p = 0; 326 } 327 328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 329 &func, &end); 330 if (ret != 4) { 331 seg = 0; 332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 333 if (ret != 3) { 334 ret = -EINVAL; 335 goto free_and_exit; 336 } 337 } 338 339 ret = (seg == pci_domain_nr(dev->bus) && 340 bus == dev->bus->number && 341 dev->devfn == PCI_DEVFN(slot, func)); 342 343 free_and_exit: 344 kfree(wpath); 345 return ret; 346 } 347 348 /** 349 * pci_dev_str_match - test if a string matches a device 350 * @dev: the PCI device to test 351 * @p: string to match the device against 352 * @endptr: pointer to the string after the match 353 * 354 * Test if a string (typically from a kernel parameter) matches a specified 355 * PCI device. The string may be of one of the following formats: 356 * 357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 359 * 360 * The first format specifies a PCI bus/device/function address which 361 * may change if new hardware is inserted, if motherboard firmware changes, 362 * or due to changes caused in kernel parameters. If the domain is 363 * left unspecified, it is taken to be 0. In order to be robust against 364 * bus renumbering issues, a path of PCI device/function numbers may be used 365 * to address the specific device. The path for a device can be determined 366 * through the use of 'lspci -t'. 367 * 368 * The second format matches devices using IDs in the configuration 369 * space which may match multiple devices in the system. A value of 0 370 * for any field will match all devices. (Note: this differs from 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 372 * legacy reasons and convenience so users don't have to specify 373 * FFFFFFFFs on the command line.) 374 * 375 * Returns 1 if the string matches the device, 0 if it does not and 376 * a negative error code if the string cannot be parsed. 377 */ 378 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 379 const char **endptr) 380 { 381 int ret; 382 int count; 383 unsigned short vendor, device, subsystem_vendor, subsystem_device; 384 385 if (strncmp(p, "pci:", 4) == 0) { 386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 387 p += 4; 388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 389 &subsystem_vendor, &subsystem_device, &count); 390 if (ret != 4) { 391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 392 if (ret != 2) 393 return -EINVAL; 394 395 subsystem_vendor = 0; 396 subsystem_device = 0; 397 } 398 399 p += count; 400 401 if ((!vendor || vendor == dev->vendor) && 402 (!device || device == dev->device) && 403 (!subsystem_vendor || 404 subsystem_vendor == dev->subsystem_vendor) && 405 (!subsystem_device || 406 subsystem_device == dev->subsystem_device)) 407 goto found; 408 } else { 409 /* 410 * PCI Bus, Device, Function IDs are specified 411 * (optionally, may include a path of devfns following it) 412 */ 413 ret = pci_dev_str_match_path(dev, p, &p); 414 if (ret < 0) 415 return ret; 416 else if (ret) 417 goto found; 418 } 419 420 *endptr = p; 421 return 0; 422 423 found: 424 *endptr = p; 425 return 1; 426 } 427 428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 429 u8 pos, int cap, int *ttl) 430 { 431 u8 id; 432 u16 ent; 433 434 pci_bus_read_config_byte(bus, devfn, pos, &pos); 435 436 while ((*ttl)--) { 437 if (pos < 0x40) 438 break; 439 pos &= ~3; 440 pci_bus_read_config_word(bus, devfn, pos, &ent); 441 442 id = ent & 0xff; 443 if (id == 0xff) 444 break; 445 if (id == cap) 446 return pos; 447 pos = (ent >> 8); 448 } 449 return 0; 450 } 451 452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 453 u8 pos, int cap) 454 { 455 int ttl = PCI_FIND_CAP_TTL; 456 457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 458 } 459 460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 461 { 462 return __pci_find_next_cap(dev->bus, dev->devfn, 463 pos + PCI_CAP_LIST_NEXT, cap); 464 } 465 EXPORT_SYMBOL_GPL(pci_find_next_capability); 466 467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 468 unsigned int devfn, u8 hdr_type) 469 { 470 u16 status; 471 472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 473 if (!(status & PCI_STATUS_CAP_LIST)) 474 return 0; 475 476 switch (hdr_type) { 477 case PCI_HEADER_TYPE_NORMAL: 478 case PCI_HEADER_TYPE_BRIDGE: 479 return PCI_CAPABILITY_LIST; 480 case PCI_HEADER_TYPE_CARDBUS: 481 return PCI_CB_CAPABILITY_LIST; 482 } 483 484 return 0; 485 } 486 487 /** 488 * pci_find_capability - query for devices' capabilities 489 * @dev: PCI device to query 490 * @cap: capability code 491 * 492 * Tell if a device supports a given PCI capability. 493 * Returns the address of the requested capability structure within the 494 * device's PCI configuration space or 0 in case the device does not 495 * support it. Possible values for @cap include: 496 * 497 * %PCI_CAP_ID_PM Power Management 498 * %PCI_CAP_ID_AGP Accelerated Graphics Port 499 * %PCI_CAP_ID_VPD Vital Product Data 500 * %PCI_CAP_ID_SLOTID Slot Identification 501 * %PCI_CAP_ID_MSI Message Signalled Interrupts 502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 503 * %PCI_CAP_ID_PCIX PCI-X 504 * %PCI_CAP_ID_EXP PCI Express 505 */ 506 u8 pci_find_capability(struct pci_dev *dev, int cap) 507 { 508 u8 pos; 509 510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 511 if (pos) 512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 513 514 return pos; 515 } 516 EXPORT_SYMBOL(pci_find_capability); 517 518 /** 519 * pci_bus_find_capability - query for devices' capabilities 520 * @bus: the PCI bus to query 521 * @devfn: PCI device to query 522 * @cap: capability code 523 * 524 * Like pci_find_capability() but works for PCI devices that do not have a 525 * pci_dev structure set up yet. 526 * 527 * Returns the address of the requested capability structure within the 528 * device's PCI configuration space or 0 in case the device does not 529 * support it. 530 */ 531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 532 { 533 u8 hdr_type, pos; 534 535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 536 537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 538 if (pos) 539 pos = __pci_find_next_cap(bus, devfn, pos, cap); 540 541 return pos; 542 } 543 EXPORT_SYMBOL(pci_bus_find_capability); 544 545 /** 546 * pci_find_next_ext_capability - Find an extended capability 547 * @dev: PCI device to query 548 * @start: address at which to start looking (0 to start at beginning of list) 549 * @cap: capability code 550 * 551 * Returns the address of the next matching extended capability structure 552 * within the device's PCI configuration space or 0 if the device does 553 * not support it. Some capabilities can occur several times, e.g., the 554 * vendor-specific capability, and this provides a way to find them all. 555 */ 556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 557 { 558 u32 header; 559 int ttl; 560 u16 pos = PCI_CFG_SPACE_SIZE; 561 562 /* minimum 8 bytes per capability */ 563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 564 565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 566 return 0; 567 568 if (start) 569 pos = start; 570 571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 572 return 0; 573 574 /* 575 * If we have no capabilities, this is indicated by cap ID, 576 * cap version and next pointer all being 0. 577 */ 578 if (header == 0) 579 return 0; 580 581 while (ttl-- > 0) { 582 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 583 return pos; 584 585 pos = PCI_EXT_CAP_NEXT(header); 586 if (pos < PCI_CFG_SPACE_SIZE) 587 break; 588 589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 596 597 /** 598 * pci_find_ext_capability - Find an extended capability 599 * @dev: PCI device to query 600 * @cap: capability code 601 * 602 * Returns the address of the requested extended capability structure 603 * within the device's PCI configuration space or 0 if the device does 604 * not support it. Possible values for @cap include: 605 * 606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 607 * %PCI_EXT_CAP_ID_VC Virtual Channel 608 * %PCI_EXT_CAP_ID_DSN Device Serial Number 609 * %PCI_EXT_CAP_ID_PWR Power Budgeting 610 */ 611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 612 { 613 return pci_find_next_ext_capability(dev, 0, cap); 614 } 615 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 616 617 /** 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number 619 * @dev: PCI device to query 620 * 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 622 * Number. 623 * 624 * Returns the DSN, or zero if the capability does not exist. 625 */ 626 u64 pci_get_dsn(struct pci_dev *dev) 627 { 628 u32 dword; 629 u64 dsn; 630 int pos; 631 632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 633 if (!pos) 634 return 0; 635 636 /* 637 * The Device Serial Number is two dwords offset 4 bytes from the 638 * capability position. The specification says that the first dword is 639 * the lower half, and the second dword is the upper half. 640 */ 641 pos += 4; 642 pci_read_config_dword(dev, pos, &dword); 643 dsn = (u64)dword; 644 pci_read_config_dword(dev, pos + 4, &dword); 645 dsn |= ((u64)dword) << 32; 646 647 return dsn; 648 } 649 EXPORT_SYMBOL_GPL(pci_get_dsn); 650 651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 652 { 653 int rc, ttl = PCI_FIND_CAP_TTL; 654 u8 cap, mask; 655 656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 657 mask = HT_3BIT_CAP_MASK; 658 else 659 mask = HT_5BIT_CAP_MASK; 660 661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 662 PCI_CAP_ID_HT, &ttl); 663 while (pos) { 664 rc = pci_read_config_byte(dev, pos + 3, &cap); 665 if (rc != PCIBIOS_SUCCESSFUL) 666 return 0; 667 668 if ((cap & mask) == ht_cap) 669 return pos; 670 671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 672 pos + PCI_CAP_LIST_NEXT, 673 PCI_CAP_ID_HT, &ttl); 674 } 675 676 return 0; 677 } 678 679 /** 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 681 * @dev: PCI device to query 682 * @pos: Position from which to continue searching 683 * @ht_cap: HyperTransport capability code 684 * 685 * To be used in conjunction with pci_find_ht_capability() to search for 686 * all capabilities matching @ht_cap. @pos should always be a value returned 687 * from pci_find_ht_capability(). 688 * 689 * NB. To be 100% safe against broken PCI devices, the caller should take 690 * steps to avoid an infinite loop. 691 */ 692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 693 { 694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 695 } 696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 697 698 /** 699 * pci_find_ht_capability - query a device's HyperTransport capabilities 700 * @dev: PCI device to query 701 * @ht_cap: HyperTransport capability code 702 * 703 * Tell if a device supports a given HyperTransport capability. 704 * Returns an address within the device's PCI configuration space 705 * or 0 in case the device does not support the request capability. 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 707 * which has a HyperTransport capability matching @ht_cap. 708 */ 709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 710 { 711 u8 pos; 712 713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 714 if (pos) 715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 716 717 return pos; 718 } 719 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 720 721 /** 722 * pci_find_vsec_capability - Find a vendor-specific extended capability 723 * @dev: PCI device to query 724 * @vendor: Vendor ID for which capability is defined 725 * @cap: Vendor-specific capability ID 726 * 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with 728 * VSEC ID @cap. If found, return the capability offset in 729 * config space; otherwise return 0. 730 */ 731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 732 { 733 u16 vsec = 0; 734 u32 header; 735 int ret; 736 737 if (vendor != dev->vendor) 738 return 0; 739 740 while ((vsec = pci_find_next_ext_capability(dev, vsec, 741 PCI_EXT_CAP_ID_VNDR))) { 742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 743 if (ret != PCIBIOS_SUCCESSFUL) 744 continue; 745 746 if (PCI_VNDR_HEADER_ID(header) == cap) 747 return vsec; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 753 754 /** 755 * pci_find_dvsec_capability - Find DVSEC for vendor 756 * @dev: PCI device to query 757 * @vendor: Vendor ID to match for the DVSEC 758 * @dvsec: Designated Vendor-specific capability ID 759 * 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 761 * offset in config space; otherwise return 0. 762 */ 763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 764 { 765 int pos; 766 767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 768 if (!pos) 769 return 0; 770 771 while (pos) { 772 u16 v, id; 773 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 776 if (vendor == v && dvsec == id) 777 return pos; 778 779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 785 786 /** 787 * pci_find_parent_resource - return resource region of parent bus of given 788 * region 789 * @dev: PCI device structure contains resources to be searched 790 * @res: child resource record for which parent is sought 791 * 792 * For given resource region of given device, return the resource region of 793 * parent bus the given region is contained in. 794 */ 795 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 796 struct resource *res) 797 { 798 const struct pci_bus *bus = dev->bus; 799 struct resource *r; 800 801 pci_bus_for_each_resource(bus, r) { 802 if (!r) 803 continue; 804 if (resource_contains(r, res)) { 805 806 /* 807 * If the window is prefetchable but the BAR is 808 * not, the allocator made a mistake. 809 */ 810 if (r->flags & IORESOURCE_PREFETCH && 811 !(res->flags & IORESOURCE_PREFETCH)) 812 return NULL; 813 814 /* 815 * If we're below a transparent bridge, there may 816 * be both a positively-decoded aperture and a 817 * subtractively-decoded region that contain the BAR. 818 * We want the positively-decoded one, so this depends 819 * on pci_bus_for_each_resource() giving us those 820 * first. 821 */ 822 return r; 823 } 824 } 825 return NULL; 826 } 827 EXPORT_SYMBOL(pci_find_parent_resource); 828 829 /** 830 * pci_find_resource - Return matching PCI device resource 831 * @dev: PCI device to query 832 * @res: Resource to look for 833 * 834 * Goes over standard PCI resources (BARs) and checks if the given resource 835 * is partially or fully contained in any of them. In that case the 836 * matching resource is returned, %NULL otherwise. 837 */ 838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 839 { 840 int i; 841 842 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 843 struct resource *r = &dev->resource[i]; 844 845 if (r->start && resource_contains(r, res)) 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(pci_find_resource); 852 853 /** 854 * pci_resource_name - Return the name of the PCI resource 855 * @dev: PCI device to query 856 * @i: index of the resource 857 * 858 * Return the standard PCI resource (BAR) name according to their index. 859 */ 860 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 861 { 862 static const char * const bar_name[] = { 863 "BAR 0", 864 "BAR 1", 865 "BAR 2", 866 "BAR 3", 867 "BAR 4", 868 "BAR 5", 869 "ROM", 870 #ifdef CONFIG_PCI_IOV 871 "VF BAR 0", 872 "VF BAR 1", 873 "VF BAR 2", 874 "VF BAR 3", 875 "VF BAR 4", 876 "VF BAR 5", 877 #endif 878 "bridge window", /* "io" included in %pR */ 879 "bridge window", /* "mem" included in %pR */ 880 "bridge window", /* "mem pref" included in %pR */ 881 }; 882 static const char * const cardbus_name[] = { 883 "BAR 1", 884 "unknown", 885 "unknown", 886 "unknown", 887 "unknown", 888 "unknown", 889 #ifdef CONFIG_PCI_IOV 890 "unknown", 891 "unknown", 892 "unknown", 893 "unknown", 894 "unknown", 895 "unknown", 896 #endif 897 "CardBus bridge window 0", /* I/O */ 898 "CardBus bridge window 1", /* I/O */ 899 "CardBus bridge window 0", /* mem */ 900 "CardBus bridge window 1", /* mem */ 901 }; 902 903 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 904 i < ARRAY_SIZE(cardbus_name)) 905 return cardbus_name[i]; 906 907 if (i < ARRAY_SIZE(bar_name)) 908 return bar_name[i]; 909 910 return "unknown"; 911 } 912 913 /** 914 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 915 * @dev: the PCI device to operate on 916 * @pos: config space offset of status word 917 * @mask: mask of bit(s) to care about in status word 918 * 919 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 920 */ 921 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 922 { 923 int i; 924 925 /* Wait for Transaction Pending bit clean */ 926 for (i = 0; i < 4; i++) { 927 u16 status; 928 if (i) 929 msleep((1 << (i - 1)) * 100); 930 931 pci_read_config_word(dev, pos, &status); 932 if (!(status & mask)) 933 return 1; 934 } 935 936 return 0; 937 } 938 939 static int pci_acs_enable; 940 941 /** 942 * pci_request_acs - ask for ACS to be enabled if supported 943 */ 944 void pci_request_acs(void) 945 { 946 pci_acs_enable = 1; 947 } 948 949 static const char *disable_acs_redir_param; 950 951 /** 952 * pci_disable_acs_redir - disable ACS redirect capabilities 953 * @dev: the PCI device 954 * 955 * For only devices specified in the disable_acs_redir parameter. 956 */ 957 static void pci_disable_acs_redir(struct pci_dev *dev) 958 { 959 int ret = 0; 960 const char *p; 961 int pos; 962 u16 ctrl; 963 964 if (!disable_acs_redir_param) 965 return; 966 967 p = disable_acs_redir_param; 968 while (*p) { 969 ret = pci_dev_str_match(dev, p, &p); 970 if (ret < 0) { 971 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 972 disable_acs_redir_param); 973 974 break; 975 } else if (ret == 1) { 976 /* Found a match */ 977 break; 978 } 979 980 if (*p != ';' && *p != ',') { 981 /* End of param or invalid format */ 982 break; 983 } 984 p++; 985 } 986 987 if (ret != 1) 988 return; 989 990 if (!pci_dev_specific_disable_acs_redir(dev)) 991 return; 992 993 pos = dev->acs_cap; 994 if (!pos) { 995 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 996 return; 997 } 998 999 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 1000 1001 /* P2P Request & Completion Redirect */ 1002 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 1003 1004 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 1005 1006 pci_info(dev, "disabled ACS redirect\n"); 1007 } 1008 1009 /** 1010 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 1011 * @dev: the PCI device 1012 */ 1013 static void pci_std_enable_acs(struct pci_dev *dev) 1014 { 1015 int pos; 1016 u16 cap; 1017 u16 ctrl; 1018 1019 pos = dev->acs_cap; 1020 if (!pos) 1021 return; 1022 1023 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 1024 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 1025 1026 /* Source Validation */ 1027 ctrl |= (cap & PCI_ACS_SV); 1028 1029 /* P2P Request Redirect */ 1030 ctrl |= (cap & PCI_ACS_RR); 1031 1032 /* P2P Completion Redirect */ 1033 ctrl |= (cap & PCI_ACS_CR); 1034 1035 /* Upstream Forwarding */ 1036 ctrl |= (cap & PCI_ACS_UF); 1037 1038 /* Enable Translation Blocking for external devices and noats */ 1039 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1040 ctrl |= (cap & PCI_ACS_TB); 1041 1042 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 1043 } 1044 1045 /** 1046 * pci_enable_acs - enable ACS if hardware support it 1047 * @dev: the PCI device 1048 */ 1049 static void pci_enable_acs(struct pci_dev *dev) 1050 { 1051 if (!pci_acs_enable) 1052 goto disable_acs_redir; 1053 1054 if (!pci_dev_specific_enable_acs(dev)) 1055 goto disable_acs_redir; 1056 1057 pci_std_enable_acs(dev); 1058 1059 disable_acs_redir: 1060 /* 1061 * Note: pci_disable_acs_redir() must be called even if ACS was not 1062 * enabled by the kernel because it may have been enabled by 1063 * platform firmware. So if we are told to disable it, we should 1064 * always disable it after setting the kernel's default 1065 * preferences. 1066 */ 1067 pci_disable_acs_redir(dev); 1068 } 1069 1070 /** 1071 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1072 * @dev: PCI device to have its BARs restored 1073 * 1074 * Restore the BAR values for a given device, so as to make it 1075 * accessible by its driver. 1076 */ 1077 static void pci_restore_bars(struct pci_dev *dev) 1078 { 1079 int i; 1080 1081 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1082 pci_update_resource(dev, i); 1083 } 1084 1085 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1086 { 1087 if (pci_use_mid_pm()) 1088 return true; 1089 1090 return acpi_pci_power_manageable(dev); 1091 } 1092 1093 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1094 pci_power_t t) 1095 { 1096 if (pci_use_mid_pm()) 1097 return mid_pci_set_power_state(dev, t); 1098 1099 return acpi_pci_set_power_state(dev, t); 1100 } 1101 1102 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1103 { 1104 if (pci_use_mid_pm()) 1105 return mid_pci_get_power_state(dev); 1106 1107 return acpi_pci_get_power_state(dev); 1108 } 1109 1110 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1111 { 1112 if (!pci_use_mid_pm()) 1113 acpi_pci_refresh_power_state(dev); 1114 } 1115 1116 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1117 { 1118 if (pci_use_mid_pm()) 1119 return PCI_POWER_ERROR; 1120 1121 return acpi_pci_choose_state(dev); 1122 } 1123 1124 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1125 { 1126 if (pci_use_mid_pm()) 1127 return PCI_POWER_ERROR; 1128 1129 return acpi_pci_wakeup(dev, enable); 1130 } 1131 1132 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1133 { 1134 if (pci_use_mid_pm()) 1135 return false; 1136 1137 return acpi_pci_need_resume(dev); 1138 } 1139 1140 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1141 { 1142 if (pci_use_mid_pm()) 1143 return false; 1144 1145 return acpi_pci_bridge_d3(dev); 1146 } 1147 1148 /** 1149 * pci_update_current_state - Read power state of given device and cache it 1150 * @dev: PCI device to handle. 1151 * @state: State to cache in case the device doesn't have the PM capability 1152 * 1153 * The power state is read from the PMCSR register, which however is 1154 * inaccessible in D3cold. The platform firmware is therefore queried first 1155 * to detect accessibility of the register. In case the platform firmware 1156 * reports an incorrect state or the device isn't power manageable by the 1157 * platform at all, we try to detect D3cold by testing accessibility of the 1158 * vendor ID in config space. 1159 */ 1160 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1161 { 1162 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1163 dev->current_state = PCI_D3cold; 1164 } else if (dev->pm_cap) { 1165 u16 pmcsr; 1166 1167 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1168 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1169 dev->current_state = PCI_D3cold; 1170 return; 1171 } 1172 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1173 } else { 1174 dev->current_state = state; 1175 } 1176 } 1177 1178 /** 1179 * pci_refresh_power_state - Refresh the given device's power state data 1180 * @dev: Target PCI device. 1181 * 1182 * Ask the platform to refresh the devices power state information and invoke 1183 * pci_update_current_state() to update its current PCI power state. 1184 */ 1185 void pci_refresh_power_state(struct pci_dev *dev) 1186 { 1187 platform_pci_refresh_power_state(dev); 1188 pci_update_current_state(dev, dev->current_state); 1189 } 1190 1191 /** 1192 * pci_platform_power_transition - Use platform to change device power state 1193 * @dev: PCI device to handle. 1194 * @state: State to put the device into. 1195 */ 1196 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1197 { 1198 int error; 1199 1200 error = platform_pci_set_power_state(dev, state); 1201 if (!error) 1202 pci_update_current_state(dev, state); 1203 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1204 dev->current_state = PCI_D0; 1205 1206 return error; 1207 } 1208 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1209 1210 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1211 { 1212 pm_request_resume(&pci_dev->dev); 1213 return 0; 1214 } 1215 1216 /** 1217 * pci_resume_bus - Walk given bus and runtime resume devices on it 1218 * @bus: Top bus of the subtree to walk. 1219 */ 1220 void pci_resume_bus(struct pci_bus *bus) 1221 { 1222 if (bus) 1223 pci_walk_bus(bus, pci_resume_one, NULL); 1224 } 1225 1226 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1227 { 1228 int delay = 1; 1229 bool retrain = false; 1230 struct pci_dev *bridge; 1231 1232 if (pci_is_pcie(dev)) { 1233 bridge = pci_upstream_bridge(dev); 1234 if (bridge) 1235 retrain = true; 1236 } 1237 1238 /* 1239 * After reset, the device should not silently discard config 1240 * requests, but it may still indicate that it needs more time by 1241 * responding to them with CRS completions. The Root Port will 1242 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1243 * the read (except when CRS SV is enabled and the read was for the 1244 * Vendor ID; in that case it synthesizes 0x0001 data). 1245 * 1246 * Wait for the device to return a non-CRS completion. Read the 1247 * Command register instead of Vendor ID so we don't have to 1248 * contend with the CRS SV value. 1249 */ 1250 for (;;) { 1251 u32 id; 1252 1253 pci_read_config_dword(dev, PCI_COMMAND, &id); 1254 if (!PCI_POSSIBLE_ERROR(id)) 1255 break; 1256 1257 if (delay > timeout) { 1258 pci_warn(dev, "not ready %dms after %s; giving up\n", 1259 delay - 1, reset_type); 1260 return -ENOTTY; 1261 } 1262 1263 if (delay > PCI_RESET_WAIT) { 1264 if (retrain) { 1265 retrain = false; 1266 if (pcie_failed_link_retrain(bridge)) { 1267 delay = 1; 1268 continue; 1269 } 1270 } 1271 pci_info(dev, "not ready %dms after %s; waiting\n", 1272 delay - 1, reset_type); 1273 } 1274 1275 msleep(delay); 1276 delay *= 2; 1277 } 1278 1279 if (delay > PCI_RESET_WAIT) 1280 pci_info(dev, "ready %dms after %s\n", delay - 1, 1281 reset_type); 1282 else 1283 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1284 reset_type); 1285 1286 return 0; 1287 } 1288 1289 /** 1290 * pci_power_up - Put the given device into D0 1291 * @dev: PCI device to power up 1292 * 1293 * On success, return 0 or 1, depending on whether or not it is necessary to 1294 * restore the device's BARs subsequently (1 is returned in that case). 1295 * 1296 * On failure, return a negative error code. Always return failure if @dev 1297 * lacks a Power Management Capability, even if the platform was able to 1298 * put the device in D0 via non-PCI means. 1299 */ 1300 int pci_power_up(struct pci_dev *dev) 1301 { 1302 bool need_restore; 1303 pci_power_t state; 1304 u16 pmcsr; 1305 1306 platform_pci_set_power_state(dev, PCI_D0); 1307 1308 if (!dev->pm_cap) { 1309 state = platform_pci_get_power_state(dev); 1310 if (state == PCI_UNKNOWN) 1311 dev->current_state = PCI_D0; 1312 else 1313 dev->current_state = state; 1314 1315 return -EIO; 1316 } 1317 1318 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1319 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1320 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1321 pci_power_name(dev->current_state)); 1322 dev->current_state = PCI_D3cold; 1323 return -EIO; 1324 } 1325 1326 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1327 1328 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1329 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1330 1331 if (state == PCI_D0) 1332 goto end; 1333 1334 /* 1335 * Force the entire word to 0. This doesn't affect PME_Status, disables 1336 * PME_En, and sets PowerState to 0. 1337 */ 1338 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1339 1340 /* Mandatory transition delays; see PCI PM 1.2. */ 1341 if (state == PCI_D3hot) 1342 pci_dev_d3_sleep(dev); 1343 else if (state == PCI_D2) 1344 udelay(PCI_PM_D2_DELAY); 1345 1346 end: 1347 dev->current_state = PCI_D0; 1348 if (need_restore) 1349 return 1; 1350 1351 return 0; 1352 } 1353 1354 /** 1355 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1356 * @dev: PCI device to power up 1357 * @locked: whether pci_bus_sem is held 1358 * 1359 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1360 * to confirm the state change, restore its BARs if they might be lost and 1361 * reconfigure ASPM in accordance with the new power state. 1362 * 1363 * If pci_restore_state() is going to be called right after a power state change 1364 * to D0, it is more efficient to use pci_power_up() directly instead of this 1365 * function. 1366 */ 1367 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1368 { 1369 u16 pmcsr; 1370 int ret; 1371 1372 ret = pci_power_up(dev); 1373 if (ret < 0) { 1374 if (dev->current_state == PCI_D0) 1375 return 0; 1376 1377 return ret; 1378 } 1379 1380 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1381 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1382 if (dev->current_state != PCI_D0) { 1383 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1384 pci_power_name(dev->current_state)); 1385 } else if (ret > 0) { 1386 /* 1387 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1388 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1389 * from D3hot to D0 _may_ perform an internal reset, thereby 1390 * going to "D0 Uninitialized" rather than "D0 Initialized". 1391 * For example, at least some versions of the 3c905B and the 1392 * 3c556B exhibit this behaviour. 1393 * 1394 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1395 * devices in a D3hot state at boot. Consequently, we need to 1396 * restore at least the BARs so that the device will be 1397 * accessible to its driver. 1398 */ 1399 pci_restore_bars(dev); 1400 } 1401 1402 if (dev->bus->self) 1403 pcie_aspm_pm_state_change(dev->bus->self, locked); 1404 1405 return 0; 1406 } 1407 1408 /** 1409 * __pci_dev_set_current_state - Set current state of a PCI device 1410 * @dev: Device to handle 1411 * @data: pointer to state to be set 1412 */ 1413 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1414 { 1415 pci_power_t state = *(pci_power_t *)data; 1416 1417 dev->current_state = state; 1418 return 0; 1419 } 1420 1421 /** 1422 * pci_bus_set_current_state - Walk given bus and set current state of devices 1423 * @bus: Top bus of the subtree to walk. 1424 * @state: state to be set 1425 */ 1426 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1427 { 1428 if (bus) 1429 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1430 } 1431 1432 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1433 { 1434 if (!bus) 1435 return; 1436 1437 if (locked) 1438 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1439 else 1440 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1441 } 1442 1443 /** 1444 * pci_set_low_power_state - Put a PCI device into a low-power state. 1445 * @dev: PCI device to handle. 1446 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1447 * @locked: whether pci_bus_sem is held 1448 * 1449 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1450 * 1451 * RETURN VALUE: 1452 * -EINVAL if the requested state is invalid. 1453 * -EIO if device does not support PCI PM or its PM capabilities register has a 1454 * wrong version, or device doesn't support the requested state. 1455 * 0 if device already is in the requested state. 1456 * 0 if device's power state has been successfully changed. 1457 */ 1458 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1459 { 1460 u16 pmcsr; 1461 1462 if (!dev->pm_cap) 1463 return -EIO; 1464 1465 /* 1466 * Validate transition: We can enter D0 from any state, but if 1467 * we're already in a low-power state, we can only go deeper. E.g., 1468 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1469 * we'd have to go from D3 to D0, then to D1. 1470 */ 1471 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1472 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1473 pci_power_name(dev->current_state), 1474 pci_power_name(state)); 1475 return -EINVAL; 1476 } 1477 1478 /* Check if this device supports the desired state */ 1479 if ((state == PCI_D1 && !dev->d1_support) 1480 || (state == PCI_D2 && !dev->d2_support)) 1481 return -EIO; 1482 1483 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1484 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1485 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1486 pci_power_name(dev->current_state), 1487 pci_power_name(state)); 1488 dev->current_state = PCI_D3cold; 1489 return -EIO; 1490 } 1491 1492 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1493 pmcsr |= state; 1494 1495 /* Enter specified state */ 1496 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1497 1498 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1499 if (state == PCI_D3hot) 1500 pci_dev_d3_sleep(dev); 1501 else if (state == PCI_D2) 1502 udelay(PCI_PM_D2_DELAY); 1503 1504 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1505 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1506 if (dev->current_state != state) 1507 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1508 pci_power_name(dev->current_state), 1509 pci_power_name(state)); 1510 1511 if (dev->bus->self) 1512 pcie_aspm_pm_state_change(dev->bus->self, locked); 1513 1514 return 0; 1515 } 1516 1517 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1518 { 1519 int error; 1520 1521 /* Bound the state we're entering */ 1522 if (state > PCI_D3cold) 1523 state = PCI_D3cold; 1524 else if (state < PCI_D0) 1525 state = PCI_D0; 1526 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1527 1528 /* 1529 * If the device or the parent bridge do not support PCI 1530 * PM, ignore the request if we're doing anything other 1531 * than putting it into D0 (which would only happen on 1532 * boot). 1533 */ 1534 return 0; 1535 1536 /* Check if we're already there */ 1537 if (dev->current_state == state) 1538 return 0; 1539 1540 if (state == PCI_D0) 1541 return pci_set_full_power_state(dev, locked); 1542 1543 /* 1544 * This device is quirked not to be put into D3, so don't put it in 1545 * D3 1546 */ 1547 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1548 return 0; 1549 1550 if (state == PCI_D3cold) { 1551 /* 1552 * To put the device in D3cold, put it into D3hot in the native 1553 * way, then put it into D3cold using platform ops. 1554 */ 1555 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1556 1557 if (pci_platform_power_transition(dev, PCI_D3cold)) 1558 return error; 1559 1560 /* Powering off a bridge may power off the whole hierarchy */ 1561 if (dev->current_state == PCI_D3cold) 1562 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1563 } else { 1564 error = pci_set_low_power_state(dev, state, locked); 1565 1566 if (pci_platform_power_transition(dev, state)) 1567 return error; 1568 } 1569 1570 return 0; 1571 } 1572 1573 /** 1574 * pci_set_power_state - Set the power state of a PCI device 1575 * @dev: PCI device to handle. 1576 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1577 * 1578 * Transition a device to a new power state, using the platform firmware and/or 1579 * the device's PCI PM registers. 1580 * 1581 * RETURN VALUE: 1582 * -EINVAL if the requested state is invalid. 1583 * -EIO if device does not support PCI PM or its PM capabilities register has a 1584 * wrong version, or device doesn't support the requested state. 1585 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1586 * 0 if device already is in the requested state. 1587 * 0 if the transition is to D3 but D3 is not supported. 1588 * 0 if device's power state has been successfully changed. 1589 */ 1590 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1591 { 1592 return __pci_set_power_state(dev, state, false); 1593 } 1594 EXPORT_SYMBOL(pci_set_power_state); 1595 1596 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1597 { 1598 lockdep_assert_held(&pci_bus_sem); 1599 1600 return __pci_set_power_state(dev, state, true); 1601 } 1602 EXPORT_SYMBOL(pci_set_power_state_locked); 1603 1604 #define PCI_EXP_SAVE_REGS 7 1605 1606 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1607 u16 cap, bool extended) 1608 { 1609 struct pci_cap_saved_state *tmp; 1610 1611 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1612 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1613 return tmp; 1614 } 1615 return NULL; 1616 } 1617 1618 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1619 { 1620 return _pci_find_saved_cap(dev, cap, false); 1621 } 1622 1623 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1624 { 1625 return _pci_find_saved_cap(dev, cap, true); 1626 } 1627 1628 static int pci_save_pcie_state(struct pci_dev *dev) 1629 { 1630 int i = 0; 1631 struct pci_cap_saved_state *save_state; 1632 u16 *cap; 1633 1634 if (!pci_is_pcie(dev)) 1635 return 0; 1636 1637 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1638 if (!save_state) { 1639 pci_err(dev, "buffer not found in %s\n", __func__); 1640 return -ENOMEM; 1641 } 1642 1643 cap = (u16 *)&save_state->cap.data[0]; 1644 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1645 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1646 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1647 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1648 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1649 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1650 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1651 1652 return 0; 1653 } 1654 1655 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1656 { 1657 #ifdef CONFIG_PCIEASPM 1658 struct pci_dev *bridge; 1659 u32 ctl; 1660 1661 bridge = pci_upstream_bridge(dev); 1662 if (bridge && bridge->ltr_path) { 1663 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1664 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1665 pci_dbg(bridge, "re-enabling LTR\n"); 1666 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1667 PCI_EXP_DEVCTL2_LTR_EN); 1668 } 1669 } 1670 #endif 1671 } 1672 1673 static void pci_restore_pcie_state(struct pci_dev *dev) 1674 { 1675 int i = 0; 1676 struct pci_cap_saved_state *save_state; 1677 u16 *cap; 1678 1679 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1680 if (!save_state) 1681 return; 1682 1683 /* 1684 * Downstream ports reset the LTR enable bit when link goes down. 1685 * Check and re-configure the bit here before restoring device. 1686 * PCIe r5.0, sec 7.5.3.16. 1687 */ 1688 pci_bridge_reconfigure_ltr(dev); 1689 1690 cap = (u16 *)&save_state->cap.data[0]; 1691 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1692 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1693 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1694 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1695 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1696 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1697 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1698 } 1699 1700 static int pci_save_pcix_state(struct pci_dev *dev) 1701 { 1702 int pos; 1703 struct pci_cap_saved_state *save_state; 1704 1705 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1706 if (!pos) 1707 return 0; 1708 1709 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1710 if (!save_state) { 1711 pci_err(dev, "buffer not found in %s\n", __func__); 1712 return -ENOMEM; 1713 } 1714 1715 pci_read_config_word(dev, pos + PCI_X_CMD, 1716 (u16 *)save_state->cap.data); 1717 1718 return 0; 1719 } 1720 1721 static void pci_restore_pcix_state(struct pci_dev *dev) 1722 { 1723 int i = 0, pos; 1724 struct pci_cap_saved_state *save_state; 1725 u16 *cap; 1726 1727 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1728 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1729 if (!save_state || !pos) 1730 return; 1731 cap = (u16 *)&save_state->cap.data[0]; 1732 1733 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1734 } 1735 1736 static void pci_save_ltr_state(struct pci_dev *dev) 1737 { 1738 int ltr; 1739 struct pci_cap_saved_state *save_state; 1740 u32 *cap; 1741 1742 if (!pci_is_pcie(dev)) 1743 return; 1744 1745 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1746 if (!ltr) 1747 return; 1748 1749 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1750 if (!save_state) { 1751 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1752 return; 1753 } 1754 1755 /* Some broken devices only support dword access to LTR */ 1756 cap = &save_state->cap.data[0]; 1757 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1758 } 1759 1760 static void pci_restore_ltr_state(struct pci_dev *dev) 1761 { 1762 struct pci_cap_saved_state *save_state; 1763 int ltr; 1764 u32 *cap; 1765 1766 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1767 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1768 if (!save_state || !ltr) 1769 return; 1770 1771 /* Some broken devices only support dword access to LTR */ 1772 cap = &save_state->cap.data[0]; 1773 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1774 } 1775 1776 /** 1777 * pci_save_state - save the PCI configuration space of a device before 1778 * suspending 1779 * @dev: PCI device that we're dealing with 1780 */ 1781 int pci_save_state(struct pci_dev *dev) 1782 { 1783 int i; 1784 /* XXX: 100% dword access ok here? */ 1785 for (i = 0; i < 16; i++) { 1786 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1787 pci_dbg(dev, "save config %#04x: %#010x\n", 1788 i * 4, dev->saved_config_space[i]); 1789 } 1790 dev->state_saved = true; 1791 1792 i = pci_save_pcie_state(dev); 1793 if (i != 0) 1794 return i; 1795 1796 i = pci_save_pcix_state(dev); 1797 if (i != 0) 1798 return i; 1799 1800 pci_save_ltr_state(dev); 1801 pci_save_dpc_state(dev); 1802 pci_save_aer_state(dev); 1803 pci_save_ptm_state(dev); 1804 return pci_save_vc_state(dev); 1805 } 1806 EXPORT_SYMBOL(pci_save_state); 1807 1808 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1809 u32 saved_val, int retry, bool force) 1810 { 1811 u32 val; 1812 1813 pci_read_config_dword(pdev, offset, &val); 1814 if (!force && val == saved_val) 1815 return; 1816 1817 for (;;) { 1818 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1819 offset, val, saved_val); 1820 pci_write_config_dword(pdev, offset, saved_val); 1821 if (retry-- <= 0) 1822 return; 1823 1824 pci_read_config_dword(pdev, offset, &val); 1825 if (val == saved_val) 1826 return; 1827 1828 mdelay(1); 1829 } 1830 } 1831 1832 static void pci_restore_config_space_range(struct pci_dev *pdev, 1833 int start, int end, int retry, 1834 bool force) 1835 { 1836 int index; 1837 1838 for (index = end; index >= start; index--) 1839 pci_restore_config_dword(pdev, 4 * index, 1840 pdev->saved_config_space[index], 1841 retry, force); 1842 } 1843 1844 static void pci_restore_config_space(struct pci_dev *pdev) 1845 { 1846 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1847 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1848 /* Restore BARs before the command register. */ 1849 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1850 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1851 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1852 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1853 1854 /* 1855 * Force rewriting of prefetch registers to avoid S3 resume 1856 * issues on Intel PCI bridges that occur when these 1857 * registers are not explicitly written. 1858 */ 1859 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1860 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1861 } else { 1862 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1863 } 1864 } 1865 1866 static void pci_restore_rebar_state(struct pci_dev *pdev) 1867 { 1868 unsigned int pos, nbars, i; 1869 u32 ctrl; 1870 1871 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1872 if (!pos) 1873 return; 1874 1875 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1876 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1877 1878 for (i = 0; i < nbars; i++, pos += 8) { 1879 struct resource *res; 1880 int bar_idx, size; 1881 1882 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1883 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1884 res = pdev->resource + bar_idx; 1885 size = pci_rebar_bytes_to_size(resource_size(res)); 1886 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1887 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1888 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1889 } 1890 } 1891 1892 /** 1893 * pci_restore_state - Restore the saved state of a PCI device 1894 * @dev: PCI device that we're dealing with 1895 */ 1896 void pci_restore_state(struct pci_dev *dev) 1897 { 1898 if (!dev->state_saved) 1899 return; 1900 1901 /* 1902 * Restore max latencies (in the LTR capability) before enabling 1903 * LTR itself (in the PCIe capability). 1904 */ 1905 pci_restore_ltr_state(dev); 1906 1907 pci_restore_pcie_state(dev); 1908 pci_restore_pasid_state(dev); 1909 pci_restore_pri_state(dev); 1910 pci_restore_ats_state(dev); 1911 pci_restore_vc_state(dev); 1912 pci_restore_rebar_state(dev); 1913 pci_restore_dpc_state(dev); 1914 pci_restore_ptm_state(dev); 1915 1916 pci_aer_clear_status(dev); 1917 pci_restore_aer_state(dev); 1918 1919 pci_restore_config_space(dev); 1920 1921 pci_restore_pcix_state(dev); 1922 pci_restore_msi_state(dev); 1923 1924 /* Restore ACS and IOV configuration state */ 1925 pci_enable_acs(dev); 1926 pci_restore_iov_state(dev); 1927 1928 dev->state_saved = false; 1929 } 1930 EXPORT_SYMBOL(pci_restore_state); 1931 1932 struct pci_saved_state { 1933 u32 config_space[16]; 1934 struct pci_cap_saved_data cap[]; 1935 }; 1936 1937 /** 1938 * pci_store_saved_state - Allocate and return an opaque struct containing 1939 * the device saved state. 1940 * @dev: PCI device that we're dealing with 1941 * 1942 * Return NULL if no state or error. 1943 */ 1944 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1945 { 1946 struct pci_saved_state *state; 1947 struct pci_cap_saved_state *tmp; 1948 struct pci_cap_saved_data *cap; 1949 size_t size; 1950 1951 if (!dev->state_saved) 1952 return NULL; 1953 1954 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1955 1956 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1957 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1958 1959 state = kzalloc(size, GFP_KERNEL); 1960 if (!state) 1961 return NULL; 1962 1963 memcpy(state->config_space, dev->saved_config_space, 1964 sizeof(state->config_space)); 1965 1966 cap = state->cap; 1967 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1968 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1969 memcpy(cap, &tmp->cap, len); 1970 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1971 } 1972 /* Empty cap_save terminates list */ 1973 1974 return state; 1975 } 1976 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1977 1978 /** 1979 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1980 * @dev: PCI device that we're dealing with 1981 * @state: Saved state returned from pci_store_saved_state() 1982 */ 1983 int pci_load_saved_state(struct pci_dev *dev, 1984 struct pci_saved_state *state) 1985 { 1986 struct pci_cap_saved_data *cap; 1987 1988 dev->state_saved = false; 1989 1990 if (!state) 1991 return 0; 1992 1993 memcpy(dev->saved_config_space, state->config_space, 1994 sizeof(state->config_space)); 1995 1996 cap = state->cap; 1997 while (cap->size) { 1998 struct pci_cap_saved_state *tmp; 1999 2000 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 2001 if (!tmp || tmp->cap.size != cap->size) 2002 return -EINVAL; 2003 2004 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 2005 cap = (struct pci_cap_saved_data *)((u8 *)cap + 2006 sizeof(struct pci_cap_saved_data) + cap->size); 2007 } 2008 2009 dev->state_saved = true; 2010 return 0; 2011 } 2012 EXPORT_SYMBOL_GPL(pci_load_saved_state); 2013 2014 /** 2015 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 2016 * and free the memory allocated for it. 2017 * @dev: PCI device that we're dealing with 2018 * @state: Pointer to saved state returned from pci_store_saved_state() 2019 */ 2020 int pci_load_and_free_saved_state(struct pci_dev *dev, 2021 struct pci_saved_state **state) 2022 { 2023 int ret = pci_load_saved_state(dev, *state); 2024 kfree(*state); 2025 *state = NULL; 2026 return ret; 2027 } 2028 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 2029 2030 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 2031 { 2032 return pci_enable_resources(dev, bars); 2033 } 2034 2035 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2036 { 2037 int err; 2038 struct pci_dev *bridge; 2039 u16 cmd; 2040 u8 pin; 2041 2042 err = pci_set_power_state(dev, PCI_D0); 2043 if (err < 0 && err != -EIO) 2044 return err; 2045 2046 bridge = pci_upstream_bridge(dev); 2047 if (bridge) 2048 pcie_aspm_powersave_config_link(bridge); 2049 2050 err = pcibios_enable_device(dev, bars); 2051 if (err < 0) 2052 return err; 2053 pci_fixup_device(pci_fixup_enable, dev); 2054 2055 if (dev->msi_enabled || dev->msix_enabled) 2056 return 0; 2057 2058 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2059 if (pin) { 2060 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2061 if (cmd & PCI_COMMAND_INTX_DISABLE) 2062 pci_write_config_word(dev, PCI_COMMAND, 2063 cmd & ~PCI_COMMAND_INTX_DISABLE); 2064 } 2065 2066 return 0; 2067 } 2068 2069 /** 2070 * pci_reenable_device - Resume abandoned device 2071 * @dev: PCI device to be resumed 2072 * 2073 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2074 * to be called by normal code, write proper resume handler and use it instead. 2075 */ 2076 int pci_reenable_device(struct pci_dev *dev) 2077 { 2078 if (pci_is_enabled(dev)) 2079 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2080 return 0; 2081 } 2082 EXPORT_SYMBOL(pci_reenable_device); 2083 2084 static void pci_enable_bridge(struct pci_dev *dev) 2085 { 2086 struct pci_dev *bridge; 2087 int retval; 2088 2089 bridge = pci_upstream_bridge(dev); 2090 if (bridge) 2091 pci_enable_bridge(bridge); 2092 2093 if (pci_is_enabled(dev)) { 2094 if (!dev->is_busmaster) 2095 pci_set_master(dev); 2096 return; 2097 } 2098 2099 retval = pci_enable_device(dev); 2100 if (retval) 2101 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2102 retval); 2103 pci_set_master(dev); 2104 } 2105 2106 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2107 { 2108 struct pci_dev *bridge; 2109 int err; 2110 int i, bars = 0; 2111 2112 /* 2113 * Power state could be unknown at this point, either due to a fresh 2114 * boot or a device removal call. So get the current power state 2115 * so that things like MSI message writing will behave as expected 2116 * (e.g. if the device really is in D0 at enable time). 2117 */ 2118 pci_update_current_state(dev, dev->current_state); 2119 2120 if (atomic_inc_return(&dev->enable_cnt) > 1) 2121 return 0; /* already enabled */ 2122 2123 bridge = pci_upstream_bridge(dev); 2124 if (bridge) 2125 pci_enable_bridge(bridge); 2126 2127 /* only skip sriov related */ 2128 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2129 if (dev->resource[i].flags & flags) 2130 bars |= (1 << i); 2131 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2132 if (dev->resource[i].flags & flags) 2133 bars |= (1 << i); 2134 2135 err = do_pci_enable_device(dev, bars); 2136 if (err < 0) 2137 atomic_dec(&dev->enable_cnt); 2138 return err; 2139 } 2140 2141 /** 2142 * pci_enable_device_io - Initialize a device for use with IO space 2143 * @dev: PCI device to be initialized 2144 * 2145 * Initialize device before it's used by a driver. Ask low-level code 2146 * to enable I/O resources. Wake up the device if it was suspended. 2147 * Beware, this function can fail. 2148 */ 2149 int pci_enable_device_io(struct pci_dev *dev) 2150 { 2151 return pci_enable_device_flags(dev, IORESOURCE_IO); 2152 } 2153 EXPORT_SYMBOL(pci_enable_device_io); 2154 2155 /** 2156 * pci_enable_device_mem - Initialize a device for use with Memory space 2157 * @dev: PCI device to be initialized 2158 * 2159 * Initialize device before it's used by a driver. Ask low-level code 2160 * to enable Memory resources. Wake up the device if it was suspended. 2161 * Beware, this function can fail. 2162 */ 2163 int pci_enable_device_mem(struct pci_dev *dev) 2164 { 2165 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2166 } 2167 EXPORT_SYMBOL(pci_enable_device_mem); 2168 2169 /** 2170 * pci_enable_device - Initialize device before it's used by a driver. 2171 * @dev: PCI device to be initialized 2172 * 2173 * Initialize device before it's used by a driver. Ask low-level code 2174 * to enable I/O and memory. Wake up the device if it was suspended. 2175 * Beware, this function can fail. 2176 * 2177 * Note we don't actually enable the device many times if we call 2178 * this function repeatedly (we just increment the count). 2179 */ 2180 int pci_enable_device(struct pci_dev *dev) 2181 { 2182 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2183 } 2184 EXPORT_SYMBOL(pci_enable_device); 2185 2186 /* 2187 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2188 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2189 * there's no need to track it separately. pci_devres is initialized 2190 * when a device is enabled using managed PCI device enable interface. 2191 */ 2192 struct pci_devres { 2193 unsigned int enabled:1; 2194 unsigned int pinned:1; 2195 unsigned int orig_intx:1; 2196 unsigned int restore_intx:1; 2197 unsigned int mwi:1; 2198 u32 region_mask; 2199 }; 2200 2201 static void pcim_release(struct device *gendev, void *res) 2202 { 2203 struct pci_dev *dev = to_pci_dev(gendev); 2204 struct pci_devres *this = res; 2205 int i; 2206 2207 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2208 if (this->region_mask & (1 << i)) 2209 pci_release_region(dev, i); 2210 2211 if (this->mwi) 2212 pci_clear_mwi(dev); 2213 2214 if (this->restore_intx) 2215 pci_intx(dev, this->orig_intx); 2216 2217 if (this->enabled && !this->pinned) 2218 pci_disable_device(dev); 2219 } 2220 2221 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2222 { 2223 struct pci_devres *dr, *new_dr; 2224 2225 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2226 if (dr) 2227 return dr; 2228 2229 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2230 if (!new_dr) 2231 return NULL; 2232 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2233 } 2234 2235 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2236 { 2237 if (pci_is_managed(pdev)) 2238 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2239 return NULL; 2240 } 2241 2242 /** 2243 * pcim_enable_device - Managed pci_enable_device() 2244 * @pdev: PCI device to be initialized 2245 * 2246 * Managed pci_enable_device(). 2247 */ 2248 int pcim_enable_device(struct pci_dev *pdev) 2249 { 2250 struct pci_devres *dr; 2251 int rc; 2252 2253 dr = get_pci_dr(pdev); 2254 if (unlikely(!dr)) 2255 return -ENOMEM; 2256 if (dr->enabled) 2257 return 0; 2258 2259 rc = pci_enable_device(pdev); 2260 if (!rc) { 2261 pdev->is_managed = 1; 2262 dr->enabled = 1; 2263 } 2264 return rc; 2265 } 2266 EXPORT_SYMBOL(pcim_enable_device); 2267 2268 /** 2269 * pcim_pin_device - Pin managed PCI device 2270 * @pdev: PCI device to pin 2271 * 2272 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2273 * driver detach. @pdev must have been enabled with 2274 * pcim_enable_device(). 2275 */ 2276 void pcim_pin_device(struct pci_dev *pdev) 2277 { 2278 struct pci_devres *dr; 2279 2280 dr = find_pci_dr(pdev); 2281 WARN_ON(!dr || !dr->enabled); 2282 if (dr) 2283 dr->pinned = 1; 2284 } 2285 EXPORT_SYMBOL(pcim_pin_device); 2286 2287 /* 2288 * pcibios_device_add - provide arch specific hooks when adding device dev 2289 * @dev: the PCI device being added 2290 * 2291 * Permits the platform to provide architecture specific functionality when 2292 * devices are added. This is the default implementation. Architecture 2293 * implementations can override this. 2294 */ 2295 int __weak pcibios_device_add(struct pci_dev *dev) 2296 { 2297 return 0; 2298 } 2299 2300 /** 2301 * pcibios_release_device - provide arch specific hooks when releasing 2302 * device dev 2303 * @dev: the PCI device being released 2304 * 2305 * Permits the platform to provide architecture specific functionality when 2306 * devices are released. This is the default implementation. Architecture 2307 * implementations can override this. 2308 */ 2309 void __weak pcibios_release_device(struct pci_dev *dev) {} 2310 2311 /** 2312 * pcibios_disable_device - disable arch specific PCI resources for device dev 2313 * @dev: the PCI device to disable 2314 * 2315 * Disables architecture specific PCI resources for the device. This 2316 * is the default implementation. Architecture implementations can 2317 * override this. 2318 */ 2319 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2320 2321 /** 2322 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2323 * @irq: ISA IRQ to penalize 2324 * @active: IRQ active or not 2325 * 2326 * Permits the platform to provide architecture-specific functionality when 2327 * penalizing ISA IRQs. This is the default implementation. Architecture 2328 * implementations can override this. 2329 */ 2330 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2331 2332 static void do_pci_disable_device(struct pci_dev *dev) 2333 { 2334 u16 pci_command; 2335 2336 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2337 if (pci_command & PCI_COMMAND_MASTER) { 2338 pci_command &= ~PCI_COMMAND_MASTER; 2339 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2340 } 2341 2342 pcibios_disable_device(dev); 2343 } 2344 2345 /** 2346 * pci_disable_enabled_device - Disable device without updating enable_cnt 2347 * @dev: PCI device to disable 2348 * 2349 * NOTE: This function is a backend of PCI power management routines and is 2350 * not supposed to be called drivers. 2351 */ 2352 void pci_disable_enabled_device(struct pci_dev *dev) 2353 { 2354 if (pci_is_enabled(dev)) 2355 do_pci_disable_device(dev); 2356 } 2357 2358 /** 2359 * pci_disable_device - Disable PCI device after use 2360 * @dev: PCI device to be disabled 2361 * 2362 * Signal to the system that the PCI device is not in use by the system 2363 * anymore. This only involves disabling PCI bus-mastering, if active. 2364 * 2365 * Note we don't actually disable the device until all callers of 2366 * pci_enable_device() have called pci_disable_device(). 2367 */ 2368 void pci_disable_device(struct pci_dev *dev) 2369 { 2370 struct pci_devres *dr; 2371 2372 dr = find_pci_dr(dev); 2373 if (dr) 2374 dr->enabled = 0; 2375 2376 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2377 "disabling already-disabled device"); 2378 2379 if (atomic_dec_return(&dev->enable_cnt) != 0) 2380 return; 2381 2382 do_pci_disable_device(dev); 2383 2384 dev->is_busmaster = 0; 2385 } 2386 EXPORT_SYMBOL(pci_disable_device); 2387 2388 /** 2389 * pcibios_set_pcie_reset_state - set reset state for device dev 2390 * @dev: the PCIe device reset 2391 * @state: Reset state to enter into 2392 * 2393 * Set the PCIe reset state for the device. This is the default 2394 * implementation. Architecture implementations can override this. 2395 */ 2396 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2397 enum pcie_reset_state state) 2398 { 2399 return -EINVAL; 2400 } 2401 2402 /** 2403 * pci_set_pcie_reset_state - set reset state for device dev 2404 * @dev: the PCIe device reset 2405 * @state: Reset state to enter into 2406 * 2407 * Sets the PCI reset state for the device. 2408 */ 2409 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2410 { 2411 return pcibios_set_pcie_reset_state(dev, state); 2412 } 2413 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2414 2415 #ifdef CONFIG_PCIEAER 2416 void pcie_clear_device_status(struct pci_dev *dev) 2417 { 2418 u16 sta; 2419 2420 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2421 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2422 } 2423 #endif 2424 2425 /** 2426 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2427 * @dev: PCIe root port or event collector. 2428 */ 2429 void pcie_clear_root_pme_status(struct pci_dev *dev) 2430 { 2431 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2432 } 2433 2434 /** 2435 * pci_check_pme_status - Check if given device has generated PME. 2436 * @dev: Device to check. 2437 * 2438 * Check the PME status of the device and if set, clear it and clear PME enable 2439 * (if set). Return 'true' if PME status and PME enable were both set or 2440 * 'false' otherwise. 2441 */ 2442 bool pci_check_pme_status(struct pci_dev *dev) 2443 { 2444 int pmcsr_pos; 2445 u16 pmcsr; 2446 bool ret = false; 2447 2448 if (!dev->pm_cap) 2449 return false; 2450 2451 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2452 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2453 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2454 return false; 2455 2456 /* Clear PME status. */ 2457 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2458 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2459 /* Disable PME to avoid interrupt flood. */ 2460 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2461 ret = true; 2462 } 2463 2464 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2465 2466 return ret; 2467 } 2468 2469 /** 2470 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2471 * @dev: Device to handle. 2472 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2473 * 2474 * Check if @dev has generated PME and queue a resume request for it in that 2475 * case. 2476 */ 2477 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2478 { 2479 if (pme_poll_reset && dev->pme_poll) 2480 dev->pme_poll = false; 2481 2482 if (pci_check_pme_status(dev)) { 2483 pci_wakeup_event(dev); 2484 pm_request_resume(&dev->dev); 2485 } 2486 return 0; 2487 } 2488 2489 /** 2490 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2491 * @bus: Top bus of the subtree to walk. 2492 */ 2493 void pci_pme_wakeup_bus(struct pci_bus *bus) 2494 { 2495 if (bus) 2496 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2497 } 2498 2499 2500 /** 2501 * pci_pme_capable - check the capability of PCI device to generate PME# 2502 * @dev: PCI device to handle. 2503 * @state: PCI state from which device will issue PME#. 2504 */ 2505 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2506 { 2507 if (!dev->pm_cap) 2508 return false; 2509 2510 return !!(dev->pme_support & (1 << state)); 2511 } 2512 EXPORT_SYMBOL(pci_pme_capable); 2513 2514 static void pci_pme_list_scan(struct work_struct *work) 2515 { 2516 struct pci_pme_device *pme_dev, *n; 2517 2518 mutex_lock(&pci_pme_list_mutex); 2519 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2520 struct pci_dev *pdev = pme_dev->dev; 2521 2522 if (pdev->pme_poll) { 2523 struct pci_dev *bridge = pdev->bus->self; 2524 struct device *dev = &pdev->dev; 2525 int pm_status; 2526 2527 /* 2528 * If bridge is in low power state, the 2529 * configuration space of subordinate devices 2530 * may be not accessible 2531 */ 2532 if (bridge && bridge->current_state != PCI_D0) 2533 continue; 2534 2535 /* 2536 * If the device is in a low power state it 2537 * should not be polled either. 2538 */ 2539 pm_status = pm_runtime_get_if_active(dev, true); 2540 if (!pm_status) 2541 continue; 2542 2543 if (pdev->current_state != PCI_D3cold) 2544 pci_pme_wakeup(pdev, NULL); 2545 2546 if (pm_status > 0) 2547 pm_runtime_put(dev); 2548 } else { 2549 list_del(&pme_dev->list); 2550 kfree(pme_dev); 2551 } 2552 } 2553 if (!list_empty(&pci_pme_list)) 2554 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2555 msecs_to_jiffies(PME_TIMEOUT)); 2556 mutex_unlock(&pci_pme_list_mutex); 2557 } 2558 2559 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2560 { 2561 u16 pmcsr; 2562 2563 if (!dev->pme_support) 2564 return; 2565 2566 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2567 /* Clear PME_Status by writing 1 to it and enable PME# */ 2568 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2569 if (!enable) 2570 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2571 2572 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2573 } 2574 2575 /** 2576 * pci_pme_restore - Restore PME configuration after config space restore. 2577 * @dev: PCI device to update. 2578 */ 2579 void pci_pme_restore(struct pci_dev *dev) 2580 { 2581 u16 pmcsr; 2582 2583 if (!dev->pme_support) 2584 return; 2585 2586 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2587 if (dev->wakeup_prepared) { 2588 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2589 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2590 } else { 2591 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2592 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2593 } 2594 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2595 } 2596 2597 /** 2598 * pci_pme_active - enable or disable PCI device's PME# function 2599 * @dev: PCI device to handle. 2600 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2601 * 2602 * The caller must verify that the device is capable of generating PME# before 2603 * calling this function with @enable equal to 'true'. 2604 */ 2605 void pci_pme_active(struct pci_dev *dev, bool enable) 2606 { 2607 __pci_pme_active(dev, enable); 2608 2609 /* 2610 * PCI (as opposed to PCIe) PME requires that the device have 2611 * its PME# line hooked up correctly. Not all hardware vendors 2612 * do this, so the PME never gets delivered and the device 2613 * remains asleep. The easiest way around this is to 2614 * periodically walk the list of suspended devices and check 2615 * whether any have their PME flag set. The assumption is that 2616 * we'll wake up often enough anyway that this won't be a huge 2617 * hit, and the power savings from the devices will still be a 2618 * win. 2619 * 2620 * Although PCIe uses in-band PME message instead of PME# line 2621 * to report PME, PME does not work for some PCIe devices in 2622 * reality. For example, there are devices that set their PME 2623 * status bits, but don't really bother to send a PME message; 2624 * there are PCI Express Root Ports that don't bother to 2625 * trigger interrupts when they receive PME messages from the 2626 * devices below. So PME poll is used for PCIe devices too. 2627 */ 2628 2629 if (dev->pme_poll) { 2630 struct pci_pme_device *pme_dev; 2631 if (enable) { 2632 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2633 GFP_KERNEL); 2634 if (!pme_dev) { 2635 pci_warn(dev, "can't enable PME#\n"); 2636 return; 2637 } 2638 pme_dev->dev = dev; 2639 mutex_lock(&pci_pme_list_mutex); 2640 list_add(&pme_dev->list, &pci_pme_list); 2641 if (list_is_singular(&pci_pme_list)) 2642 queue_delayed_work(system_freezable_wq, 2643 &pci_pme_work, 2644 msecs_to_jiffies(PME_TIMEOUT)); 2645 mutex_unlock(&pci_pme_list_mutex); 2646 } else { 2647 mutex_lock(&pci_pme_list_mutex); 2648 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2649 if (pme_dev->dev == dev) { 2650 list_del(&pme_dev->list); 2651 kfree(pme_dev); 2652 break; 2653 } 2654 } 2655 mutex_unlock(&pci_pme_list_mutex); 2656 } 2657 } 2658 2659 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2660 } 2661 EXPORT_SYMBOL(pci_pme_active); 2662 2663 /** 2664 * __pci_enable_wake - enable PCI device as wakeup event source 2665 * @dev: PCI device affected 2666 * @state: PCI state from which device will issue wakeup events 2667 * @enable: True to enable event generation; false to disable 2668 * 2669 * This enables the device as a wakeup event source, or disables it. 2670 * When such events involves platform-specific hooks, those hooks are 2671 * called automatically by this routine. 2672 * 2673 * Devices with legacy power management (no standard PCI PM capabilities) 2674 * always require such platform hooks. 2675 * 2676 * RETURN VALUE: 2677 * 0 is returned on success 2678 * -EINVAL is returned if device is not supposed to wake up the system 2679 * Error code depending on the platform is returned if both the platform and 2680 * the native mechanism fail to enable the generation of wake-up events 2681 */ 2682 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2683 { 2684 int ret = 0; 2685 2686 /* 2687 * Bridges that are not power-manageable directly only signal 2688 * wakeup on behalf of subordinate devices which is set up 2689 * elsewhere, so skip them. However, bridges that are 2690 * power-manageable may signal wakeup for themselves (for example, 2691 * on a hotplug event) and they need to be covered here. 2692 */ 2693 if (!pci_power_manageable(dev)) 2694 return 0; 2695 2696 /* Don't do the same thing twice in a row for one device. */ 2697 if (!!enable == !!dev->wakeup_prepared) 2698 return 0; 2699 2700 /* 2701 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2702 * Anderson we should be doing PME# wake enable followed by ACPI wake 2703 * enable. To disable wake-up we call the platform first, for symmetry. 2704 */ 2705 2706 if (enable) { 2707 int error; 2708 2709 /* 2710 * Enable PME signaling if the device can signal PME from 2711 * D3cold regardless of whether or not it can signal PME from 2712 * the current target state, because that will allow it to 2713 * signal PME when the hierarchy above it goes into D3cold and 2714 * the device itself ends up in D3cold as a result of that. 2715 */ 2716 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2717 pci_pme_active(dev, true); 2718 else 2719 ret = 1; 2720 error = platform_pci_set_wakeup(dev, true); 2721 if (ret) 2722 ret = error; 2723 if (!ret) 2724 dev->wakeup_prepared = true; 2725 } else { 2726 platform_pci_set_wakeup(dev, false); 2727 pci_pme_active(dev, false); 2728 dev->wakeup_prepared = false; 2729 } 2730 2731 return ret; 2732 } 2733 2734 /** 2735 * pci_enable_wake - change wakeup settings for a PCI device 2736 * @pci_dev: Target device 2737 * @state: PCI state from which device will issue wakeup events 2738 * @enable: Whether or not to enable event generation 2739 * 2740 * If @enable is set, check device_may_wakeup() for the device before calling 2741 * __pci_enable_wake() for it. 2742 */ 2743 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2744 { 2745 if (enable && !device_may_wakeup(&pci_dev->dev)) 2746 return -EINVAL; 2747 2748 return __pci_enable_wake(pci_dev, state, enable); 2749 } 2750 EXPORT_SYMBOL(pci_enable_wake); 2751 2752 /** 2753 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2754 * @dev: PCI device to prepare 2755 * @enable: True to enable wake-up event generation; false to disable 2756 * 2757 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2758 * and this function allows them to set that up cleanly - pci_enable_wake() 2759 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2760 * ordering constraints. 2761 * 2762 * This function only returns error code if the device is not allowed to wake 2763 * up the system from sleep or it is not capable of generating PME# from both 2764 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2765 */ 2766 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2767 { 2768 return pci_pme_capable(dev, PCI_D3cold) ? 2769 pci_enable_wake(dev, PCI_D3cold, enable) : 2770 pci_enable_wake(dev, PCI_D3hot, enable); 2771 } 2772 EXPORT_SYMBOL(pci_wake_from_d3); 2773 2774 /** 2775 * pci_target_state - find an appropriate low power state for a given PCI dev 2776 * @dev: PCI device 2777 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2778 * 2779 * Use underlying platform code to find a supported low power state for @dev. 2780 * If the platform can't manage @dev, return the deepest state from which it 2781 * can generate wake events, based on any available PME info. 2782 */ 2783 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2784 { 2785 if (platform_pci_power_manageable(dev)) { 2786 /* 2787 * Call the platform to find the target state for the device. 2788 */ 2789 pci_power_t state = platform_pci_choose_state(dev); 2790 2791 switch (state) { 2792 case PCI_POWER_ERROR: 2793 case PCI_UNKNOWN: 2794 return PCI_D3hot; 2795 2796 case PCI_D1: 2797 case PCI_D2: 2798 if (pci_no_d1d2(dev)) 2799 return PCI_D3hot; 2800 } 2801 2802 return state; 2803 } 2804 2805 /* 2806 * If the device is in D3cold even though it's not power-manageable by 2807 * the platform, it may have been powered down by non-standard means. 2808 * Best to let it slumber. 2809 */ 2810 if (dev->current_state == PCI_D3cold) 2811 return PCI_D3cold; 2812 else if (!dev->pm_cap) 2813 return PCI_D0; 2814 2815 if (wakeup && dev->pme_support) { 2816 pci_power_t state = PCI_D3hot; 2817 2818 /* 2819 * Find the deepest state from which the device can generate 2820 * PME#. 2821 */ 2822 while (state && !(dev->pme_support & (1 << state))) 2823 state--; 2824 2825 if (state) 2826 return state; 2827 else if (dev->pme_support & 1) 2828 return PCI_D0; 2829 } 2830 2831 return PCI_D3hot; 2832 } 2833 2834 /** 2835 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2836 * into a sleep state 2837 * @dev: Device to handle. 2838 * 2839 * Choose the power state appropriate for the device depending on whether 2840 * it can wake up the system and/or is power manageable by the platform 2841 * (PCI_D3hot is the default) and put the device into that state. 2842 */ 2843 int pci_prepare_to_sleep(struct pci_dev *dev) 2844 { 2845 bool wakeup = device_may_wakeup(&dev->dev); 2846 pci_power_t target_state = pci_target_state(dev, wakeup); 2847 int error; 2848 2849 if (target_state == PCI_POWER_ERROR) 2850 return -EIO; 2851 2852 pci_enable_wake(dev, target_state, wakeup); 2853 2854 error = pci_set_power_state(dev, target_state); 2855 2856 if (error) 2857 pci_enable_wake(dev, target_state, false); 2858 2859 return error; 2860 } 2861 EXPORT_SYMBOL(pci_prepare_to_sleep); 2862 2863 /** 2864 * pci_back_from_sleep - turn PCI device on during system-wide transition 2865 * into working state 2866 * @dev: Device to handle. 2867 * 2868 * Disable device's system wake-up capability and put it into D0. 2869 */ 2870 int pci_back_from_sleep(struct pci_dev *dev) 2871 { 2872 int ret = pci_set_power_state(dev, PCI_D0); 2873 2874 if (ret) 2875 return ret; 2876 2877 pci_enable_wake(dev, PCI_D0, false); 2878 return 0; 2879 } 2880 EXPORT_SYMBOL(pci_back_from_sleep); 2881 2882 /** 2883 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2884 * @dev: PCI device being suspended. 2885 * 2886 * Prepare @dev to generate wake-up events at run time and put it into a low 2887 * power state. 2888 */ 2889 int pci_finish_runtime_suspend(struct pci_dev *dev) 2890 { 2891 pci_power_t target_state; 2892 int error; 2893 2894 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2895 if (target_state == PCI_POWER_ERROR) 2896 return -EIO; 2897 2898 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2899 2900 error = pci_set_power_state(dev, target_state); 2901 2902 if (error) 2903 pci_enable_wake(dev, target_state, false); 2904 2905 return error; 2906 } 2907 2908 /** 2909 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2910 * @dev: Device to check. 2911 * 2912 * Return true if the device itself is capable of generating wake-up events 2913 * (through the platform or using the native PCIe PME) or if the device supports 2914 * PME and one of its upstream bridges can generate wake-up events. 2915 */ 2916 bool pci_dev_run_wake(struct pci_dev *dev) 2917 { 2918 struct pci_bus *bus = dev->bus; 2919 2920 if (!dev->pme_support) 2921 return false; 2922 2923 /* PME-capable in principle, but not from the target power state */ 2924 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2925 return false; 2926 2927 if (device_can_wakeup(&dev->dev)) 2928 return true; 2929 2930 while (bus->parent) { 2931 struct pci_dev *bridge = bus->self; 2932 2933 if (device_can_wakeup(&bridge->dev)) 2934 return true; 2935 2936 bus = bus->parent; 2937 } 2938 2939 /* We have reached the root bus. */ 2940 if (bus->bridge) 2941 return device_can_wakeup(bus->bridge); 2942 2943 return false; 2944 } 2945 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2946 2947 /** 2948 * pci_dev_need_resume - Check if it is necessary to resume the device. 2949 * @pci_dev: Device to check. 2950 * 2951 * Return 'true' if the device is not runtime-suspended or it has to be 2952 * reconfigured due to wakeup settings difference between system and runtime 2953 * suspend, or the current power state of it is not suitable for the upcoming 2954 * (system-wide) transition. 2955 */ 2956 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2957 { 2958 struct device *dev = &pci_dev->dev; 2959 pci_power_t target_state; 2960 2961 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2962 return true; 2963 2964 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2965 2966 /* 2967 * If the earlier platform check has not triggered, D3cold is just power 2968 * removal on top of D3hot, so no need to resume the device in that 2969 * case. 2970 */ 2971 return target_state != pci_dev->current_state && 2972 target_state != PCI_D3cold && 2973 pci_dev->current_state != PCI_D3hot; 2974 } 2975 2976 /** 2977 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2978 * @pci_dev: Device to check. 2979 * 2980 * If the device is suspended and it is not configured for system wakeup, 2981 * disable PME for it to prevent it from waking up the system unnecessarily. 2982 * 2983 * Note that if the device's power state is D3cold and the platform check in 2984 * pci_dev_need_resume() has not triggered, the device's configuration need not 2985 * be changed. 2986 */ 2987 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2988 { 2989 struct device *dev = &pci_dev->dev; 2990 2991 spin_lock_irq(&dev->power.lock); 2992 2993 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2994 pci_dev->current_state < PCI_D3cold) 2995 __pci_pme_active(pci_dev, false); 2996 2997 spin_unlock_irq(&dev->power.lock); 2998 } 2999 3000 /** 3001 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 3002 * @pci_dev: Device to handle. 3003 * 3004 * If the device is runtime suspended and wakeup-capable, enable PME for it as 3005 * it might have been disabled during the prepare phase of system suspend if 3006 * the device was not configured for system wakeup. 3007 */ 3008 void pci_dev_complete_resume(struct pci_dev *pci_dev) 3009 { 3010 struct device *dev = &pci_dev->dev; 3011 3012 if (!pci_dev_run_wake(pci_dev)) 3013 return; 3014 3015 spin_lock_irq(&dev->power.lock); 3016 3017 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 3018 __pci_pme_active(pci_dev, true); 3019 3020 spin_unlock_irq(&dev->power.lock); 3021 } 3022 3023 /** 3024 * pci_choose_state - Choose the power state of a PCI device. 3025 * @dev: Target PCI device. 3026 * @state: Target state for the whole system. 3027 * 3028 * Returns PCI power state suitable for @dev and @state. 3029 */ 3030 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 3031 { 3032 if (state.event == PM_EVENT_ON) 3033 return PCI_D0; 3034 3035 return pci_target_state(dev, false); 3036 } 3037 EXPORT_SYMBOL(pci_choose_state); 3038 3039 void pci_config_pm_runtime_get(struct pci_dev *pdev) 3040 { 3041 struct device *dev = &pdev->dev; 3042 struct device *parent = dev->parent; 3043 3044 if (parent) 3045 pm_runtime_get_sync(parent); 3046 pm_runtime_get_noresume(dev); 3047 /* 3048 * pdev->current_state is set to PCI_D3cold during suspending, 3049 * so wait until suspending completes 3050 */ 3051 pm_runtime_barrier(dev); 3052 /* 3053 * Only need to resume devices in D3cold, because config 3054 * registers are still accessible for devices suspended but 3055 * not in D3cold. 3056 */ 3057 if (pdev->current_state == PCI_D3cold) 3058 pm_runtime_resume(dev); 3059 } 3060 3061 void pci_config_pm_runtime_put(struct pci_dev *pdev) 3062 { 3063 struct device *dev = &pdev->dev; 3064 struct device *parent = dev->parent; 3065 3066 pm_runtime_put(dev); 3067 if (parent) 3068 pm_runtime_put_sync(parent); 3069 } 3070 3071 static const struct dmi_system_id bridge_d3_blacklist[] = { 3072 #ifdef CONFIG_X86 3073 { 3074 /* 3075 * Gigabyte X299 root port is not marked as hotplug capable 3076 * which allows Linux to power manage it. However, this 3077 * confuses the BIOS SMI handler so don't power manage root 3078 * ports on that system. 3079 */ 3080 .ident = "X299 DESIGNARE EX-CF", 3081 .matches = { 3082 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 3083 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 3084 }, 3085 }, 3086 { 3087 /* 3088 * Downstream device is not accessible after putting a root port 3089 * into D3cold and back into D0 on Elo Continental Z2 board 3090 */ 3091 .ident = "Elo Continental Z2", 3092 .matches = { 3093 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3094 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3095 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3096 }, 3097 }, 3098 #endif 3099 { } 3100 }; 3101 3102 /** 3103 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3104 * @bridge: Bridge to check 3105 * 3106 * This function checks if it is possible to move the bridge to D3. 3107 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3108 */ 3109 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3110 { 3111 if (!pci_is_pcie(bridge)) 3112 return false; 3113 3114 switch (pci_pcie_type(bridge)) { 3115 case PCI_EXP_TYPE_ROOT_PORT: 3116 case PCI_EXP_TYPE_UPSTREAM: 3117 case PCI_EXP_TYPE_DOWNSTREAM: 3118 if (pci_bridge_d3_disable) 3119 return false; 3120 3121 /* 3122 * Hotplug ports handled by firmware in System Management Mode 3123 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3124 */ 3125 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3126 return false; 3127 3128 if (pci_bridge_d3_force) 3129 return true; 3130 3131 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3132 if (bridge->is_thunderbolt) 3133 return true; 3134 3135 /* Platform might know better if the bridge supports D3 */ 3136 if (platform_pci_bridge_d3(bridge)) 3137 return true; 3138 3139 /* 3140 * Hotplug ports handled natively by the OS were not validated 3141 * by vendors for runtime D3 at least until 2018 because there 3142 * was no OS support. 3143 */ 3144 if (bridge->is_hotplug_bridge) 3145 return false; 3146 3147 if (dmi_check_system(bridge_d3_blacklist)) 3148 return false; 3149 3150 /* 3151 * It should be safe to put PCIe ports from 2015 or newer 3152 * to D3. 3153 */ 3154 if (dmi_get_bios_year() >= 2015) 3155 return true; 3156 break; 3157 } 3158 3159 return false; 3160 } 3161 3162 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3163 { 3164 bool *d3cold_ok = data; 3165 3166 if (/* The device needs to be allowed to go D3cold ... */ 3167 dev->no_d3cold || !dev->d3cold_allowed || 3168 3169 /* ... and if it is wakeup capable to do so from D3cold. */ 3170 (device_may_wakeup(&dev->dev) && 3171 !pci_pme_capable(dev, PCI_D3cold)) || 3172 3173 /* If it is a bridge it must be allowed to go to D3. */ 3174 !pci_power_manageable(dev)) 3175 3176 *d3cold_ok = false; 3177 3178 return !*d3cold_ok; 3179 } 3180 3181 /* 3182 * pci_bridge_d3_update - Update bridge D3 capabilities 3183 * @dev: PCI device which is changed 3184 * 3185 * Update upstream bridge PM capabilities accordingly depending on if the 3186 * device PM configuration was changed or the device is being removed. The 3187 * change is also propagated upstream. 3188 */ 3189 void pci_bridge_d3_update(struct pci_dev *dev) 3190 { 3191 bool remove = !device_is_registered(&dev->dev); 3192 struct pci_dev *bridge; 3193 bool d3cold_ok = true; 3194 3195 bridge = pci_upstream_bridge(dev); 3196 if (!bridge || !pci_bridge_d3_possible(bridge)) 3197 return; 3198 3199 /* 3200 * If D3 is currently allowed for the bridge, removing one of its 3201 * children won't change that. 3202 */ 3203 if (remove && bridge->bridge_d3) 3204 return; 3205 3206 /* 3207 * If D3 is currently allowed for the bridge and a child is added or 3208 * changed, disallowance of D3 can only be caused by that child, so 3209 * we only need to check that single device, not any of its siblings. 3210 * 3211 * If D3 is currently not allowed for the bridge, checking the device 3212 * first may allow us to skip checking its siblings. 3213 */ 3214 if (!remove) 3215 pci_dev_check_d3cold(dev, &d3cold_ok); 3216 3217 /* 3218 * If D3 is currently not allowed for the bridge, this may be caused 3219 * either by the device being changed/removed or any of its siblings, 3220 * so we need to go through all children to find out if one of them 3221 * continues to block D3. 3222 */ 3223 if (d3cold_ok && !bridge->bridge_d3) 3224 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3225 &d3cold_ok); 3226 3227 if (bridge->bridge_d3 != d3cold_ok) { 3228 bridge->bridge_d3 = d3cold_ok; 3229 /* Propagate change to upstream bridges */ 3230 pci_bridge_d3_update(bridge); 3231 } 3232 } 3233 3234 /** 3235 * pci_d3cold_enable - Enable D3cold for device 3236 * @dev: PCI device to handle 3237 * 3238 * This function can be used in drivers to enable D3cold from the device 3239 * they handle. It also updates upstream PCI bridge PM capabilities 3240 * accordingly. 3241 */ 3242 void pci_d3cold_enable(struct pci_dev *dev) 3243 { 3244 if (dev->no_d3cold) { 3245 dev->no_d3cold = false; 3246 pci_bridge_d3_update(dev); 3247 } 3248 } 3249 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3250 3251 /** 3252 * pci_d3cold_disable - Disable D3cold for device 3253 * @dev: PCI device to handle 3254 * 3255 * This function can be used in drivers to disable D3cold from the device 3256 * they handle. It also updates upstream PCI bridge PM capabilities 3257 * accordingly. 3258 */ 3259 void pci_d3cold_disable(struct pci_dev *dev) 3260 { 3261 if (!dev->no_d3cold) { 3262 dev->no_d3cold = true; 3263 pci_bridge_d3_update(dev); 3264 } 3265 } 3266 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3267 3268 /** 3269 * pci_pm_init - Initialize PM functions of given PCI device 3270 * @dev: PCI device to handle. 3271 */ 3272 void pci_pm_init(struct pci_dev *dev) 3273 { 3274 int pm; 3275 u16 status; 3276 u16 pmc; 3277 3278 pm_runtime_forbid(&dev->dev); 3279 pm_runtime_set_active(&dev->dev); 3280 pm_runtime_enable(&dev->dev); 3281 device_enable_async_suspend(&dev->dev); 3282 dev->wakeup_prepared = false; 3283 3284 dev->pm_cap = 0; 3285 dev->pme_support = 0; 3286 3287 /* find PCI PM capability in list */ 3288 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3289 if (!pm) 3290 return; 3291 /* Check device's ability to generate PME# */ 3292 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3293 3294 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3295 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3296 pmc & PCI_PM_CAP_VER_MASK); 3297 return; 3298 } 3299 3300 dev->pm_cap = pm; 3301 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3302 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3303 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3304 dev->d3cold_allowed = true; 3305 3306 dev->d1_support = false; 3307 dev->d2_support = false; 3308 if (!pci_no_d1d2(dev)) { 3309 if (pmc & PCI_PM_CAP_D1) 3310 dev->d1_support = true; 3311 if (pmc & PCI_PM_CAP_D2) 3312 dev->d2_support = true; 3313 3314 if (dev->d1_support || dev->d2_support) 3315 pci_info(dev, "supports%s%s\n", 3316 dev->d1_support ? " D1" : "", 3317 dev->d2_support ? " D2" : ""); 3318 } 3319 3320 pmc &= PCI_PM_CAP_PME_MASK; 3321 if (pmc) { 3322 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3323 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3324 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3325 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3326 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3327 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3328 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3329 dev->pme_poll = true; 3330 /* 3331 * Make device's PM flags reflect the wake-up capability, but 3332 * let the user space enable it to wake up the system as needed. 3333 */ 3334 device_set_wakeup_capable(&dev->dev, true); 3335 /* Disable the PME# generation functionality */ 3336 pci_pme_active(dev, false); 3337 } 3338 3339 pci_read_config_word(dev, PCI_STATUS, &status); 3340 if (status & PCI_STATUS_IMM_READY) 3341 dev->imm_ready = 1; 3342 } 3343 3344 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3345 { 3346 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3347 3348 switch (prop) { 3349 case PCI_EA_P_MEM: 3350 case PCI_EA_P_VF_MEM: 3351 flags |= IORESOURCE_MEM; 3352 break; 3353 case PCI_EA_P_MEM_PREFETCH: 3354 case PCI_EA_P_VF_MEM_PREFETCH: 3355 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3356 break; 3357 case PCI_EA_P_IO: 3358 flags |= IORESOURCE_IO; 3359 break; 3360 default: 3361 return 0; 3362 } 3363 3364 return flags; 3365 } 3366 3367 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3368 u8 prop) 3369 { 3370 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3371 return &dev->resource[bei]; 3372 #ifdef CONFIG_PCI_IOV 3373 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3374 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3375 return &dev->resource[PCI_IOV_RESOURCES + 3376 bei - PCI_EA_BEI_VF_BAR0]; 3377 #endif 3378 else if (bei == PCI_EA_BEI_ROM) 3379 return &dev->resource[PCI_ROM_RESOURCE]; 3380 else 3381 return NULL; 3382 } 3383 3384 /* Read an Enhanced Allocation (EA) entry */ 3385 static int pci_ea_read(struct pci_dev *dev, int offset) 3386 { 3387 struct resource *res; 3388 const char *res_name; 3389 int ent_size, ent_offset = offset; 3390 resource_size_t start, end; 3391 unsigned long flags; 3392 u32 dw0, bei, base, max_offset; 3393 u8 prop; 3394 bool support_64 = (sizeof(resource_size_t) >= 8); 3395 3396 pci_read_config_dword(dev, ent_offset, &dw0); 3397 ent_offset += 4; 3398 3399 /* Entry size field indicates DWORDs after 1st */ 3400 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3401 3402 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3403 goto out; 3404 3405 bei = FIELD_GET(PCI_EA_BEI, dw0); 3406 prop = FIELD_GET(PCI_EA_PP, dw0); 3407 3408 /* 3409 * If the Property is in the reserved range, try the Secondary 3410 * Property instead. 3411 */ 3412 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3413 prop = FIELD_GET(PCI_EA_SP, dw0); 3414 if (prop > PCI_EA_P_BRIDGE_IO) 3415 goto out; 3416 3417 res = pci_ea_get_resource(dev, bei, prop); 3418 res_name = pci_resource_name(dev, bei); 3419 if (!res) { 3420 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3421 goto out; 3422 } 3423 3424 flags = pci_ea_flags(dev, prop); 3425 if (!flags) { 3426 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3427 goto out; 3428 } 3429 3430 /* Read Base */ 3431 pci_read_config_dword(dev, ent_offset, &base); 3432 start = (base & PCI_EA_FIELD_MASK); 3433 ent_offset += 4; 3434 3435 /* Read MaxOffset */ 3436 pci_read_config_dword(dev, ent_offset, &max_offset); 3437 ent_offset += 4; 3438 3439 /* Read Base MSBs (if 64-bit entry) */ 3440 if (base & PCI_EA_IS_64) { 3441 u32 base_upper; 3442 3443 pci_read_config_dword(dev, ent_offset, &base_upper); 3444 ent_offset += 4; 3445 3446 flags |= IORESOURCE_MEM_64; 3447 3448 /* entry starts above 32-bit boundary, can't use */ 3449 if (!support_64 && base_upper) 3450 goto out; 3451 3452 if (support_64) 3453 start |= ((u64)base_upper << 32); 3454 } 3455 3456 end = start + (max_offset | 0x03); 3457 3458 /* Read MaxOffset MSBs (if 64-bit entry) */ 3459 if (max_offset & PCI_EA_IS_64) { 3460 u32 max_offset_upper; 3461 3462 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3463 ent_offset += 4; 3464 3465 flags |= IORESOURCE_MEM_64; 3466 3467 /* entry too big, can't use */ 3468 if (!support_64 && max_offset_upper) 3469 goto out; 3470 3471 if (support_64) 3472 end += ((u64)max_offset_upper << 32); 3473 } 3474 3475 if (end < start) { 3476 pci_err(dev, "EA Entry crosses address boundary\n"); 3477 goto out; 3478 } 3479 3480 if (ent_size != ent_offset - offset) { 3481 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3482 ent_size, ent_offset - offset); 3483 goto out; 3484 } 3485 3486 res->name = pci_name(dev); 3487 res->start = start; 3488 res->end = end; 3489 res->flags = flags; 3490 3491 if (bei <= PCI_EA_BEI_BAR5) 3492 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3493 res_name, res, prop); 3494 else if (bei == PCI_EA_BEI_ROM) 3495 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3496 res_name, res, prop); 3497 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3498 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3499 res_name, res, prop); 3500 else 3501 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3502 bei, res, prop); 3503 3504 out: 3505 return offset + ent_size; 3506 } 3507 3508 /* Enhanced Allocation Initialization */ 3509 void pci_ea_init(struct pci_dev *dev) 3510 { 3511 int ea; 3512 u8 num_ent; 3513 int offset; 3514 int i; 3515 3516 /* find PCI EA capability in list */ 3517 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3518 if (!ea) 3519 return; 3520 3521 /* determine the number of entries */ 3522 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3523 &num_ent); 3524 num_ent &= PCI_EA_NUM_ENT_MASK; 3525 3526 offset = ea + PCI_EA_FIRST_ENT; 3527 3528 /* Skip DWORD 2 for type 1 functions */ 3529 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3530 offset += 4; 3531 3532 /* parse each EA entry */ 3533 for (i = 0; i < num_ent; ++i) 3534 offset = pci_ea_read(dev, offset); 3535 } 3536 3537 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3538 struct pci_cap_saved_state *new_cap) 3539 { 3540 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3541 } 3542 3543 /** 3544 * _pci_add_cap_save_buffer - allocate buffer for saving given 3545 * capability registers 3546 * @dev: the PCI device 3547 * @cap: the capability to allocate the buffer for 3548 * @extended: Standard or Extended capability ID 3549 * @size: requested size of the buffer 3550 */ 3551 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3552 bool extended, unsigned int size) 3553 { 3554 int pos; 3555 struct pci_cap_saved_state *save_state; 3556 3557 if (extended) 3558 pos = pci_find_ext_capability(dev, cap); 3559 else 3560 pos = pci_find_capability(dev, cap); 3561 3562 if (!pos) 3563 return 0; 3564 3565 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3566 if (!save_state) 3567 return -ENOMEM; 3568 3569 save_state->cap.cap_nr = cap; 3570 save_state->cap.cap_extended = extended; 3571 save_state->cap.size = size; 3572 pci_add_saved_cap(dev, save_state); 3573 3574 return 0; 3575 } 3576 3577 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3578 { 3579 return _pci_add_cap_save_buffer(dev, cap, false, size); 3580 } 3581 3582 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3583 { 3584 return _pci_add_cap_save_buffer(dev, cap, true, size); 3585 } 3586 3587 /** 3588 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3589 * @dev: the PCI device 3590 */ 3591 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3592 { 3593 int error; 3594 3595 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3596 PCI_EXP_SAVE_REGS * sizeof(u16)); 3597 if (error) 3598 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3599 3600 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3601 if (error) 3602 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3603 3604 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3605 2 * sizeof(u16)); 3606 if (error) 3607 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3608 3609 pci_allocate_vc_save_buffers(dev); 3610 } 3611 3612 void pci_free_cap_save_buffers(struct pci_dev *dev) 3613 { 3614 struct pci_cap_saved_state *tmp; 3615 struct hlist_node *n; 3616 3617 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3618 kfree(tmp); 3619 } 3620 3621 /** 3622 * pci_configure_ari - enable or disable ARI forwarding 3623 * @dev: the PCI device 3624 * 3625 * If @dev and its upstream bridge both support ARI, enable ARI in the 3626 * bridge. Otherwise, disable ARI in the bridge. 3627 */ 3628 void pci_configure_ari(struct pci_dev *dev) 3629 { 3630 u32 cap; 3631 struct pci_dev *bridge; 3632 3633 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3634 return; 3635 3636 bridge = dev->bus->self; 3637 if (!bridge) 3638 return; 3639 3640 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3641 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3642 return; 3643 3644 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3645 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3646 PCI_EXP_DEVCTL2_ARI); 3647 bridge->ari_enabled = 1; 3648 } else { 3649 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3650 PCI_EXP_DEVCTL2_ARI); 3651 bridge->ari_enabled = 0; 3652 } 3653 } 3654 3655 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3656 { 3657 int pos; 3658 u16 cap, ctrl; 3659 3660 pos = pdev->acs_cap; 3661 if (!pos) 3662 return false; 3663 3664 /* 3665 * Except for egress control, capabilities are either required 3666 * or only required if controllable. Features missing from the 3667 * capability field can therefore be assumed as hard-wired enabled. 3668 */ 3669 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3670 acs_flags &= (cap | PCI_ACS_EC); 3671 3672 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3673 return (ctrl & acs_flags) == acs_flags; 3674 } 3675 3676 /** 3677 * pci_acs_enabled - test ACS against required flags for a given device 3678 * @pdev: device to test 3679 * @acs_flags: required PCI ACS flags 3680 * 3681 * Return true if the device supports the provided flags. Automatically 3682 * filters out flags that are not implemented on multifunction devices. 3683 * 3684 * Note that this interface checks the effective ACS capabilities of the 3685 * device rather than the actual capabilities. For instance, most single 3686 * function endpoints are not required to support ACS because they have no 3687 * opportunity for peer-to-peer access. We therefore return 'true' 3688 * regardless of whether the device exposes an ACS capability. This makes 3689 * it much easier for callers of this function to ignore the actual type 3690 * or topology of the device when testing ACS support. 3691 */ 3692 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3693 { 3694 int ret; 3695 3696 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3697 if (ret >= 0) 3698 return ret > 0; 3699 3700 /* 3701 * Conventional PCI and PCI-X devices never support ACS, either 3702 * effectively or actually. The shared bus topology implies that 3703 * any device on the bus can receive or snoop DMA. 3704 */ 3705 if (!pci_is_pcie(pdev)) 3706 return false; 3707 3708 switch (pci_pcie_type(pdev)) { 3709 /* 3710 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3711 * but since their primary interface is PCI/X, we conservatively 3712 * handle them as we would a non-PCIe device. 3713 */ 3714 case PCI_EXP_TYPE_PCIE_BRIDGE: 3715 /* 3716 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3717 * applicable... must never implement an ACS Extended Capability...". 3718 * This seems arbitrary, but we take a conservative interpretation 3719 * of this statement. 3720 */ 3721 case PCI_EXP_TYPE_PCI_BRIDGE: 3722 case PCI_EXP_TYPE_RC_EC: 3723 return false; 3724 /* 3725 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3726 * implement ACS in order to indicate their peer-to-peer capabilities, 3727 * regardless of whether they are single- or multi-function devices. 3728 */ 3729 case PCI_EXP_TYPE_DOWNSTREAM: 3730 case PCI_EXP_TYPE_ROOT_PORT: 3731 return pci_acs_flags_enabled(pdev, acs_flags); 3732 /* 3733 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3734 * implemented by the remaining PCIe types to indicate peer-to-peer 3735 * capabilities, but only when they are part of a multifunction 3736 * device. The footnote for section 6.12 indicates the specific 3737 * PCIe types included here. 3738 */ 3739 case PCI_EXP_TYPE_ENDPOINT: 3740 case PCI_EXP_TYPE_UPSTREAM: 3741 case PCI_EXP_TYPE_LEG_END: 3742 case PCI_EXP_TYPE_RC_END: 3743 if (!pdev->multifunction) 3744 break; 3745 3746 return pci_acs_flags_enabled(pdev, acs_flags); 3747 } 3748 3749 /* 3750 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3751 * to single function devices with the exception of downstream ports. 3752 */ 3753 return true; 3754 } 3755 3756 /** 3757 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3758 * @start: starting downstream device 3759 * @end: ending upstream device or NULL to search to the root bus 3760 * @acs_flags: required flags 3761 * 3762 * Walk up a device tree from start to end testing PCI ACS support. If 3763 * any step along the way does not support the required flags, return false. 3764 */ 3765 bool pci_acs_path_enabled(struct pci_dev *start, 3766 struct pci_dev *end, u16 acs_flags) 3767 { 3768 struct pci_dev *pdev, *parent = start; 3769 3770 do { 3771 pdev = parent; 3772 3773 if (!pci_acs_enabled(pdev, acs_flags)) 3774 return false; 3775 3776 if (pci_is_root_bus(pdev->bus)) 3777 return (end == NULL); 3778 3779 parent = pdev->bus->self; 3780 } while (pdev != end); 3781 3782 return true; 3783 } 3784 3785 /** 3786 * pci_acs_init - Initialize ACS if hardware supports it 3787 * @dev: the PCI device 3788 */ 3789 void pci_acs_init(struct pci_dev *dev) 3790 { 3791 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3792 3793 /* 3794 * Attempt to enable ACS regardless of capability because some Root 3795 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3796 * the standard ACS capability but still support ACS via those 3797 * quirks. 3798 */ 3799 pci_enable_acs(dev); 3800 } 3801 3802 /** 3803 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3804 * @pdev: PCI device 3805 * @bar: BAR to find 3806 * 3807 * Helper to find the position of the ctrl register for a BAR. 3808 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3809 * Returns -ENOENT if no ctrl register for the BAR could be found. 3810 */ 3811 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3812 { 3813 unsigned int pos, nbars, i; 3814 u32 ctrl; 3815 3816 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3817 if (!pos) 3818 return -ENOTSUPP; 3819 3820 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3821 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3822 3823 for (i = 0; i < nbars; i++, pos += 8) { 3824 int bar_idx; 3825 3826 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3827 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3828 if (bar_idx == bar) 3829 return pos; 3830 } 3831 3832 return -ENOENT; 3833 } 3834 3835 /** 3836 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3837 * @pdev: PCI device 3838 * @bar: BAR to query 3839 * 3840 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3841 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3842 */ 3843 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3844 { 3845 int pos; 3846 u32 cap; 3847 3848 pos = pci_rebar_find_pos(pdev, bar); 3849 if (pos < 0) 3850 return 0; 3851 3852 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3853 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3854 3855 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3856 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3857 bar == 0 && cap == 0x700) 3858 return 0x3f00; 3859 3860 return cap; 3861 } 3862 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3863 3864 /** 3865 * pci_rebar_get_current_size - get the current size of a BAR 3866 * @pdev: PCI device 3867 * @bar: BAR to set size to 3868 * 3869 * Read the size of a BAR from the resizable BAR config. 3870 * Returns size if found or negative error code. 3871 */ 3872 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3873 { 3874 int pos; 3875 u32 ctrl; 3876 3877 pos = pci_rebar_find_pos(pdev, bar); 3878 if (pos < 0) 3879 return pos; 3880 3881 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3882 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3883 } 3884 3885 /** 3886 * pci_rebar_set_size - set a new size for a BAR 3887 * @pdev: PCI device 3888 * @bar: BAR to set size to 3889 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3890 * 3891 * Set the new size of a BAR as defined in the spec. 3892 * Returns zero if resizing was successful, error code otherwise. 3893 */ 3894 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3895 { 3896 int pos; 3897 u32 ctrl; 3898 3899 pos = pci_rebar_find_pos(pdev, bar); 3900 if (pos < 0) 3901 return pos; 3902 3903 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3904 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3905 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3906 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3907 return 0; 3908 } 3909 3910 /** 3911 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3912 * @dev: the PCI device 3913 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3914 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3915 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3916 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3917 * 3918 * Return 0 if all upstream bridges support AtomicOp routing, egress 3919 * blocking is disabled on all upstream ports, and the root port supports 3920 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3921 * AtomicOp completion), or negative otherwise. 3922 */ 3923 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3924 { 3925 struct pci_bus *bus = dev->bus; 3926 struct pci_dev *bridge; 3927 u32 cap, ctl2; 3928 3929 /* 3930 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3931 * in Device Control 2 is reserved in VFs and the PF value applies 3932 * to all associated VFs. 3933 */ 3934 if (dev->is_virtfn) 3935 return -EINVAL; 3936 3937 if (!pci_is_pcie(dev)) 3938 return -EINVAL; 3939 3940 /* 3941 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3942 * AtomicOp requesters. For now, we only support endpoints as 3943 * requesters and root ports as completers. No endpoints as 3944 * completers, and no peer-to-peer. 3945 */ 3946 3947 switch (pci_pcie_type(dev)) { 3948 case PCI_EXP_TYPE_ENDPOINT: 3949 case PCI_EXP_TYPE_LEG_END: 3950 case PCI_EXP_TYPE_RC_END: 3951 break; 3952 default: 3953 return -EINVAL; 3954 } 3955 3956 while (bus->parent) { 3957 bridge = bus->self; 3958 3959 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3960 3961 switch (pci_pcie_type(bridge)) { 3962 /* Ensure switch ports support AtomicOp routing */ 3963 case PCI_EXP_TYPE_UPSTREAM: 3964 case PCI_EXP_TYPE_DOWNSTREAM: 3965 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3966 return -EINVAL; 3967 break; 3968 3969 /* Ensure root port supports all the sizes we care about */ 3970 case PCI_EXP_TYPE_ROOT_PORT: 3971 if ((cap & cap_mask) != cap_mask) 3972 return -EINVAL; 3973 break; 3974 } 3975 3976 /* Ensure upstream ports don't block AtomicOps on egress */ 3977 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3978 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3979 &ctl2); 3980 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3981 return -EINVAL; 3982 } 3983 3984 bus = bus->parent; 3985 } 3986 3987 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3988 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3989 return 0; 3990 } 3991 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3992 3993 /** 3994 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3995 * @dev: the PCI device 3996 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3997 * 3998 * Perform INTx swizzling for a device behind one level of bridge. This is 3999 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 4000 * behind bridges on add-in cards. For devices with ARI enabled, the slot 4001 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 4002 * the PCI Express Base Specification, Revision 2.1) 4003 */ 4004 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 4005 { 4006 int slot; 4007 4008 if (pci_ari_enabled(dev->bus)) 4009 slot = 0; 4010 else 4011 slot = PCI_SLOT(dev->devfn); 4012 4013 return (((pin - 1) + slot) % 4) + 1; 4014 } 4015 4016 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 4017 { 4018 u8 pin; 4019 4020 pin = dev->pin; 4021 if (!pin) 4022 return -1; 4023 4024 while (!pci_is_root_bus(dev->bus)) { 4025 pin = pci_swizzle_interrupt_pin(dev, pin); 4026 dev = dev->bus->self; 4027 } 4028 *bridge = dev; 4029 return pin; 4030 } 4031 4032 /** 4033 * pci_common_swizzle - swizzle INTx all the way to root bridge 4034 * @dev: the PCI device 4035 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 4036 * 4037 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 4038 * bridges all the way up to a PCI root bus. 4039 */ 4040 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 4041 { 4042 u8 pin = *pinp; 4043 4044 while (!pci_is_root_bus(dev->bus)) { 4045 pin = pci_swizzle_interrupt_pin(dev, pin); 4046 dev = dev->bus->self; 4047 } 4048 *pinp = pin; 4049 return PCI_SLOT(dev->devfn); 4050 } 4051 EXPORT_SYMBOL_GPL(pci_common_swizzle); 4052 4053 /** 4054 * pci_release_region - Release a PCI bar 4055 * @pdev: PCI device whose resources were previously reserved by 4056 * pci_request_region() 4057 * @bar: BAR to release 4058 * 4059 * Releases the PCI I/O and memory resources previously reserved by a 4060 * successful call to pci_request_region(). Call this function only 4061 * after all use of the PCI regions has ceased. 4062 */ 4063 void pci_release_region(struct pci_dev *pdev, int bar) 4064 { 4065 struct pci_devres *dr; 4066 4067 if (pci_resource_len(pdev, bar) == 0) 4068 return; 4069 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 4070 release_region(pci_resource_start(pdev, bar), 4071 pci_resource_len(pdev, bar)); 4072 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 4073 release_mem_region(pci_resource_start(pdev, bar), 4074 pci_resource_len(pdev, bar)); 4075 4076 dr = find_pci_dr(pdev); 4077 if (dr) 4078 dr->region_mask &= ~(1 << bar); 4079 } 4080 EXPORT_SYMBOL(pci_release_region); 4081 4082 /** 4083 * __pci_request_region - Reserved PCI I/O and memory resource 4084 * @pdev: PCI device whose resources are to be reserved 4085 * @bar: BAR to be reserved 4086 * @res_name: Name to be associated with resource. 4087 * @exclusive: whether the region access is exclusive or not 4088 * 4089 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4090 * being reserved by owner @res_name. Do not access any 4091 * address inside the PCI regions unless this call returns 4092 * successfully. 4093 * 4094 * If @exclusive is set, then the region is marked so that userspace 4095 * is explicitly not allowed to map the resource via /dev/mem or 4096 * sysfs MMIO access. 4097 * 4098 * Returns 0 on success, or %EBUSY on error. A warning 4099 * message is also printed on failure. 4100 */ 4101 static int __pci_request_region(struct pci_dev *pdev, int bar, 4102 const char *res_name, int exclusive) 4103 { 4104 struct pci_devres *dr; 4105 4106 if (pci_resource_len(pdev, bar) == 0) 4107 return 0; 4108 4109 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 4110 if (!request_region(pci_resource_start(pdev, bar), 4111 pci_resource_len(pdev, bar), res_name)) 4112 goto err_out; 4113 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 4114 if (!__request_mem_region(pci_resource_start(pdev, bar), 4115 pci_resource_len(pdev, bar), res_name, 4116 exclusive)) 4117 goto err_out; 4118 } 4119 4120 dr = find_pci_dr(pdev); 4121 if (dr) 4122 dr->region_mask |= 1 << bar; 4123 4124 return 0; 4125 4126 err_out: 4127 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4128 &pdev->resource[bar]); 4129 return -EBUSY; 4130 } 4131 4132 /** 4133 * pci_request_region - Reserve PCI I/O and memory resource 4134 * @pdev: PCI device whose resources are to be reserved 4135 * @bar: BAR to be reserved 4136 * @res_name: Name to be associated with resource 4137 * 4138 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4139 * being reserved by owner @res_name. Do not access any 4140 * address inside the PCI regions unless this call returns 4141 * successfully. 4142 * 4143 * Returns 0 on success, or %EBUSY on error. A warning 4144 * message is also printed on failure. 4145 */ 4146 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4147 { 4148 return __pci_request_region(pdev, bar, res_name, 0); 4149 } 4150 EXPORT_SYMBOL(pci_request_region); 4151 4152 /** 4153 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4154 * @pdev: PCI device whose resources were previously reserved 4155 * @bars: Bitmask of BARs to be released 4156 * 4157 * Release selected PCI I/O and memory resources previously reserved. 4158 * Call this function only after all use of the PCI regions has ceased. 4159 */ 4160 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4161 { 4162 int i; 4163 4164 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4165 if (bars & (1 << i)) 4166 pci_release_region(pdev, i); 4167 } 4168 EXPORT_SYMBOL(pci_release_selected_regions); 4169 4170 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4171 const char *res_name, int excl) 4172 { 4173 int i; 4174 4175 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4176 if (bars & (1 << i)) 4177 if (__pci_request_region(pdev, i, res_name, excl)) 4178 goto err_out; 4179 return 0; 4180 4181 err_out: 4182 while (--i >= 0) 4183 if (bars & (1 << i)) 4184 pci_release_region(pdev, i); 4185 4186 return -EBUSY; 4187 } 4188 4189 4190 /** 4191 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4192 * @pdev: PCI device whose resources are to be reserved 4193 * @bars: Bitmask of BARs to be requested 4194 * @res_name: Name to be associated with resource 4195 */ 4196 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4197 const char *res_name) 4198 { 4199 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4200 } 4201 EXPORT_SYMBOL(pci_request_selected_regions); 4202 4203 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4204 const char *res_name) 4205 { 4206 return __pci_request_selected_regions(pdev, bars, res_name, 4207 IORESOURCE_EXCLUSIVE); 4208 } 4209 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4210 4211 /** 4212 * pci_release_regions - Release reserved PCI I/O and memory resources 4213 * @pdev: PCI device whose resources were previously reserved by 4214 * pci_request_regions() 4215 * 4216 * Releases all PCI I/O and memory resources previously reserved by a 4217 * successful call to pci_request_regions(). Call this function only 4218 * after all use of the PCI regions has ceased. 4219 */ 4220 4221 void pci_release_regions(struct pci_dev *pdev) 4222 { 4223 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4224 } 4225 EXPORT_SYMBOL(pci_release_regions); 4226 4227 /** 4228 * pci_request_regions - Reserve PCI I/O and memory resources 4229 * @pdev: PCI device whose resources are to be reserved 4230 * @res_name: Name to be associated with resource. 4231 * 4232 * Mark all PCI regions associated with PCI device @pdev as 4233 * being reserved by owner @res_name. Do not access any 4234 * address inside the PCI regions unless this call returns 4235 * successfully. 4236 * 4237 * Returns 0 on success, or %EBUSY on error. A warning 4238 * message is also printed on failure. 4239 */ 4240 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4241 { 4242 return pci_request_selected_regions(pdev, 4243 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4244 } 4245 EXPORT_SYMBOL(pci_request_regions); 4246 4247 /** 4248 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4249 * @pdev: PCI device whose resources are to be reserved 4250 * @res_name: Name to be associated with resource. 4251 * 4252 * Mark all PCI regions associated with PCI device @pdev as being reserved 4253 * by owner @res_name. Do not access any address inside the PCI regions 4254 * unless this call returns successfully. 4255 * 4256 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4257 * and the sysfs MMIO access will not be allowed. 4258 * 4259 * Returns 0 on success, or %EBUSY on error. A warning message is also 4260 * printed on failure. 4261 */ 4262 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4263 { 4264 return pci_request_selected_regions_exclusive(pdev, 4265 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4266 } 4267 EXPORT_SYMBOL(pci_request_regions_exclusive); 4268 4269 /* 4270 * Record the PCI IO range (expressed as CPU physical address + size). 4271 * Return a negative value if an error has occurred, zero otherwise 4272 */ 4273 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4274 resource_size_t size) 4275 { 4276 int ret = 0; 4277 #ifdef PCI_IOBASE 4278 struct logic_pio_hwaddr *range; 4279 4280 if (!size || addr + size < addr) 4281 return -EINVAL; 4282 4283 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4284 if (!range) 4285 return -ENOMEM; 4286 4287 range->fwnode = fwnode; 4288 range->size = size; 4289 range->hw_start = addr; 4290 range->flags = LOGIC_PIO_CPU_MMIO; 4291 4292 ret = logic_pio_register_range(range); 4293 if (ret) 4294 kfree(range); 4295 4296 /* Ignore duplicates due to deferred probing */ 4297 if (ret == -EEXIST) 4298 ret = 0; 4299 #endif 4300 4301 return ret; 4302 } 4303 4304 phys_addr_t pci_pio_to_address(unsigned long pio) 4305 { 4306 #ifdef PCI_IOBASE 4307 if (pio < MMIO_UPPER_LIMIT) 4308 return logic_pio_to_hwaddr(pio); 4309 #endif 4310 4311 return (phys_addr_t) OF_BAD_ADDR; 4312 } 4313 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4314 4315 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4316 { 4317 #ifdef PCI_IOBASE 4318 return logic_pio_trans_cpuaddr(address); 4319 #else 4320 if (address > IO_SPACE_LIMIT) 4321 return (unsigned long)-1; 4322 4323 return (unsigned long) address; 4324 #endif 4325 } 4326 4327 /** 4328 * pci_remap_iospace - Remap the memory mapped I/O space 4329 * @res: Resource describing the I/O space 4330 * @phys_addr: physical address of range to be mapped 4331 * 4332 * Remap the memory mapped I/O space described by the @res and the CPU 4333 * physical address @phys_addr into virtual address space. Only 4334 * architectures that have memory mapped IO functions defined (and the 4335 * PCI_IOBASE value defined) should call this function. 4336 */ 4337 #ifndef pci_remap_iospace 4338 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4339 { 4340 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4341 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4342 4343 if (!(res->flags & IORESOURCE_IO)) 4344 return -EINVAL; 4345 4346 if (res->end > IO_SPACE_LIMIT) 4347 return -EINVAL; 4348 4349 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4350 pgprot_device(PAGE_KERNEL)); 4351 #else 4352 /* 4353 * This architecture does not have memory mapped I/O space, 4354 * so this function should never be called 4355 */ 4356 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4357 return -ENODEV; 4358 #endif 4359 } 4360 EXPORT_SYMBOL(pci_remap_iospace); 4361 #endif 4362 4363 /** 4364 * pci_unmap_iospace - Unmap the memory mapped I/O space 4365 * @res: resource to be unmapped 4366 * 4367 * Unmap the CPU virtual address @res from virtual address space. Only 4368 * architectures that have memory mapped IO functions defined (and the 4369 * PCI_IOBASE value defined) should call this function. 4370 */ 4371 void pci_unmap_iospace(struct resource *res) 4372 { 4373 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4374 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4375 4376 vunmap_range(vaddr, vaddr + resource_size(res)); 4377 #endif 4378 } 4379 EXPORT_SYMBOL(pci_unmap_iospace); 4380 4381 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4382 { 4383 struct resource **res = ptr; 4384 4385 pci_unmap_iospace(*res); 4386 } 4387 4388 /** 4389 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4390 * @dev: Generic device to remap IO address for 4391 * @res: Resource describing the I/O space 4392 * @phys_addr: physical address of range to be mapped 4393 * 4394 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4395 * detach. 4396 */ 4397 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4398 phys_addr_t phys_addr) 4399 { 4400 const struct resource **ptr; 4401 int error; 4402 4403 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4404 if (!ptr) 4405 return -ENOMEM; 4406 4407 error = pci_remap_iospace(res, phys_addr); 4408 if (error) { 4409 devres_free(ptr); 4410 } else { 4411 *ptr = res; 4412 devres_add(dev, ptr); 4413 } 4414 4415 return error; 4416 } 4417 EXPORT_SYMBOL(devm_pci_remap_iospace); 4418 4419 /** 4420 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4421 * @dev: Generic device to remap IO address for 4422 * @offset: Resource address to map 4423 * @size: Size of map 4424 * 4425 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4426 * detach. 4427 */ 4428 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4429 resource_size_t offset, 4430 resource_size_t size) 4431 { 4432 void __iomem **ptr, *addr; 4433 4434 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4435 if (!ptr) 4436 return NULL; 4437 4438 addr = pci_remap_cfgspace(offset, size); 4439 if (addr) { 4440 *ptr = addr; 4441 devres_add(dev, ptr); 4442 } else 4443 devres_free(ptr); 4444 4445 return addr; 4446 } 4447 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4448 4449 /** 4450 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4451 * @dev: generic device to handle the resource for 4452 * @res: configuration space resource to be handled 4453 * 4454 * Checks that a resource is a valid memory region, requests the memory 4455 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4456 * proper PCI configuration space memory attributes are guaranteed. 4457 * 4458 * All operations are managed and will be undone on driver detach. 4459 * 4460 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4461 * on failure. Usage example:: 4462 * 4463 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4464 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4465 * if (IS_ERR(base)) 4466 * return PTR_ERR(base); 4467 */ 4468 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4469 struct resource *res) 4470 { 4471 resource_size_t size; 4472 const char *name; 4473 void __iomem *dest_ptr; 4474 4475 BUG_ON(!dev); 4476 4477 if (!res || resource_type(res) != IORESOURCE_MEM) { 4478 dev_err(dev, "invalid resource\n"); 4479 return IOMEM_ERR_PTR(-EINVAL); 4480 } 4481 4482 size = resource_size(res); 4483 4484 if (res->name) 4485 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4486 res->name); 4487 else 4488 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4489 if (!name) 4490 return IOMEM_ERR_PTR(-ENOMEM); 4491 4492 if (!devm_request_mem_region(dev, res->start, size, name)) { 4493 dev_err(dev, "can't request region for resource %pR\n", res); 4494 return IOMEM_ERR_PTR(-EBUSY); 4495 } 4496 4497 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4498 if (!dest_ptr) { 4499 dev_err(dev, "ioremap failed for resource %pR\n", res); 4500 devm_release_mem_region(dev, res->start, size); 4501 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4502 } 4503 4504 return dest_ptr; 4505 } 4506 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4507 4508 static void __pci_set_master(struct pci_dev *dev, bool enable) 4509 { 4510 u16 old_cmd, cmd; 4511 4512 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4513 if (enable) 4514 cmd = old_cmd | PCI_COMMAND_MASTER; 4515 else 4516 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4517 if (cmd != old_cmd) { 4518 pci_dbg(dev, "%s bus mastering\n", 4519 enable ? "enabling" : "disabling"); 4520 pci_write_config_word(dev, PCI_COMMAND, cmd); 4521 } 4522 dev->is_busmaster = enable; 4523 } 4524 4525 /** 4526 * pcibios_setup - process "pci=" kernel boot arguments 4527 * @str: string used to pass in "pci=" kernel boot arguments 4528 * 4529 * Process kernel boot arguments. This is the default implementation. 4530 * Architecture specific implementations can override this as necessary. 4531 */ 4532 char * __weak __init pcibios_setup(char *str) 4533 { 4534 return str; 4535 } 4536 4537 /** 4538 * pcibios_set_master - enable PCI bus-mastering for device dev 4539 * @dev: the PCI device to enable 4540 * 4541 * Enables PCI bus-mastering for the device. This is the default 4542 * implementation. Architecture specific implementations can override 4543 * this if necessary. 4544 */ 4545 void __weak pcibios_set_master(struct pci_dev *dev) 4546 { 4547 u8 lat; 4548 4549 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4550 if (pci_is_pcie(dev)) 4551 return; 4552 4553 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4554 if (lat < 16) 4555 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4556 else if (lat > pcibios_max_latency) 4557 lat = pcibios_max_latency; 4558 else 4559 return; 4560 4561 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4562 } 4563 4564 /** 4565 * pci_set_master - enables bus-mastering for device dev 4566 * @dev: the PCI device to enable 4567 * 4568 * Enables bus-mastering on the device and calls pcibios_set_master() 4569 * to do the needed arch specific settings. 4570 */ 4571 void pci_set_master(struct pci_dev *dev) 4572 { 4573 __pci_set_master(dev, true); 4574 pcibios_set_master(dev); 4575 } 4576 EXPORT_SYMBOL(pci_set_master); 4577 4578 /** 4579 * pci_clear_master - disables bus-mastering for device dev 4580 * @dev: the PCI device to disable 4581 */ 4582 void pci_clear_master(struct pci_dev *dev) 4583 { 4584 __pci_set_master(dev, false); 4585 } 4586 EXPORT_SYMBOL(pci_clear_master); 4587 4588 /** 4589 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4590 * @dev: the PCI device for which MWI is to be enabled 4591 * 4592 * Helper function for pci_set_mwi. 4593 * Originally copied from drivers/net/acenic.c. 4594 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4595 * 4596 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4597 */ 4598 int pci_set_cacheline_size(struct pci_dev *dev) 4599 { 4600 u8 cacheline_size; 4601 4602 if (!pci_cache_line_size) 4603 return -EINVAL; 4604 4605 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4606 equal to or multiple of the right value. */ 4607 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4608 if (cacheline_size >= pci_cache_line_size && 4609 (cacheline_size % pci_cache_line_size) == 0) 4610 return 0; 4611 4612 /* Write the correct value. */ 4613 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4614 /* Read it back. */ 4615 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4616 if (cacheline_size == pci_cache_line_size) 4617 return 0; 4618 4619 pci_dbg(dev, "cache line size of %d is not supported\n", 4620 pci_cache_line_size << 2); 4621 4622 return -EINVAL; 4623 } 4624 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4625 4626 /** 4627 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4628 * @dev: the PCI device for which MWI is enabled 4629 * 4630 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4631 * 4632 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4633 */ 4634 int pci_set_mwi(struct pci_dev *dev) 4635 { 4636 #ifdef PCI_DISABLE_MWI 4637 return 0; 4638 #else 4639 int rc; 4640 u16 cmd; 4641 4642 rc = pci_set_cacheline_size(dev); 4643 if (rc) 4644 return rc; 4645 4646 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4647 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4648 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4649 cmd |= PCI_COMMAND_INVALIDATE; 4650 pci_write_config_word(dev, PCI_COMMAND, cmd); 4651 } 4652 return 0; 4653 #endif 4654 } 4655 EXPORT_SYMBOL(pci_set_mwi); 4656 4657 /** 4658 * pcim_set_mwi - a device-managed pci_set_mwi() 4659 * @dev: the PCI device for which MWI is enabled 4660 * 4661 * Managed pci_set_mwi(). 4662 * 4663 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4664 */ 4665 int pcim_set_mwi(struct pci_dev *dev) 4666 { 4667 struct pci_devres *dr; 4668 4669 dr = find_pci_dr(dev); 4670 if (!dr) 4671 return -ENOMEM; 4672 4673 dr->mwi = 1; 4674 return pci_set_mwi(dev); 4675 } 4676 EXPORT_SYMBOL(pcim_set_mwi); 4677 4678 /** 4679 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4680 * @dev: the PCI device for which MWI is enabled 4681 * 4682 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4683 * Callers are not required to check the return value. 4684 * 4685 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4686 */ 4687 int pci_try_set_mwi(struct pci_dev *dev) 4688 { 4689 #ifdef PCI_DISABLE_MWI 4690 return 0; 4691 #else 4692 return pci_set_mwi(dev); 4693 #endif 4694 } 4695 EXPORT_SYMBOL(pci_try_set_mwi); 4696 4697 /** 4698 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4699 * @dev: the PCI device to disable 4700 * 4701 * Disables PCI Memory-Write-Invalidate transaction on the device 4702 */ 4703 void pci_clear_mwi(struct pci_dev *dev) 4704 { 4705 #ifndef PCI_DISABLE_MWI 4706 u16 cmd; 4707 4708 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4709 if (cmd & PCI_COMMAND_INVALIDATE) { 4710 cmd &= ~PCI_COMMAND_INVALIDATE; 4711 pci_write_config_word(dev, PCI_COMMAND, cmd); 4712 } 4713 #endif 4714 } 4715 EXPORT_SYMBOL(pci_clear_mwi); 4716 4717 /** 4718 * pci_disable_parity - disable parity checking for device 4719 * @dev: the PCI device to operate on 4720 * 4721 * Disable parity checking for device @dev 4722 */ 4723 void pci_disable_parity(struct pci_dev *dev) 4724 { 4725 u16 cmd; 4726 4727 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4728 if (cmd & PCI_COMMAND_PARITY) { 4729 cmd &= ~PCI_COMMAND_PARITY; 4730 pci_write_config_word(dev, PCI_COMMAND, cmd); 4731 } 4732 } 4733 4734 /** 4735 * pci_intx - enables/disables PCI INTx for device dev 4736 * @pdev: the PCI device to operate on 4737 * @enable: boolean: whether to enable or disable PCI INTx 4738 * 4739 * Enables/disables PCI INTx for device @pdev 4740 */ 4741 void pci_intx(struct pci_dev *pdev, int enable) 4742 { 4743 u16 pci_command, new; 4744 4745 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4746 4747 if (enable) 4748 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4749 else 4750 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4751 4752 if (new != pci_command) { 4753 struct pci_devres *dr; 4754 4755 pci_write_config_word(pdev, PCI_COMMAND, new); 4756 4757 dr = find_pci_dr(pdev); 4758 if (dr && !dr->restore_intx) { 4759 dr->restore_intx = 1; 4760 dr->orig_intx = !enable; 4761 } 4762 } 4763 } 4764 EXPORT_SYMBOL_GPL(pci_intx); 4765 4766 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4767 { 4768 struct pci_bus *bus = dev->bus; 4769 bool mask_updated = true; 4770 u32 cmd_status_dword; 4771 u16 origcmd, newcmd; 4772 unsigned long flags; 4773 bool irq_pending; 4774 4775 /* 4776 * We do a single dword read to retrieve both command and status. 4777 * Document assumptions that make this possible. 4778 */ 4779 BUILD_BUG_ON(PCI_COMMAND % 4); 4780 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4781 4782 raw_spin_lock_irqsave(&pci_lock, flags); 4783 4784 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4785 4786 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4787 4788 /* 4789 * Check interrupt status register to see whether our device 4790 * triggered the interrupt (when masking) or the next IRQ is 4791 * already pending (when unmasking). 4792 */ 4793 if (mask != irq_pending) { 4794 mask_updated = false; 4795 goto done; 4796 } 4797 4798 origcmd = cmd_status_dword; 4799 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4800 if (mask) 4801 newcmd |= PCI_COMMAND_INTX_DISABLE; 4802 if (newcmd != origcmd) 4803 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4804 4805 done: 4806 raw_spin_unlock_irqrestore(&pci_lock, flags); 4807 4808 return mask_updated; 4809 } 4810 4811 /** 4812 * pci_check_and_mask_intx - mask INTx on pending interrupt 4813 * @dev: the PCI device to operate on 4814 * 4815 * Check if the device dev has its INTx line asserted, mask it and return 4816 * true in that case. False is returned if no interrupt was pending. 4817 */ 4818 bool pci_check_and_mask_intx(struct pci_dev *dev) 4819 { 4820 return pci_check_and_set_intx_mask(dev, true); 4821 } 4822 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4823 4824 /** 4825 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4826 * @dev: the PCI device to operate on 4827 * 4828 * Check if the device dev has its INTx line asserted, unmask it if not and 4829 * return true. False is returned and the mask remains active if there was 4830 * still an interrupt pending. 4831 */ 4832 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4833 { 4834 return pci_check_and_set_intx_mask(dev, false); 4835 } 4836 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4837 4838 /** 4839 * pci_wait_for_pending_transaction - wait for pending transaction 4840 * @dev: the PCI device to operate on 4841 * 4842 * Return 0 if transaction is pending 1 otherwise. 4843 */ 4844 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4845 { 4846 if (!pci_is_pcie(dev)) 4847 return 1; 4848 4849 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4850 PCI_EXP_DEVSTA_TRPND); 4851 } 4852 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4853 4854 /** 4855 * pcie_flr - initiate a PCIe function level reset 4856 * @dev: device to reset 4857 * 4858 * Initiate a function level reset unconditionally on @dev without 4859 * checking any flags and DEVCAP 4860 */ 4861 int pcie_flr(struct pci_dev *dev) 4862 { 4863 if (!pci_wait_for_pending_transaction(dev)) 4864 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4865 4866 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4867 4868 if (dev->imm_ready) 4869 return 0; 4870 4871 /* 4872 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4873 * 100ms, but may silently discard requests while the FLR is in 4874 * progress. Wait 100ms before trying to access the device. 4875 */ 4876 msleep(100); 4877 4878 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4879 } 4880 EXPORT_SYMBOL_GPL(pcie_flr); 4881 4882 /** 4883 * pcie_reset_flr - initiate a PCIe function level reset 4884 * @dev: device to reset 4885 * @probe: if true, return 0 if device can be reset this way 4886 * 4887 * Initiate a function level reset on @dev. 4888 */ 4889 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4890 { 4891 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4892 return -ENOTTY; 4893 4894 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4895 return -ENOTTY; 4896 4897 if (probe) 4898 return 0; 4899 4900 return pcie_flr(dev); 4901 } 4902 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4903 4904 static int pci_af_flr(struct pci_dev *dev, bool probe) 4905 { 4906 int pos; 4907 u8 cap; 4908 4909 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4910 if (!pos) 4911 return -ENOTTY; 4912 4913 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4914 return -ENOTTY; 4915 4916 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4917 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4918 return -ENOTTY; 4919 4920 if (probe) 4921 return 0; 4922 4923 /* 4924 * Wait for Transaction Pending bit to clear. A word-aligned test 4925 * is used, so we use the control offset rather than status and shift 4926 * the test bit to match. 4927 */ 4928 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4929 PCI_AF_STATUS_TP << 8)) 4930 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4931 4932 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4933 4934 if (dev->imm_ready) 4935 return 0; 4936 4937 /* 4938 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4939 * updated 27 July 2006; a device must complete an FLR within 4940 * 100ms, but may silently discard requests while the FLR is in 4941 * progress. Wait 100ms before trying to access the device. 4942 */ 4943 msleep(100); 4944 4945 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4946 } 4947 4948 /** 4949 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4950 * @dev: Device to reset. 4951 * @probe: if true, return 0 if the device can be reset this way. 4952 * 4953 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4954 * unset, it will be reinitialized internally when going from PCI_D3hot to 4955 * PCI_D0. If that's the case and the device is not in a low-power state 4956 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4957 * 4958 * NOTE: This causes the caller to sleep for twice the device power transition 4959 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4960 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4961 * Moreover, only devices in D0 can be reset by this function. 4962 */ 4963 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4964 { 4965 u16 csr; 4966 4967 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4968 return -ENOTTY; 4969 4970 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4971 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4972 return -ENOTTY; 4973 4974 if (probe) 4975 return 0; 4976 4977 if (dev->current_state != PCI_D0) 4978 return -EINVAL; 4979 4980 csr &= ~PCI_PM_CTRL_STATE_MASK; 4981 csr |= PCI_D3hot; 4982 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4983 pci_dev_d3_sleep(dev); 4984 4985 csr &= ~PCI_PM_CTRL_STATE_MASK; 4986 csr |= PCI_D0; 4987 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4988 pci_dev_d3_sleep(dev); 4989 4990 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4991 } 4992 4993 /** 4994 * pcie_wait_for_link_status - Wait for link status change 4995 * @pdev: Device whose link to wait for. 4996 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4997 * @active: Waiting for active or inactive? 4998 * 4999 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 5000 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 5001 */ 5002 static int pcie_wait_for_link_status(struct pci_dev *pdev, 5003 bool use_lt, bool active) 5004 { 5005 u16 lnksta_mask, lnksta_match; 5006 unsigned long end_jiffies; 5007 u16 lnksta; 5008 5009 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 5010 lnksta_match = active ? lnksta_mask : 0; 5011 5012 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 5013 do { 5014 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 5015 if ((lnksta & lnksta_mask) == lnksta_match) 5016 return 0; 5017 msleep(1); 5018 } while (time_before(jiffies, end_jiffies)); 5019 5020 return -ETIMEDOUT; 5021 } 5022 5023 /** 5024 * pcie_retrain_link - Request a link retrain and wait for it to complete 5025 * @pdev: Device whose link to retrain. 5026 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 5027 * 5028 * Retrain completion status is retrieved from the Link Status Register 5029 * according to @use_lt. It is not verified whether the use of the DLLLA 5030 * bit is valid. 5031 * 5032 * Return 0 if successful, or -ETIMEDOUT if training has not completed 5033 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 5034 */ 5035 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 5036 { 5037 int rc; 5038 5039 /* 5040 * Ensure the updated LNKCTL parameters are used during link 5041 * training by checking that there is no ongoing link training to 5042 * avoid LTSSM race as recommended in Implementation Note at the 5043 * end of PCIe r6.0.1 sec 7.5.3.7. 5044 */ 5045 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 5046 if (rc) 5047 return rc; 5048 5049 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 5050 if (pdev->clear_retrain_link) { 5051 /* 5052 * Due to an erratum in some devices the Retrain Link bit 5053 * needs to be cleared again manually to allow the link 5054 * training to succeed. 5055 */ 5056 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 5057 } 5058 5059 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 5060 } 5061 5062 /** 5063 * pcie_wait_for_link_delay - Wait until link is active or inactive 5064 * @pdev: Bridge device 5065 * @active: waiting for active or inactive? 5066 * @delay: Delay to wait after link has become active (in ms) 5067 * 5068 * Use this to wait till link becomes active or inactive. 5069 */ 5070 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 5071 int delay) 5072 { 5073 int rc; 5074 5075 /* 5076 * Some controllers might not implement link active reporting. In this 5077 * case, we wait for 1000 ms + any delay requested by the caller. 5078 */ 5079 if (!pdev->link_active_reporting) { 5080 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 5081 return true; 5082 } 5083 5084 /* 5085 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 5086 * after which we should expect an link active if the reset was 5087 * successful. If so, software must wait a minimum 100ms before sending 5088 * configuration requests to devices downstream this port. 5089 * 5090 * If the link fails to activate, either the device was physically 5091 * removed or the link is permanently failed. 5092 */ 5093 if (active) 5094 msleep(20); 5095 rc = pcie_wait_for_link_status(pdev, false, active); 5096 if (active) { 5097 if (rc) 5098 rc = pcie_failed_link_retrain(pdev); 5099 if (rc) 5100 return false; 5101 5102 msleep(delay); 5103 return true; 5104 } 5105 5106 if (rc) 5107 return false; 5108 5109 return true; 5110 } 5111 5112 /** 5113 * pcie_wait_for_link - Wait until link is active or inactive 5114 * @pdev: Bridge device 5115 * @active: waiting for active or inactive? 5116 * 5117 * Use this to wait till link becomes active or inactive. 5118 */ 5119 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 5120 { 5121 return pcie_wait_for_link_delay(pdev, active, 100); 5122 } 5123 5124 /* 5125 * Find maximum D3cold delay required by all the devices on the bus. The 5126 * spec says 100 ms, but firmware can lower it and we allow drivers to 5127 * increase it as well. 5128 * 5129 * Called with @pci_bus_sem locked for reading. 5130 */ 5131 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 5132 { 5133 const struct pci_dev *pdev; 5134 int min_delay = 100; 5135 int max_delay = 0; 5136 5137 list_for_each_entry(pdev, &bus->devices, bus_list) { 5138 if (pdev->d3cold_delay < min_delay) 5139 min_delay = pdev->d3cold_delay; 5140 if (pdev->d3cold_delay > max_delay) 5141 max_delay = pdev->d3cold_delay; 5142 } 5143 5144 return max(min_delay, max_delay); 5145 } 5146 5147 /** 5148 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 5149 * @dev: PCI bridge 5150 * @reset_type: reset type in human-readable form 5151 * 5152 * Handle necessary delays before access to the devices on the secondary 5153 * side of the bridge are permitted after D3cold to D0 transition 5154 * or Conventional Reset. 5155 * 5156 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 5157 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 5158 * 4.3.2. 5159 * 5160 * Return 0 on success or -ENOTTY if the first device on the secondary bus 5161 * failed to become accessible. 5162 */ 5163 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 5164 { 5165 struct pci_dev *child; 5166 int delay; 5167 5168 if (pci_dev_is_disconnected(dev)) 5169 return 0; 5170 5171 if (!pci_is_bridge(dev)) 5172 return 0; 5173 5174 down_read(&pci_bus_sem); 5175 5176 /* 5177 * We only deal with devices that are present currently on the bus. 5178 * For any hot-added devices the access delay is handled in pciehp 5179 * board_added(). In case of ACPI hotplug the firmware is expected 5180 * to configure the devices before OS is notified. 5181 */ 5182 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 5183 up_read(&pci_bus_sem); 5184 return 0; 5185 } 5186 5187 /* Take d3cold_delay requirements into account */ 5188 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5189 if (!delay) { 5190 up_read(&pci_bus_sem); 5191 return 0; 5192 } 5193 5194 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 5195 bus_list); 5196 up_read(&pci_bus_sem); 5197 5198 /* 5199 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5200 * accessing the device after reset (that is 1000 ms + 100 ms). 5201 */ 5202 if (!pci_is_pcie(dev)) { 5203 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5204 msleep(1000 + delay); 5205 return 0; 5206 } 5207 5208 /* 5209 * For PCIe downstream and root ports that do not support speeds 5210 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5211 * speeds (gen3) we need to wait first for the data link layer to 5212 * become active. 5213 * 5214 * However, 100 ms is the minimum and the PCIe spec says the 5215 * software must allow at least 1s before it can determine that the 5216 * device that did not respond is a broken device. Also device can 5217 * take longer than that to respond if it indicates so through Request 5218 * Retry Status completions. 5219 * 5220 * Therefore we wait for 100 ms and check for the device presence 5221 * until the timeout expires. 5222 */ 5223 if (!pcie_downstream_port(dev)) 5224 return 0; 5225 5226 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5227 u16 status; 5228 5229 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5230 msleep(delay); 5231 5232 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 5233 return 0; 5234 5235 /* 5236 * If the port supports active link reporting we now check 5237 * whether the link is active and if not bail out early with 5238 * the assumption that the device is not present anymore. 5239 */ 5240 if (!dev->link_active_reporting) 5241 return -ENOTTY; 5242 5243 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 5244 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 5245 return -ENOTTY; 5246 5247 return pci_dev_wait(child, reset_type, 5248 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 5249 } 5250 5251 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5252 delay); 5253 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5254 /* Did not train, no need to wait any further */ 5255 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5256 return -ENOTTY; 5257 } 5258 5259 return pci_dev_wait(child, reset_type, 5260 PCIE_RESET_READY_POLL_MS - delay); 5261 } 5262 5263 void pci_reset_secondary_bus(struct pci_dev *dev) 5264 { 5265 u16 ctrl; 5266 5267 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5268 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5269 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5270 5271 /* 5272 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5273 * this to 2ms to ensure that we meet the minimum requirement. 5274 */ 5275 msleep(2); 5276 5277 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5278 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5279 } 5280 5281 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5282 { 5283 pci_reset_secondary_bus(dev); 5284 } 5285 5286 /** 5287 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5288 * @dev: Bridge device 5289 * 5290 * Use the bridge control register to assert reset on the secondary bus. 5291 * Devices on the secondary bus are left in power-on state. 5292 */ 5293 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5294 { 5295 pcibios_reset_secondary_bus(dev); 5296 5297 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5298 } 5299 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5300 5301 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5302 { 5303 struct pci_dev *pdev; 5304 5305 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5306 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5307 return -ENOTTY; 5308 5309 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5310 if (pdev != dev) 5311 return -ENOTTY; 5312 5313 if (probe) 5314 return 0; 5315 5316 return pci_bridge_secondary_bus_reset(dev->bus->self); 5317 } 5318 5319 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5320 { 5321 int rc = -ENOTTY; 5322 5323 if (!hotplug || !try_module_get(hotplug->owner)) 5324 return rc; 5325 5326 if (hotplug->ops->reset_slot) 5327 rc = hotplug->ops->reset_slot(hotplug, probe); 5328 5329 module_put(hotplug->owner); 5330 5331 return rc; 5332 } 5333 5334 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5335 { 5336 if (dev->multifunction || dev->subordinate || !dev->slot || 5337 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5338 return -ENOTTY; 5339 5340 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5341 } 5342 5343 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5344 { 5345 int rc; 5346 5347 rc = pci_dev_reset_slot_function(dev, probe); 5348 if (rc != -ENOTTY) 5349 return rc; 5350 return pci_parent_bus_reset(dev, probe); 5351 } 5352 5353 void pci_dev_lock(struct pci_dev *dev) 5354 { 5355 /* block PM suspend, driver probe, etc. */ 5356 device_lock(&dev->dev); 5357 pci_cfg_access_lock(dev); 5358 } 5359 EXPORT_SYMBOL_GPL(pci_dev_lock); 5360 5361 /* Return 1 on successful lock, 0 on contention */ 5362 int pci_dev_trylock(struct pci_dev *dev) 5363 { 5364 if (device_trylock(&dev->dev)) { 5365 if (pci_cfg_access_trylock(dev)) 5366 return 1; 5367 device_unlock(&dev->dev); 5368 } 5369 5370 return 0; 5371 } 5372 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5373 5374 void pci_dev_unlock(struct pci_dev *dev) 5375 { 5376 pci_cfg_access_unlock(dev); 5377 device_unlock(&dev->dev); 5378 } 5379 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5380 5381 static void pci_dev_save_and_disable(struct pci_dev *dev) 5382 { 5383 const struct pci_error_handlers *err_handler = 5384 dev->driver ? dev->driver->err_handler : NULL; 5385 5386 /* 5387 * dev->driver->err_handler->reset_prepare() is protected against 5388 * races with ->remove() by the device lock, which must be held by 5389 * the caller. 5390 */ 5391 if (err_handler && err_handler->reset_prepare) 5392 err_handler->reset_prepare(dev); 5393 5394 /* 5395 * Wake-up device prior to save. PM registers default to D0 after 5396 * reset and a simple register restore doesn't reliably return 5397 * to a non-D0 state anyway. 5398 */ 5399 pci_set_power_state(dev, PCI_D0); 5400 5401 pci_save_state(dev); 5402 /* 5403 * Disable the device by clearing the Command register, except for 5404 * INTx-disable which is set. This not only disables MMIO and I/O port 5405 * BARs, but also prevents the device from being Bus Master, preventing 5406 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5407 * compliant devices, INTx-disable prevents legacy interrupts. 5408 */ 5409 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5410 } 5411 5412 static void pci_dev_restore(struct pci_dev *dev) 5413 { 5414 const struct pci_error_handlers *err_handler = 5415 dev->driver ? dev->driver->err_handler : NULL; 5416 5417 pci_restore_state(dev); 5418 5419 /* 5420 * dev->driver->err_handler->reset_done() is protected against 5421 * races with ->remove() by the device lock, which must be held by 5422 * the caller. 5423 */ 5424 if (err_handler && err_handler->reset_done) 5425 err_handler->reset_done(dev); 5426 } 5427 5428 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5429 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5430 { }, 5431 { pci_dev_specific_reset, .name = "device_specific" }, 5432 { pci_dev_acpi_reset, .name = "acpi" }, 5433 { pcie_reset_flr, .name = "flr" }, 5434 { pci_af_flr, .name = "af_flr" }, 5435 { pci_pm_reset, .name = "pm" }, 5436 { pci_reset_bus_function, .name = "bus" }, 5437 }; 5438 5439 static ssize_t reset_method_show(struct device *dev, 5440 struct device_attribute *attr, char *buf) 5441 { 5442 struct pci_dev *pdev = to_pci_dev(dev); 5443 ssize_t len = 0; 5444 int i, m; 5445 5446 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5447 m = pdev->reset_methods[i]; 5448 if (!m) 5449 break; 5450 5451 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5452 pci_reset_fn_methods[m].name); 5453 } 5454 5455 if (len) 5456 len += sysfs_emit_at(buf, len, "\n"); 5457 5458 return len; 5459 } 5460 5461 static int reset_method_lookup(const char *name) 5462 { 5463 int m; 5464 5465 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5466 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5467 return m; 5468 } 5469 5470 return 0; /* not found */ 5471 } 5472 5473 static ssize_t reset_method_store(struct device *dev, 5474 struct device_attribute *attr, 5475 const char *buf, size_t count) 5476 { 5477 struct pci_dev *pdev = to_pci_dev(dev); 5478 char *options, *name; 5479 int m, n; 5480 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5481 5482 if (sysfs_streq(buf, "")) { 5483 pdev->reset_methods[0] = 0; 5484 pci_warn(pdev, "All device reset methods disabled by user"); 5485 return count; 5486 } 5487 5488 if (sysfs_streq(buf, "default")) { 5489 pci_init_reset_methods(pdev); 5490 return count; 5491 } 5492 5493 options = kstrndup(buf, count, GFP_KERNEL); 5494 if (!options) 5495 return -ENOMEM; 5496 5497 n = 0; 5498 while ((name = strsep(&options, " ")) != NULL) { 5499 if (sysfs_streq(name, "")) 5500 continue; 5501 5502 name = strim(name); 5503 5504 m = reset_method_lookup(name); 5505 if (!m) { 5506 pci_err(pdev, "Invalid reset method '%s'", name); 5507 goto error; 5508 } 5509 5510 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5511 pci_err(pdev, "Unsupported reset method '%s'", name); 5512 goto error; 5513 } 5514 5515 if (n == PCI_NUM_RESET_METHODS - 1) { 5516 pci_err(pdev, "Too many reset methods\n"); 5517 goto error; 5518 } 5519 5520 reset_methods[n++] = m; 5521 } 5522 5523 reset_methods[n] = 0; 5524 5525 /* Warn if dev-specific supported but not highest priority */ 5526 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5527 reset_methods[0] != 1) 5528 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5529 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5530 kfree(options); 5531 return count; 5532 5533 error: 5534 /* Leave previous methods unchanged */ 5535 kfree(options); 5536 return -EINVAL; 5537 } 5538 static DEVICE_ATTR_RW(reset_method); 5539 5540 static struct attribute *pci_dev_reset_method_attrs[] = { 5541 &dev_attr_reset_method.attr, 5542 NULL, 5543 }; 5544 5545 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5546 struct attribute *a, int n) 5547 { 5548 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5549 5550 if (!pci_reset_supported(pdev)) 5551 return 0; 5552 5553 return a->mode; 5554 } 5555 5556 const struct attribute_group pci_dev_reset_method_attr_group = { 5557 .attrs = pci_dev_reset_method_attrs, 5558 .is_visible = pci_dev_reset_method_attr_is_visible, 5559 }; 5560 5561 /** 5562 * __pci_reset_function_locked - reset a PCI device function while holding 5563 * the @dev mutex lock. 5564 * @dev: PCI device to reset 5565 * 5566 * Some devices allow an individual function to be reset without affecting 5567 * other functions in the same device. The PCI device must be responsive 5568 * to PCI config space in order to use this function. 5569 * 5570 * The device function is presumed to be unused and the caller is holding 5571 * the device mutex lock when this function is called. 5572 * 5573 * Resetting the device will make the contents of PCI configuration space 5574 * random, so any caller of this must be prepared to reinitialise the 5575 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5576 * etc. 5577 * 5578 * Returns 0 if the device function was successfully reset or negative if the 5579 * device doesn't support resetting a single function. 5580 */ 5581 int __pci_reset_function_locked(struct pci_dev *dev) 5582 { 5583 int i, m, rc; 5584 5585 might_sleep(); 5586 5587 /* 5588 * A reset method returns -ENOTTY if it doesn't support this device and 5589 * we should try the next method. 5590 * 5591 * If it returns 0 (success), we're finished. If it returns any other 5592 * error, we're also finished: this indicates that further reset 5593 * mechanisms might be broken on the device. 5594 */ 5595 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5596 m = dev->reset_methods[i]; 5597 if (!m) 5598 return -ENOTTY; 5599 5600 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5601 if (!rc) 5602 return 0; 5603 if (rc != -ENOTTY) 5604 return rc; 5605 } 5606 5607 return -ENOTTY; 5608 } 5609 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5610 5611 /** 5612 * pci_init_reset_methods - check whether device can be safely reset 5613 * and store supported reset mechanisms. 5614 * @dev: PCI device to check for reset mechanisms 5615 * 5616 * Some devices allow an individual function to be reset without affecting 5617 * other functions in the same device. The PCI device must be in D0-D3hot 5618 * state. 5619 * 5620 * Stores reset mechanisms supported by device in reset_methods byte array 5621 * which is a member of struct pci_dev. 5622 */ 5623 void pci_init_reset_methods(struct pci_dev *dev) 5624 { 5625 int m, i, rc; 5626 5627 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5628 5629 might_sleep(); 5630 5631 i = 0; 5632 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5633 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5634 if (!rc) 5635 dev->reset_methods[i++] = m; 5636 else if (rc != -ENOTTY) 5637 break; 5638 } 5639 5640 dev->reset_methods[i] = 0; 5641 } 5642 5643 /** 5644 * pci_reset_function - quiesce and reset a PCI device function 5645 * @dev: PCI device to reset 5646 * 5647 * Some devices allow an individual function to be reset without affecting 5648 * other functions in the same device. The PCI device must be responsive 5649 * to PCI config space in order to use this function. 5650 * 5651 * This function does not just reset the PCI portion of a device, but 5652 * clears all the state associated with the device. This function differs 5653 * from __pci_reset_function_locked() in that it saves and restores device state 5654 * over the reset and takes the PCI device lock. 5655 * 5656 * Returns 0 if the device function was successfully reset or negative if the 5657 * device doesn't support resetting a single function. 5658 */ 5659 int pci_reset_function(struct pci_dev *dev) 5660 { 5661 int rc; 5662 5663 if (!pci_reset_supported(dev)) 5664 return -ENOTTY; 5665 5666 pci_dev_lock(dev); 5667 pci_dev_save_and_disable(dev); 5668 5669 rc = __pci_reset_function_locked(dev); 5670 5671 pci_dev_restore(dev); 5672 pci_dev_unlock(dev); 5673 5674 return rc; 5675 } 5676 EXPORT_SYMBOL_GPL(pci_reset_function); 5677 5678 /** 5679 * pci_reset_function_locked - quiesce and reset a PCI device function 5680 * @dev: PCI device to reset 5681 * 5682 * Some devices allow an individual function to be reset without affecting 5683 * other functions in the same device. The PCI device must be responsive 5684 * to PCI config space in order to use this function. 5685 * 5686 * This function does not just reset the PCI portion of a device, but 5687 * clears all the state associated with the device. This function differs 5688 * from __pci_reset_function_locked() in that it saves and restores device state 5689 * over the reset. It also differs from pci_reset_function() in that it 5690 * requires the PCI device lock to be held. 5691 * 5692 * Returns 0 if the device function was successfully reset or negative if the 5693 * device doesn't support resetting a single function. 5694 */ 5695 int pci_reset_function_locked(struct pci_dev *dev) 5696 { 5697 int rc; 5698 5699 if (!pci_reset_supported(dev)) 5700 return -ENOTTY; 5701 5702 pci_dev_save_and_disable(dev); 5703 5704 rc = __pci_reset_function_locked(dev); 5705 5706 pci_dev_restore(dev); 5707 5708 return rc; 5709 } 5710 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5711 5712 /** 5713 * pci_try_reset_function - quiesce and reset a PCI device function 5714 * @dev: PCI device to reset 5715 * 5716 * Same as above, except return -EAGAIN if unable to lock device. 5717 */ 5718 int pci_try_reset_function(struct pci_dev *dev) 5719 { 5720 int rc; 5721 5722 if (!pci_reset_supported(dev)) 5723 return -ENOTTY; 5724 5725 if (!pci_dev_trylock(dev)) 5726 return -EAGAIN; 5727 5728 pci_dev_save_and_disable(dev); 5729 rc = __pci_reset_function_locked(dev); 5730 pci_dev_restore(dev); 5731 pci_dev_unlock(dev); 5732 5733 return rc; 5734 } 5735 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5736 5737 /* Do any devices on or below this bus prevent a bus reset? */ 5738 static bool pci_bus_resettable(struct pci_bus *bus) 5739 { 5740 struct pci_dev *dev; 5741 5742 5743 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5744 return false; 5745 5746 list_for_each_entry(dev, &bus->devices, bus_list) { 5747 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5748 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5749 return false; 5750 } 5751 5752 return true; 5753 } 5754 5755 /* Lock devices from the top of the tree down */ 5756 static void pci_bus_lock(struct pci_bus *bus) 5757 { 5758 struct pci_dev *dev; 5759 5760 list_for_each_entry(dev, &bus->devices, bus_list) { 5761 pci_dev_lock(dev); 5762 if (dev->subordinate) 5763 pci_bus_lock(dev->subordinate); 5764 } 5765 } 5766 5767 /* Unlock devices from the bottom of the tree up */ 5768 static void pci_bus_unlock(struct pci_bus *bus) 5769 { 5770 struct pci_dev *dev; 5771 5772 list_for_each_entry(dev, &bus->devices, bus_list) { 5773 if (dev->subordinate) 5774 pci_bus_unlock(dev->subordinate); 5775 pci_dev_unlock(dev); 5776 } 5777 } 5778 5779 /* Return 1 on successful lock, 0 on contention */ 5780 static int pci_bus_trylock(struct pci_bus *bus) 5781 { 5782 struct pci_dev *dev; 5783 5784 list_for_each_entry(dev, &bus->devices, bus_list) { 5785 if (!pci_dev_trylock(dev)) 5786 goto unlock; 5787 if (dev->subordinate) { 5788 if (!pci_bus_trylock(dev->subordinate)) { 5789 pci_dev_unlock(dev); 5790 goto unlock; 5791 } 5792 } 5793 } 5794 return 1; 5795 5796 unlock: 5797 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5798 if (dev->subordinate) 5799 pci_bus_unlock(dev->subordinate); 5800 pci_dev_unlock(dev); 5801 } 5802 return 0; 5803 } 5804 5805 /* Do any devices on or below this slot prevent a bus reset? */ 5806 static bool pci_slot_resettable(struct pci_slot *slot) 5807 { 5808 struct pci_dev *dev; 5809 5810 if (slot->bus->self && 5811 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5812 return false; 5813 5814 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5815 if (!dev->slot || dev->slot != slot) 5816 continue; 5817 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5818 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5819 return false; 5820 } 5821 5822 return true; 5823 } 5824 5825 /* Lock devices from the top of the tree down */ 5826 static void pci_slot_lock(struct pci_slot *slot) 5827 { 5828 struct pci_dev *dev; 5829 5830 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5831 if (!dev->slot || dev->slot != slot) 5832 continue; 5833 pci_dev_lock(dev); 5834 if (dev->subordinate) 5835 pci_bus_lock(dev->subordinate); 5836 } 5837 } 5838 5839 /* Unlock devices from the bottom of the tree up */ 5840 static void pci_slot_unlock(struct pci_slot *slot) 5841 { 5842 struct pci_dev *dev; 5843 5844 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5845 if (!dev->slot || dev->slot != slot) 5846 continue; 5847 if (dev->subordinate) 5848 pci_bus_unlock(dev->subordinate); 5849 pci_dev_unlock(dev); 5850 } 5851 } 5852 5853 /* Return 1 on successful lock, 0 on contention */ 5854 static int pci_slot_trylock(struct pci_slot *slot) 5855 { 5856 struct pci_dev *dev; 5857 5858 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5859 if (!dev->slot || dev->slot != slot) 5860 continue; 5861 if (!pci_dev_trylock(dev)) 5862 goto unlock; 5863 if (dev->subordinate) { 5864 if (!pci_bus_trylock(dev->subordinate)) { 5865 pci_dev_unlock(dev); 5866 goto unlock; 5867 } 5868 } 5869 } 5870 return 1; 5871 5872 unlock: 5873 list_for_each_entry_continue_reverse(dev, 5874 &slot->bus->devices, bus_list) { 5875 if (!dev->slot || dev->slot != slot) 5876 continue; 5877 if (dev->subordinate) 5878 pci_bus_unlock(dev->subordinate); 5879 pci_dev_unlock(dev); 5880 } 5881 return 0; 5882 } 5883 5884 /* 5885 * Save and disable devices from the top of the tree down while holding 5886 * the @dev mutex lock for the entire tree. 5887 */ 5888 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5889 { 5890 struct pci_dev *dev; 5891 5892 list_for_each_entry(dev, &bus->devices, bus_list) { 5893 pci_dev_save_and_disable(dev); 5894 if (dev->subordinate) 5895 pci_bus_save_and_disable_locked(dev->subordinate); 5896 } 5897 } 5898 5899 /* 5900 * Restore devices from top of the tree down while holding @dev mutex lock 5901 * for the entire tree. Parent bridges need to be restored before we can 5902 * get to subordinate devices. 5903 */ 5904 static void pci_bus_restore_locked(struct pci_bus *bus) 5905 { 5906 struct pci_dev *dev; 5907 5908 list_for_each_entry(dev, &bus->devices, bus_list) { 5909 pci_dev_restore(dev); 5910 if (dev->subordinate) 5911 pci_bus_restore_locked(dev->subordinate); 5912 } 5913 } 5914 5915 /* 5916 * Save and disable devices from the top of the tree down while holding 5917 * the @dev mutex lock for the entire tree. 5918 */ 5919 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5920 { 5921 struct pci_dev *dev; 5922 5923 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5924 if (!dev->slot || dev->slot != slot) 5925 continue; 5926 pci_dev_save_and_disable(dev); 5927 if (dev->subordinate) 5928 pci_bus_save_and_disable_locked(dev->subordinate); 5929 } 5930 } 5931 5932 /* 5933 * Restore devices from top of the tree down while holding @dev mutex lock 5934 * for the entire tree. Parent bridges need to be restored before we can 5935 * get to subordinate devices. 5936 */ 5937 static void pci_slot_restore_locked(struct pci_slot *slot) 5938 { 5939 struct pci_dev *dev; 5940 5941 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5942 if (!dev->slot || dev->slot != slot) 5943 continue; 5944 pci_dev_restore(dev); 5945 if (dev->subordinate) 5946 pci_bus_restore_locked(dev->subordinate); 5947 } 5948 } 5949 5950 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5951 { 5952 int rc; 5953 5954 if (!slot || !pci_slot_resettable(slot)) 5955 return -ENOTTY; 5956 5957 if (!probe) 5958 pci_slot_lock(slot); 5959 5960 might_sleep(); 5961 5962 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5963 5964 if (!probe) 5965 pci_slot_unlock(slot); 5966 5967 return rc; 5968 } 5969 5970 /** 5971 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5972 * @slot: PCI slot to probe 5973 * 5974 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5975 */ 5976 int pci_probe_reset_slot(struct pci_slot *slot) 5977 { 5978 return pci_slot_reset(slot, PCI_RESET_PROBE); 5979 } 5980 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5981 5982 /** 5983 * __pci_reset_slot - Try to reset a PCI slot 5984 * @slot: PCI slot to reset 5985 * 5986 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5987 * independent of other slots. For instance, some slots may support slot power 5988 * control. In the case of a 1:1 bus to slot architecture, this function may 5989 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5990 * Generally a slot reset should be attempted before a bus reset. All of the 5991 * function of the slot and any subordinate buses behind the slot are reset 5992 * through this function. PCI config space of all devices in the slot and 5993 * behind the slot is saved before and restored after reset. 5994 * 5995 * Same as above except return -EAGAIN if the slot cannot be locked 5996 */ 5997 static int __pci_reset_slot(struct pci_slot *slot) 5998 { 5999 int rc; 6000 6001 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 6002 if (rc) 6003 return rc; 6004 6005 if (pci_slot_trylock(slot)) { 6006 pci_slot_save_and_disable_locked(slot); 6007 might_sleep(); 6008 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 6009 pci_slot_restore_locked(slot); 6010 pci_slot_unlock(slot); 6011 } else 6012 rc = -EAGAIN; 6013 6014 return rc; 6015 } 6016 6017 static int pci_bus_reset(struct pci_bus *bus, bool probe) 6018 { 6019 int ret; 6020 6021 if (!bus->self || !pci_bus_resettable(bus)) 6022 return -ENOTTY; 6023 6024 if (probe) 6025 return 0; 6026 6027 pci_bus_lock(bus); 6028 6029 might_sleep(); 6030 6031 ret = pci_bridge_secondary_bus_reset(bus->self); 6032 6033 pci_bus_unlock(bus); 6034 6035 return ret; 6036 } 6037 6038 /** 6039 * pci_bus_error_reset - reset the bridge's subordinate bus 6040 * @bridge: The parent device that connects to the bus to reset 6041 * 6042 * This function will first try to reset the slots on this bus if the method is 6043 * available. If slot reset fails or is not available, this will fall back to a 6044 * secondary bus reset. 6045 */ 6046 int pci_bus_error_reset(struct pci_dev *bridge) 6047 { 6048 struct pci_bus *bus = bridge->subordinate; 6049 struct pci_slot *slot; 6050 6051 if (!bus) 6052 return -ENOTTY; 6053 6054 mutex_lock(&pci_slot_mutex); 6055 if (list_empty(&bus->slots)) 6056 goto bus_reset; 6057 6058 list_for_each_entry(slot, &bus->slots, list) 6059 if (pci_probe_reset_slot(slot)) 6060 goto bus_reset; 6061 6062 list_for_each_entry(slot, &bus->slots, list) 6063 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 6064 goto bus_reset; 6065 6066 mutex_unlock(&pci_slot_mutex); 6067 return 0; 6068 bus_reset: 6069 mutex_unlock(&pci_slot_mutex); 6070 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 6071 } 6072 6073 /** 6074 * pci_probe_reset_bus - probe whether a PCI bus can be reset 6075 * @bus: PCI bus to probe 6076 * 6077 * Return 0 if bus can be reset, negative if a bus reset is not supported. 6078 */ 6079 int pci_probe_reset_bus(struct pci_bus *bus) 6080 { 6081 return pci_bus_reset(bus, PCI_RESET_PROBE); 6082 } 6083 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 6084 6085 /** 6086 * __pci_reset_bus - Try to reset a PCI bus 6087 * @bus: top level PCI bus to reset 6088 * 6089 * Same as above except return -EAGAIN if the bus cannot be locked 6090 */ 6091 static int __pci_reset_bus(struct pci_bus *bus) 6092 { 6093 int rc; 6094 6095 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 6096 if (rc) 6097 return rc; 6098 6099 if (pci_bus_trylock(bus)) { 6100 pci_bus_save_and_disable_locked(bus); 6101 might_sleep(); 6102 rc = pci_bridge_secondary_bus_reset(bus->self); 6103 pci_bus_restore_locked(bus); 6104 pci_bus_unlock(bus); 6105 } else 6106 rc = -EAGAIN; 6107 6108 return rc; 6109 } 6110 6111 /** 6112 * pci_reset_bus - Try to reset a PCI bus 6113 * @pdev: top level PCI device to reset via slot/bus 6114 * 6115 * Same as above except return -EAGAIN if the bus cannot be locked 6116 */ 6117 int pci_reset_bus(struct pci_dev *pdev) 6118 { 6119 return (!pci_probe_reset_slot(pdev->slot)) ? 6120 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 6121 } 6122 EXPORT_SYMBOL_GPL(pci_reset_bus); 6123 6124 /** 6125 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 6126 * @dev: PCI device to query 6127 * 6128 * Returns mmrbc: maximum designed memory read count in bytes or 6129 * appropriate error value. 6130 */ 6131 int pcix_get_max_mmrbc(struct pci_dev *dev) 6132 { 6133 int cap; 6134 u32 stat; 6135 6136 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6137 if (!cap) 6138 return -EINVAL; 6139 6140 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6141 return -EINVAL; 6142 6143 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 6144 } 6145 EXPORT_SYMBOL(pcix_get_max_mmrbc); 6146 6147 /** 6148 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 6149 * @dev: PCI device to query 6150 * 6151 * Returns mmrbc: maximum memory read count in bytes or appropriate error 6152 * value. 6153 */ 6154 int pcix_get_mmrbc(struct pci_dev *dev) 6155 { 6156 int cap; 6157 u16 cmd; 6158 6159 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6160 if (!cap) 6161 return -EINVAL; 6162 6163 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6164 return -EINVAL; 6165 6166 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6167 } 6168 EXPORT_SYMBOL(pcix_get_mmrbc); 6169 6170 /** 6171 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 6172 * @dev: PCI device to query 6173 * @mmrbc: maximum memory read count in bytes 6174 * valid values are 512, 1024, 2048, 4096 6175 * 6176 * If possible sets maximum memory read byte count, some bridges have errata 6177 * that prevent this. 6178 */ 6179 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 6180 { 6181 int cap; 6182 u32 stat, v, o; 6183 u16 cmd; 6184 6185 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 6186 return -EINVAL; 6187 6188 v = ffs(mmrbc) - 10; 6189 6190 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6191 if (!cap) 6192 return -EINVAL; 6193 6194 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6195 return -EINVAL; 6196 6197 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 6198 return -E2BIG; 6199 6200 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6201 return -EINVAL; 6202 6203 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6204 if (o != v) { 6205 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6206 return -EIO; 6207 6208 cmd &= ~PCI_X_CMD_MAX_READ; 6209 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 6210 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6211 return -EIO; 6212 } 6213 return 0; 6214 } 6215 EXPORT_SYMBOL(pcix_set_mmrbc); 6216 6217 /** 6218 * pcie_get_readrq - get PCI Express read request size 6219 * @dev: PCI device to query 6220 * 6221 * Returns maximum memory read request in bytes or appropriate error value. 6222 */ 6223 int pcie_get_readrq(struct pci_dev *dev) 6224 { 6225 u16 ctl; 6226 6227 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6228 6229 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 6230 } 6231 EXPORT_SYMBOL(pcie_get_readrq); 6232 6233 /** 6234 * pcie_set_readrq - set PCI Express maximum memory read request 6235 * @dev: PCI device to query 6236 * @rq: maximum memory read count in bytes 6237 * valid values are 128, 256, 512, 1024, 2048, 4096 6238 * 6239 * If possible sets maximum memory read request in bytes 6240 */ 6241 int pcie_set_readrq(struct pci_dev *dev, int rq) 6242 { 6243 u16 v; 6244 int ret; 6245 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6246 6247 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6248 return -EINVAL; 6249 6250 /* 6251 * If using the "performance" PCIe config, we clamp the read rq 6252 * size to the max packet size to keep the host bridge from 6253 * generating requests larger than we can cope with. 6254 */ 6255 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6256 int mps = pcie_get_mps(dev); 6257 6258 if (mps < rq) 6259 rq = mps; 6260 } 6261 6262 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 6263 6264 if (bridge->no_inc_mrrs) { 6265 int max_mrrs = pcie_get_readrq(dev); 6266 6267 if (rq > max_mrrs) { 6268 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6269 return -EINVAL; 6270 } 6271 } 6272 6273 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6274 PCI_EXP_DEVCTL_READRQ, v); 6275 6276 return pcibios_err_to_errno(ret); 6277 } 6278 EXPORT_SYMBOL(pcie_set_readrq); 6279 6280 /** 6281 * pcie_get_mps - get PCI Express maximum payload size 6282 * @dev: PCI device to query 6283 * 6284 * Returns maximum payload size in bytes 6285 */ 6286 int pcie_get_mps(struct pci_dev *dev) 6287 { 6288 u16 ctl; 6289 6290 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6291 6292 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 6293 } 6294 EXPORT_SYMBOL(pcie_get_mps); 6295 6296 /** 6297 * pcie_set_mps - set PCI Express maximum payload size 6298 * @dev: PCI device to query 6299 * @mps: maximum payload size in bytes 6300 * valid values are 128, 256, 512, 1024, 2048, 4096 6301 * 6302 * If possible sets maximum payload size 6303 */ 6304 int pcie_set_mps(struct pci_dev *dev, int mps) 6305 { 6306 u16 v; 6307 int ret; 6308 6309 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6310 return -EINVAL; 6311 6312 v = ffs(mps) - 8; 6313 if (v > dev->pcie_mpss) 6314 return -EINVAL; 6315 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 6316 6317 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6318 PCI_EXP_DEVCTL_PAYLOAD, v); 6319 6320 return pcibios_err_to_errno(ret); 6321 } 6322 EXPORT_SYMBOL(pcie_set_mps); 6323 6324 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 6325 { 6326 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 6327 } 6328 6329 int pcie_link_speed_mbps(struct pci_dev *pdev) 6330 { 6331 u16 lnksta; 6332 int err; 6333 6334 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 6335 if (err) 6336 return err; 6337 6338 switch (to_pcie_link_speed(lnksta)) { 6339 case PCIE_SPEED_2_5GT: 6340 return 2500; 6341 case PCIE_SPEED_5_0GT: 6342 return 5000; 6343 case PCIE_SPEED_8_0GT: 6344 return 8000; 6345 case PCIE_SPEED_16_0GT: 6346 return 16000; 6347 case PCIE_SPEED_32_0GT: 6348 return 32000; 6349 case PCIE_SPEED_64_0GT: 6350 return 64000; 6351 default: 6352 break; 6353 } 6354 6355 return -EINVAL; 6356 } 6357 EXPORT_SYMBOL(pcie_link_speed_mbps); 6358 6359 /** 6360 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6361 * device and its bandwidth limitation 6362 * @dev: PCI device to query 6363 * @limiting_dev: storage for device causing the bandwidth limitation 6364 * @speed: storage for speed of limiting device 6365 * @width: storage for width of limiting device 6366 * 6367 * Walk up the PCI device chain and find the point where the minimum 6368 * bandwidth is available. Return the bandwidth available there and (if 6369 * limiting_dev, speed, and width pointers are supplied) information about 6370 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6371 * raw bandwidth. 6372 */ 6373 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6374 enum pci_bus_speed *speed, 6375 enum pcie_link_width *width) 6376 { 6377 u16 lnksta; 6378 enum pci_bus_speed next_speed; 6379 enum pcie_link_width next_width; 6380 u32 bw, next_bw; 6381 6382 if (speed) 6383 *speed = PCI_SPEED_UNKNOWN; 6384 if (width) 6385 *width = PCIE_LNK_WIDTH_UNKNOWN; 6386 6387 bw = 0; 6388 6389 while (dev) { 6390 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6391 6392 next_speed = to_pcie_link_speed(lnksta); 6393 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6394 6395 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6396 6397 /* Check if current device limits the total bandwidth */ 6398 if (!bw || next_bw <= bw) { 6399 bw = next_bw; 6400 6401 if (limiting_dev) 6402 *limiting_dev = dev; 6403 if (speed) 6404 *speed = next_speed; 6405 if (width) 6406 *width = next_width; 6407 } 6408 6409 dev = pci_upstream_bridge(dev); 6410 } 6411 6412 return bw; 6413 } 6414 EXPORT_SYMBOL(pcie_bandwidth_available); 6415 6416 /** 6417 * pcie_get_speed_cap - query for the PCI device's link speed capability 6418 * @dev: PCI device to query 6419 * 6420 * Query the PCI device speed capability. Return the maximum link speed 6421 * supported by the device. 6422 */ 6423 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6424 { 6425 u32 lnkcap2, lnkcap; 6426 6427 /* 6428 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6429 * implementation note there recommends using the Supported Link 6430 * Speeds Vector in Link Capabilities 2 when supported. 6431 * 6432 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6433 * should use the Supported Link Speeds field in Link Capabilities, 6434 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6435 */ 6436 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6437 6438 /* PCIe r3.0-compliant */ 6439 if (lnkcap2) 6440 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6441 6442 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6443 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6444 return PCIE_SPEED_5_0GT; 6445 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6446 return PCIE_SPEED_2_5GT; 6447 6448 return PCI_SPEED_UNKNOWN; 6449 } 6450 EXPORT_SYMBOL(pcie_get_speed_cap); 6451 6452 /** 6453 * pcie_get_width_cap - query for the PCI device's link width capability 6454 * @dev: PCI device to query 6455 * 6456 * Query the PCI device width capability. Return the maximum link width 6457 * supported by the device. 6458 */ 6459 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6460 { 6461 u32 lnkcap; 6462 6463 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6464 if (lnkcap) 6465 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6466 6467 return PCIE_LNK_WIDTH_UNKNOWN; 6468 } 6469 EXPORT_SYMBOL(pcie_get_width_cap); 6470 6471 /** 6472 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6473 * @dev: PCI device 6474 * @speed: storage for link speed 6475 * @width: storage for link width 6476 * 6477 * Calculate a PCI device's link bandwidth by querying for its link speed 6478 * and width, multiplying them, and applying encoding overhead. The result 6479 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6480 */ 6481 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6482 enum pcie_link_width *width) 6483 { 6484 *speed = pcie_get_speed_cap(dev); 6485 *width = pcie_get_width_cap(dev); 6486 6487 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6488 return 0; 6489 6490 return *width * PCIE_SPEED2MBS_ENC(*speed); 6491 } 6492 6493 /** 6494 * __pcie_print_link_status - Report the PCI device's link speed and width 6495 * @dev: PCI device to query 6496 * @verbose: Print info even when enough bandwidth is available 6497 * 6498 * If the available bandwidth at the device is less than the device is 6499 * capable of, report the device's maximum possible bandwidth and the 6500 * upstream link that limits its performance. If @verbose, always print 6501 * the available bandwidth, even if the device isn't constrained. 6502 */ 6503 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6504 { 6505 enum pcie_link_width width, width_cap; 6506 enum pci_bus_speed speed, speed_cap; 6507 struct pci_dev *limiting_dev = NULL; 6508 u32 bw_avail, bw_cap; 6509 6510 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6511 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6512 6513 if (bw_avail >= bw_cap && verbose) 6514 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6515 bw_cap / 1000, bw_cap % 1000, 6516 pci_speed_string(speed_cap), width_cap); 6517 else if (bw_avail < bw_cap) 6518 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6519 bw_avail / 1000, bw_avail % 1000, 6520 pci_speed_string(speed), width, 6521 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6522 bw_cap / 1000, bw_cap % 1000, 6523 pci_speed_string(speed_cap), width_cap); 6524 } 6525 6526 /** 6527 * pcie_print_link_status - Report the PCI device's link speed and width 6528 * @dev: PCI device to query 6529 * 6530 * Report the available bandwidth at the device. 6531 */ 6532 void pcie_print_link_status(struct pci_dev *dev) 6533 { 6534 __pcie_print_link_status(dev, true); 6535 } 6536 EXPORT_SYMBOL(pcie_print_link_status); 6537 6538 /** 6539 * pci_select_bars - Make BAR mask from the type of resource 6540 * @dev: the PCI device for which BAR mask is made 6541 * @flags: resource type mask to be selected 6542 * 6543 * This helper routine makes bar mask from the type of resource. 6544 */ 6545 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6546 { 6547 int i, bars = 0; 6548 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6549 if (pci_resource_flags(dev, i) & flags) 6550 bars |= (1 << i); 6551 return bars; 6552 } 6553 EXPORT_SYMBOL(pci_select_bars); 6554 6555 /* Some architectures require additional programming to enable VGA */ 6556 static arch_set_vga_state_t arch_set_vga_state; 6557 6558 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6559 { 6560 arch_set_vga_state = func; /* NULL disables */ 6561 } 6562 6563 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6564 unsigned int command_bits, u32 flags) 6565 { 6566 if (arch_set_vga_state) 6567 return arch_set_vga_state(dev, decode, command_bits, 6568 flags); 6569 return 0; 6570 } 6571 6572 /** 6573 * pci_set_vga_state - set VGA decode state on device and parents if requested 6574 * @dev: the PCI device 6575 * @decode: true = enable decoding, false = disable decoding 6576 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6577 * @flags: traverse ancestors and change bridges 6578 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6579 */ 6580 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6581 unsigned int command_bits, u32 flags) 6582 { 6583 struct pci_bus *bus; 6584 struct pci_dev *bridge; 6585 u16 cmd; 6586 int rc; 6587 6588 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6589 6590 /* ARCH specific VGA enables */ 6591 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6592 if (rc) 6593 return rc; 6594 6595 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6596 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6597 if (decode) 6598 cmd |= command_bits; 6599 else 6600 cmd &= ~command_bits; 6601 pci_write_config_word(dev, PCI_COMMAND, cmd); 6602 } 6603 6604 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6605 return 0; 6606 6607 bus = dev->bus; 6608 while (bus) { 6609 bridge = bus->self; 6610 if (bridge) { 6611 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6612 &cmd); 6613 if (decode) 6614 cmd |= PCI_BRIDGE_CTL_VGA; 6615 else 6616 cmd &= ~PCI_BRIDGE_CTL_VGA; 6617 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6618 cmd); 6619 } 6620 bus = bus->parent; 6621 } 6622 return 0; 6623 } 6624 6625 #ifdef CONFIG_ACPI 6626 bool pci_pr3_present(struct pci_dev *pdev) 6627 { 6628 struct acpi_device *adev; 6629 6630 if (acpi_disabled) 6631 return false; 6632 6633 adev = ACPI_COMPANION(&pdev->dev); 6634 if (!adev) 6635 return false; 6636 6637 return adev->power.flags.power_resources && 6638 acpi_has_method(adev->handle, "_PR3"); 6639 } 6640 EXPORT_SYMBOL_GPL(pci_pr3_present); 6641 #endif 6642 6643 /** 6644 * pci_add_dma_alias - Add a DMA devfn alias for a device 6645 * @dev: the PCI device for which alias is added 6646 * @devfn_from: alias slot and function 6647 * @nr_devfns: number of subsequent devfns to alias 6648 * 6649 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6650 * which is used to program permissible bus-devfn source addresses for DMA 6651 * requests in an IOMMU. These aliases factor into IOMMU group creation 6652 * and are useful for devices generating DMA requests beyond or different 6653 * from their logical bus-devfn. Examples include device quirks where the 6654 * device simply uses the wrong devfn, as well as non-transparent bridges 6655 * where the alias may be a proxy for devices in another domain. 6656 * 6657 * IOMMU group creation is performed during device discovery or addition, 6658 * prior to any potential DMA mapping and therefore prior to driver probing 6659 * (especially for userspace assigned devices where IOMMU group definition 6660 * cannot be left as a userspace activity). DMA aliases should therefore 6661 * be configured via quirks, such as the PCI fixup header quirk. 6662 */ 6663 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6664 unsigned int nr_devfns) 6665 { 6666 int devfn_to; 6667 6668 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6669 devfn_to = devfn_from + nr_devfns - 1; 6670 6671 if (!dev->dma_alias_mask) 6672 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6673 if (!dev->dma_alias_mask) { 6674 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6675 return; 6676 } 6677 6678 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6679 6680 if (nr_devfns == 1) 6681 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6682 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6683 else if (nr_devfns > 1) 6684 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6685 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6686 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6687 } 6688 6689 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6690 { 6691 return (dev1->dma_alias_mask && 6692 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6693 (dev2->dma_alias_mask && 6694 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6695 pci_real_dma_dev(dev1) == dev2 || 6696 pci_real_dma_dev(dev2) == dev1; 6697 } 6698 6699 bool pci_device_is_present(struct pci_dev *pdev) 6700 { 6701 u32 v; 6702 6703 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6704 pdev = pci_physfn(pdev); 6705 if (pci_dev_is_disconnected(pdev)) 6706 return false; 6707 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6708 } 6709 EXPORT_SYMBOL_GPL(pci_device_is_present); 6710 6711 void pci_ignore_hotplug(struct pci_dev *dev) 6712 { 6713 struct pci_dev *bridge = dev->bus->self; 6714 6715 dev->ignore_hotplug = 1; 6716 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6717 if (bridge) 6718 bridge->ignore_hotplug = 1; 6719 } 6720 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6721 6722 /** 6723 * pci_real_dma_dev - Get PCI DMA device for PCI device 6724 * @dev: the PCI device that may have a PCI DMA alias 6725 * 6726 * Permits the platform to provide architecture-specific functionality to 6727 * devices needing to alias DMA to another PCI device on another PCI bus. If 6728 * the PCI device is on the same bus, it is recommended to use 6729 * pci_add_dma_alias(). This is the default implementation. Architecture 6730 * implementations can override this. 6731 */ 6732 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6733 { 6734 return dev; 6735 } 6736 6737 resource_size_t __weak pcibios_default_alignment(void) 6738 { 6739 return 0; 6740 } 6741 6742 /* 6743 * Arches that don't want to expose struct resource to userland as-is in 6744 * sysfs and /proc can implement their own pci_resource_to_user(). 6745 */ 6746 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6747 const struct resource *rsrc, 6748 resource_size_t *start, resource_size_t *end) 6749 { 6750 *start = rsrc->start; 6751 *end = rsrc->end; 6752 } 6753 6754 static char *resource_alignment_param; 6755 static DEFINE_SPINLOCK(resource_alignment_lock); 6756 6757 /** 6758 * pci_specified_resource_alignment - get resource alignment specified by user. 6759 * @dev: the PCI device to get 6760 * @resize: whether or not to change resources' size when reassigning alignment 6761 * 6762 * RETURNS: Resource alignment if it is specified. 6763 * Zero if it is not specified. 6764 */ 6765 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6766 bool *resize) 6767 { 6768 int align_order, count; 6769 resource_size_t align = pcibios_default_alignment(); 6770 const char *p; 6771 int ret; 6772 6773 spin_lock(&resource_alignment_lock); 6774 p = resource_alignment_param; 6775 if (!p || !*p) 6776 goto out; 6777 if (pci_has_flag(PCI_PROBE_ONLY)) { 6778 align = 0; 6779 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6780 goto out; 6781 } 6782 6783 while (*p) { 6784 count = 0; 6785 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6786 p[count] == '@') { 6787 p += count + 1; 6788 if (align_order > 63) { 6789 pr_err("PCI: Invalid requested alignment (order %d)\n", 6790 align_order); 6791 align_order = PAGE_SHIFT; 6792 } 6793 } else { 6794 align_order = PAGE_SHIFT; 6795 } 6796 6797 ret = pci_dev_str_match(dev, p, &p); 6798 if (ret == 1) { 6799 *resize = true; 6800 align = 1ULL << align_order; 6801 break; 6802 } else if (ret < 0) { 6803 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6804 p); 6805 break; 6806 } 6807 6808 if (*p != ';' && *p != ',') { 6809 /* End of param or invalid format */ 6810 break; 6811 } 6812 p++; 6813 } 6814 out: 6815 spin_unlock(&resource_alignment_lock); 6816 return align; 6817 } 6818 6819 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6820 resource_size_t align, bool resize) 6821 { 6822 struct resource *r = &dev->resource[bar]; 6823 const char *r_name = pci_resource_name(dev, bar); 6824 resource_size_t size; 6825 6826 if (!(r->flags & IORESOURCE_MEM)) 6827 return; 6828 6829 if (r->flags & IORESOURCE_PCI_FIXED) { 6830 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6831 r_name, r, (unsigned long long)align); 6832 return; 6833 } 6834 6835 size = resource_size(r); 6836 if (size >= align) 6837 return; 6838 6839 /* 6840 * Increase the alignment of the resource. There are two ways we 6841 * can do this: 6842 * 6843 * 1) Increase the size of the resource. BARs are aligned on their 6844 * size, so when we reallocate space for this resource, we'll 6845 * allocate it with the larger alignment. This also prevents 6846 * assignment of any other BARs inside the alignment region, so 6847 * if we're requesting page alignment, this means no other BARs 6848 * will share the page. 6849 * 6850 * The disadvantage is that this makes the resource larger than 6851 * the hardware BAR, which may break drivers that compute things 6852 * based on the resource size, e.g., to find registers at a 6853 * fixed offset before the end of the BAR. 6854 * 6855 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6856 * set r->start to the desired alignment. By itself this 6857 * doesn't prevent other BARs being put inside the alignment 6858 * region, but if we realign *every* resource of every device in 6859 * the system, none of them will share an alignment region. 6860 * 6861 * When the user has requested alignment for only some devices via 6862 * the "pci=resource_alignment" argument, "resize" is true and we 6863 * use the first method. Otherwise we assume we're aligning all 6864 * devices and we use the second. 6865 */ 6866 6867 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6868 r_name, r, (unsigned long long)align); 6869 6870 if (resize) { 6871 r->start = 0; 6872 r->end = align - 1; 6873 } else { 6874 r->flags &= ~IORESOURCE_SIZEALIGN; 6875 r->flags |= IORESOURCE_STARTALIGN; 6876 r->start = align; 6877 r->end = r->start + size - 1; 6878 } 6879 r->flags |= IORESOURCE_UNSET; 6880 } 6881 6882 /* 6883 * This function disables memory decoding and releases memory resources 6884 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6885 * It also rounds up size to specified alignment. 6886 * Later on, the kernel will assign page-aligned memory resource back 6887 * to the device. 6888 */ 6889 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6890 { 6891 int i; 6892 struct resource *r; 6893 resource_size_t align; 6894 u16 command; 6895 bool resize = false; 6896 6897 /* 6898 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6899 * 3.4.1.11. Their resources are allocated from the space 6900 * described by the VF BARx register in the PF's SR-IOV capability. 6901 * We can't influence their alignment here. 6902 */ 6903 if (dev->is_virtfn) 6904 return; 6905 6906 /* check if specified PCI is target device to reassign */ 6907 align = pci_specified_resource_alignment(dev, &resize); 6908 if (!align) 6909 return; 6910 6911 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6912 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6913 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6914 return; 6915 } 6916 6917 pci_read_config_word(dev, PCI_COMMAND, &command); 6918 command &= ~PCI_COMMAND_MEMORY; 6919 pci_write_config_word(dev, PCI_COMMAND, command); 6920 6921 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6922 pci_request_resource_alignment(dev, i, align, resize); 6923 6924 /* 6925 * Need to disable bridge's resource window, 6926 * to enable the kernel to reassign new resource 6927 * window later on. 6928 */ 6929 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6930 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6931 r = &dev->resource[i]; 6932 if (!(r->flags & IORESOURCE_MEM)) 6933 continue; 6934 r->flags |= IORESOURCE_UNSET; 6935 r->end = resource_size(r) - 1; 6936 r->start = 0; 6937 } 6938 pci_disable_bridge_window(dev); 6939 } 6940 } 6941 6942 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6943 { 6944 size_t count = 0; 6945 6946 spin_lock(&resource_alignment_lock); 6947 if (resource_alignment_param) 6948 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6949 spin_unlock(&resource_alignment_lock); 6950 6951 return count; 6952 } 6953 6954 static ssize_t resource_alignment_store(const struct bus_type *bus, 6955 const char *buf, size_t count) 6956 { 6957 char *param, *old, *end; 6958 6959 if (count >= (PAGE_SIZE - 1)) 6960 return -EINVAL; 6961 6962 param = kstrndup(buf, count, GFP_KERNEL); 6963 if (!param) 6964 return -ENOMEM; 6965 6966 end = strchr(param, '\n'); 6967 if (end) 6968 *end = '\0'; 6969 6970 spin_lock(&resource_alignment_lock); 6971 old = resource_alignment_param; 6972 if (strlen(param)) { 6973 resource_alignment_param = param; 6974 } else { 6975 kfree(param); 6976 resource_alignment_param = NULL; 6977 } 6978 spin_unlock(&resource_alignment_lock); 6979 6980 kfree(old); 6981 6982 return count; 6983 } 6984 6985 static BUS_ATTR_RW(resource_alignment); 6986 6987 static int __init pci_resource_alignment_sysfs_init(void) 6988 { 6989 return bus_create_file(&pci_bus_type, 6990 &bus_attr_resource_alignment); 6991 } 6992 late_initcall(pci_resource_alignment_sysfs_init); 6993 6994 static void pci_no_domains(void) 6995 { 6996 #ifdef CONFIG_PCI_DOMAINS 6997 pci_domains_supported = 0; 6998 #endif 6999 } 7000 7001 #ifdef CONFIG_PCI_DOMAINS_GENERIC 7002 static DEFINE_IDA(pci_domain_nr_static_ida); 7003 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 7004 7005 static void of_pci_reserve_static_domain_nr(void) 7006 { 7007 struct device_node *np; 7008 int domain_nr; 7009 7010 for_each_node_by_type(np, "pci") { 7011 domain_nr = of_get_pci_domain_nr(np); 7012 if (domain_nr < 0) 7013 continue; 7014 /* 7015 * Permanently allocate domain_nr in dynamic_ida 7016 * to prevent it from dynamic allocation. 7017 */ 7018 ida_alloc_range(&pci_domain_nr_dynamic_ida, 7019 domain_nr, domain_nr, GFP_KERNEL); 7020 } 7021 } 7022 7023 static int of_pci_bus_find_domain_nr(struct device *parent) 7024 { 7025 static bool static_domains_reserved = false; 7026 int domain_nr; 7027 7028 /* On the first call scan device tree for static allocations. */ 7029 if (!static_domains_reserved) { 7030 of_pci_reserve_static_domain_nr(); 7031 static_domains_reserved = true; 7032 } 7033 7034 if (parent) { 7035 /* 7036 * If domain is in DT, allocate it in static IDA. This 7037 * prevents duplicate static allocations in case of errors 7038 * in DT. 7039 */ 7040 domain_nr = of_get_pci_domain_nr(parent->of_node); 7041 if (domain_nr >= 0) 7042 return ida_alloc_range(&pci_domain_nr_static_ida, 7043 domain_nr, domain_nr, 7044 GFP_KERNEL); 7045 } 7046 7047 /* 7048 * If domain was not specified in DT, choose a free ID from dynamic 7049 * allocations. All domain numbers from DT are permanently in 7050 * dynamic allocations to prevent assigning them to other DT nodes 7051 * without static domain. 7052 */ 7053 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 7054 } 7055 7056 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 7057 { 7058 if (bus->domain_nr < 0) 7059 return; 7060 7061 /* Release domain from IDA where it was allocated. */ 7062 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 7063 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 7064 else 7065 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 7066 } 7067 7068 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 7069 { 7070 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 7071 acpi_pci_bus_find_domain_nr(bus); 7072 } 7073 7074 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 7075 { 7076 if (!acpi_disabled) 7077 return; 7078 of_pci_bus_release_domain_nr(bus, parent); 7079 } 7080 #endif 7081 7082 /** 7083 * pci_ext_cfg_avail - can we access extended PCI config space? 7084 * 7085 * Returns 1 if we can access PCI extended config space (offsets 7086 * greater than 0xff). This is the default implementation. Architecture 7087 * implementations can override this. 7088 */ 7089 int __weak pci_ext_cfg_avail(void) 7090 { 7091 return 1; 7092 } 7093 7094 void __weak pci_fixup_cardbus(struct pci_bus *bus) 7095 { 7096 } 7097 EXPORT_SYMBOL(pci_fixup_cardbus); 7098 7099 static int __init pci_setup(char *str) 7100 { 7101 while (str) { 7102 char *k = strchr(str, ','); 7103 if (k) 7104 *k++ = 0; 7105 if (*str && (str = pcibios_setup(str)) && *str) { 7106 if (!strcmp(str, "nomsi")) { 7107 pci_no_msi(); 7108 } else if (!strncmp(str, "noats", 5)) { 7109 pr_info("PCIe: ATS is disabled\n"); 7110 pcie_ats_disabled = true; 7111 } else if (!strcmp(str, "noaer")) { 7112 pci_no_aer(); 7113 } else if (!strcmp(str, "earlydump")) { 7114 pci_early_dump = true; 7115 } else if (!strncmp(str, "realloc=", 8)) { 7116 pci_realloc_get_opt(str + 8); 7117 } else if (!strncmp(str, "realloc", 7)) { 7118 pci_realloc_get_opt("on"); 7119 } else if (!strcmp(str, "nodomains")) { 7120 pci_no_domains(); 7121 } else if (!strncmp(str, "noari", 5)) { 7122 pcie_ari_disabled = true; 7123 } else if (!strncmp(str, "cbiosize=", 9)) { 7124 pci_cardbus_io_size = memparse(str + 9, &str); 7125 } else if (!strncmp(str, "cbmemsize=", 10)) { 7126 pci_cardbus_mem_size = memparse(str + 10, &str); 7127 } else if (!strncmp(str, "resource_alignment=", 19)) { 7128 resource_alignment_param = str + 19; 7129 } else if (!strncmp(str, "ecrc=", 5)) { 7130 pcie_ecrc_get_policy(str + 5); 7131 } else if (!strncmp(str, "hpiosize=", 9)) { 7132 pci_hotplug_io_size = memparse(str + 9, &str); 7133 } else if (!strncmp(str, "hpmmiosize=", 11)) { 7134 pci_hotplug_mmio_size = memparse(str + 11, &str); 7135 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 7136 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 7137 } else if (!strncmp(str, "hpmemsize=", 10)) { 7138 pci_hotplug_mmio_size = memparse(str + 10, &str); 7139 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 7140 } else if (!strncmp(str, "hpbussize=", 10)) { 7141 pci_hotplug_bus_size = 7142 simple_strtoul(str + 10, &str, 0); 7143 if (pci_hotplug_bus_size > 0xff) 7144 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 7145 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 7146 pcie_bus_config = PCIE_BUS_TUNE_OFF; 7147 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 7148 pcie_bus_config = PCIE_BUS_SAFE; 7149 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 7150 pcie_bus_config = PCIE_BUS_PERFORMANCE; 7151 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 7152 pcie_bus_config = PCIE_BUS_PEER2PEER; 7153 } else if (!strncmp(str, "pcie_scan_all", 13)) { 7154 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 7155 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 7156 disable_acs_redir_param = str + 18; 7157 } else { 7158 pr_err("PCI: Unknown option `%s'\n", str); 7159 } 7160 } 7161 str = k; 7162 } 7163 return 0; 7164 } 7165 early_param("pci", pci_setup); 7166 7167 /* 7168 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 7169 * in pci_setup(), above, to point to data in the __initdata section which 7170 * will be freed after the init sequence is complete. We can't allocate memory 7171 * in pci_setup() because some architectures do not have any memory allocation 7172 * service available during an early_param() call. So we allocate memory and 7173 * copy the variable here before the init section is freed. 7174 * 7175 */ 7176 static int __init pci_realloc_setup_params(void) 7177 { 7178 resource_alignment_param = kstrdup(resource_alignment_param, 7179 GFP_KERNEL); 7180 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 7181 7182 return 0; 7183 } 7184 pure_initcall(pci_realloc_setup_params); 7185