xref: /linux/drivers/pci/pci.c (revision ca93bf607a44c1f009283dac4af7df0d9ae5e357)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Following exit from Conventional Reset, devices must be ready within 1 sec
69  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70  * Reset (PCIe r6.0 sec 5.8).
71  */
72 #define PCI_RESET_WAIT 1000 /* msec */
73 
74 /*
75  * Devices may extend the 1 sec period through Request Retry Status
76  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77  * limit, but 60 sec ought to be enough for any device to become
78  * responsive.
79  */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 	unsigned int upper;
86 
87 	if (delay_ms) {
88 		/* Use a 20% upper bound, 1ms minimum */
89 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 		usleep_range(delay_ms * USEC_PER_MSEC,
91 			     (delay_ms + upper) * USEC_PER_MSEC);
92 	}
93 }
94 
95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 	return dev->reset_methods[0] != 0;
98 }
99 
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103 
104 #define DEFAULT_CARDBUS_IO_SIZE		(256)
105 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 
110 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118  * pci=hpmemsize=nnM overrides both
119  */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 
123 #define DEFAULT_HOTPLUG_BUS_SIZE	1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 
126 
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139 
140 /*
141  * The default CLS is used if arch didn't set CLS explicitly and not
142  * all pci devices agree on the same value.  Arch can override either
143  * the dfl or actual value as it sees fit.  Don't forget this is
144  * measured in 32-bit words, not bytes.
145  */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148 
149 /*
150  * If we set up a device for bus mastering, we need to check the latency
151  * timer as certain BIOSes forget to set it properly.
152  */
153 unsigned int pcibios_max_latency = 255;
154 
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157 
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160 
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163 
164 bool pci_ats_disabled(void)
165 {
166 	return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174 
175 static int __init pcie_port_pm_setup(char *str)
176 {
177 	if (!strcmp(str, "off"))
178 		pci_bridge_d3_disable = true;
179 	else if (!strcmp(str, "force"))
180 		pci_bridge_d3_force = true;
181 	return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184 
185 /**
186  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187  * @bus: pointer to PCI bus structure to search
188  *
189  * Given a PCI bus, returns the highest PCI bus number present in the set
190  * including the given PCI bus and its list of child PCI buses.
191  */
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 	struct pci_bus *tmp;
195 	unsigned char max, n;
196 
197 	max = bus->busn_res.end;
198 	list_for_each_entry(tmp, &bus->children, node) {
199 		n = pci_bus_max_busnr(tmp);
200 		if (n > max)
201 			max = n;
202 	}
203 	return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 
207 /**
208  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209  * @pdev: the PCI device
210  *
211  * Returns error bits set in PCI_STATUS and clears them.
212  */
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 	u16 status;
216 	int ret;
217 
218 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 	if (ret != PCIBIOS_SUCCESSFUL)
220 		return -EIO;
221 
222 	status &= PCI_STATUS_ERROR_BITS;
223 	if (status)
224 		pci_write_config_word(pdev, PCI_STATUS, status);
225 
226 	return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 					    bool write_combine)
233 {
234 	struct resource *res = &pdev->resource[bar];
235 	resource_size_t start = res->start;
236 	resource_size_t size = resource_size(res);
237 
238 	/*
239 	 * Make sure the BAR is actually a memory resource, not an IO resource
240 	 */
241 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 		return NULL;
244 	}
245 
246 	if (write_combine)
247 		return ioremap_wc(start, size);
248 
249 	return ioremap(start, size);
250 }
251 
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 	return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 	return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264 
265 /**
266  * pci_dev_str_match_path - test if a path string matches a device
267  * @dev: the PCI device to test
268  * @path: string to match the device against
269  * @endptr: pointer to the string after the match
270  *
271  * Test if a string (typically from a kernel parameter) formatted as a
272  * path of device/function addresses matches a PCI device. The string must
273  * be of the form:
274  *
275  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276  *
277  * A path for a device can be obtained using 'lspci -t'.  Using a path
278  * is more robust against bus renumbering than using only a single bus,
279  * device and function address.
280  *
281  * Returns 1 if the string matches the device, 0 if it does not and
282  * a negative error code if it fails to parse the string.
283  */
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 				  const char **endptr)
286 {
287 	int ret;
288 	unsigned int seg, bus, slot, func;
289 	char *wpath, *p;
290 	char end;
291 
292 	*endptr = strchrnul(path, ';');
293 
294 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 	if (!wpath)
296 		return -ENOMEM;
297 
298 	while (1) {
299 		p = strrchr(wpath, '/');
300 		if (!p)
301 			break;
302 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 		if (ret != 2) {
304 			ret = -EINVAL;
305 			goto free_and_exit;
306 		}
307 
308 		if (dev->devfn != PCI_DEVFN(slot, func)) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		/*
314 		 * Note: we don't need to get a reference to the upstream
315 		 * bridge because we hold a reference to the top level
316 		 * device which should hold a reference to the bridge,
317 		 * and so on.
318 		 */
319 		dev = pci_upstream_bridge(dev);
320 		if (!dev) {
321 			ret = 0;
322 			goto free_and_exit;
323 		}
324 
325 		*p = 0;
326 	}
327 
328 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 		     &func, &end);
330 	if (ret != 4) {
331 		seg = 0;
332 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 		if (ret != 3) {
334 			ret = -EINVAL;
335 			goto free_and_exit;
336 		}
337 	}
338 
339 	ret = (seg == pci_domain_nr(dev->bus) &&
340 	       bus == dev->bus->number &&
341 	       dev->devfn == PCI_DEVFN(slot, func));
342 
343 free_and_exit:
344 	kfree(wpath);
345 	return ret;
346 }
347 
348 /**
349  * pci_dev_str_match - test if a string matches a device
350  * @dev: the PCI device to test
351  * @p: string to match the device against
352  * @endptr: pointer to the string after the match
353  *
354  * Test if a string (typically from a kernel parameter) matches a specified
355  * PCI device. The string may be of one of the following formats:
356  *
357  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359  *
360  * The first format specifies a PCI bus/device/function address which
361  * may change if new hardware is inserted, if motherboard firmware changes,
362  * or due to changes caused in kernel parameters. If the domain is
363  * left unspecified, it is taken to be 0.  In order to be robust against
364  * bus renumbering issues, a path of PCI device/function numbers may be used
365  * to address the specific device.  The path for a device can be determined
366  * through the use of 'lspci -t'.
367  *
368  * The second format matches devices using IDs in the configuration
369  * space which may match multiple devices in the system. A value of 0
370  * for any field will match all devices. (Note: this differs from
371  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372  * legacy reasons and convenience so users don't have to specify
373  * FFFFFFFFs on the command line.)
374  *
375  * Returns 1 if the string matches the device, 0 if it does not and
376  * a negative error code if the string cannot be parsed.
377  */
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 			     const char **endptr)
380 {
381 	int ret;
382 	int count;
383 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 
385 	if (strncmp(p, "pci:", 4) == 0) {
386 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 		p += 4;
388 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 			     &subsystem_vendor, &subsystem_device, &count);
390 		if (ret != 4) {
391 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 			if (ret != 2)
393 				return -EINVAL;
394 
395 			subsystem_vendor = 0;
396 			subsystem_device = 0;
397 		}
398 
399 		p += count;
400 
401 		if ((!vendor || vendor == dev->vendor) &&
402 		    (!device || device == dev->device) &&
403 		    (!subsystem_vendor ||
404 			    subsystem_vendor == dev->subsystem_vendor) &&
405 		    (!subsystem_device ||
406 			    subsystem_device == dev->subsystem_device))
407 			goto found;
408 	} else {
409 		/*
410 		 * PCI Bus, Device, Function IDs are specified
411 		 * (optionally, may include a path of devfns following it)
412 		 */
413 		ret = pci_dev_str_match_path(dev, p, &p);
414 		if (ret < 0)
415 			return ret;
416 		else if (ret)
417 			goto found;
418 	}
419 
420 	*endptr = p;
421 	return 0;
422 
423 found:
424 	*endptr = p;
425 	return 1;
426 }
427 
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 				  u8 pos, int cap, int *ttl)
430 {
431 	u8 id;
432 	u16 ent;
433 
434 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 
436 	while ((*ttl)--) {
437 		if (pos < 0x40)
438 			break;
439 		pos &= ~3;
440 		pci_bus_read_config_word(bus, devfn, pos, &ent);
441 
442 		id = ent & 0xff;
443 		if (id == 0xff)
444 			break;
445 		if (id == cap)
446 			return pos;
447 		pos = (ent >> 8);
448 	}
449 	return 0;
450 }
451 
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 			      u8 pos, int cap)
454 {
455 	int ttl = PCI_FIND_CAP_TTL;
456 
457 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459 
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 	return __pci_find_next_cap(dev->bus, dev->devfn,
463 				   pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 				    unsigned int devfn, u8 hdr_type)
469 {
470 	u16 status;
471 
472 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 	if (!(status & PCI_STATUS_CAP_LIST))
474 		return 0;
475 
476 	switch (hdr_type) {
477 	case PCI_HEADER_TYPE_NORMAL:
478 	case PCI_HEADER_TYPE_BRIDGE:
479 		return PCI_CAPABILITY_LIST;
480 	case PCI_HEADER_TYPE_CARDBUS:
481 		return PCI_CB_CAPABILITY_LIST;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * pci_find_capability - query for devices' capabilities
489  * @dev: PCI device to query
490  * @cap: capability code
491  *
492  * Tell if a device supports a given PCI capability.
493  * Returns the address of the requested capability structure within the
494  * device's PCI configuration space or 0 in case the device does not
495  * support it.  Possible values for @cap include:
496  *
497  *  %PCI_CAP_ID_PM           Power Management
498  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499  *  %PCI_CAP_ID_VPD          Vital Product Data
500  *  %PCI_CAP_ID_SLOTID       Slot Identification
501  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503  *  %PCI_CAP_ID_PCIX         PCI-X
504  *  %PCI_CAP_ID_EXP          PCI Express
505  */
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 	u8 pos;
509 
510 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 	if (pos)
512 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 
514 	return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517 
518 /**
519  * pci_bus_find_capability - query for devices' capabilities
520  * @bus: the PCI bus to query
521  * @devfn: PCI device to query
522  * @cap: capability code
523  *
524  * Like pci_find_capability() but works for PCI devices that do not have a
525  * pci_dev structure set up yet.
526  *
527  * Returns the address of the requested capability structure within the
528  * device's PCI configuration space or 0 in case the device does not
529  * support it.
530  */
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 	u8 hdr_type, pos;
534 
535 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 
537 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
538 	if (pos)
539 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 
541 	return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544 
545 /**
546  * pci_find_next_ext_capability - Find an extended capability
547  * @dev: PCI device to query
548  * @start: address at which to start looking (0 to start at beginning of list)
549  * @cap: capability code
550  *
551  * Returns the address of the next matching extended capability structure
552  * within the device's PCI configuration space or 0 if the device does
553  * not support it.  Some capabilities can occur several times, e.g., the
554  * vendor-specific capability, and this provides a way to find them all.
555  */
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 	u32 header;
559 	int ttl;
560 	u16 pos = PCI_CFG_SPACE_SIZE;
561 
562 	/* minimum 8 bytes per capability */
563 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 
565 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 		return 0;
567 
568 	if (start)
569 		pos = start;
570 
571 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 		return 0;
573 
574 	/*
575 	 * If we have no capabilities, this is indicated by cap ID,
576 	 * cap version and next pointer all being 0.
577 	 */
578 	if (header == 0)
579 		return 0;
580 
581 	while (ttl-- > 0) {
582 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 			return pos;
584 
585 		pos = PCI_EXT_CAP_NEXT(header);
586 		if (pos < PCI_CFG_SPACE_SIZE)
587 			break;
588 
589 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 			break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 
597 /**
598  * pci_find_ext_capability - Find an extended capability
599  * @dev: PCI device to query
600  * @cap: capability code
601  *
602  * Returns the address of the requested extended capability structure
603  * within the device's PCI configuration space or 0 if the device does
604  * not support it.  Possible values for @cap include:
605  *
606  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610  */
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 	return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 
617 /**
618  * pci_get_dsn - Read and return the 8-byte Device Serial Number
619  * @dev: PCI device to query
620  *
621  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622  * Number.
623  *
624  * Returns the DSN, or zero if the capability does not exist.
625  */
626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 	u32 dword;
629 	u64 dsn;
630 	int pos;
631 
632 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 	if (!pos)
634 		return 0;
635 
636 	/*
637 	 * The Device Serial Number is two dwords offset 4 bytes from the
638 	 * capability position. The specification says that the first dword is
639 	 * the lower half, and the second dword is the upper half.
640 	 */
641 	pos += 4;
642 	pci_read_config_dword(dev, pos, &dword);
643 	dsn = (u64)dword;
644 	pci_read_config_dword(dev, pos + 4, &dword);
645 	dsn |= ((u64)dword) << 32;
646 
647 	return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 	int rc, ttl = PCI_FIND_CAP_TTL;
654 	u8 cap, mask;
655 
656 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 		mask = HT_3BIT_CAP_MASK;
658 	else
659 		mask = HT_5BIT_CAP_MASK;
660 
661 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 				      PCI_CAP_ID_HT, &ttl);
663 	while (pos) {
664 		rc = pci_read_config_byte(dev, pos + 3, &cap);
665 		if (rc != PCIBIOS_SUCCESSFUL)
666 			return 0;
667 
668 		if ((cap & mask) == ht_cap)
669 			return pos;
670 
671 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 					      pos + PCI_CAP_LIST_NEXT,
673 					      PCI_CAP_ID_HT, &ttl);
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @pos: Position from which to continue searching
683  * @ht_cap: HyperTransport capability code
684  *
685  * To be used in conjunction with pci_find_ht_capability() to search for
686  * all capabilities matching @ht_cap. @pos should always be a value returned
687  * from pci_find_ht_capability().
688  *
689  * NB. To be 100% safe against broken PCI devices, the caller should take
690  * steps to avoid an infinite loop.
691  */
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 
698 /**
699  * pci_find_ht_capability - query a device's HyperTransport capabilities
700  * @dev: PCI device to query
701  * @ht_cap: HyperTransport capability code
702  *
703  * Tell if a device supports a given HyperTransport capability.
704  * Returns an address within the device's PCI configuration space
705  * or 0 in case the device does not support the request capability.
706  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707  * which has a HyperTransport capability matching @ht_cap.
708  */
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 	u8 pos;
712 
713 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 	if (pos)
715 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 
717 	return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 
721 /**
722  * pci_find_vsec_capability - Find a vendor-specific extended capability
723  * @dev: PCI device to query
724  * @vendor: Vendor ID for which capability is defined
725  * @cap: Vendor-specific capability ID
726  *
727  * If @dev has Vendor ID @vendor, search for a VSEC capability with
728  * VSEC ID @cap. If found, return the capability offset in
729  * config space; otherwise return 0.
730  */
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 	u16 vsec = 0;
734 	u32 header;
735 	int ret;
736 
737 	if (vendor != dev->vendor)
738 		return 0;
739 
740 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 						     PCI_EXT_CAP_ID_VNDR))) {
742 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 		if (ret != PCIBIOS_SUCCESSFUL)
744 			continue;
745 
746 		if (PCI_VNDR_HEADER_ID(header) == cap)
747 			return vsec;
748 	}
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753 
754 /**
755  * pci_find_dvsec_capability - Find DVSEC for vendor
756  * @dev: PCI device to query
757  * @vendor: Vendor ID to match for the DVSEC
758  * @dvsec: Designated Vendor-specific capability ID
759  *
760  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761  * offset in config space; otherwise return 0.
762  */
763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 {
765 	int pos;
766 
767 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 	if (!pos)
769 		return 0;
770 
771 	while (pos) {
772 		u16 v, id;
773 
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 		if (vendor == v && dvsec == id)
777 			return pos;
778 
779 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 	}
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785 
786 /**
787  * pci_find_parent_resource - return resource region of parent bus of given
788  *			      region
789  * @dev: PCI device structure contains resources to be searched
790  * @res: child resource record for which parent is sought
791  *
792  * For given resource region of given device, return the resource region of
793  * parent bus the given region is contained in.
794  */
795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 					  struct resource *res)
797 {
798 	const struct pci_bus *bus = dev->bus;
799 	struct resource *r;
800 
801 	pci_bus_for_each_resource(bus, r) {
802 		if (!r)
803 			continue;
804 		if (resource_contains(r, res)) {
805 
806 			/*
807 			 * If the window is prefetchable but the BAR is
808 			 * not, the allocator made a mistake.
809 			 */
810 			if (r->flags & IORESOURCE_PREFETCH &&
811 			    !(res->flags & IORESOURCE_PREFETCH))
812 				return NULL;
813 
814 			/*
815 			 * If we're below a transparent bridge, there may
816 			 * be both a positively-decoded aperture and a
817 			 * subtractively-decoded region that contain the BAR.
818 			 * We want the positively-decoded one, so this depends
819 			 * on pci_bus_for_each_resource() giving us those
820 			 * first.
821 			 */
822 			return r;
823 		}
824 	}
825 	return NULL;
826 }
827 EXPORT_SYMBOL(pci_find_parent_resource);
828 
829 /**
830  * pci_find_resource - Return matching PCI device resource
831  * @dev: PCI device to query
832  * @res: Resource to look for
833  *
834  * Goes over standard PCI resources (BARs) and checks if the given resource
835  * is partially or fully contained in any of them. In that case the
836  * matching resource is returned, %NULL otherwise.
837  */
838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 {
840 	int i;
841 
842 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 		struct resource *r = &dev->resource[i];
844 
845 		if (r->start && resource_contains(r, res))
846 			return r;
847 	}
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(pci_find_resource);
852 
853 /**
854  * pci_resource_name - Return the name of the PCI resource
855  * @dev: PCI device to query
856  * @i: index of the resource
857  *
858  * Return the standard PCI resource (BAR) name according to their index.
859  */
860 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
861 {
862 	static const char * const bar_name[] = {
863 		"BAR 0",
864 		"BAR 1",
865 		"BAR 2",
866 		"BAR 3",
867 		"BAR 4",
868 		"BAR 5",
869 		"ROM",
870 #ifdef CONFIG_PCI_IOV
871 		"VF BAR 0",
872 		"VF BAR 1",
873 		"VF BAR 2",
874 		"VF BAR 3",
875 		"VF BAR 4",
876 		"VF BAR 5",
877 #endif
878 		"bridge window",	/* "io" included in %pR */
879 		"bridge window",	/* "mem" included in %pR */
880 		"bridge window",	/* "mem pref" included in %pR */
881 	};
882 	static const char * const cardbus_name[] = {
883 		"BAR 1",
884 		"unknown",
885 		"unknown",
886 		"unknown",
887 		"unknown",
888 		"unknown",
889 #ifdef CONFIG_PCI_IOV
890 		"unknown",
891 		"unknown",
892 		"unknown",
893 		"unknown",
894 		"unknown",
895 		"unknown",
896 #endif
897 		"CardBus bridge window 0",	/* I/O */
898 		"CardBus bridge window 1",	/* I/O */
899 		"CardBus bridge window 0",	/* mem */
900 		"CardBus bridge window 1",	/* mem */
901 	};
902 
903 	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
904 	    i < ARRAY_SIZE(cardbus_name))
905 		return cardbus_name[i];
906 
907 	if (i < ARRAY_SIZE(bar_name))
908 		return bar_name[i];
909 
910 	return "unknown";
911 }
912 
913 /**
914  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
915  * @dev: the PCI device to operate on
916  * @pos: config space offset of status word
917  * @mask: mask of bit(s) to care about in status word
918  *
919  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
920  */
921 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
922 {
923 	int i;
924 
925 	/* Wait for Transaction Pending bit clean */
926 	for (i = 0; i < 4; i++) {
927 		u16 status;
928 		if (i)
929 			msleep((1 << (i - 1)) * 100);
930 
931 		pci_read_config_word(dev, pos, &status);
932 		if (!(status & mask))
933 			return 1;
934 	}
935 
936 	return 0;
937 }
938 
939 static int pci_acs_enable;
940 
941 /**
942  * pci_request_acs - ask for ACS to be enabled if supported
943  */
944 void pci_request_acs(void)
945 {
946 	pci_acs_enable = 1;
947 }
948 
949 static const char *disable_acs_redir_param;
950 
951 /**
952  * pci_disable_acs_redir - disable ACS redirect capabilities
953  * @dev: the PCI device
954  *
955  * For only devices specified in the disable_acs_redir parameter.
956  */
957 static void pci_disable_acs_redir(struct pci_dev *dev)
958 {
959 	int ret = 0;
960 	const char *p;
961 	int pos;
962 	u16 ctrl;
963 
964 	if (!disable_acs_redir_param)
965 		return;
966 
967 	p = disable_acs_redir_param;
968 	while (*p) {
969 		ret = pci_dev_str_match(dev, p, &p);
970 		if (ret < 0) {
971 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
972 				     disable_acs_redir_param);
973 
974 			break;
975 		} else if (ret == 1) {
976 			/* Found a match */
977 			break;
978 		}
979 
980 		if (*p != ';' && *p != ',') {
981 			/* End of param or invalid format */
982 			break;
983 		}
984 		p++;
985 	}
986 
987 	if (ret != 1)
988 		return;
989 
990 	if (!pci_dev_specific_disable_acs_redir(dev))
991 		return;
992 
993 	pos = dev->acs_cap;
994 	if (!pos) {
995 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
996 		return;
997 	}
998 
999 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1000 
1001 	/* P2P Request & Completion Redirect */
1002 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
1003 
1004 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1005 
1006 	pci_info(dev, "disabled ACS redirect\n");
1007 }
1008 
1009 /**
1010  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1011  * @dev: the PCI device
1012  */
1013 static void pci_std_enable_acs(struct pci_dev *dev)
1014 {
1015 	int pos;
1016 	u16 cap;
1017 	u16 ctrl;
1018 
1019 	pos = dev->acs_cap;
1020 	if (!pos)
1021 		return;
1022 
1023 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1024 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1025 
1026 	/* Source Validation */
1027 	ctrl |= (cap & PCI_ACS_SV);
1028 
1029 	/* P2P Request Redirect */
1030 	ctrl |= (cap & PCI_ACS_RR);
1031 
1032 	/* P2P Completion Redirect */
1033 	ctrl |= (cap & PCI_ACS_CR);
1034 
1035 	/* Upstream Forwarding */
1036 	ctrl |= (cap & PCI_ACS_UF);
1037 
1038 	/* Enable Translation Blocking for external devices and noats */
1039 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1040 		ctrl |= (cap & PCI_ACS_TB);
1041 
1042 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1043 }
1044 
1045 /**
1046  * pci_enable_acs - enable ACS if hardware support it
1047  * @dev: the PCI device
1048  */
1049 static void pci_enable_acs(struct pci_dev *dev)
1050 {
1051 	if (!pci_acs_enable)
1052 		goto disable_acs_redir;
1053 
1054 	if (!pci_dev_specific_enable_acs(dev))
1055 		goto disable_acs_redir;
1056 
1057 	pci_std_enable_acs(dev);
1058 
1059 disable_acs_redir:
1060 	/*
1061 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1062 	 * enabled by the kernel because it may have been enabled by
1063 	 * platform firmware.  So if we are told to disable it, we should
1064 	 * always disable it after setting the kernel's default
1065 	 * preferences.
1066 	 */
1067 	pci_disable_acs_redir(dev);
1068 }
1069 
1070 /**
1071  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1072  * @dev: PCI device to have its BARs restored
1073  *
1074  * Restore the BAR values for a given device, so as to make it
1075  * accessible by its driver.
1076  */
1077 static void pci_restore_bars(struct pci_dev *dev)
1078 {
1079 	int i;
1080 
1081 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1082 		pci_update_resource(dev, i);
1083 }
1084 
1085 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1086 {
1087 	if (pci_use_mid_pm())
1088 		return true;
1089 
1090 	return acpi_pci_power_manageable(dev);
1091 }
1092 
1093 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1094 					       pci_power_t t)
1095 {
1096 	if (pci_use_mid_pm())
1097 		return mid_pci_set_power_state(dev, t);
1098 
1099 	return acpi_pci_set_power_state(dev, t);
1100 }
1101 
1102 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1103 {
1104 	if (pci_use_mid_pm())
1105 		return mid_pci_get_power_state(dev);
1106 
1107 	return acpi_pci_get_power_state(dev);
1108 }
1109 
1110 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1111 {
1112 	if (!pci_use_mid_pm())
1113 		acpi_pci_refresh_power_state(dev);
1114 }
1115 
1116 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1117 {
1118 	if (pci_use_mid_pm())
1119 		return PCI_POWER_ERROR;
1120 
1121 	return acpi_pci_choose_state(dev);
1122 }
1123 
1124 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1125 {
1126 	if (pci_use_mid_pm())
1127 		return PCI_POWER_ERROR;
1128 
1129 	return acpi_pci_wakeup(dev, enable);
1130 }
1131 
1132 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1133 {
1134 	if (pci_use_mid_pm())
1135 		return false;
1136 
1137 	return acpi_pci_need_resume(dev);
1138 }
1139 
1140 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1141 {
1142 	if (pci_use_mid_pm())
1143 		return false;
1144 
1145 	return acpi_pci_bridge_d3(dev);
1146 }
1147 
1148 /**
1149  * pci_update_current_state - Read power state of given device and cache it
1150  * @dev: PCI device to handle.
1151  * @state: State to cache in case the device doesn't have the PM capability
1152  *
1153  * The power state is read from the PMCSR register, which however is
1154  * inaccessible in D3cold.  The platform firmware is therefore queried first
1155  * to detect accessibility of the register.  In case the platform firmware
1156  * reports an incorrect state or the device isn't power manageable by the
1157  * platform at all, we try to detect D3cold by testing accessibility of the
1158  * vendor ID in config space.
1159  */
1160 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1161 {
1162 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1163 		dev->current_state = PCI_D3cold;
1164 	} else if (dev->pm_cap) {
1165 		u16 pmcsr;
1166 
1167 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1168 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1169 			dev->current_state = PCI_D3cold;
1170 			return;
1171 		}
1172 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1173 	} else {
1174 		dev->current_state = state;
1175 	}
1176 }
1177 
1178 /**
1179  * pci_refresh_power_state - Refresh the given device's power state data
1180  * @dev: Target PCI device.
1181  *
1182  * Ask the platform to refresh the devices power state information and invoke
1183  * pci_update_current_state() to update its current PCI power state.
1184  */
1185 void pci_refresh_power_state(struct pci_dev *dev)
1186 {
1187 	platform_pci_refresh_power_state(dev);
1188 	pci_update_current_state(dev, dev->current_state);
1189 }
1190 
1191 /**
1192  * pci_platform_power_transition - Use platform to change device power state
1193  * @dev: PCI device to handle.
1194  * @state: State to put the device into.
1195  */
1196 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1197 {
1198 	int error;
1199 
1200 	error = platform_pci_set_power_state(dev, state);
1201 	if (!error)
1202 		pci_update_current_state(dev, state);
1203 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1204 		dev->current_state = PCI_D0;
1205 
1206 	return error;
1207 }
1208 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1209 
1210 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1211 {
1212 	pm_request_resume(&pci_dev->dev);
1213 	return 0;
1214 }
1215 
1216 /**
1217  * pci_resume_bus - Walk given bus and runtime resume devices on it
1218  * @bus: Top bus of the subtree to walk.
1219  */
1220 void pci_resume_bus(struct pci_bus *bus)
1221 {
1222 	if (bus)
1223 		pci_walk_bus(bus, pci_resume_one, NULL);
1224 }
1225 
1226 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1227 {
1228 	int delay = 1;
1229 	bool retrain = false;
1230 	struct pci_dev *bridge;
1231 
1232 	if (pci_is_pcie(dev)) {
1233 		bridge = pci_upstream_bridge(dev);
1234 		if (bridge)
1235 			retrain = true;
1236 	}
1237 
1238 	/*
1239 	 * After reset, the device should not silently discard config
1240 	 * requests, but it may still indicate that it needs more time by
1241 	 * responding to them with CRS completions.  The Root Port will
1242 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1243 	 * the read (except when CRS SV is enabled and the read was for the
1244 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1245 	 *
1246 	 * Wait for the device to return a non-CRS completion.  Read the
1247 	 * Command register instead of Vendor ID so we don't have to
1248 	 * contend with the CRS SV value.
1249 	 */
1250 	for (;;) {
1251 		u32 id;
1252 
1253 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1254 		if (!PCI_POSSIBLE_ERROR(id))
1255 			break;
1256 
1257 		if (delay > timeout) {
1258 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1259 				 delay - 1, reset_type);
1260 			return -ENOTTY;
1261 		}
1262 
1263 		if (delay > PCI_RESET_WAIT) {
1264 			if (retrain) {
1265 				retrain = false;
1266 				if (pcie_failed_link_retrain(bridge)) {
1267 					delay = 1;
1268 					continue;
1269 				}
1270 			}
1271 			pci_info(dev, "not ready %dms after %s; waiting\n",
1272 				 delay - 1, reset_type);
1273 		}
1274 
1275 		msleep(delay);
1276 		delay *= 2;
1277 	}
1278 
1279 	if (delay > PCI_RESET_WAIT)
1280 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1281 			 reset_type);
1282 	else
1283 		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1284 			reset_type);
1285 
1286 	return 0;
1287 }
1288 
1289 /**
1290  * pci_power_up - Put the given device into D0
1291  * @dev: PCI device to power up
1292  *
1293  * On success, return 0 or 1, depending on whether or not it is necessary to
1294  * restore the device's BARs subsequently (1 is returned in that case).
1295  *
1296  * On failure, return a negative error code.  Always return failure if @dev
1297  * lacks a Power Management Capability, even if the platform was able to
1298  * put the device in D0 via non-PCI means.
1299  */
1300 int pci_power_up(struct pci_dev *dev)
1301 {
1302 	bool need_restore;
1303 	pci_power_t state;
1304 	u16 pmcsr;
1305 
1306 	platform_pci_set_power_state(dev, PCI_D0);
1307 
1308 	if (!dev->pm_cap) {
1309 		state = platform_pci_get_power_state(dev);
1310 		if (state == PCI_UNKNOWN)
1311 			dev->current_state = PCI_D0;
1312 		else
1313 			dev->current_state = state;
1314 
1315 		return -EIO;
1316 	}
1317 
1318 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1319 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1320 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1321 			pci_power_name(dev->current_state));
1322 		dev->current_state = PCI_D3cold;
1323 		return -EIO;
1324 	}
1325 
1326 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1327 
1328 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1329 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1330 
1331 	if (state == PCI_D0)
1332 		goto end;
1333 
1334 	/*
1335 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1336 	 * PME_En, and sets PowerState to 0.
1337 	 */
1338 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1339 
1340 	/* Mandatory transition delays; see PCI PM 1.2. */
1341 	if (state == PCI_D3hot)
1342 		pci_dev_d3_sleep(dev);
1343 	else if (state == PCI_D2)
1344 		udelay(PCI_PM_D2_DELAY);
1345 
1346 end:
1347 	dev->current_state = PCI_D0;
1348 	if (need_restore)
1349 		return 1;
1350 
1351 	return 0;
1352 }
1353 
1354 /**
1355  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1356  * @dev: PCI device to power up
1357  * @locked: whether pci_bus_sem is held
1358  *
1359  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1360  * to confirm the state change, restore its BARs if they might be lost and
1361  * reconfigure ASPM in accordance with the new power state.
1362  *
1363  * If pci_restore_state() is going to be called right after a power state change
1364  * to D0, it is more efficient to use pci_power_up() directly instead of this
1365  * function.
1366  */
1367 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1368 {
1369 	u16 pmcsr;
1370 	int ret;
1371 
1372 	ret = pci_power_up(dev);
1373 	if (ret < 0) {
1374 		if (dev->current_state == PCI_D0)
1375 			return 0;
1376 
1377 		return ret;
1378 	}
1379 
1380 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1382 	if (dev->current_state != PCI_D0) {
1383 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1384 				     pci_power_name(dev->current_state));
1385 	} else if (ret > 0) {
1386 		/*
1387 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1388 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1389 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1390 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1391 		 * For example, at least some versions of the 3c905B and the
1392 		 * 3c556B exhibit this behaviour.
1393 		 *
1394 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1395 		 * devices in a D3hot state at boot.  Consequently, we need to
1396 		 * restore at least the BARs so that the device will be
1397 		 * accessible to its driver.
1398 		 */
1399 		pci_restore_bars(dev);
1400 	}
1401 
1402 	if (dev->bus->self)
1403 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1404 
1405 	return 0;
1406 }
1407 
1408 /**
1409  * __pci_dev_set_current_state - Set current state of a PCI device
1410  * @dev: Device to handle
1411  * @data: pointer to state to be set
1412  */
1413 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1414 {
1415 	pci_power_t state = *(pci_power_t *)data;
1416 
1417 	dev->current_state = state;
1418 	return 0;
1419 }
1420 
1421 /**
1422  * pci_bus_set_current_state - Walk given bus and set current state of devices
1423  * @bus: Top bus of the subtree to walk.
1424  * @state: state to be set
1425  */
1426 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1427 {
1428 	if (bus)
1429 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1430 }
1431 
1432 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1433 {
1434 	if (!bus)
1435 		return;
1436 
1437 	if (locked)
1438 		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1439 	else
1440 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1441 }
1442 
1443 /**
1444  * pci_set_low_power_state - Put a PCI device into a low-power state.
1445  * @dev: PCI device to handle.
1446  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1447  * @locked: whether pci_bus_sem is held
1448  *
1449  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1450  *
1451  * RETURN VALUE:
1452  * -EINVAL if the requested state is invalid.
1453  * -EIO if device does not support PCI PM or its PM capabilities register has a
1454  * wrong version, or device doesn't support the requested state.
1455  * 0 if device already is in the requested state.
1456  * 0 if device's power state has been successfully changed.
1457  */
1458 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1459 {
1460 	u16 pmcsr;
1461 
1462 	if (!dev->pm_cap)
1463 		return -EIO;
1464 
1465 	/*
1466 	 * Validate transition: We can enter D0 from any state, but if
1467 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1468 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1469 	 * we'd have to go from D3 to D0, then to D1.
1470 	 */
1471 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1472 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1473 			pci_power_name(dev->current_state),
1474 			pci_power_name(state));
1475 		return -EINVAL;
1476 	}
1477 
1478 	/* Check if this device supports the desired state */
1479 	if ((state == PCI_D1 && !dev->d1_support)
1480 	   || (state == PCI_D2 && !dev->d2_support))
1481 		return -EIO;
1482 
1483 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1484 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1485 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1486 			pci_power_name(dev->current_state),
1487 			pci_power_name(state));
1488 		dev->current_state = PCI_D3cold;
1489 		return -EIO;
1490 	}
1491 
1492 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1493 	pmcsr |= state;
1494 
1495 	/* Enter specified state */
1496 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1497 
1498 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1499 	if (state == PCI_D3hot)
1500 		pci_dev_d3_sleep(dev);
1501 	else if (state == PCI_D2)
1502 		udelay(PCI_PM_D2_DELAY);
1503 
1504 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1505 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1506 	if (dev->current_state != state)
1507 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1508 				     pci_power_name(dev->current_state),
1509 				     pci_power_name(state));
1510 
1511 	if (dev->bus->self)
1512 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1513 
1514 	return 0;
1515 }
1516 
1517 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1518 {
1519 	int error;
1520 
1521 	/* Bound the state we're entering */
1522 	if (state > PCI_D3cold)
1523 		state = PCI_D3cold;
1524 	else if (state < PCI_D0)
1525 		state = PCI_D0;
1526 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1527 
1528 		/*
1529 		 * If the device or the parent bridge do not support PCI
1530 		 * PM, ignore the request if we're doing anything other
1531 		 * than putting it into D0 (which would only happen on
1532 		 * boot).
1533 		 */
1534 		return 0;
1535 
1536 	/* Check if we're already there */
1537 	if (dev->current_state == state)
1538 		return 0;
1539 
1540 	if (state == PCI_D0)
1541 		return pci_set_full_power_state(dev, locked);
1542 
1543 	/*
1544 	 * This device is quirked not to be put into D3, so don't put it in
1545 	 * D3
1546 	 */
1547 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1548 		return 0;
1549 
1550 	if (state == PCI_D3cold) {
1551 		/*
1552 		 * To put the device in D3cold, put it into D3hot in the native
1553 		 * way, then put it into D3cold using platform ops.
1554 		 */
1555 		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1556 
1557 		if (pci_platform_power_transition(dev, PCI_D3cold))
1558 			return error;
1559 
1560 		/* Powering off a bridge may power off the whole hierarchy */
1561 		if (dev->current_state == PCI_D3cold)
1562 			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1563 	} else {
1564 		error = pci_set_low_power_state(dev, state, locked);
1565 
1566 		if (pci_platform_power_transition(dev, state))
1567 			return error;
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 /**
1574  * pci_set_power_state - Set the power state of a PCI device
1575  * @dev: PCI device to handle.
1576  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1577  *
1578  * Transition a device to a new power state, using the platform firmware and/or
1579  * the device's PCI PM registers.
1580  *
1581  * RETURN VALUE:
1582  * -EINVAL if the requested state is invalid.
1583  * -EIO if device does not support PCI PM or its PM capabilities register has a
1584  * wrong version, or device doesn't support the requested state.
1585  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1586  * 0 if device already is in the requested state.
1587  * 0 if the transition is to D3 but D3 is not supported.
1588  * 0 if device's power state has been successfully changed.
1589  */
1590 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1591 {
1592 	return __pci_set_power_state(dev, state, false);
1593 }
1594 EXPORT_SYMBOL(pci_set_power_state);
1595 
1596 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1597 {
1598 	lockdep_assert_held(&pci_bus_sem);
1599 
1600 	return __pci_set_power_state(dev, state, true);
1601 }
1602 EXPORT_SYMBOL(pci_set_power_state_locked);
1603 
1604 #define PCI_EXP_SAVE_REGS	7
1605 
1606 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1607 						       u16 cap, bool extended)
1608 {
1609 	struct pci_cap_saved_state *tmp;
1610 
1611 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1612 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1613 			return tmp;
1614 	}
1615 	return NULL;
1616 }
1617 
1618 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1619 {
1620 	return _pci_find_saved_cap(dev, cap, false);
1621 }
1622 
1623 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1624 {
1625 	return _pci_find_saved_cap(dev, cap, true);
1626 }
1627 
1628 static int pci_save_pcie_state(struct pci_dev *dev)
1629 {
1630 	int i = 0;
1631 	struct pci_cap_saved_state *save_state;
1632 	u16 *cap;
1633 
1634 	if (!pci_is_pcie(dev))
1635 		return 0;
1636 
1637 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1638 	if (!save_state) {
1639 		pci_err(dev, "buffer not found in %s\n", __func__);
1640 		return -ENOMEM;
1641 	}
1642 
1643 	cap = (u16 *)&save_state->cap.data[0];
1644 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1645 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1646 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1647 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1648 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1649 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1650 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1651 
1652 	return 0;
1653 }
1654 
1655 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1656 {
1657 #ifdef CONFIG_PCIEASPM
1658 	struct pci_dev *bridge;
1659 	u32 ctl;
1660 
1661 	bridge = pci_upstream_bridge(dev);
1662 	if (bridge && bridge->ltr_path) {
1663 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1664 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1665 			pci_dbg(bridge, "re-enabling LTR\n");
1666 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1667 						 PCI_EXP_DEVCTL2_LTR_EN);
1668 		}
1669 	}
1670 #endif
1671 }
1672 
1673 static void pci_restore_pcie_state(struct pci_dev *dev)
1674 {
1675 	int i = 0;
1676 	struct pci_cap_saved_state *save_state;
1677 	u16 *cap;
1678 
1679 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1680 	if (!save_state)
1681 		return;
1682 
1683 	/*
1684 	 * Downstream ports reset the LTR enable bit when link goes down.
1685 	 * Check and re-configure the bit here before restoring device.
1686 	 * PCIe r5.0, sec 7.5.3.16.
1687 	 */
1688 	pci_bridge_reconfigure_ltr(dev);
1689 
1690 	cap = (u16 *)&save_state->cap.data[0];
1691 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1692 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1693 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1694 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1695 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1696 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1697 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1698 }
1699 
1700 static int pci_save_pcix_state(struct pci_dev *dev)
1701 {
1702 	int pos;
1703 	struct pci_cap_saved_state *save_state;
1704 
1705 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1706 	if (!pos)
1707 		return 0;
1708 
1709 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1710 	if (!save_state) {
1711 		pci_err(dev, "buffer not found in %s\n", __func__);
1712 		return -ENOMEM;
1713 	}
1714 
1715 	pci_read_config_word(dev, pos + PCI_X_CMD,
1716 			     (u16 *)save_state->cap.data);
1717 
1718 	return 0;
1719 }
1720 
1721 static void pci_restore_pcix_state(struct pci_dev *dev)
1722 {
1723 	int i = 0, pos;
1724 	struct pci_cap_saved_state *save_state;
1725 	u16 *cap;
1726 
1727 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1728 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1729 	if (!save_state || !pos)
1730 		return;
1731 	cap = (u16 *)&save_state->cap.data[0];
1732 
1733 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1734 }
1735 
1736 static void pci_save_ltr_state(struct pci_dev *dev)
1737 {
1738 	int ltr;
1739 	struct pci_cap_saved_state *save_state;
1740 	u32 *cap;
1741 
1742 	if (!pci_is_pcie(dev))
1743 		return;
1744 
1745 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1746 	if (!ltr)
1747 		return;
1748 
1749 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1750 	if (!save_state) {
1751 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1752 		return;
1753 	}
1754 
1755 	/* Some broken devices only support dword access to LTR */
1756 	cap = &save_state->cap.data[0];
1757 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1758 }
1759 
1760 static void pci_restore_ltr_state(struct pci_dev *dev)
1761 {
1762 	struct pci_cap_saved_state *save_state;
1763 	int ltr;
1764 	u32 *cap;
1765 
1766 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1767 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1768 	if (!save_state || !ltr)
1769 		return;
1770 
1771 	/* Some broken devices only support dword access to LTR */
1772 	cap = &save_state->cap.data[0];
1773 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1774 }
1775 
1776 /**
1777  * pci_save_state - save the PCI configuration space of a device before
1778  *		    suspending
1779  * @dev: PCI device that we're dealing with
1780  */
1781 int pci_save_state(struct pci_dev *dev)
1782 {
1783 	int i;
1784 	/* XXX: 100% dword access ok here? */
1785 	for (i = 0; i < 16; i++) {
1786 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1787 		pci_dbg(dev, "save config %#04x: %#010x\n",
1788 			i * 4, dev->saved_config_space[i]);
1789 	}
1790 	dev->state_saved = true;
1791 
1792 	i = pci_save_pcie_state(dev);
1793 	if (i != 0)
1794 		return i;
1795 
1796 	i = pci_save_pcix_state(dev);
1797 	if (i != 0)
1798 		return i;
1799 
1800 	pci_save_ltr_state(dev);
1801 	pci_save_dpc_state(dev);
1802 	pci_save_aer_state(dev);
1803 	pci_save_ptm_state(dev);
1804 	return pci_save_vc_state(dev);
1805 }
1806 EXPORT_SYMBOL(pci_save_state);
1807 
1808 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1809 				     u32 saved_val, int retry, bool force)
1810 {
1811 	u32 val;
1812 
1813 	pci_read_config_dword(pdev, offset, &val);
1814 	if (!force && val == saved_val)
1815 		return;
1816 
1817 	for (;;) {
1818 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1819 			offset, val, saved_val);
1820 		pci_write_config_dword(pdev, offset, saved_val);
1821 		if (retry-- <= 0)
1822 			return;
1823 
1824 		pci_read_config_dword(pdev, offset, &val);
1825 		if (val == saved_val)
1826 			return;
1827 
1828 		mdelay(1);
1829 	}
1830 }
1831 
1832 static void pci_restore_config_space_range(struct pci_dev *pdev,
1833 					   int start, int end, int retry,
1834 					   bool force)
1835 {
1836 	int index;
1837 
1838 	for (index = end; index >= start; index--)
1839 		pci_restore_config_dword(pdev, 4 * index,
1840 					 pdev->saved_config_space[index],
1841 					 retry, force);
1842 }
1843 
1844 static void pci_restore_config_space(struct pci_dev *pdev)
1845 {
1846 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1847 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1848 		/* Restore BARs before the command register. */
1849 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1850 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1851 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1852 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1853 
1854 		/*
1855 		 * Force rewriting of prefetch registers to avoid S3 resume
1856 		 * issues on Intel PCI bridges that occur when these
1857 		 * registers are not explicitly written.
1858 		 */
1859 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1860 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1861 	} else {
1862 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1863 	}
1864 }
1865 
1866 static void pci_restore_rebar_state(struct pci_dev *pdev)
1867 {
1868 	unsigned int pos, nbars, i;
1869 	u32 ctrl;
1870 
1871 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1872 	if (!pos)
1873 		return;
1874 
1875 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1876 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1877 
1878 	for (i = 0; i < nbars; i++, pos += 8) {
1879 		struct resource *res;
1880 		int bar_idx, size;
1881 
1882 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1883 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1884 		res = pdev->resource + bar_idx;
1885 		size = pci_rebar_bytes_to_size(resource_size(res));
1886 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1887 		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1888 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1889 	}
1890 }
1891 
1892 /**
1893  * pci_restore_state - Restore the saved state of a PCI device
1894  * @dev: PCI device that we're dealing with
1895  */
1896 void pci_restore_state(struct pci_dev *dev)
1897 {
1898 	if (!dev->state_saved)
1899 		return;
1900 
1901 	/*
1902 	 * Restore max latencies (in the LTR capability) before enabling
1903 	 * LTR itself (in the PCIe capability).
1904 	 */
1905 	pci_restore_ltr_state(dev);
1906 
1907 	pci_restore_pcie_state(dev);
1908 	pci_restore_pasid_state(dev);
1909 	pci_restore_pri_state(dev);
1910 	pci_restore_ats_state(dev);
1911 	pci_restore_vc_state(dev);
1912 	pci_restore_rebar_state(dev);
1913 	pci_restore_dpc_state(dev);
1914 	pci_restore_ptm_state(dev);
1915 
1916 	pci_aer_clear_status(dev);
1917 	pci_restore_aer_state(dev);
1918 
1919 	pci_restore_config_space(dev);
1920 
1921 	pci_restore_pcix_state(dev);
1922 	pci_restore_msi_state(dev);
1923 
1924 	/* Restore ACS and IOV configuration state */
1925 	pci_enable_acs(dev);
1926 	pci_restore_iov_state(dev);
1927 
1928 	dev->state_saved = false;
1929 }
1930 EXPORT_SYMBOL(pci_restore_state);
1931 
1932 struct pci_saved_state {
1933 	u32 config_space[16];
1934 	struct pci_cap_saved_data cap[];
1935 };
1936 
1937 /**
1938  * pci_store_saved_state - Allocate and return an opaque struct containing
1939  *			   the device saved state.
1940  * @dev: PCI device that we're dealing with
1941  *
1942  * Return NULL if no state or error.
1943  */
1944 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1945 {
1946 	struct pci_saved_state *state;
1947 	struct pci_cap_saved_state *tmp;
1948 	struct pci_cap_saved_data *cap;
1949 	size_t size;
1950 
1951 	if (!dev->state_saved)
1952 		return NULL;
1953 
1954 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1955 
1956 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1957 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1958 
1959 	state = kzalloc(size, GFP_KERNEL);
1960 	if (!state)
1961 		return NULL;
1962 
1963 	memcpy(state->config_space, dev->saved_config_space,
1964 	       sizeof(state->config_space));
1965 
1966 	cap = state->cap;
1967 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1968 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1969 		memcpy(cap, &tmp->cap, len);
1970 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1971 	}
1972 	/* Empty cap_save terminates list */
1973 
1974 	return state;
1975 }
1976 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1977 
1978 /**
1979  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1980  * @dev: PCI device that we're dealing with
1981  * @state: Saved state returned from pci_store_saved_state()
1982  */
1983 int pci_load_saved_state(struct pci_dev *dev,
1984 			 struct pci_saved_state *state)
1985 {
1986 	struct pci_cap_saved_data *cap;
1987 
1988 	dev->state_saved = false;
1989 
1990 	if (!state)
1991 		return 0;
1992 
1993 	memcpy(dev->saved_config_space, state->config_space,
1994 	       sizeof(state->config_space));
1995 
1996 	cap = state->cap;
1997 	while (cap->size) {
1998 		struct pci_cap_saved_state *tmp;
1999 
2000 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2001 		if (!tmp || tmp->cap.size != cap->size)
2002 			return -EINVAL;
2003 
2004 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2005 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
2006 		       sizeof(struct pci_cap_saved_data) + cap->size);
2007 	}
2008 
2009 	dev->state_saved = true;
2010 	return 0;
2011 }
2012 EXPORT_SYMBOL_GPL(pci_load_saved_state);
2013 
2014 /**
2015  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2016  *				   and free the memory allocated for it.
2017  * @dev: PCI device that we're dealing with
2018  * @state: Pointer to saved state returned from pci_store_saved_state()
2019  */
2020 int pci_load_and_free_saved_state(struct pci_dev *dev,
2021 				  struct pci_saved_state **state)
2022 {
2023 	int ret = pci_load_saved_state(dev, *state);
2024 	kfree(*state);
2025 	*state = NULL;
2026 	return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2029 
2030 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2031 {
2032 	return pci_enable_resources(dev, bars);
2033 }
2034 
2035 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2036 {
2037 	int err;
2038 	struct pci_dev *bridge;
2039 	u16 cmd;
2040 	u8 pin;
2041 
2042 	err = pci_set_power_state(dev, PCI_D0);
2043 	if (err < 0 && err != -EIO)
2044 		return err;
2045 
2046 	bridge = pci_upstream_bridge(dev);
2047 	if (bridge)
2048 		pcie_aspm_powersave_config_link(bridge);
2049 
2050 	err = pcibios_enable_device(dev, bars);
2051 	if (err < 0)
2052 		return err;
2053 	pci_fixup_device(pci_fixup_enable, dev);
2054 
2055 	if (dev->msi_enabled || dev->msix_enabled)
2056 		return 0;
2057 
2058 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2059 	if (pin) {
2060 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2061 		if (cmd & PCI_COMMAND_INTX_DISABLE)
2062 			pci_write_config_word(dev, PCI_COMMAND,
2063 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 /**
2070  * pci_reenable_device - Resume abandoned device
2071  * @dev: PCI device to be resumed
2072  *
2073  * NOTE: This function is a backend of pci_default_resume() and is not supposed
2074  * to be called by normal code, write proper resume handler and use it instead.
2075  */
2076 int pci_reenable_device(struct pci_dev *dev)
2077 {
2078 	if (pci_is_enabled(dev))
2079 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2080 	return 0;
2081 }
2082 EXPORT_SYMBOL(pci_reenable_device);
2083 
2084 static void pci_enable_bridge(struct pci_dev *dev)
2085 {
2086 	struct pci_dev *bridge;
2087 	int retval;
2088 
2089 	bridge = pci_upstream_bridge(dev);
2090 	if (bridge)
2091 		pci_enable_bridge(bridge);
2092 
2093 	if (pci_is_enabled(dev)) {
2094 		if (!dev->is_busmaster)
2095 			pci_set_master(dev);
2096 		return;
2097 	}
2098 
2099 	retval = pci_enable_device(dev);
2100 	if (retval)
2101 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2102 			retval);
2103 	pci_set_master(dev);
2104 }
2105 
2106 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2107 {
2108 	struct pci_dev *bridge;
2109 	int err;
2110 	int i, bars = 0;
2111 
2112 	/*
2113 	 * Power state could be unknown at this point, either due to a fresh
2114 	 * boot or a device removal call.  So get the current power state
2115 	 * so that things like MSI message writing will behave as expected
2116 	 * (e.g. if the device really is in D0 at enable time).
2117 	 */
2118 	pci_update_current_state(dev, dev->current_state);
2119 
2120 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2121 		return 0;		/* already enabled */
2122 
2123 	bridge = pci_upstream_bridge(dev);
2124 	if (bridge)
2125 		pci_enable_bridge(bridge);
2126 
2127 	/* only skip sriov related */
2128 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2129 		if (dev->resource[i].flags & flags)
2130 			bars |= (1 << i);
2131 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2132 		if (dev->resource[i].flags & flags)
2133 			bars |= (1 << i);
2134 
2135 	err = do_pci_enable_device(dev, bars);
2136 	if (err < 0)
2137 		atomic_dec(&dev->enable_cnt);
2138 	return err;
2139 }
2140 
2141 /**
2142  * pci_enable_device_io - Initialize a device for use with IO space
2143  * @dev: PCI device to be initialized
2144  *
2145  * Initialize device before it's used by a driver. Ask low-level code
2146  * to enable I/O resources. Wake up the device if it was suspended.
2147  * Beware, this function can fail.
2148  */
2149 int pci_enable_device_io(struct pci_dev *dev)
2150 {
2151 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2152 }
2153 EXPORT_SYMBOL(pci_enable_device_io);
2154 
2155 /**
2156  * pci_enable_device_mem - Initialize a device for use with Memory space
2157  * @dev: PCI device to be initialized
2158  *
2159  * Initialize device before it's used by a driver. Ask low-level code
2160  * to enable Memory resources. Wake up the device if it was suspended.
2161  * Beware, this function can fail.
2162  */
2163 int pci_enable_device_mem(struct pci_dev *dev)
2164 {
2165 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2166 }
2167 EXPORT_SYMBOL(pci_enable_device_mem);
2168 
2169 /**
2170  * pci_enable_device - Initialize device before it's used by a driver.
2171  * @dev: PCI device to be initialized
2172  *
2173  * Initialize device before it's used by a driver. Ask low-level code
2174  * to enable I/O and memory. Wake up the device if it was suspended.
2175  * Beware, this function can fail.
2176  *
2177  * Note we don't actually enable the device many times if we call
2178  * this function repeatedly (we just increment the count).
2179  */
2180 int pci_enable_device(struct pci_dev *dev)
2181 {
2182 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2183 }
2184 EXPORT_SYMBOL(pci_enable_device);
2185 
2186 /*
2187  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2188  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2189  * there's no need to track it separately.  pci_devres is initialized
2190  * when a device is enabled using managed PCI device enable interface.
2191  */
2192 struct pci_devres {
2193 	unsigned int enabled:1;
2194 	unsigned int pinned:1;
2195 	unsigned int orig_intx:1;
2196 	unsigned int restore_intx:1;
2197 	unsigned int mwi:1;
2198 	u32 region_mask;
2199 };
2200 
2201 static void pcim_release(struct device *gendev, void *res)
2202 {
2203 	struct pci_dev *dev = to_pci_dev(gendev);
2204 	struct pci_devres *this = res;
2205 	int i;
2206 
2207 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2208 		if (this->region_mask & (1 << i))
2209 			pci_release_region(dev, i);
2210 
2211 	if (this->mwi)
2212 		pci_clear_mwi(dev);
2213 
2214 	if (this->restore_intx)
2215 		pci_intx(dev, this->orig_intx);
2216 
2217 	if (this->enabled && !this->pinned)
2218 		pci_disable_device(dev);
2219 }
2220 
2221 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2222 {
2223 	struct pci_devres *dr, *new_dr;
2224 
2225 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2226 	if (dr)
2227 		return dr;
2228 
2229 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2230 	if (!new_dr)
2231 		return NULL;
2232 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2233 }
2234 
2235 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2236 {
2237 	if (pci_is_managed(pdev))
2238 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2239 	return NULL;
2240 }
2241 
2242 /**
2243  * pcim_enable_device - Managed pci_enable_device()
2244  * @pdev: PCI device to be initialized
2245  *
2246  * Managed pci_enable_device().
2247  */
2248 int pcim_enable_device(struct pci_dev *pdev)
2249 {
2250 	struct pci_devres *dr;
2251 	int rc;
2252 
2253 	dr = get_pci_dr(pdev);
2254 	if (unlikely(!dr))
2255 		return -ENOMEM;
2256 	if (dr->enabled)
2257 		return 0;
2258 
2259 	rc = pci_enable_device(pdev);
2260 	if (!rc) {
2261 		pdev->is_managed = 1;
2262 		dr->enabled = 1;
2263 	}
2264 	return rc;
2265 }
2266 EXPORT_SYMBOL(pcim_enable_device);
2267 
2268 /**
2269  * pcim_pin_device - Pin managed PCI device
2270  * @pdev: PCI device to pin
2271  *
2272  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2273  * driver detach.  @pdev must have been enabled with
2274  * pcim_enable_device().
2275  */
2276 void pcim_pin_device(struct pci_dev *pdev)
2277 {
2278 	struct pci_devres *dr;
2279 
2280 	dr = find_pci_dr(pdev);
2281 	WARN_ON(!dr || !dr->enabled);
2282 	if (dr)
2283 		dr->pinned = 1;
2284 }
2285 EXPORT_SYMBOL(pcim_pin_device);
2286 
2287 /*
2288  * pcibios_device_add - provide arch specific hooks when adding device dev
2289  * @dev: the PCI device being added
2290  *
2291  * Permits the platform to provide architecture specific functionality when
2292  * devices are added. This is the default implementation. Architecture
2293  * implementations can override this.
2294  */
2295 int __weak pcibios_device_add(struct pci_dev *dev)
2296 {
2297 	return 0;
2298 }
2299 
2300 /**
2301  * pcibios_release_device - provide arch specific hooks when releasing
2302  *			    device dev
2303  * @dev: the PCI device being released
2304  *
2305  * Permits the platform to provide architecture specific functionality when
2306  * devices are released. This is the default implementation. Architecture
2307  * implementations can override this.
2308  */
2309 void __weak pcibios_release_device(struct pci_dev *dev) {}
2310 
2311 /**
2312  * pcibios_disable_device - disable arch specific PCI resources for device dev
2313  * @dev: the PCI device to disable
2314  *
2315  * Disables architecture specific PCI resources for the device. This
2316  * is the default implementation. Architecture implementations can
2317  * override this.
2318  */
2319 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2320 
2321 /**
2322  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2323  * @irq: ISA IRQ to penalize
2324  * @active: IRQ active or not
2325  *
2326  * Permits the platform to provide architecture-specific functionality when
2327  * penalizing ISA IRQs. This is the default implementation. Architecture
2328  * implementations can override this.
2329  */
2330 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2331 
2332 static void do_pci_disable_device(struct pci_dev *dev)
2333 {
2334 	u16 pci_command;
2335 
2336 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2337 	if (pci_command & PCI_COMMAND_MASTER) {
2338 		pci_command &= ~PCI_COMMAND_MASTER;
2339 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2340 	}
2341 
2342 	pcibios_disable_device(dev);
2343 }
2344 
2345 /**
2346  * pci_disable_enabled_device - Disable device without updating enable_cnt
2347  * @dev: PCI device to disable
2348  *
2349  * NOTE: This function is a backend of PCI power management routines and is
2350  * not supposed to be called drivers.
2351  */
2352 void pci_disable_enabled_device(struct pci_dev *dev)
2353 {
2354 	if (pci_is_enabled(dev))
2355 		do_pci_disable_device(dev);
2356 }
2357 
2358 /**
2359  * pci_disable_device - Disable PCI device after use
2360  * @dev: PCI device to be disabled
2361  *
2362  * Signal to the system that the PCI device is not in use by the system
2363  * anymore.  This only involves disabling PCI bus-mastering, if active.
2364  *
2365  * Note we don't actually disable the device until all callers of
2366  * pci_enable_device() have called pci_disable_device().
2367  */
2368 void pci_disable_device(struct pci_dev *dev)
2369 {
2370 	struct pci_devres *dr;
2371 
2372 	dr = find_pci_dr(dev);
2373 	if (dr)
2374 		dr->enabled = 0;
2375 
2376 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2377 		      "disabling already-disabled device");
2378 
2379 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2380 		return;
2381 
2382 	do_pci_disable_device(dev);
2383 
2384 	dev->is_busmaster = 0;
2385 }
2386 EXPORT_SYMBOL(pci_disable_device);
2387 
2388 /**
2389  * pcibios_set_pcie_reset_state - set reset state for device dev
2390  * @dev: the PCIe device reset
2391  * @state: Reset state to enter into
2392  *
2393  * Set the PCIe reset state for the device. This is the default
2394  * implementation. Architecture implementations can override this.
2395  */
2396 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2397 					enum pcie_reset_state state)
2398 {
2399 	return -EINVAL;
2400 }
2401 
2402 /**
2403  * pci_set_pcie_reset_state - set reset state for device dev
2404  * @dev: the PCIe device reset
2405  * @state: Reset state to enter into
2406  *
2407  * Sets the PCI reset state for the device.
2408  */
2409 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2410 {
2411 	return pcibios_set_pcie_reset_state(dev, state);
2412 }
2413 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2414 
2415 #ifdef CONFIG_PCIEAER
2416 void pcie_clear_device_status(struct pci_dev *dev)
2417 {
2418 	u16 sta;
2419 
2420 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2421 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2422 }
2423 #endif
2424 
2425 /**
2426  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2427  * @dev: PCIe root port or event collector.
2428  */
2429 void pcie_clear_root_pme_status(struct pci_dev *dev)
2430 {
2431 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2432 }
2433 
2434 /**
2435  * pci_check_pme_status - Check if given device has generated PME.
2436  * @dev: Device to check.
2437  *
2438  * Check the PME status of the device and if set, clear it and clear PME enable
2439  * (if set).  Return 'true' if PME status and PME enable were both set or
2440  * 'false' otherwise.
2441  */
2442 bool pci_check_pme_status(struct pci_dev *dev)
2443 {
2444 	int pmcsr_pos;
2445 	u16 pmcsr;
2446 	bool ret = false;
2447 
2448 	if (!dev->pm_cap)
2449 		return false;
2450 
2451 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2452 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2453 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2454 		return false;
2455 
2456 	/* Clear PME status. */
2457 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2458 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2459 		/* Disable PME to avoid interrupt flood. */
2460 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2461 		ret = true;
2462 	}
2463 
2464 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2465 
2466 	return ret;
2467 }
2468 
2469 /**
2470  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2471  * @dev: Device to handle.
2472  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2473  *
2474  * Check if @dev has generated PME and queue a resume request for it in that
2475  * case.
2476  */
2477 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2478 {
2479 	if (pme_poll_reset && dev->pme_poll)
2480 		dev->pme_poll = false;
2481 
2482 	if (pci_check_pme_status(dev)) {
2483 		pci_wakeup_event(dev);
2484 		pm_request_resume(&dev->dev);
2485 	}
2486 	return 0;
2487 }
2488 
2489 /**
2490  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2491  * @bus: Top bus of the subtree to walk.
2492  */
2493 void pci_pme_wakeup_bus(struct pci_bus *bus)
2494 {
2495 	if (bus)
2496 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2497 }
2498 
2499 
2500 /**
2501  * pci_pme_capable - check the capability of PCI device to generate PME#
2502  * @dev: PCI device to handle.
2503  * @state: PCI state from which device will issue PME#.
2504  */
2505 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2506 {
2507 	if (!dev->pm_cap)
2508 		return false;
2509 
2510 	return !!(dev->pme_support & (1 << state));
2511 }
2512 EXPORT_SYMBOL(pci_pme_capable);
2513 
2514 static void pci_pme_list_scan(struct work_struct *work)
2515 {
2516 	struct pci_pme_device *pme_dev, *n;
2517 
2518 	mutex_lock(&pci_pme_list_mutex);
2519 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2520 		struct pci_dev *pdev = pme_dev->dev;
2521 
2522 		if (pdev->pme_poll) {
2523 			struct pci_dev *bridge = pdev->bus->self;
2524 			struct device *dev = &pdev->dev;
2525 			int pm_status;
2526 
2527 			/*
2528 			 * If bridge is in low power state, the
2529 			 * configuration space of subordinate devices
2530 			 * may be not accessible
2531 			 */
2532 			if (bridge && bridge->current_state != PCI_D0)
2533 				continue;
2534 
2535 			/*
2536 			 * If the device is in a low power state it
2537 			 * should not be polled either.
2538 			 */
2539 			pm_status = pm_runtime_get_if_active(dev, true);
2540 			if (!pm_status)
2541 				continue;
2542 
2543 			if (pdev->current_state != PCI_D3cold)
2544 				pci_pme_wakeup(pdev, NULL);
2545 
2546 			if (pm_status > 0)
2547 				pm_runtime_put(dev);
2548 		} else {
2549 			list_del(&pme_dev->list);
2550 			kfree(pme_dev);
2551 		}
2552 	}
2553 	if (!list_empty(&pci_pme_list))
2554 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2555 				   msecs_to_jiffies(PME_TIMEOUT));
2556 	mutex_unlock(&pci_pme_list_mutex);
2557 }
2558 
2559 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2560 {
2561 	u16 pmcsr;
2562 
2563 	if (!dev->pme_support)
2564 		return;
2565 
2566 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2567 	/* Clear PME_Status by writing 1 to it and enable PME# */
2568 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2569 	if (!enable)
2570 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2571 
2572 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2573 }
2574 
2575 /**
2576  * pci_pme_restore - Restore PME configuration after config space restore.
2577  * @dev: PCI device to update.
2578  */
2579 void pci_pme_restore(struct pci_dev *dev)
2580 {
2581 	u16 pmcsr;
2582 
2583 	if (!dev->pme_support)
2584 		return;
2585 
2586 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2587 	if (dev->wakeup_prepared) {
2588 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2589 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2590 	} else {
2591 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2592 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2593 	}
2594 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2595 }
2596 
2597 /**
2598  * pci_pme_active - enable or disable PCI device's PME# function
2599  * @dev: PCI device to handle.
2600  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2601  *
2602  * The caller must verify that the device is capable of generating PME# before
2603  * calling this function with @enable equal to 'true'.
2604  */
2605 void pci_pme_active(struct pci_dev *dev, bool enable)
2606 {
2607 	__pci_pme_active(dev, enable);
2608 
2609 	/*
2610 	 * PCI (as opposed to PCIe) PME requires that the device have
2611 	 * its PME# line hooked up correctly. Not all hardware vendors
2612 	 * do this, so the PME never gets delivered and the device
2613 	 * remains asleep. The easiest way around this is to
2614 	 * periodically walk the list of suspended devices and check
2615 	 * whether any have their PME flag set. The assumption is that
2616 	 * we'll wake up often enough anyway that this won't be a huge
2617 	 * hit, and the power savings from the devices will still be a
2618 	 * win.
2619 	 *
2620 	 * Although PCIe uses in-band PME message instead of PME# line
2621 	 * to report PME, PME does not work for some PCIe devices in
2622 	 * reality.  For example, there are devices that set their PME
2623 	 * status bits, but don't really bother to send a PME message;
2624 	 * there are PCI Express Root Ports that don't bother to
2625 	 * trigger interrupts when they receive PME messages from the
2626 	 * devices below.  So PME poll is used for PCIe devices too.
2627 	 */
2628 
2629 	if (dev->pme_poll) {
2630 		struct pci_pme_device *pme_dev;
2631 		if (enable) {
2632 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2633 					  GFP_KERNEL);
2634 			if (!pme_dev) {
2635 				pci_warn(dev, "can't enable PME#\n");
2636 				return;
2637 			}
2638 			pme_dev->dev = dev;
2639 			mutex_lock(&pci_pme_list_mutex);
2640 			list_add(&pme_dev->list, &pci_pme_list);
2641 			if (list_is_singular(&pci_pme_list))
2642 				queue_delayed_work(system_freezable_wq,
2643 						   &pci_pme_work,
2644 						   msecs_to_jiffies(PME_TIMEOUT));
2645 			mutex_unlock(&pci_pme_list_mutex);
2646 		} else {
2647 			mutex_lock(&pci_pme_list_mutex);
2648 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2649 				if (pme_dev->dev == dev) {
2650 					list_del(&pme_dev->list);
2651 					kfree(pme_dev);
2652 					break;
2653 				}
2654 			}
2655 			mutex_unlock(&pci_pme_list_mutex);
2656 		}
2657 	}
2658 
2659 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2660 }
2661 EXPORT_SYMBOL(pci_pme_active);
2662 
2663 /**
2664  * __pci_enable_wake - enable PCI device as wakeup event source
2665  * @dev: PCI device affected
2666  * @state: PCI state from which device will issue wakeup events
2667  * @enable: True to enable event generation; false to disable
2668  *
2669  * This enables the device as a wakeup event source, or disables it.
2670  * When such events involves platform-specific hooks, those hooks are
2671  * called automatically by this routine.
2672  *
2673  * Devices with legacy power management (no standard PCI PM capabilities)
2674  * always require such platform hooks.
2675  *
2676  * RETURN VALUE:
2677  * 0 is returned on success
2678  * -EINVAL is returned if device is not supposed to wake up the system
2679  * Error code depending on the platform is returned if both the platform and
2680  * the native mechanism fail to enable the generation of wake-up events
2681  */
2682 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2683 {
2684 	int ret = 0;
2685 
2686 	/*
2687 	 * Bridges that are not power-manageable directly only signal
2688 	 * wakeup on behalf of subordinate devices which is set up
2689 	 * elsewhere, so skip them. However, bridges that are
2690 	 * power-manageable may signal wakeup for themselves (for example,
2691 	 * on a hotplug event) and they need to be covered here.
2692 	 */
2693 	if (!pci_power_manageable(dev))
2694 		return 0;
2695 
2696 	/* Don't do the same thing twice in a row for one device. */
2697 	if (!!enable == !!dev->wakeup_prepared)
2698 		return 0;
2699 
2700 	/*
2701 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2702 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2703 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2704 	 */
2705 
2706 	if (enable) {
2707 		int error;
2708 
2709 		/*
2710 		 * Enable PME signaling if the device can signal PME from
2711 		 * D3cold regardless of whether or not it can signal PME from
2712 		 * the current target state, because that will allow it to
2713 		 * signal PME when the hierarchy above it goes into D3cold and
2714 		 * the device itself ends up in D3cold as a result of that.
2715 		 */
2716 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2717 			pci_pme_active(dev, true);
2718 		else
2719 			ret = 1;
2720 		error = platform_pci_set_wakeup(dev, true);
2721 		if (ret)
2722 			ret = error;
2723 		if (!ret)
2724 			dev->wakeup_prepared = true;
2725 	} else {
2726 		platform_pci_set_wakeup(dev, false);
2727 		pci_pme_active(dev, false);
2728 		dev->wakeup_prepared = false;
2729 	}
2730 
2731 	return ret;
2732 }
2733 
2734 /**
2735  * pci_enable_wake - change wakeup settings for a PCI device
2736  * @pci_dev: Target device
2737  * @state: PCI state from which device will issue wakeup events
2738  * @enable: Whether or not to enable event generation
2739  *
2740  * If @enable is set, check device_may_wakeup() for the device before calling
2741  * __pci_enable_wake() for it.
2742  */
2743 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2744 {
2745 	if (enable && !device_may_wakeup(&pci_dev->dev))
2746 		return -EINVAL;
2747 
2748 	return __pci_enable_wake(pci_dev, state, enable);
2749 }
2750 EXPORT_SYMBOL(pci_enable_wake);
2751 
2752 /**
2753  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2754  * @dev: PCI device to prepare
2755  * @enable: True to enable wake-up event generation; false to disable
2756  *
2757  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2758  * and this function allows them to set that up cleanly - pci_enable_wake()
2759  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2760  * ordering constraints.
2761  *
2762  * This function only returns error code if the device is not allowed to wake
2763  * up the system from sleep or it is not capable of generating PME# from both
2764  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2765  */
2766 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2767 {
2768 	return pci_pme_capable(dev, PCI_D3cold) ?
2769 			pci_enable_wake(dev, PCI_D3cold, enable) :
2770 			pci_enable_wake(dev, PCI_D3hot, enable);
2771 }
2772 EXPORT_SYMBOL(pci_wake_from_d3);
2773 
2774 /**
2775  * pci_target_state - find an appropriate low power state for a given PCI dev
2776  * @dev: PCI device
2777  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2778  *
2779  * Use underlying platform code to find a supported low power state for @dev.
2780  * If the platform can't manage @dev, return the deepest state from which it
2781  * can generate wake events, based on any available PME info.
2782  */
2783 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2784 {
2785 	if (platform_pci_power_manageable(dev)) {
2786 		/*
2787 		 * Call the platform to find the target state for the device.
2788 		 */
2789 		pci_power_t state = platform_pci_choose_state(dev);
2790 
2791 		switch (state) {
2792 		case PCI_POWER_ERROR:
2793 		case PCI_UNKNOWN:
2794 			return PCI_D3hot;
2795 
2796 		case PCI_D1:
2797 		case PCI_D2:
2798 			if (pci_no_d1d2(dev))
2799 				return PCI_D3hot;
2800 		}
2801 
2802 		return state;
2803 	}
2804 
2805 	/*
2806 	 * If the device is in D3cold even though it's not power-manageable by
2807 	 * the platform, it may have been powered down by non-standard means.
2808 	 * Best to let it slumber.
2809 	 */
2810 	if (dev->current_state == PCI_D3cold)
2811 		return PCI_D3cold;
2812 	else if (!dev->pm_cap)
2813 		return PCI_D0;
2814 
2815 	if (wakeup && dev->pme_support) {
2816 		pci_power_t state = PCI_D3hot;
2817 
2818 		/*
2819 		 * Find the deepest state from which the device can generate
2820 		 * PME#.
2821 		 */
2822 		while (state && !(dev->pme_support & (1 << state)))
2823 			state--;
2824 
2825 		if (state)
2826 			return state;
2827 		else if (dev->pme_support & 1)
2828 			return PCI_D0;
2829 	}
2830 
2831 	return PCI_D3hot;
2832 }
2833 
2834 /**
2835  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2836  *			  into a sleep state
2837  * @dev: Device to handle.
2838  *
2839  * Choose the power state appropriate for the device depending on whether
2840  * it can wake up the system and/or is power manageable by the platform
2841  * (PCI_D3hot is the default) and put the device into that state.
2842  */
2843 int pci_prepare_to_sleep(struct pci_dev *dev)
2844 {
2845 	bool wakeup = device_may_wakeup(&dev->dev);
2846 	pci_power_t target_state = pci_target_state(dev, wakeup);
2847 	int error;
2848 
2849 	if (target_state == PCI_POWER_ERROR)
2850 		return -EIO;
2851 
2852 	pci_enable_wake(dev, target_state, wakeup);
2853 
2854 	error = pci_set_power_state(dev, target_state);
2855 
2856 	if (error)
2857 		pci_enable_wake(dev, target_state, false);
2858 
2859 	return error;
2860 }
2861 EXPORT_SYMBOL(pci_prepare_to_sleep);
2862 
2863 /**
2864  * pci_back_from_sleep - turn PCI device on during system-wide transition
2865  *			 into working state
2866  * @dev: Device to handle.
2867  *
2868  * Disable device's system wake-up capability and put it into D0.
2869  */
2870 int pci_back_from_sleep(struct pci_dev *dev)
2871 {
2872 	int ret = pci_set_power_state(dev, PCI_D0);
2873 
2874 	if (ret)
2875 		return ret;
2876 
2877 	pci_enable_wake(dev, PCI_D0, false);
2878 	return 0;
2879 }
2880 EXPORT_SYMBOL(pci_back_from_sleep);
2881 
2882 /**
2883  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2884  * @dev: PCI device being suspended.
2885  *
2886  * Prepare @dev to generate wake-up events at run time and put it into a low
2887  * power state.
2888  */
2889 int pci_finish_runtime_suspend(struct pci_dev *dev)
2890 {
2891 	pci_power_t target_state;
2892 	int error;
2893 
2894 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2895 	if (target_state == PCI_POWER_ERROR)
2896 		return -EIO;
2897 
2898 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2899 
2900 	error = pci_set_power_state(dev, target_state);
2901 
2902 	if (error)
2903 		pci_enable_wake(dev, target_state, false);
2904 
2905 	return error;
2906 }
2907 
2908 /**
2909  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2910  * @dev: Device to check.
2911  *
2912  * Return true if the device itself is capable of generating wake-up events
2913  * (through the platform or using the native PCIe PME) or if the device supports
2914  * PME and one of its upstream bridges can generate wake-up events.
2915  */
2916 bool pci_dev_run_wake(struct pci_dev *dev)
2917 {
2918 	struct pci_bus *bus = dev->bus;
2919 
2920 	if (!dev->pme_support)
2921 		return false;
2922 
2923 	/* PME-capable in principle, but not from the target power state */
2924 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2925 		return false;
2926 
2927 	if (device_can_wakeup(&dev->dev))
2928 		return true;
2929 
2930 	while (bus->parent) {
2931 		struct pci_dev *bridge = bus->self;
2932 
2933 		if (device_can_wakeup(&bridge->dev))
2934 			return true;
2935 
2936 		bus = bus->parent;
2937 	}
2938 
2939 	/* We have reached the root bus. */
2940 	if (bus->bridge)
2941 		return device_can_wakeup(bus->bridge);
2942 
2943 	return false;
2944 }
2945 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2946 
2947 /**
2948  * pci_dev_need_resume - Check if it is necessary to resume the device.
2949  * @pci_dev: Device to check.
2950  *
2951  * Return 'true' if the device is not runtime-suspended or it has to be
2952  * reconfigured due to wakeup settings difference between system and runtime
2953  * suspend, or the current power state of it is not suitable for the upcoming
2954  * (system-wide) transition.
2955  */
2956 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2957 {
2958 	struct device *dev = &pci_dev->dev;
2959 	pci_power_t target_state;
2960 
2961 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2962 		return true;
2963 
2964 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2965 
2966 	/*
2967 	 * If the earlier platform check has not triggered, D3cold is just power
2968 	 * removal on top of D3hot, so no need to resume the device in that
2969 	 * case.
2970 	 */
2971 	return target_state != pci_dev->current_state &&
2972 		target_state != PCI_D3cold &&
2973 		pci_dev->current_state != PCI_D3hot;
2974 }
2975 
2976 /**
2977  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2978  * @pci_dev: Device to check.
2979  *
2980  * If the device is suspended and it is not configured for system wakeup,
2981  * disable PME for it to prevent it from waking up the system unnecessarily.
2982  *
2983  * Note that if the device's power state is D3cold and the platform check in
2984  * pci_dev_need_resume() has not triggered, the device's configuration need not
2985  * be changed.
2986  */
2987 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2988 {
2989 	struct device *dev = &pci_dev->dev;
2990 
2991 	spin_lock_irq(&dev->power.lock);
2992 
2993 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2994 	    pci_dev->current_state < PCI_D3cold)
2995 		__pci_pme_active(pci_dev, false);
2996 
2997 	spin_unlock_irq(&dev->power.lock);
2998 }
2999 
3000 /**
3001  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
3002  * @pci_dev: Device to handle.
3003  *
3004  * If the device is runtime suspended and wakeup-capable, enable PME for it as
3005  * it might have been disabled during the prepare phase of system suspend if
3006  * the device was not configured for system wakeup.
3007  */
3008 void pci_dev_complete_resume(struct pci_dev *pci_dev)
3009 {
3010 	struct device *dev = &pci_dev->dev;
3011 
3012 	if (!pci_dev_run_wake(pci_dev))
3013 		return;
3014 
3015 	spin_lock_irq(&dev->power.lock);
3016 
3017 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
3018 		__pci_pme_active(pci_dev, true);
3019 
3020 	spin_unlock_irq(&dev->power.lock);
3021 }
3022 
3023 /**
3024  * pci_choose_state - Choose the power state of a PCI device.
3025  * @dev: Target PCI device.
3026  * @state: Target state for the whole system.
3027  *
3028  * Returns PCI power state suitable for @dev and @state.
3029  */
3030 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
3031 {
3032 	if (state.event == PM_EVENT_ON)
3033 		return PCI_D0;
3034 
3035 	return pci_target_state(dev, false);
3036 }
3037 EXPORT_SYMBOL(pci_choose_state);
3038 
3039 void pci_config_pm_runtime_get(struct pci_dev *pdev)
3040 {
3041 	struct device *dev = &pdev->dev;
3042 	struct device *parent = dev->parent;
3043 
3044 	if (parent)
3045 		pm_runtime_get_sync(parent);
3046 	pm_runtime_get_noresume(dev);
3047 	/*
3048 	 * pdev->current_state is set to PCI_D3cold during suspending,
3049 	 * so wait until suspending completes
3050 	 */
3051 	pm_runtime_barrier(dev);
3052 	/*
3053 	 * Only need to resume devices in D3cold, because config
3054 	 * registers are still accessible for devices suspended but
3055 	 * not in D3cold.
3056 	 */
3057 	if (pdev->current_state == PCI_D3cold)
3058 		pm_runtime_resume(dev);
3059 }
3060 
3061 void pci_config_pm_runtime_put(struct pci_dev *pdev)
3062 {
3063 	struct device *dev = &pdev->dev;
3064 	struct device *parent = dev->parent;
3065 
3066 	pm_runtime_put(dev);
3067 	if (parent)
3068 		pm_runtime_put_sync(parent);
3069 }
3070 
3071 static const struct dmi_system_id bridge_d3_blacklist[] = {
3072 #ifdef CONFIG_X86
3073 	{
3074 		/*
3075 		 * Gigabyte X299 root port is not marked as hotplug capable
3076 		 * which allows Linux to power manage it.  However, this
3077 		 * confuses the BIOS SMI handler so don't power manage root
3078 		 * ports on that system.
3079 		 */
3080 		.ident = "X299 DESIGNARE EX-CF",
3081 		.matches = {
3082 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3083 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3084 		},
3085 	},
3086 	{
3087 		/*
3088 		 * Downstream device is not accessible after putting a root port
3089 		 * into D3cold and back into D0 on Elo Continental Z2 board
3090 		 */
3091 		.ident = "Elo Continental Z2",
3092 		.matches = {
3093 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3094 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3095 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3096 		},
3097 	},
3098 #endif
3099 	{ }
3100 };
3101 
3102 /**
3103  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3104  * @bridge: Bridge to check
3105  *
3106  * This function checks if it is possible to move the bridge to D3.
3107  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3108  */
3109 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3110 {
3111 	if (!pci_is_pcie(bridge))
3112 		return false;
3113 
3114 	switch (pci_pcie_type(bridge)) {
3115 	case PCI_EXP_TYPE_ROOT_PORT:
3116 	case PCI_EXP_TYPE_UPSTREAM:
3117 	case PCI_EXP_TYPE_DOWNSTREAM:
3118 		if (pci_bridge_d3_disable)
3119 			return false;
3120 
3121 		/*
3122 		 * Hotplug ports handled by firmware in System Management Mode
3123 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3124 		 */
3125 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3126 			return false;
3127 
3128 		if (pci_bridge_d3_force)
3129 			return true;
3130 
3131 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3132 		if (bridge->is_thunderbolt)
3133 			return true;
3134 
3135 		/* Platform might know better if the bridge supports D3 */
3136 		if (platform_pci_bridge_d3(bridge))
3137 			return true;
3138 
3139 		/*
3140 		 * Hotplug ports handled natively by the OS were not validated
3141 		 * by vendors for runtime D3 at least until 2018 because there
3142 		 * was no OS support.
3143 		 */
3144 		if (bridge->is_hotplug_bridge)
3145 			return false;
3146 
3147 		if (dmi_check_system(bridge_d3_blacklist))
3148 			return false;
3149 
3150 		/*
3151 		 * It should be safe to put PCIe ports from 2015 or newer
3152 		 * to D3.
3153 		 */
3154 		if (dmi_get_bios_year() >= 2015)
3155 			return true;
3156 		break;
3157 	}
3158 
3159 	return false;
3160 }
3161 
3162 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3163 {
3164 	bool *d3cold_ok = data;
3165 
3166 	if (/* The device needs to be allowed to go D3cold ... */
3167 	    dev->no_d3cold || !dev->d3cold_allowed ||
3168 
3169 	    /* ... and if it is wakeup capable to do so from D3cold. */
3170 	    (device_may_wakeup(&dev->dev) &&
3171 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3172 
3173 	    /* If it is a bridge it must be allowed to go to D3. */
3174 	    !pci_power_manageable(dev))
3175 
3176 		*d3cold_ok = false;
3177 
3178 	return !*d3cold_ok;
3179 }
3180 
3181 /*
3182  * pci_bridge_d3_update - Update bridge D3 capabilities
3183  * @dev: PCI device which is changed
3184  *
3185  * Update upstream bridge PM capabilities accordingly depending on if the
3186  * device PM configuration was changed or the device is being removed.  The
3187  * change is also propagated upstream.
3188  */
3189 void pci_bridge_d3_update(struct pci_dev *dev)
3190 {
3191 	bool remove = !device_is_registered(&dev->dev);
3192 	struct pci_dev *bridge;
3193 	bool d3cold_ok = true;
3194 
3195 	bridge = pci_upstream_bridge(dev);
3196 	if (!bridge || !pci_bridge_d3_possible(bridge))
3197 		return;
3198 
3199 	/*
3200 	 * If D3 is currently allowed for the bridge, removing one of its
3201 	 * children won't change that.
3202 	 */
3203 	if (remove && bridge->bridge_d3)
3204 		return;
3205 
3206 	/*
3207 	 * If D3 is currently allowed for the bridge and a child is added or
3208 	 * changed, disallowance of D3 can only be caused by that child, so
3209 	 * we only need to check that single device, not any of its siblings.
3210 	 *
3211 	 * If D3 is currently not allowed for the bridge, checking the device
3212 	 * first may allow us to skip checking its siblings.
3213 	 */
3214 	if (!remove)
3215 		pci_dev_check_d3cold(dev, &d3cold_ok);
3216 
3217 	/*
3218 	 * If D3 is currently not allowed for the bridge, this may be caused
3219 	 * either by the device being changed/removed or any of its siblings,
3220 	 * so we need to go through all children to find out if one of them
3221 	 * continues to block D3.
3222 	 */
3223 	if (d3cold_ok && !bridge->bridge_d3)
3224 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3225 			     &d3cold_ok);
3226 
3227 	if (bridge->bridge_d3 != d3cold_ok) {
3228 		bridge->bridge_d3 = d3cold_ok;
3229 		/* Propagate change to upstream bridges */
3230 		pci_bridge_d3_update(bridge);
3231 	}
3232 }
3233 
3234 /**
3235  * pci_d3cold_enable - Enable D3cold for device
3236  * @dev: PCI device to handle
3237  *
3238  * This function can be used in drivers to enable D3cold from the device
3239  * they handle.  It also updates upstream PCI bridge PM capabilities
3240  * accordingly.
3241  */
3242 void pci_d3cold_enable(struct pci_dev *dev)
3243 {
3244 	if (dev->no_d3cold) {
3245 		dev->no_d3cold = false;
3246 		pci_bridge_d3_update(dev);
3247 	}
3248 }
3249 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3250 
3251 /**
3252  * pci_d3cold_disable - Disable D3cold for device
3253  * @dev: PCI device to handle
3254  *
3255  * This function can be used in drivers to disable D3cold from the device
3256  * they handle.  It also updates upstream PCI bridge PM capabilities
3257  * accordingly.
3258  */
3259 void pci_d3cold_disable(struct pci_dev *dev)
3260 {
3261 	if (!dev->no_d3cold) {
3262 		dev->no_d3cold = true;
3263 		pci_bridge_d3_update(dev);
3264 	}
3265 }
3266 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3267 
3268 /**
3269  * pci_pm_init - Initialize PM functions of given PCI device
3270  * @dev: PCI device to handle.
3271  */
3272 void pci_pm_init(struct pci_dev *dev)
3273 {
3274 	int pm;
3275 	u16 status;
3276 	u16 pmc;
3277 
3278 	pm_runtime_forbid(&dev->dev);
3279 	pm_runtime_set_active(&dev->dev);
3280 	pm_runtime_enable(&dev->dev);
3281 	device_enable_async_suspend(&dev->dev);
3282 	dev->wakeup_prepared = false;
3283 
3284 	dev->pm_cap = 0;
3285 	dev->pme_support = 0;
3286 
3287 	/* find PCI PM capability in list */
3288 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3289 	if (!pm)
3290 		return;
3291 	/* Check device's ability to generate PME# */
3292 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3293 
3294 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3295 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3296 			pmc & PCI_PM_CAP_VER_MASK);
3297 		return;
3298 	}
3299 
3300 	dev->pm_cap = pm;
3301 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3302 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3303 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3304 	dev->d3cold_allowed = true;
3305 
3306 	dev->d1_support = false;
3307 	dev->d2_support = false;
3308 	if (!pci_no_d1d2(dev)) {
3309 		if (pmc & PCI_PM_CAP_D1)
3310 			dev->d1_support = true;
3311 		if (pmc & PCI_PM_CAP_D2)
3312 			dev->d2_support = true;
3313 
3314 		if (dev->d1_support || dev->d2_support)
3315 			pci_info(dev, "supports%s%s\n",
3316 				   dev->d1_support ? " D1" : "",
3317 				   dev->d2_support ? " D2" : "");
3318 	}
3319 
3320 	pmc &= PCI_PM_CAP_PME_MASK;
3321 	if (pmc) {
3322 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3323 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3324 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3325 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3326 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3327 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3328 		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3329 		dev->pme_poll = true;
3330 		/*
3331 		 * Make device's PM flags reflect the wake-up capability, but
3332 		 * let the user space enable it to wake up the system as needed.
3333 		 */
3334 		device_set_wakeup_capable(&dev->dev, true);
3335 		/* Disable the PME# generation functionality */
3336 		pci_pme_active(dev, false);
3337 	}
3338 
3339 	pci_read_config_word(dev, PCI_STATUS, &status);
3340 	if (status & PCI_STATUS_IMM_READY)
3341 		dev->imm_ready = 1;
3342 }
3343 
3344 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3345 {
3346 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3347 
3348 	switch (prop) {
3349 	case PCI_EA_P_MEM:
3350 	case PCI_EA_P_VF_MEM:
3351 		flags |= IORESOURCE_MEM;
3352 		break;
3353 	case PCI_EA_P_MEM_PREFETCH:
3354 	case PCI_EA_P_VF_MEM_PREFETCH:
3355 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3356 		break;
3357 	case PCI_EA_P_IO:
3358 		flags |= IORESOURCE_IO;
3359 		break;
3360 	default:
3361 		return 0;
3362 	}
3363 
3364 	return flags;
3365 }
3366 
3367 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3368 					    u8 prop)
3369 {
3370 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3371 		return &dev->resource[bei];
3372 #ifdef CONFIG_PCI_IOV
3373 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3374 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3375 		return &dev->resource[PCI_IOV_RESOURCES +
3376 				      bei - PCI_EA_BEI_VF_BAR0];
3377 #endif
3378 	else if (bei == PCI_EA_BEI_ROM)
3379 		return &dev->resource[PCI_ROM_RESOURCE];
3380 	else
3381 		return NULL;
3382 }
3383 
3384 /* Read an Enhanced Allocation (EA) entry */
3385 static int pci_ea_read(struct pci_dev *dev, int offset)
3386 {
3387 	struct resource *res;
3388 	const char *res_name;
3389 	int ent_size, ent_offset = offset;
3390 	resource_size_t start, end;
3391 	unsigned long flags;
3392 	u32 dw0, bei, base, max_offset;
3393 	u8 prop;
3394 	bool support_64 = (sizeof(resource_size_t) >= 8);
3395 
3396 	pci_read_config_dword(dev, ent_offset, &dw0);
3397 	ent_offset += 4;
3398 
3399 	/* Entry size field indicates DWORDs after 1st */
3400 	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3401 
3402 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3403 		goto out;
3404 
3405 	bei = FIELD_GET(PCI_EA_BEI, dw0);
3406 	prop = FIELD_GET(PCI_EA_PP, dw0);
3407 
3408 	/*
3409 	 * If the Property is in the reserved range, try the Secondary
3410 	 * Property instead.
3411 	 */
3412 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3413 		prop = FIELD_GET(PCI_EA_SP, dw0);
3414 	if (prop > PCI_EA_P_BRIDGE_IO)
3415 		goto out;
3416 
3417 	res = pci_ea_get_resource(dev, bei, prop);
3418 	res_name = pci_resource_name(dev, bei);
3419 	if (!res) {
3420 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3421 		goto out;
3422 	}
3423 
3424 	flags = pci_ea_flags(dev, prop);
3425 	if (!flags) {
3426 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3427 		goto out;
3428 	}
3429 
3430 	/* Read Base */
3431 	pci_read_config_dword(dev, ent_offset, &base);
3432 	start = (base & PCI_EA_FIELD_MASK);
3433 	ent_offset += 4;
3434 
3435 	/* Read MaxOffset */
3436 	pci_read_config_dword(dev, ent_offset, &max_offset);
3437 	ent_offset += 4;
3438 
3439 	/* Read Base MSBs (if 64-bit entry) */
3440 	if (base & PCI_EA_IS_64) {
3441 		u32 base_upper;
3442 
3443 		pci_read_config_dword(dev, ent_offset, &base_upper);
3444 		ent_offset += 4;
3445 
3446 		flags |= IORESOURCE_MEM_64;
3447 
3448 		/* entry starts above 32-bit boundary, can't use */
3449 		if (!support_64 && base_upper)
3450 			goto out;
3451 
3452 		if (support_64)
3453 			start |= ((u64)base_upper << 32);
3454 	}
3455 
3456 	end = start + (max_offset | 0x03);
3457 
3458 	/* Read MaxOffset MSBs (if 64-bit entry) */
3459 	if (max_offset & PCI_EA_IS_64) {
3460 		u32 max_offset_upper;
3461 
3462 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3463 		ent_offset += 4;
3464 
3465 		flags |= IORESOURCE_MEM_64;
3466 
3467 		/* entry too big, can't use */
3468 		if (!support_64 && max_offset_upper)
3469 			goto out;
3470 
3471 		if (support_64)
3472 			end += ((u64)max_offset_upper << 32);
3473 	}
3474 
3475 	if (end < start) {
3476 		pci_err(dev, "EA Entry crosses address boundary\n");
3477 		goto out;
3478 	}
3479 
3480 	if (ent_size != ent_offset - offset) {
3481 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3482 			ent_size, ent_offset - offset);
3483 		goto out;
3484 	}
3485 
3486 	res->name = pci_name(dev);
3487 	res->start = start;
3488 	res->end = end;
3489 	res->flags = flags;
3490 
3491 	if (bei <= PCI_EA_BEI_BAR5)
3492 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3493 			 res_name, res, prop);
3494 	else if (bei == PCI_EA_BEI_ROM)
3495 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3496 			 res_name, res, prop);
3497 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3498 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3499 			 res_name, res, prop);
3500 	else
3501 		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3502 			   bei, res, prop);
3503 
3504 out:
3505 	return offset + ent_size;
3506 }
3507 
3508 /* Enhanced Allocation Initialization */
3509 void pci_ea_init(struct pci_dev *dev)
3510 {
3511 	int ea;
3512 	u8 num_ent;
3513 	int offset;
3514 	int i;
3515 
3516 	/* find PCI EA capability in list */
3517 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3518 	if (!ea)
3519 		return;
3520 
3521 	/* determine the number of entries */
3522 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3523 					&num_ent);
3524 	num_ent &= PCI_EA_NUM_ENT_MASK;
3525 
3526 	offset = ea + PCI_EA_FIRST_ENT;
3527 
3528 	/* Skip DWORD 2 for type 1 functions */
3529 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3530 		offset += 4;
3531 
3532 	/* parse each EA entry */
3533 	for (i = 0; i < num_ent; ++i)
3534 		offset = pci_ea_read(dev, offset);
3535 }
3536 
3537 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3538 	struct pci_cap_saved_state *new_cap)
3539 {
3540 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3541 }
3542 
3543 /**
3544  * _pci_add_cap_save_buffer - allocate buffer for saving given
3545  *			      capability registers
3546  * @dev: the PCI device
3547  * @cap: the capability to allocate the buffer for
3548  * @extended: Standard or Extended capability ID
3549  * @size: requested size of the buffer
3550  */
3551 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3552 				    bool extended, unsigned int size)
3553 {
3554 	int pos;
3555 	struct pci_cap_saved_state *save_state;
3556 
3557 	if (extended)
3558 		pos = pci_find_ext_capability(dev, cap);
3559 	else
3560 		pos = pci_find_capability(dev, cap);
3561 
3562 	if (!pos)
3563 		return 0;
3564 
3565 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3566 	if (!save_state)
3567 		return -ENOMEM;
3568 
3569 	save_state->cap.cap_nr = cap;
3570 	save_state->cap.cap_extended = extended;
3571 	save_state->cap.size = size;
3572 	pci_add_saved_cap(dev, save_state);
3573 
3574 	return 0;
3575 }
3576 
3577 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3578 {
3579 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3580 }
3581 
3582 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3583 {
3584 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3585 }
3586 
3587 /**
3588  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3589  * @dev: the PCI device
3590  */
3591 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3592 {
3593 	int error;
3594 
3595 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3596 					PCI_EXP_SAVE_REGS * sizeof(u16));
3597 	if (error)
3598 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3599 
3600 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3601 	if (error)
3602 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3603 
3604 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3605 					    2 * sizeof(u16));
3606 	if (error)
3607 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3608 
3609 	pci_allocate_vc_save_buffers(dev);
3610 }
3611 
3612 void pci_free_cap_save_buffers(struct pci_dev *dev)
3613 {
3614 	struct pci_cap_saved_state *tmp;
3615 	struct hlist_node *n;
3616 
3617 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3618 		kfree(tmp);
3619 }
3620 
3621 /**
3622  * pci_configure_ari - enable or disable ARI forwarding
3623  * @dev: the PCI device
3624  *
3625  * If @dev and its upstream bridge both support ARI, enable ARI in the
3626  * bridge.  Otherwise, disable ARI in the bridge.
3627  */
3628 void pci_configure_ari(struct pci_dev *dev)
3629 {
3630 	u32 cap;
3631 	struct pci_dev *bridge;
3632 
3633 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3634 		return;
3635 
3636 	bridge = dev->bus->self;
3637 	if (!bridge)
3638 		return;
3639 
3640 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3641 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3642 		return;
3643 
3644 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3645 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3646 					 PCI_EXP_DEVCTL2_ARI);
3647 		bridge->ari_enabled = 1;
3648 	} else {
3649 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3650 					   PCI_EXP_DEVCTL2_ARI);
3651 		bridge->ari_enabled = 0;
3652 	}
3653 }
3654 
3655 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3656 {
3657 	int pos;
3658 	u16 cap, ctrl;
3659 
3660 	pos = pdev->acs_cap;
3661 	if (!pos)
3662 		return false;
3663 
3664 	/*
3665 	 * Except for egress control, capabilities are either required
3666 	 * or only required if controllable.  Features missing from the
3667 	 * capability field can therefore be assumed as hard-wired enabled.
3668 	 */
3669 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3670 	acs_flags &= (cap | PCI_ACS_EC);
3671 
3672 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3673 	return (ctrl & acs_flags) == acs_flags;
3674 }
3675 
3676 /**
3677  * pci_acs_enabled - test ACS against required flags for a given device
3678  * @pdev: device to test
3679  * @acs_flags: required PCI ACS flags
3680  *
3681  * Return true if the device supports the provided flags.  Automatically
3682  * filters out flags that are not implemented on multifunction devices.
3683  *
3684  * Note that this interface checks the effective ACS capabilities of the
3685  * device rather than the actual capabilities.  For instance, most single
3686  * function endpoints are not required to support ACS because they have no
3687  * opportunity for peer-to-peer access.  We therefore return 'true'
3688  * regardless of whether the device exposes an ACS capability.  This makes
3689  * it much easier for callers of this function to ignore the actual type
3690  * or topology of the device when testing ACS support.
3691  */
3692 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3693 {
3694 	int ret;
3695 
3696 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3697 	if (ret >= 0)
3698 		return ret > 0;
3699 
3700 	/*
3701 	 * Conventional PCI and PCI-X devices never support ACS, either
3702 	 * effectively or actually.  The shared bus topology implies that
3703 	 * any device on the bus can receive or snoop DMA.
3704 	 */
3705 	if (!pci_is_pcie(pdev))
3706 		return false;
3707 
3708 	switch (pci_pcie_type(pdev)) {
3709 	/*
3710 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3711 	 * but since their primary interface is PCI/X, we conservatively
3712 	 * handle them as we would a non-PCIe device.
3713 	 */
3714 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3715 	/*
3716 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3717 	 * applicable... must never implement an ACS Extended Capability...".
3718 	 * This seems arbitrary, but we take a conservative interpretation
3719 	 * of this statement.
3720 	 */
3721 	case PCI_EXP_TYPE_PCI_BRIDGE:
3722 	case PCI_EXP_TYPE_RC_EC:
3723 		return false;
3724 	/*
3725 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3726 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3727 	 * regardless of whether they are single- or multi-function devices.
3728 	 */
3729 	case PCI_EXP_TYPE_DOWNSTREAM:
3730 	case PCI_EXP_TYPE_ROOT_PORT:
3731 		return pci_acs_flags_enabled(pdev, acs_flags);
3732 	/*
3733 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3734 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3735 	 * capabilities, but only when they are part of a multifunction
3736 	 * device.  The footnote for section 6.12 indicates the specific
3737 	 * PCIe types included here.
3738 	 */
3739 	case PCI_EXP_TYPE_ENDPOINT:
3740 	case PCI_EXP_TYPE_UPSTREAM:
3741 	case PCI_EXP_TYPE_LEG_END:
3742 	case PCI_EXP_TYPE_RC_END:
3743 		if (!pdev->multifunction)
3744 			break;
3745 
3746 		return pci_acs_flags_enabled(pdev, acs_flags);
3747 	}
3748 
3749 	/*
3750 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3751 	 * to single function devices with the exception of downstream ports.
3752 	 */
3753 	return true;
3754 }
3755 
3756 /**
3757  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3758  * @start: starting downstream device
3759  * @end: ending upstream device or NULL to search to the root bus
3760  * @acs_flags: required flags
3761  *
3762  * Walk up a device tree from start to end testing PCI ACS support.  If
3763  * any step along the way does not support the required flags, return false.
3764  */
3765 bool pci_acs_path_enabled(struct pci_dev *start,
3766 			  struct pci_dev *end, u16 acs_flags)
3767 {
3768 	struct pci_dev *pdev, *parent = start;
3769 
3770 	do {
3771 		pdev = parent;
3772 
3773 		if (!pci_acs_enabled(pdev, acs_flags))
3774 			return false;
3775 
3776 		if (pci_is_root_bus(pdev->bus))
3777 			return (end == NULL);
3778 
3779 		parent = pdev->bus->self;
3780 	} while (pdev != end);
3781 
3782 	return true;
3783 }
3784 
3785 /**
3786  * pci_acs_init - Initialize ACS if hardware supports it
3787  * @dev: the PCI device
3788  */
3789 void pci_acs_init(struct pci_dev *dev)
3790 {
3791 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3792 
3793 	/*
3794 	 * Attempt to enable ACS regardless of capability because some Root
3795 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3796 	 * the standard ACS capability but still support ACS via those
3797 	 * quirks.
3798 	 */
3799 	pci_enable_acs(dev);
3800 }
3801 
3802 /**
3803  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3804  * @pdev: PCI device
3805  * @bar: BAR to find
3806  *
3807  * Helper to find the position of the ctrl register for a BAR.
3808  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3809  * Returns -ENOENT if no ctrl register for the BAR could be found.
3810  */
3811 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3812 {
3813 	unsigned int pos, nbars, i;
3814 	u32 ctrl;
3815 
3816 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3817 	if (!pos)
3818 		return -ENOTSUPP;
3819 
3820 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3821 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3822 
3823 	for (i = 0; i < nbars; i++, pos += 8) {
3824 		int bar_idx;
3825 
3826 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3827 		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3828 		if (bar_idx == bar)
3829 			return pos;
3830 	}
3831 
3832 	return -ENOENT;
3833 }
3834 
3835 /**
3836  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3837  * @pdev: PCI device
3838  * @bar: BAR to query
3839  *
3840  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3841  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3842  */
3843 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3844 {
3845 	int pos;
3846 	u32 cap;
3847 
3848 	pos = pci_rebar_find_pos(pdev, bar);
3849 	if (pos < 0)
3850 		return 0;
3851 
3852 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3853 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3854 
3855 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3856 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3857 	    bar == 0 && cap == 0x700)
3858 		return 0x3f00;
3859 
3860 	return cap;
3861 }
3862 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3863 
3864 /**
3865  * pci_rebar_get_current_size - get the current size of a BAR
3866  * @pdev: PCI device
3867  * @bar: BAR to set size to
3868  *
3869  * Read the size of a BAR from the resizable BAR config.
3870  * Returns size if found or negative error code.
3871  */
3872 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3873 {
3874 	int pos;
3875 	u32 ctrl;
3876 
3877 	pos = pci_rebar_find_pos(pdev, bar);
3878 	if (pos < 0)
3879 		return pos;
3880 
3881 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3882 	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3883 }
3884 
3885 /**
3886  * pci_rebar_set_size - set a new size for a BAR
3887  * @pdev: PCI device
3888  * @bar: BAR to set size to
3889  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3890  *
3891  * Set the new size of a BAR as defined in the spec.
3892  * Returns zero if resizing was successful, error code otherwise.
3893  */
3894 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3895 {
3896 	int pos;
3897 	u32 ctrl;
3898 
3899 	pos = pci_rebar_find_pos(pdev, bar);
3900 	if (pos < 0)
3901 		return pos;
3902 
3903 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3904 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3905 	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3906 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3907 	return 0;
3908 }
3909 
3910 /**
3911  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3912  * @dev: the PCI device
3913  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3914  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3915  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3916  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3917  *
3918  * Return 0 if all upstream bridges support AtomicOp routing, egress
3919  * blocking is disabled on all upstream ports, and the root port supports
3920  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3921  * AtomicOp completion), or negative otherwise.
3922  */
3923 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3924 {
3925 	struct pci_bus *bus = dev->bus;
3926 	struct pci_dev *bridge;
3927 	u32 cap, ctl2;
3928 
3929 	/*
3930 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3931 	 * in Device Control 2 is reserved in VFs and the PF value applies
3932 	 * to all associated VFs.
3933 	 */
3934 	if (dev->is_virtfn)
3935 		return -EINVAL;
3936 
3937 	if (!pci_is_pcie(dev))
3938 		return -EINVAL;
3939 
3940 	/*
3941 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3942 	 * AtomicOp requesters.  For now, we only support endpoints as
3943 	 * requesters and root ports as completers.  No endpoints as
3944 	 * completers, and no peer-to-peer.
3945 	 */
3946 
3947 	switch (pci_pcie_type(dev)) {
3948 	case PCI_EXP_TYPE_ENDPOINT:
3949 	case PCI_EXP_TYPE_LEG_END:
3950 	case PCI_EXP_TYPE_RC_END:
3951 		break;
3952 	default:
3953 		return -EINVAL;
3954 	}
3955 
3956 	while (bus->parent) {
3957 		bridge = bus->self;
3958 
3959 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3960 
3961 		switch (pci_pcie_type(bridge)) {
3962 		/* Ensure switch ports support AtomicOp routing */
3963 		case PCI_EXP_TYPE_UPSTREAM:
3964 		case PCI_EXP_TYPE_DOWNSTREAM:
3965 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3966 				return -EINVAL;
3967 			break;
3968 
3969 		/* Ensure root port supports all the sizes we care about */
3970 		case PCI_EXP_TYPE_ROOT_PORT:
3971 			if ((cap & cap_mask) != cap_mask)
3972 				return -EINVAL;
3973 			break;
3974 		}
3975 
3976 		/* Ensure upstream ports don't block AtomicOps on egress */
3977 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3978 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3979 						   &ctl2);
3980 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3981 				return -EINVAL;
3982 		}
3983 
3984 		bus = bus->parent;
3985 	}
3986 
3987 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3988 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3989 	return 0;
3990 }
3991 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3992 
3993 /**
3994  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3995  * @dev: the PCI device
3996  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3997  *
3998  * Perform INTx swizzling for a device behind one level of bridge.  This is
3999  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
4000  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
4001  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
4002  * the PCI Express Base Specification, Revision 2.1)
4003  */
4004 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
4005 {
4006 	int slot;
4007 
4008 	if (pci_ari_enabled(dev->bus))
4009 		slot = 0;
4010 	else
4011 		slot = PCI_SLOT(dev->devfn);
4012 
4013 	return (((pin - 1) + slot) % 4) + 1;
4014 }
4015 
4016 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
4017 {
4018 	u8 pin;
4019 
4020 	pin = dev->pin;
4021 	if (!pin)
4022 		return -1;
4023 
4024 	while (!pci_is_root_bus(dev->bus)) {
4025 		pin = pci_swizzle_interrupt_pin(dev, pin);
4026 		dev = dev->bus->self;
4027 	}
4028 	*bridge = dev;
4029 	return pin;
4030 }
4031 
4032 /**
4033  * pci_common_swizzle - swizzle INTx all the way to root bridge
4034  * @dev: the PCI device
4035  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
4036  *
4037  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
4038  * bridges all the way up to a PCI root bus.
4039  */
4040 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
4041 {
4042 	u8 pin = *pinp;
4043 
4044 	while (!pci_is_root_bus(dev->bus)) {
4045 		pin = pci_swizzle_interrupt_pin(dev, pin);
4046 		dev = dev->bus->self;
4047 	}
4048 	*pinp = pin;
4049 	return PCI_SLOT(dev->devfn);
4050 }
4051 EXPORT_SYMBOL_GPL(pci_common_swizzle);
4052 
4053 /**
4054  * pci_release_region - Release a PCI bar
4055  * @pdev: PCI device whose resources were previously reserved by
4056  *	  pci_request_region()
4057  * @bar: BAR to release
4058  *
4059  * Releases the PCI I/O and memory resources previously reserved by a
4060  * successful call to pci_request_region().  Call this function only
4061  * after all use of the PCI regions has ceased.
4062  */
4063 void pci_release_region(struct pci_dev *pdev, int bar)
4064 {
4065 	struct pci_devres *dr;
4066 
4067 	if (pci_resource_len(pdev, bar) == 0)
4068 		return;
4069 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
4070 		release_region(pci_resource_start(pdev, bar),
4071 				pci_resource_len(pdev, bar));
4072 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
4073 		release_mem_region(pci_resource_start(pdev, bar),
4074 				pci_resource_len(pdev, bar));
4075 
4076 	dr = find_pci_dr(pdev);
4077 	if (dr)
4078 		dr->region_mask &= ~(1 << bar);
4079 }
4080 EXPORT_SYMBOL(pci_release_region);
4081 
4082 /**
4083  * __pci_request_region - Reserved PCI I/O and memory resource
4084  * @pdev: PCI device whose resources are to be reserved
4085  * @bar: BAR to be reserved
4086  * @res_name: Name to be associated with resource.
4087  * @exclusive: whether the region access is exclusive or not
4088  *
4089  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4090  * being reserved by owner @res_name.  Do not access any
4091  * address inside the PCI regions unless this call returns
4092  * successfully.
4093  *
4094  * If @exclusive is set, then the region is marked so that userspace
4095  * is explicitly not allowed to map the resource via /dev/mem or
4096  * sysfs MMIO access.
4097  *
4098  * Returns 0 on success, or %EBUSY on error.  A warning
4099  * message is also printed on failure.
4100  */
4101 static int __pci_request_region(struct pci_dev *pdev, int bar,
4102 				const char *res_name, int exclusive)
4103 {
4104 	struct pci_devres *dr;
4105 
4106 	if (pci_resource_len(pdev, bar) == 0)
4107 		return 0;
4108 
4109 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4110 		if (!request_region(pci_resource_start(pdev, bar),
4111 			    pci_resource_len(pdev, bar), res_name))
4112 			goto err_out;
4113 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4114 		if (!__request_mem_region(pci_resource_start(pdev, bar),
4115 					pci_resource_len(pdev, bar), res_name,
4116 					exclusive))
4117 			goto err_out;
4118 	}
4119 
4120 	dr = find_pci_dr(pdev);
4121 	if (dr)
4122 		dr->region_mask |= 1 << bar;
4123 
4124 	return 0;
4125 
4126 err_out:
4127 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4128 		 &pdev->resource[bar]);
4129 	return -EBUSY;
4130 }
4131 
4132 /**
4133  * pci_request_region - Reserve PCI I/O and memory resource
4134  * @pdev: PCI device whose resources are to be reserved
4135  * @bar: BAR to be reserved
4136  * @res_name: Name to be associated with resource
4137  *
4138  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4139  * being reserved by owner @res_name.  Do not access any
4140  * address inside the PCI regions unless this call returns
4141  * successfully.
4142  *
4143  * Returns 0 on success, or %EBUSY on error.  A warning
4144  * message is also printed on failure.
4145  */
4146 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4147 {
4148 	return __pci_request_region(pdev, bar, res_name, 0);
4149 }
4150 EXPORT_SYMBOL(pci_request_region);
4151 
4152 /**
4153  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4154  * @pdev: PCI device whose resources were previously reserved
4155  * @bars: Bitmask of BARs to be released
4156  *
4157  * Release selected PCI I/O and memory resources previously reserved.
4158  * Call this function only after all use of the PCI regions has ceased.
4159  */
4160 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4161 {
4162 	int i;
4163 
4164 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4165 		if (bars & (1 << i))
4166 			pci_release_region(pdev, i);
4167 }
4168 EXPORT_SYMBOL(pci_release_selected_regions);
4169 
4170 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4171 					  const char *res_name, int excl)
4172 {
4173 	int i;
4174 
4175 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4176 		if (bars & (1 << i))
4177 			if (__pci_request_region(pdev, i, res_name, excl))
4178 				goto err_out;
4179 	return 0;
4180 
4181 err_out:
4182 	while (--i >= 0)
4183 		if (bars & (1 << i))
4184 			pci_release_region(pdev, i);
4185 
4186 	return -EBUSY;
4187 }
4188 
4189 
4190 /**
4191  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4192  * @pdev: PCI device whose resources are to be reserved
4193  * @bars: Bitmask of BARs to be requested
4194  * @res_name: Name to be associated with resource
4195  */
4196 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4197 				 const char *res_name)
4198 {
4199 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4200 }
4201 EXPORT_SYMBOL(pci_request_selected_regions);
4202 
4203 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4204 					   const char *res_name)
4205 {
4206 	return __pci_request_selected_regions(pdev, bars, res_name,
4207 			IORESOURCE_EXCLUSIVE);
4208 }
4209 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4210 
4211 /**
4212  * pci_release_regions - Release reserved PCI I/O and memory resources
4213  * @pdev: PCI device whose resources were previously reserved by
4214  *	  pci_request_regions()
4215  *
4216  * Releases all PCI I/O and memory resources previously reserved by a
4217  * successful call to pci_request_regions().  Call this function only
4218  * after all use of the PCI regions has ceased.
4219  */
4220 
4221 void pci_release_regions(struct pci_dev *pdev)
4222 {
4223 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4224 }
4225 EXPORT_SYMBOL(pci_release_regions);
4226 
4227 /**
4228  * pci_request_regions - Reserve PCI I/O and memory resources
4229  * @pdev: PCI device whose resources are to be reserved
4230  * @res_name: Name to be associated with resource.
4231  *
4232  * Mark all PCI regions associated with PCI device @pdev as
4233  * being reserved by owner @res_name.  Do not access any
4234  * address inside the PCI regions unless this call returns
4235  * successfully.
4236  *
4237  * Returns 0 on success, or %EBUSY on error.  A warning
4238  * message is also printed on failure.
4239  */
4240 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4241 {
4242 	return pci_request_selected_regions(pdev,
4243 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4244 }
4245 EXPORT_SYMBOL(pci_request_regions);
4246 
4247 /**
4248  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4249  * @pdev: PCI device whose resources are to be reserved
4250  * @res_name: Name to be associated with resource.
4251  *
4252  * Mark all PCI regions associated with PCI device @pdev as being reserved
4253  * by owner @res_name.  Do not access any address inside the PCI regions
4254  * unless this call returns successfully.
4255  *
4256  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4257  * and the sysfs MMIO access will not be allowed.
4258  *
4259  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4260  * printed on failure.
4261  */
4262 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4263 {
4264 	return pci_request_selected_regions_exclusive(pdev,
4265 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4266 }
4267 EXPORT_SYMBOL(pci_request_regions_exclusive);
4268 
4269 /*
4270  * Record the PCI IO range (expressed as CPU physical address + size).
4271  * Return a negative value if an error has occurred, zero otherwise
4272  */
4273 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4274 			resource_size_t	size)
4275 {
4276 	int ret = 0;
4277 #ifdef PCI_IOBASE
4278 	struct logic_pio_hwaddr *range;
4279 
4280 	if (!size || addr + size < addr)
4281 		return -EINVAL;
4282 
4283 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4284 	if (!range)
4285 		return -ENOMEM;
4286 
4287 	range->fwnode = fwnode;
4288 	range->size = size;
4289 	range->hw_start = addr;
4290 	range->flags = LOGIC_PIO_CPU_MMIO;
4291 
4292 	ret = logic_pio_register_range(range);
4293 	if (ret)
4294 		kfree(range);
4295 
4296 	/* Ignore duplicates due to deferred probing */
4297 	if (ret == -EEXIST)
4298 		ret = 0;
4299 #endif
4300 
4301 	return ret;
4302 }
4303 
4304 phys_addr_t pci_pio_to_address(unsigned long pio)
4305 {
4306 #ifdef PCI_IOBASE
4307 	if (pio < MMIO_UPPER_LIMIT)
4308 		return logic_pio_to_hwaddr(pio);
4309 #endif
4310 
4311 	return (phys_addr_t) OF_BAD_ADDR;
4312 }
4313 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4314 
4315 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4316 {
4317 #ifdef PCI_IOBASE
4318 	return logic_pio_trans_cpuaddr(address);
4319 #else
4320 	if (address > IO_SPACE_LIMIT)
4321 		return (unsigned long)-1;
4322 
4323 	return (unsigned long) address;
4324 #endif
4325 }
4326 
4327 /**
4328  * pci_remap_iospace - Remap the memory mapped I/O space
4329  * @res: Resource describing the I/O space
4330  * @phys_addr: physical address of range to be mapped
4331  *
4332  * Remap the memory mapped I/O space described by the @res and the CPU
4333  * physical address @phys_addr into virtual address space.  Only
4334  * architectures that have memory mapped IO functions defined (and the
4335  * PCI_IOBASE value defined) should call this function.
4336  */
4337 #ifndef pci_remap_iospace
4338 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4339 {
4340 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4341 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4342 
4343 	if (!(res->flags & IORESOURCE_IO))
4344 		return -EINVAL;
4345 
4346 	if (res->end > IO_SPACE_LIMIT)
4347 		return -EINVAL;
4348 
4349 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4350 				  pgprot_device(PAGE_KERNEL));
4351 #else
4352 	/*
4353 	 * This architecture does not have memory mapped I/O space,
4354 	 * so this function should never be called
4355 	 */
4356 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4357 	return -ENODEV;
4358 #endif
4359 }
4360 EXPORT_SYMBOL(pci_remap_iospace);
4361 #endif
4362 
4363 /**
4364  * pci_unmap_iospace - Unmap the memory mapped I/O space
4365  * @res: resource to be unmapped
4366  *
4367  * Unmap the CPU virtual address @res from virtual address space.  Only
4368  * architectures that have memory mapped IO functions defined (and the
4369  * PCI_IOBASE value defined) should call this function.
4370  */
4371 void pci_unmap_iospace(struct resource *res)
4372 {
4373 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4374 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4375 
4376 	vunmap_range(vaddr, vaddr + resource_size(res));
4377 #endif
4378 }
4379 EXPORT_SYMBOL(pci_unmap_iospace);
4380 
4381 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4382 {
4383 	struct resource **res = ptr;
4384 
4385 	pci_unmap_iospace(*res);
4386 }
4387 
4388 /**
4389  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4390  * @dev: Generic device to remap IO address for
4391  * @res: Resource describing the I/O space
4392  * @phys_addr: physical address of range to be mapped
4393  *
4394  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4395  * detach.
4396  */
4397 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4398 			   phys_addr_t phys_addr)
4399 {
4400 	const struct resource **ptr;
4401 	int error;
4402 
4403 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4404 	if (!ptr)
4405 		return -ENOMEM;
4406 
4407 	error = pci_remap_iospace(res, phys_addr);
4408 	if (error) {
4409 		devres_free(ptr);
4410 	} else	{
4411 		*ptr = res;
4412 		devres_add(dev, ptr);
4413 	}
4414 
4415 	return error;
4416 }
4417 EXPORT_SYMBOL(devm_pci_remap_iospace);
4418 
4419 /**
4420  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4421  * @dev: Generic device to remap IO address for
4422  * @offset: Resource address to map
4423  * @size: Size of map
4424  *
4425  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4426  * detach.
4427  */
4428 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4429 				      resource_size_t offset,
4430 				      resource_size_t size)
4431 {
4432 	void __iomem **ptr, *addr;
4433 
4434 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4435 	if (!ptr)
4436 		return NULL;
4437 
4438 	addr = pci_remap_cfgspace(offset, size);
4439 	if (addr) {
4440 		*ptr = addr;
4441 		devres_add(dev, ptr);
4442 	} else
4443 		devres_free(ptr);
4444 
4445 	return addr;
4446 }
4447 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4448 
4449 /**
4450  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4451  * @dev: generic device to handle the resource for
4452  * @res: configuration space resource to be handled
4453  *
4454  * Checks that a resource is a valid memory region, requests the memory
4455  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4456  * proper PCI configuration space memory attributes are guaranteed.
4457  *
4458  * All operations are managed and will be undone on driver detach.
4459  *
4460  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4461  * on failure. Usage example::
4462  *
4463  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4464  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4465  *	if (IS_ERR(base))
4466  *		return PTR_ERR(base);
4467  */
4468 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4469 					  struct resource *res)
4470 {
4471 	resource_size_t size;
4472 	const char *name;
4473 	void __iomem *dest_ptr;
4474 
4475 	BUG_ON(!dev);
4476 
4477 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4478 		dev_err(dev, "invalid resource\n");
4479 		return IOMEM_ERR_PTR(-EINVAL);
4480 	}
4481 
4482 	size = resource_size(res);
4483 
4484 	if (res->name)
4485 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4486 				      res->name);
4487 	else
4488 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4489 	if (!name)
4490 		return IOMEM_ERR_PTR(-ENOMEM);
4491 
4492 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4493 		dev_err(dev, "can't request region for resource %pR\n", res);
4494 		return IOMEM_ERR_PTR(-EBUSY);
4495 	}
4496 
4497 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4498 	if (!dest_ptr) {
4499 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4500 		devm_release_mem_region(dev, res->start, size);
4501 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4502 	}
4503 
4504 	return dest_ptr;
4505 }
4506 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4507 
4508 static void __pci_set_master(struct pci_dev *dev, bool enable)
4509 {
4510 	u16 old_cmd, cmd;
4511 
4512 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4513 	if (enable)
4514 		cmd = old_cmd | PCI_COMMAND_MASTER;
4515 	else
4516 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4517 	if (cmd != old_cmd) {
4518 		pci_dbg(dev, "%s bus mastering\n",
4519 			enable ? "enabling" : "disabling");
4520 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4521 	}
4522 	dev->is_busmaster = enable;
4523 }
4524 
4525 /**
4526  * pcibios_setup - process "pci=" kernel boot arguments
4527  * @str: string used to pass in "pci=" kernel boot arguments
4528  *
4529  * Process kernel boot arguments.  This is the default implementation.
4530  * Architecture specific implementations can override this as necessary.
4531  */
4532 char * __weak __init pcibios_setup(char *str)
4533 {
4534 	return str;
4535 }
4536 
4537 /**
4538  * pcibios_set_master - enable PCI bus-mastering for device dev
4539  * @dev: the PCI device to enable
4540  *
4541  * Enables PCI bus-mastering for the device.  This is the default
4542  * implementation.  Architecture specific implementations can override
4543  * this if necessary.
4544  */
4545 void __weak pcibios_set_master(struct pci_dev *dev)
4546 {
4547 	u8 lat;
4548 
4549 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4550 	if (pci_is_pcie(dev))
4551 		return;
4552 
4553 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4554 	if (lat < 16)
4555 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4556 	else if (lat > pcibios_max_latency)
4557 		lat = pcibios_max_latency;
4558 	else
4559 		return;
4560 
4561 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4562 }
4563 
4564 /**
4565  * pci_set_master - enables bus-mastering for device dev
4566  * @dev: the PCI device to enable
4567  *
4568  * Enables bus-mastering on the device and calls pcibios_set_master()
4569  * to do the needed arch specific settings.
4570  */
4571 void pci_set_master(struct pci_dev *dev)
4572 {
4573 	__pci_set_master(dev, true);
4574 	pcibios_set_master(dev);
4575 }
4576 EXPORT_SYMBOL(pci_set_master);
4577 
4578 /**
4579  * pci_clear_master - disables bus-mastering for device dev
4580  * @dev: the PCI device to disable
4581  */
4582 void pci_clear_master(struct pci_dev *dev)
4583 {
4584 	__pci_set_master(dev, false);
4585 }
4586 EXPORT_SYMBOL(pci_clear_master);
4587 
4588 /**
4589  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4590  * @dev: the PCI device for which MWI is to be enabled
4591  *
4592  * Helper function for pci_set_mwi.
4593  * Originally copied from drivers/net/acenic.c.
4594  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4595  *
4596  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4597  */
4598 int pci_set_cacheline_size(struct pci_dev *dev)
4599 {
4600 	u8 cacheline_size;
4601 
4602 	if (!pci_cache_line_size)
4603 		return -EINVAL;
4604 
4605 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4606 	   equal to or multiple of the right value. */
4607 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4608 	if (cacheline_size >= pci_cache_line_size &&
4609 	    (cacheline_size % pci_cache_line_size) == 0)
4610 		return 0;
4611 
4612 	/* Write the correct value. */
4613 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4614 	/* Read it back. */
4615 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4616 	if (cacheline_size == pci_cache_line_size)
4617 		return 0;
4618 
4619 	pci_dbg(dev, "cache line size of %d is not supported\n",
4620 		   pci_cache_line_size << 2);
4621 
4622 	return -EINVAL;
4623 }
4624 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4625 
4626 /**
4627  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4628  * @dev: the PCI device for which MWI is enabled
4629  *
4630  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4631  *
4632  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4633  */
4634 int pci_set_mwi(struct pci_dev *dev)
4635 {
4636 #ifdef PCI_DISABLE_MWI
4637 	return 0;
4638 #else
4639 	int rc;
4640 	u16 cmd;
4641 
4642 	rc = pci_set_cacheline_size(dev);
4643 	if (rc)
4644 		return rc;
4645 
4646 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4647 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4648 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4649 		cmd |= PCI_COMMAND_INVALIDATE;
4650 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4651 	}
4652 	return 0;
4653 #endif
4654 }
4655 EXPORT_SYMBOL(pci_set_mwi);
4656 
4657 /**
4658  * pcim_set_mwi - a device-managed pci_set_mwi()
4659  * @dev: the PCI device for which MWI is enabled
4660  *
4661  * Managed pci_set_mwi().
4662  *
4663  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4664  */
4665 int pcim_set_mwi(struct pci_dev *dev)
4666 {
4667 	struct pci_devres *dr;
4668 
4669 	dr = find_pci_dr(dev);
4670 	if (!dr)
4671 		return -ENOMEM;
4672 
4673 	dr->mwi = 1;
4674 	return pci_set_mwi(dev);
4675 }
4676 EXPORT_SYMBOL(pcim_set_mwi);
4677 
4678 /**
4679  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4680  * @dev: the PCI device for which MWI is enabled
4681  *
4682  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4683  * Callers are not required to check the return value.
4684  *
4685  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4686  */
4687 int pci_try_set_mwi(struct pci_dev *dev)
4688 {
4689 #ifdef PCI_DISABLE_MWI
4690 	return 0;
4691 #else
4692 	return pci_set_mwi(dev);
4693 #endif
4694 }
4695 EXPORT_SYMBOL(pci_try_set_mwi);
4696 
4697 /**
4698  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4699  * @dev: the PCI device to disable
4700  *
4701  * Disables PCI Memory-Write-Invalidate transaction on the device
4702  */
4703 void pci_clear_mwi(struct pci_dev *dev)
4704 {
4705 #ifndef PCI_DISABLE_MWI
4706 	u16 cmd;
4707 
4708 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4709 	if (cmd & PCI_COMMAND_INVALIDATE) {
4710 		cmd &= ~PCI_COMMAND_INVALIDATE;
4711 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4712 	}
4713 #endif
4714 }
4715 EXPORT_SYMBOL(pci_clear_mwi);
4716 
4717 /**
4718  * pci_disable_parity - disable parity checking for device
4719  * @dev: the PCI device to operate on
4720  *
4721  * Disable parity checking for device @dev
4722  */
4723 void pci_disable_parity(struct pci_dev *dev)
4724 {
4725 	u16 cmd;
4726 
4727 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4728 	if (cmd & PCI_COMMAND_PARITY) {
4729 		cmd &= ~PCI_COMMAND_PARITY;
4730 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4731 	}
4732 }
4733 
4734 /**
4735  * pci_intx - enables/disables PCI INTx for device dev
4736  * @pdev: the PCI device to operate on
4737  * @enable: boolean: whether to enable or disable PCI INTx
4738  *
4739  * Enables/disables PCI INTx for device @pdev
4740  */
4741 void pci_intx(struct pci_dev *pdev, int enable)
4742 {
4743 	u16 pci_command, new;
4744 
4745 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4746 
4747 	if (enable)
4748 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4749 	else
4750 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4751 
4752 	if (new != pci_command) {
4753 		struct pci_devres *dr;
4754 
4755 		pci_write_config_word(pdev, PCI_COMMAND, new);
4756 
4757 		dr = find_pci_dr(pdev);
4758 		if (dr && !dr->restore_intx) {
4759 			dr->restore_intx = 1;
4760 			dr->orig_intx = !enable;
4761 		}
4762 	}
4763 }
4764 EXPORT_SYMBOL_GPL(pci_intx);
4765 
4766 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4767 {
4768 	struct pci_bus *bus = dev->bus;
4769 	bool mask_updated = true;
4770 	u32 cmd_status_dword;
4771 	u16 origcmd, newcmd;
4772 	unsigned long flags;
4773 	bool irq_pending;
4774 
4775 	/*
4776 	 * We do a single dword read to retrieve both command and status.
4777 	 * Document assumptions that make this possible.
4778 	 */
4779 	BUILD_BUG_ON(PCI_COMMAND % 4);
4780 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4781 
4782 	raw_spin_lock_irqsave(&pci_lock, flags);
4783 
4784 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4785 
4786 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4787 
4788 	/*
4789 	 * Check interrupt status register to see whether our device
4790 	 * triggered the interrupt (when masking) or the next IRQ is
4791 	 * already pending (when unmasking).
4792 	 */
4793 	if (mask != irq_pending) {
4794 		mask_updated = false;
4795 		goto done;
4796 	}
4797 
4798 	origcmd = cmd_status_dword;
4799 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4800 	if (mask)
4801 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4802 	if (newcmd != origcmd)
4803 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4804 
4805 done:
4806 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4807 
4808 	return mask_updated;
4809 }
4810 
4811 /**
4812  * pci_check_and_mask_intx - mask INTx on pending interrupt
4813  * @dev: the PCI device to operate on
4814  *
4815  * Check if the device dev has its INTx line asserted, mask it and return
4816  * true in that case. False is returned if no interrupt was pending.
4817  */
4818 bool pci_check_and_mask_intx(struct pci_dev *dev)
4819 {
4820 	return pci_check_and_set_intx_mask(dev, true);
4821 }
4822 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4823 
4824 /**
4825  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4826  * @dev: the PCI device to operate on
4827  *
4828  * Check if the device dev has its INTx line asserted, unmask it if not and
4829  * return true. False is returned and the mask remains active if there was
4830  * still an interrupt pending.
4831  */
4832 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4833 {
4834 	return pci_check_and_set_intx_mask(dev, false);
4835 }
4836 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4837 
4838 /**
4839  * pci_wait_for_pending_transaction - wait for pending transaction
4840  * @dev: the PCI device to operate on
4841  *
4842  * Return 0 if transaction is pending 1 otherwise.
4843  */
4844 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4845 {
4846 	if (!pci_is_pcie(dev))
4847 		return 1;
4848 
4849 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4850 				    PCI_EXP_DEVSTA_TRPND);
4851 }
4852 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4853 
4854 /**
4855  * pcie_flr - initiate a PCIe function level reset
4856  * @dev: device to reset
4857  *
4858  * Initiate a function level reset unconditionally on @dev without
4859  * checking any flags and DEVCAP
4860  */
4861 int pcie_flr(struct pci_dev *dev)
4862 {
4863 	if (!pci_wait_for_pending_transaction(dev))
4864 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4865 
4866 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4867 
4868 	if (dev->imm_ready)
4869 		return 0;
4870 
4871 	/*
4872 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4873 	 * 100ms, but may silently discard requests while the FLR is in
4874 	 * progress.  Wait 100ms before trying to access the device.
4875 	 */
4876 	msleep(100);
4877 
4878 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4879 }
4880 EXPORT_SYMBOL_GPL(pcie_flr);
4881 
4882 /**
4883  * pcie_reset_flr - initiate a PCIe function level reset
4884  * @dev: device to reset
4885  * @probe: if true, return 0 if device can be reset this way
4886  *
4887  * Initiate a function level reset on @dev.
4888  */
4889 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4890 {
4891 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4892 		return -ENOTTY;
4893 
4894 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4895 		return -ENOTTY;
4896 
4897 	if (probe)
4898 		return 0;
4899 
4900 	return pcie_flr(dev);
4901 }
4902 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4903 
4904 static int pci_af_flr(struct pci_dev *dev, bool probe)
4905 {
4906 	int pos;
4907 	u8 cap;
4908 
4909 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4910 	if (!pos)
4911 		return -ENOTTY;
4912 
4913 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4914 		return -ENOTTY;
4915 
4916 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4917 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4918 		return -ENOTTY;
4919 
4920 	if (probe)
4921 		return 0;
4922 
4923 	/*
4924 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4925 	 * is used, so we use the control offset rather than status and shift
4926 	 * the test bit to match.
4927 	 */
4928 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4929 				 PCI_AF_STATUS_TP << 8))
4930 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4931 
4932 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4933 
4934 	if (dev->imm_ready)
4935 		return 0;
4936 
4937 	/*
4938 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4939 	 * updated 27 July 2006; a device must complete an FLR within
4940 	 * 100ms, but may silently discard requests while the FLR is in
4941 	 * progress.  Wait 100ms before trying to access the device.
4942 	 */
4943 	msleep(100);
4944 
4945 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4946 }
4947 
4948 /**
4949  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4950  * @dev: Device to reset.
4951  * @probe: if true, return 0 if the device can be reset this way.
4952  *
4953  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4954  * unset, it will be reinitialized internally when going from PCI_D3hot to
4955  * PCI_D0.  If that's the case and the device is not in a low-power state
4956  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4957  *
4958  * NOTE: This causes the caller to sleep for twice the device power transition
4959  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4960  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4961  * Moreover, only devices in D0 can be reset by this function.
4962  */
4963 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4964 {
4965 	u16 csr;
4966 
4967 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4968 		return -ENOTTY;
4969 
4970 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4971 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4972 		return -ENOTTY;
4973 
4974 	if (probe)
4975 		return 0;
4976 
4977 	if (dev->current_state != PCI_D0)
4978 		return -EINVAL;
4979 
4980 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4981 	csr |= PCI_D3hot;
4982 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4983 	pci_dev_d3_sleep(dev);
4984 
4985 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4986 	csr |= PCI_D0;
4987 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4988 	pci_dev_d3_sleep(dev);
4989 
4990 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4991 }
4992 
4993 /**
4994  * pcie_wait_for_link_status - Wait for link status change
4995  * @pdev: Device whose link to wait for.
4996  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4997  * @active: Waiting for active or inactive?
4998  *
4999  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
5000  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5001  */
5002 static int pcie_wait_for_link_status(struct pci_dev *pdev,
5003 				     bool use_lt, bool active)
5004 {
5005 	u16 lnksta_mask, lnksta_match;
5006 	unsigned long end_jiffies;
5007 	u16 lnksta;
5008 
5009 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
5010 	lnksta_match = active ? lnksta_mask : 0;
5011 
5012 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
5013 	do {
5014 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5015 		if ((lnksta & lnksta_mask) == lnksta_match)
5016 			return 0;
5017 		msleep(1);
5018 	} while (time_before(jiffies, end_jiffies));
5019 
5020 	return -ETIMEDOUT;
5021 }
5022 
5023 /**
5024  * pcie_retrain_link - Request a link retrain and wait for it to complete
5025  * @pdev: Device whose link to retrain.
5026  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
5027  *
5028  * Retrain completion status is retrieved from the Link Status Register
5029  * according to @use_lt.  It is not verified whether the use of the DLLLA
5030  * bit is valid.
5031  *
5032  * Return 0 if successful, or -ETIMEDOUT if training has not completed
5033  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5034  */
5035 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
5036 {
5037 	int rc;
5038 
5039 	/*
5040 	 * Ensure the updated LNKCTL parameters are used during link
5041 	 * training by checking that there is no ongoing link training to
5042 	 * avoid LTSSM race as recommended in Implementation Note at the
5043 	 * end of PCIe r6.0.1 sec 7.5.3.7.
5044 	 */
5045 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5046 	if (rc)
5047 		return rc;
5048 
5049 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5050 	if (pdev->clear_retrain_link) {
5051 		/*
5052 		 * Due to an erratum in some devices the Retrain Link bit
5053 		 * needs to be cleared again manually to allow the link
5054 		 * training to succeed.
5055 		 */
5056 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5057 	}
5058 
5059 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5060 }
5061 
5062 /**
5063  * pcie_wait_for_link_delay - Wait until link is active or inactive
5064  * @pdev: Bridge device
5065  * @active: waiting for active or inactive?
5066  * @delay: Delay to wait after link has become active (in ms)
5067  *
5068  * Use this to wait till link becomes active or inactive.
5069  */
5070 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
5071 				     int delay)
5072 {
5073 	int rc;
5074 
5075 	/*
5076 	 * Some controllers might not implement link active reporting. In this
5077 	 * case, we wait for 1000 ms + any delay requested by the caller.
5078 	 */
5079 	if (!pdev->link_active_reporting) {
5080 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
5081 		return true;
5082 	}
5083 
5084 	/*
5085 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5086 	 * after which we should expect an link active if the reset was
5087 	 * successful. If so, software must wait a minimum 100ms before sending
5088 	 * configuration requests to devices downstream this port.
5089 	 *
5090 	 * If the link fails to activate, either the device was physically
5091 	 * removed or the link is permanently failed.
5092 	 */
5093 	if (active)
5094 		msleep(20);
5095 	rc = pcie_wait_for_link_status(pdev, false, active);
5096 	if (active) {
5097 		if (rc)
5098 			rc = pcie_failed_link_retrain(pdev);
5099 		if (rc)
5100 			return false;
5101 
5102 		msleep(delay);
5103 		return true;
5104 	}
5105 
5106 	if (rc)
5107 		return false;
5108 
5109 	return true;
5110 }
5111 
5112 /**
5113  * pcie_wait_for_link - Wait until link is active or inactive
5114  * @pdev: Bridge device
5115  * @active: waiting for active or inactive?
5116  *
5117  * Use this to wait till link becomes active or inactive.
5118  */
5119 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5120 {
5121 	return pcie_wait_for_link_delay(pdev, active, 100);
5122 }
5123 
5124 /*
5125  * Find maximum D3cold delay required by all the devices on the bus.  The
5126  * spec says 100 ms, but firmware can lower it and we allow drivers to
5127  * increase it as well.
5128  *
5129  * Called with @pci_bus_sem locked for reading.
5130  */
5131 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5132 {
5133 	const struct pci_dev *pdev;
5134 	int min_delay = 100;
5135 	int max_delay = 0;
5136 
5137 	list_for_each_entry(pdev, &bus->devices, bus_list) {
5138 		if (pdev->d3cold_delay < min_delay)
5139 			min_delay = pdev->d3cold_delay;
5140 		if (pdev->d3cold_delay > max_delay)
5141 			max_delay = pdev->d3cold_delay;
5142 	}
5143 
5144 	return max(min_delay, max_delay);
5145 }
5146 
5147 /**
5148  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5149  * @dev: PCI bridge
5150  * @reset_type: reset type in human-readable form
5151  *
5152  * Handle necessary delays before access to the devices on the secondary
5153  * side of the bridge are permitted after D3cold to D0 transition
5154  * or Conventional Reset.
5155  *
5156  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5157  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5158  * 4.3.2.
5159  *
5160  * Return 0 on success or -ENOTTY if the first device on the secondary bus
5161  * failed to become accessible.
5162  */
5163 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5164 {
5165 	struct pci_dev *child;
5166 	int delay;
5167 
5168 	if (pci_dev_is_disconnected(dev))
5169 		return 0;
5170 
5171 	if (!pci_is_bridge(dev))
5172 		return 0;
5173 
5174 	down_read(&pci_bus_sem);
5175 
5176 	/*
5177 	 * We only deal with devices that are present currently on the bus.
5178 	 * For any hot-added devices the access delay is handled in pciehp
5179 	 * board_added(). In case of ACPI hotplug the firmware is expected
5180 	 * to configure the devices before OS is notified.
5181 	 */
5182 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5183 		up_read(&pci_bus_sem);
5184 		return 0;
5185 	}
5186 
5187 	/* Take d3cold_delay requirements into account */
5188 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5189 	if (!delay) {
5190 		up_read(&pci_bus_sem);
5191 		return 0;
5192 	}
5193 
5194 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5195 				 bus_list);
5196 	up_read(&pci_bus_sem);
5197 
5198 	/*
5199 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5200 	 * accessing the device after reset (that is 1000 ms + 100 ms).
5201 	 */
5202 	if (!pci_is_pcie(dev)) {
5203 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5204 		msleep(1000 + delay);
5205 		return 0;
5206 	}
5207 
5208 	/*
5209 	 * For PCIe downstream and root ports that do not support speeds
5210 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5211 	 * speeds (gen3) we need to wait first for the data link layer to
5212 	 * become active.
5213 	 *
5214 	 * However, 100 ms is the minimum and the PCIe spec says the
5215 	 * software must allow at least 1s before it can determine that the
5216 	 * device that did not respond is a broken device. Also device can
5217 	 * take longer than that to respond if it indicates so through Request
5218 	 * Retry Status completions.
5219 	 *
5220 	 * Therefore we wait for 100 ms and check for the device presence
5221 	 * until the timeout expires.
5222 	 */
5223 	if (!pcie_downstream_port(dev))
5224 		return 0;
5225 
5226 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5227 		u16 status;
5228 
5229 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5230 		msleep(delay);
5231 
5232 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5233 			return 0;
5234 
5235 		/*
5236 		 * If the port supports active link reporting we now check
5237 		 * whether the link is active and if not bail out early with
5238 		 * the assumption that the device is not present anymore.
5239 		 */
5240 		if (!dev->link_active_reporting)
5241 			return -ENOTTY;
5242 
5243 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5244 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5245 			return -ENOTTY;
5246 
5247 		return pci_dev_wait(child, reset_type,
5248 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5249 	}
5250 
5251 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5252 		delay);
5253 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5254 		/* Did not train, no need to wait any further */
5255 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5256 		return -ENOTTY;
5257 	}
5258 
5259 	return pci_dev_wait(child, reset_type,
5260 			    PCIE_RESET_READY_POLL_MS - delay);
5261 }
5262 
5263 void pci_reset_secondary_bus(struct pci_dev *dev)
5264 {
5265 	u16 ctrl;
5266 
5267 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5268 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5269 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5270 
5271 	/*
5272 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5273 	 * this to 2ms to ensure that we meet the minimum requirement.
5274 	 */
5275 	msleep(2);
5276 
5277 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5278 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5279 }
5280 
5281 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5282 {
5283 	pci_reset_secondary_bus(dev);
5284 }
5285 
5286 /**
5287  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5288  * @dev: Bridge device
5289  *
5290  * Use the bridge control register to assert reset on the secondary bus.
5291  * Devices on the secondary bus are left in power-on state.
5292  */
5293 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5294 {
5295 	pcibios_reset_secondary_bus(dev);
5296 
5297 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5298 }
5299 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5300 
5301 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5302 {
5303 	struct pci_dev *pdev;
5304 
5305 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5306 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5307 		return -ENOTTY;
5308 
5309 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5310 		if (pdev != dev)
5311 			return -ENOTTY;
5312 
5313 	if (probe)
5314 		return 0;
5315 
5316 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5317 }
5318 
5319 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5320 {
5321 	int rc = -ENOTTY;
5322 
5323 	if (!hotplug || !try_module_get(hotplug->owner))
5324 		return rc;
5325 
5326 	if (hotplug->ops->reset_slot)
5327 		rc = hotplug->ops->reset_slot(hotplug, probe);
5328 
5329 	module_put(hotplug->owner);
5330 
5331 	return rc;
5332 }
5333 
5334 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5335 {
5336 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5337 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5338 		return -ENOTTY;
5339 
5340 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5341 }
5342 
5343 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5344 {
5345 	int rc;
5346 
5347 	rc = pci_dev_reset_slot_function(dev, probe);
5348 	if (rc != -ENOTTY)
5349 		return rc;
5350 	return pci_parent_bus_reset(dev, probe);
5351 }
5352 
5353 void pci_dev_lock(struct pci_dev *dev)
5354 {
5355 	/* block PM suspend, driver probe, etc. */
5356 	device_lock(&dev->dev);
5357 	pci_cfg_access_lock(dev);
5358 }
5359 EXPORT_SYMBOL_GPL(pci_dev_lock);
5360 
5361 /* Return 1 on successful lock, 0 on contention */
5362 int pci_dev_trylock(struct pci_dev *dev)
5363 {
5364 	if (device_trylock(&dev->dev)) {
5365 		if (pci_cfg_access_trylock(dev))
5366 			return 1;
5367 		device_unlock(&dev->dev);
5368 	}
5369 
5370 	return 0;
5371 }
5372 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5373 
5374 void pci_dev_unlock(struct pci_dev *dev)
5375 {
5376 	pci_cfg_access_unlock(dev);
5377 	device_unlock(&dev->dev);
5378 }
5379 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5380 
5381 static void pci_dev_save_and_disable(struct pci_dev *dev)
5382 {
5383 	const struct pci_error_handlers *err_handler =
5384 			dev->driver ? dev->driver->err_handler : NULL;
5385 
5386 	/*
5387 	 * dev->driver->err_handler->reset_prepare() is protected against
5388 	 * races with ->remove() by the device lock, which must be held by
5389 	 * the caller.
5390 	 */
5391 	if (err_handler && err_handler->reset_prepare)
5392 		err_handler->reset_prepare(dev);
5393 
5394 	/*
5395 	 * Wake-up device prior to save.  PM registers default to D0 after
5396 	 * reset and a simple register restore doesn't reliably return
5397 	 * to a non-D0 state anyway.
5398 	 */
5399 	pci_set_power_state(dev, PCI_D0);
5400 
5401 	pci_save_state(dev);
5402 	/*
5403 	 * Disable the device by clearing the Command register, except for
5404 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5405 	 * BARs, but also prevents the device from being Bus Master, preventing
5406 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5407 	 * compliant devices, INTx-disable prevents legacy interrupts.
5408 	 */
5409 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5410 }
5411 
5412 static void pci_dev_restore(struct pci_dev *dev)
5413 {
5414 	const struct pci_error_handlers *err_handler =
5415 			dev->driver ? dev->driver->err_handler : NULL;
5416 
5417 	pci_restore_state(dev);
5418 
5419 	/*
5420 	 * dev->driver->err_handler->reset_done() is protected against
5421 	 * races with ->remove() by the device lock, which must be held by
5422 	 * the caller.
5423 	 */
5424 	if (err_handler && err_handler->reset_done)
5425 		err_handler->reset_done(dev);
5426 }
5427 
5428 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5429 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5430 	{ },
5431 	{ pci_dev_specific_reset, .name = "device_specific" },
5432 	{ pci_dev_acpi_reset, .name = "acpi" },
5433 	{ pcie_reset_flr, .name = "flr" },
5434 	{ pci_af_flr, .name = "af_flr" },
5435 	{ pci_pm_reset, .name = "pm" },
5436 	{ pci_reset_bus_function, .name = "bus" },
5437 };
5438 
5439 static ssize_t reset_method_show(struct device *dev,
5440 				 struct device_attribute *attr, char *buf)
5441 {
5442 	struct pci_dev *pdev = to_pci_dev(dev);
5443 	ssize_t len = 0;
5444 	int i, m;
5445 
5446 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5447 		m = pdev->reset_methods[i];
5448 		if (!m)
5449 			break;
5450 
5451 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5452 				     pci_reset_fn_methods[m].name);
5453 	}
5454 
5455 	if (len)
5456 		len += sysfs_emit_at(buf, len, "\n");
5457 
5458 	return len;
5459 }
5460 
5461 static int reset_method_lookup(const char *name)
5462 {
5463 	int m;
5464 
5465 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5466 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5467 			return m;
5468 	}
5469 
5470 	return 0;	/* not found */
5471 }
5472 
5473 static ssize_t reset_method_store(struct device *dev,
5474 				  struct device_attribute *attr,
5475 				  const char *buf, size_t count)
5476 {
5477 	struct pci_dev *pdev = to_pci_dev(dev);
5478 	char *options, *name;
5479 	int m, n;
5480 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5481 
5482 	if (sysfs_streq(buf, "")) {
5483 		pdev->reset_methods[0] = 0;
5484 		pci_warn(pdev, "All device reset methods disabled by user");
5485 		return count;
5486 	}
5487 
5488 	if (sysfs_streq(buf, "default")) {
5489 		pci_init_reset_methods(pdev);
5490 		return count;
5491 	}
5492 
5493 	options = kstrndup(buf, count, GFP_KERNEL);
5494 	if (!options)
5495 		return -ENOMEM;
5496 
5497 	n = 0;
5498 	while ((name = strsep(&options, " ")) != NULL) {
5499 		if (sysfs_streq(name, ""))
5500 			continue;
5501 
5502 		name = strim(name);
5503 
5504 		m = reset_method_lookup(name);
5505 		if (!m) {
5506 			pci_err(pdev, "Invalid reset method '%s'", name);
5507 			goto error;
5508 		}
5509 
5510 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5511 			pci_err(pdev, "Unsupported reset method '%s'", name);
5512 			goto error;
5513 		}
5514 
5515 		if (n == PCI_NUM_RESET_METHODS - 1) {
5516 			pci_err(pdev, "Too many reset methods\n");
5517 			goto error;
5518 		}
5519 
5520 		reset_methods[n++] = m;
5521 	}
5522 
5523 	reset_methods[n] = 0;
5524 
5525 	/* Warn if dev-specific supported but not highest priority */
5526 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5527 	    reset_methods[0] != 1)
5528 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5529 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5530 	kfree(options);
5531 	return count;
5532 
5533 error:
5534 	/* Leave previous methods unchanged */
5535 	kfree(options);
5536 	return -EINVAL;
5537 }
5538 static DEVICE_ATTR_RW(reset_method);
5539 
5540 static struct attribute *pci_dev_reset_method_attrs[] = {
5541 	&dev_attr_reset_method.attr,
5542 	NULL,
5543 };
5544 
5545 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5546 						    struct attribute *a, int n)
5547 {
5548 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5549 
5550 	if (!pci_reset_supported(pdev))
5551 		return 0;
5552 
5553 	return a->mode;
5554 }
5555 
5556 const struct attribute_group pci_dev_reset_method_attr_group = {
5557 	.attrs = pci_dev_reset_method_attrs,
5558 	.is_visible = pci_dev_reset_method_attr_is_visible,
5559 };
5560 
5561 /**
5562  * __pci_reset_function_locked - reset a PCI device function while holding
5563  * the @dev mutex lock.
5564  * @dev: PCI device to reset
5565  *
5566  * Some devices allow an individual function to be reset without affecting
5567  * other functions in the same device.  The PCI device must be responsive
5568  * to PCI config space in order to use this function.
5569  *
5570  * The device function is presumed to be unused and the caller is holding
5571  * the device mutex lock when this function is called.
5572  *
5573  * Resetting the device will make the contents of PCI configuration space
5574  * random, so any caller of this must be prepared to reinitialise the
5575  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5576  * etc.
5577  *
5578  * Returns 0 if the device function was successfully reset or negative if the
5579  * device doesn't support resetting a single function.
5580  */
5581 int __pci_reset_function_locked(struct pci_dev *dev)
5582 {
5583 	int i, m, rc;
5584 
5585 	might_sleep();
5586 
5587 	/*
5588 	 * A reset method returns -ENOTTY if it doesn't support this device and
5589 	 * we should try the next method.
5590 	 *
5591 	 * If it returns 0 (success), we're finished.  If it returns any other
5592 	 * error, we're also finished: this indicates that further reset
5593 	 * mechanisms might be broken on the device.
5594 	 */
5595 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5596 		m = dev->reset_methods[i];
5597 		if (!m)
5598 			return -ENOTTY;
5599 
5600 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5601 		if (!rc)
5602 			return 0;
5603 		if (rc != -ENOTTY)
5604 			return rc;
5605 	}
5606 
5607 	return -ENOTTY;
5608 }
5609 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5610 
5611 /**
5612  * pci_init_reset_methods - check whether device can be safely reset
5613  * and store supported reset mechanisms.
5614  * @dev: PCI device to check for reset mechanisms
5615  *
5616  * Some devices allow an individual function to be reset without affecting
5617  * other functions in the same device.  The PCI device must be in D0-D3hot
5618  * state.
5619  *
5620  * Stores reset mechanisms supported by device in reset_methods byte array
5621  * which is a member of struct pci_dev.
5622  */
5623 void pci_init_reset_methods(struct pci_dev *dev)
5624 {
5625 	int m, i, rc;
5626 
5627 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5628 
5629 	might_sleep();
5630 
5631 	i = 0;
5632 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5633 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5634 		if (!rc)
5635 			dev->reset_methods[i++] = m;
5636 		else if (rc != -ENOTTY)
5637 			break;
5638 	}
5639 
5640 	dev->reset_methods[i] = 0;
5641 }
5642 
5643 /**
5644  * pci_reset_function - quiesce and reset a PCI device function
5645  * @dev: PCI device to reset
5646  *
5647  * Some devices allow an individual function to be reset without affecting
5648  * other functions in the same device.  The PCI device must be responsive
5649  * to PCI config space in order to use this function.
5650  *
5651  * This function does not just reset the PCI portion of a device, but
5652  * clears all the state associated with the device.  This function differs
5653  * from __pci_reset_function_locked() in that it saves and restores device state
5654  * over the reset and takes the PCI device lock.
5655  *
5656  * Returns 0 if the device function was successfully reset or negative if the
5657  * device doesn't support resetting a single function.
5658  */
5659 int pci_reset_function(struct pci_dev *dev)
5660 {
5661 	int rc;
5662 
5663 	if (!pci_reset_supported(dev))
5664 		return -ENOTTY;
5665 
5666 	pci_dev_lock(dev);
5667 	pci_dev_save_and_disable(dev);
5668 
5669 	rc = __pci_reset_function_locked(dev);
5670 
5671 	pci_dev_restore(dev);
5672 	pci_dev_unlock(dev);
5673 
5674 	return rc;
5675 }
5676 EXPORT_SYMBOL_GPL(pci_reset_function);
5677 
5678 /**
5679  * pci_reset_function_locked - quiesce and reset a PCI device function
5680  * @dev: PCI device to reset
5681  *
5682  * Some devices allow an individual function to be reset without affecting
5683  * other functions in the same device.  The PCI device must be responsive
5684  * to PCI config space in order to use this function.
5685  *
5686  * This function does not just reset the PCI portion of a device, but
5687  * clears all the state associated with the device.  This function differs
5688  * from __pci_reset_function_locked() in that it saves and restores device state
5689  * over the reset.  It also differs from pci_reset_function() in that it
5690  * requires the PCI device lock to be held.
5691  *
5692  * Returns 0 if the device function was successfully reset or negative if the
5693  * device doesn't support resetting a single function.
5694  */
5695 int pci_reset_function_locked(struct pci_dev *dev)
5696 {
5697 	int rc;
5698 
5699 	if (!pci_reset_supported(dev))
5700 		return -ENOTTY;
5701 
5702 	pci_dev_save_and_disable(dev);
5703 
5704 	rc = __pci_reset_function_locked(dev);
5705 
5706 	pci_dev_restore(dev);
5707 
5708 	return rc;
5709 }
5710 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5711 
5712 /**
5713  * pci_try_reset_function - quiesce and reset a PCI device function
5714  * @dev: PCI device to reset
5715  *
5716  * Same as above, except return -EAGAIN if unable to lock device.
5717  */
5718 int pci_try_reset_function(struct pci_dev *dev)
5719 {
5720 	int rc;
5721 
5722 	if (!pci_reset_supported(dev))
5723 		return -ENOTTY;
5724 
5725 	if (!pci_dev_trylock(dev))
5726 		return -EAGAIN;
5727 
5728 	pci_dev_save_and_disable(dev);
5729 	rc = __pci_reset_function_locked(dev);
5730 	pci_dev_restore(dev);
5731 	pci_dev_unlock(dev);
5732 
5733 	return rc;
5734 }
5735 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5736 
5737 /* Do any devices on or below this bus prevent a bus reset? */
5738 static bool pci_bus_resettable(struct pci_bus *bus)
5739 {
5740 	struct pci_dev *dev;
5741 
5742 
5743 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5744 		return false;
5745 
5746 	list_for_each_entry(dev, &bus->devices, bus_list) {
5747 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5748 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5749 			return false;
5750 	}
5751 
5752 	return true;
5753 }
5754 
5755 /* Lock devices from the top of the tree down */
5756 static void pci_bus_lock(struct pci_bus *bus)
5757 {
5758 	struct pci_dev *dev;
5759 
5760 	list_for_each_entry(dev, &bus->devices, bus_list) {
5761 		pci_dev_lock(dev);
5762 		if (dev->subordinate)
5763 			pci_bus_lock(dev->subordinate);
5764 	}
5765 }
5766 
5767 /* Unlock devices from the bottom of the tree up */
5768 static void pci_bus_unlock(struct pci_bus *bus)
5769 {
5770 	struct pci_dev *dev;
5771 
5772 	list_for_each_entry(dev, &bus->devices, bus_list) {
5773 		if (dev->subordinate)
5774 			pci_bus_unlock(dev->subordinate);
5775 		pci_dev_unlock(dev);
5776 	}
5777 }
5778 
5779 /* Return 1 on successful lock, 0 on contention */
5780 static int pci_bus_trylock(struct pci_bus *bus)
5781 {
5782 	struct pci_dev *dev;
5783 
5784 	list_for_each_entry(dev, &bus->devices, bus_list) {
5785 		if (!pci_dev_trylock(dev))
5786 			goto unlock;
5787 		if (dev->subordinate) {
5788 			if (!pci_bus_trylock(dev->subordinate)) {
5789 				pci_dev_unlock(dev);
5790 				goto unlock;
5791 			}
5792 		}
5793 	}
5794 	return 1;
5795 
5796 unlock:
5797 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5798 		if (dev->subordinate)
5799 			pci_bus_unlock(dev->subordinate);
5800 		pci_dev_unlock(dev);
5801 	}
5802 	return 0;
5803 }
5804 
5805 /* Do any devices on or below this slot prevent a bus reset? */
5806 static bool pci_slot_resettable(struct pci_slot *slot)
5807 {
5808 	struct pci_dev *dev;
5809 
5810 	if (slot->bus->self &&
5811 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5812 		return false;
5813 
5814 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5815 		if (!dev->slot || dev->slot != slot)
5816 			continue;
5817 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5818 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5819 			return false;
5820 	}
5821 
5822 	return true;
5823 }
5824 
5825 /* Lock devices from the top of the tree down */
5826 static void pci_slot_lock(struct pci_slot *slot)
5827 {
5828 	struct pci_dev *dev;
5829 
5830 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5831 		if (!dev->slot || dev->slot != slot)
5832 			continue;
5833 		pci_dev_lock(dev);
5834 		if (dev->subordinate)
5835 			pci_bus_lock(dev->subordinate);
5836 	}
5837 }
5838 
5839 /* Unlock devices from the bottom of the tree up */
5840 static void pci_slot_unlock(struct pci_slot *slot)
5841 {
5842 	struct pci_dev *dev;
5843 
5844 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5845 		if (!dev->slot || dev->slot != slot)
5846 			continue;
5847 		if (dev->subordinate)
5848 			pci_bus_unlock(dev->subordinate);
5849 		pci_dev_unlock(dev);
5850 	}
5851 }
5852 
5853 /* Return 1 on successful lock, 0 on contention */
5854 static int pci_slot_trylock(struct pci_slot *slot)
5855 {
5856 	struct pci_dev *dev;
5857 
5858 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5859 		if (!dev->slot || dev->slot != slot)
5860 			continue;
5861 		if (!pci_dev_trylock(dev))
5862 			goto unlock;
5863 		if (dev->subordinate) {
5864 			if (!pci_bus_trylock(dev->subordinate)) {
5865 				pci_dev_unlock(dev);
5866 				goto unlock;
5867 			}
5868 		}
5869 	}
5870 	return 1;
5871 
5872 unlock:
5873 	list_for_each_entry_continue_reverse(dev,
5874 					     &slot->bus->devices, bus_list) {
5875 		if (!dev->slot || dev->slot != slot)
5876 			continue;
5877 		if (dev->subordinate)
5878 			pci_bus_unlock(dev->subordinate);
5879 		pci_dev_unlock(dev);
5880 	}
5881 	return 0;
5882 }
5883 
5884 /*
5885  * Save and disable devices from the top of the tree down while holding
5886  * the @dev mutex lock for the entire tree.
5887  */
5888 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5889 {
5890 	struct pci_dev *dev;
5891 
5892 	list_for_each_entry(dev, &bus->devices, bus_list) {
5893 		pci_dev_save_and_disable(dev);
5894 		if (dev->subordinate)
5895 			pci_bus_save_and_disable_locked(dev->subordinate);
5896 	}
5897 }
5898 
5899 /*
5900  * Restore devices from top of the tree down while holding @dev mutex lock
5901  * for the entire tree.  Parent bridges need to be restored before we can
5902  * get to subordinate devices.
5903  */
5904 static void pci_bus_restore_locked(struct pci_bus *bus)
5905 {
5906 	struct pci_dev *dev;
5907 
5908 	list_for_each_entry(dev, &bus->devices, bus_list) {
5909 		pci_dev_restore(dev);
5910 		if (dev->subordinate)
5911 			pci_bus_restore_locked(dev->subordinate);
5912 	}
5913 }
5914 
5915 /*
5916  * Save and disable devices from the top of the tree down while holding
5917  * the @dev mutex lock for the entire tree.
5918  */
5919 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5920 {
5921 	struct pci_dev *dev;
5922 
5923 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5924 		if (!dev->slot || dev->slot != slot)
5925 			continue;
5926 		pci_dev_save_and_disable(dev);
5927 		if (dev->subordinate)
5928 			pci_bus_save_and_disable_locked(dev->subordinate);
5929 	}
5930 }
5931 
5932 /*
5933  * Restore devices from top of the tree down while holding @dev mutex lock
5934  * for the entire tree.  Parent bridges need to be restored before we can
5935  * get to subordinate devices.
5936  */
5937 static void pci_slot_restore_locked(struct pci_slot *slot)
5938 {
5939 	struct pci_dev *dev;
5940 
5941 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5942 		if (!dev->slot || dev->slot != slot)
5943 			continue;
5944 		pci_dev_restore(dev);
5945 		if (dev->subordinate)
5946 			pci_bus_restore_locked(dev->subordinate);
5947 	}
5948 }
5949 
5950 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5951 {
5952 	int rc;
5953 
5954 	if (!slot || !pci_slot_resettable(slot))
5955 		return -ENOTTY;
5956 
5957 	if (!probe)
5958 		pci_slot_lock(slot);
5959 
5960 	might_sleep();
5961 
5962 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5963 
5964 	if (!probe)
5965 		pci_slot_unlock(slot);
5966 
5967 	return rc;
5968 }
5969 
5970 /**
5971  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5972  * @slot: PCI slot to probe
5973  *
5974  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5975  */
5976 int pci_probe_reset_slot(struct pci_slot *slot)
5977 {
5978 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5979 }
5980 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5981 
5982 /**
5983  * __pci_reset_slot - Try to reset a PCI slot
5984  * @slot: PCI slot to reset
5985  *
5986  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5987  * independent of other slots.  For instance, some slots may support slot power
5988  * control.  In the case of a 1:1 bus to slot architecture, this function may
5989  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5990  * Generally a slot reset should be attempted before a bus reset.  All of the
5991  * function of the slot and any subordinate buses behind the slot are reset
5992  * through this function.  PCI config space of all devices in the slot and
5993  * behind the slot is saved before and restored after reset.
5994  *
5995  * Same as above except return -EAGAIN if the slot cannot be locked
5996  */
5997 static int __pci_reset_slot(struct pci_slot *slot)
5998 {
5999 	int rc;
6000 
6001 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
6002 	if (rc)
6003 		return rc;
6004 
6005 	if (pci_slot_trylock(slot)) {
6006 		pci_slot_save_and_disable_locked(slot);
6007 		might_sleep();
6008 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
6009 		pci_slot_restore_locked(slot);
6010 		pci_slot_unlock(slot);
6011 	} else
6012 		rc = -EAGAIN;
6013 
6014 	return rc;
6015 }
6016 
6017 static int pci_bus_reset(struct pci_bus *bus, bool probe)
6018 {
6019 	int ret;
6020 
6021 	if (!bus->self || !pci_bus_resettable(bus))
6022 		return -ENOTTY;
6023 
6024 	if (probe)
6025 		return 0;
6026 
6027 	pci_bus_lock(bus);
6028 
6029 	might_sleep();
6030 
6031 	ret = pci_bridge_secondary_bus_reset(bus->self);
6032 
6033 	pci_bus_unlock(bus);
6034 
6035 	return ret;
6036 }
6037 
6038 /**
6039  * pci_bus_error_reset - reset the bridge's subordinate bus
6040  * @bridge: The parent device that connects to the bus to reset
6041  *
6042  * This function will first try to reset the slots on this bus if the method is
6043  * available. If slot reset fails or is not available, this will fall back to a
6044  * secondary bus reset.
6045  */
6046 int pci_bus_error_reset(struct pci_dev *bridge)
6047 {
6048 	struct pci_bus *bus = bridge->subordinate;
6049 	struct pci_slot *slot;
6050 
6051 	if (!bus)
6052 		return -ENOTTY;
6053 
6054 	mutex_lock(&pci_slot_mutex);
6055 	if (list_empty(&bus->slots))
6056 		goto bus_reset;
6057 
6058 	list_for_each_entry(slot, &bus->slots, list)
6059 		if (pci_probe_reset_slot(slot))
6060 			goto bus_reset;
6061 
6062 	list_for_each_entry(slot, &bus->slots, list)
6063 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
6064 			goto bus_reset;
6065 
6066 	mutex_unlock(&pci_slot_mutex);
6067 	return 0;
6068 bus_reset:
6069 	mutex_unlock(&pci_slot_mutex);
6070 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
6071 }
6072 
6073 /**
6074  * pci_probe_reset_bus - probe whether a PCI bus can be reset
6075  * @bus: PCI bus to probe
6076  *
6077  * Return 0 if bus can be reset, negative if a bus reset is not supported.
6078  */
6079 int pci_probe_reset_bus(struct pci_bus *bus)
6080 {
6081 	return pci_bus_reset(bus, PCI_RESET_PROBE);
6082 }
6083 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6084 
6085 /**
6086  * __pci_reset_bus - Try to reset a PCI bus
6087  * @bus: top level PCI bus to reset
6088  *
6089  * Same as above except return -EAGAIN if the bus cannot be locked
6090  */
6091 static int __pci_reset_bus(struct pci_bus *bus)
6092 {
6093 	int rc;
6094 
6095 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6096 	if (rc)
6097 		return rc;
6098 
6099 	if (pci_bus_trylock(bus)) {
6100 		pci_bus_save_and_disable_locked(bus);
6101 		might_sleep();
6102 		rc = pci_bridge_secondary_bus_reset(bus->self);
6103 		pci_bus_restore_locked(bus);
6104 		pci_bus_unlock(bus);
6105 	} else
6106 		rc = -EAGAIN;
6107 
6108 	return rc;
6109 }
6110 
6111 /**
6112  * pci_reset_bus - Try to reset a PCI bus
6113  * @pdev: top level PCI device to reset via slot/bus
6114  *
6115  * Same as above except return -EAGAIN if the bus cannot be locked
6116  */
6117 int pci_reset_bus(struct pci_dev *pdev)
6118 {
6119 	return (!pci_probe_reset_slot(pdev->slot)) ?
6120 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6121 }
6122 EXPORT_SYMBOL_GPL(pci_reset_bus);
6123 
6124 /**
6125  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6126  * @dev: PCI device to query
6127  *
6128  * Returns mmrbc: maximum designed memory read count in bytes or
6129  * appropriate error value.
6130  */
6131 int pcix_get_max_mmrbc(struct pci_dev *dev)
6132 {
6133 	int cap;
6134 	u32 stat;
6135 
6136 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6137 	if (!cap)
6138 		return -EINVAL;
6139 
6140 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6141 		return -EINVAL;
6142 
6143 	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
6144 }
6145 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6146 
6147 /**
6148  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6149  * @dev: PCI device to query
6150  *
6151  * Returns mmrbc: maximum memory read count in bytes or appropriate error
6152  * value.
6153  */
6154 int pcix_get_mmrbc(struct pci_dev *dev)
6155 {
6156 	int cap;
6157 	u16 cmd;
6158 
6159 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6160 	if (!cap)
6161 		return -EINVAL;
6162 
6163 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6164 		return -EINVAL;
6165 
6166 	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6167 }
6168 EXPORT_SYMBOL(pcix_get_mmrbc);
6169 
6170 /**
6171  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6172  * @dev: PCI device to query
6173  * @mmrbc: maximum memory read count in bytes
6174  *    valid values are 512, 1024, 2048, 4096
6175  *
6176  * If possible sets maximum memory read byte count, some bridges have errata
6177  * that prevent this.
6178  */
6179 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6180 {
6181 	int cap;
6182 	u32 stat, v, o;
6183 	u16 cmd;
6184 
6185 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6186 		return -EINVAL;
6187 
6188 	v = ffs(mmrbc) - 10;
6189 
6190 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6191 	if (!cap)
6192 		return -EINVAL;
6193 
6194 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6195 		return -EINVAL;
6196 
6197 	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6198 		return -E2BIG;
6199 
6200 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6201 		return -EINVAL;
6202 
6203 	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6204 	if (o != v) {
6205 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6206 			return -EIO;
6207 
6208 		cmd &= ~PCI_X_CMD_MAX_READ;
6209 		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6210 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6211 			return -EIO;
6212 	}
6213 	return 0;
6214 }
6215 EXPORT_SYMBOL(pcix_set_mmrbc);
6216 
6217 /**
6218  * pcie_get_readrq - get PCI Express read request size
6219  * @dev: PCI device to query
6220  *
6221  * Returns maximum memory read request in bytes or appropriate error value.
6222  */
6223 int pcie_get_readrq(struct pci_dev *dev)
6224 {
6225 	u16 ctl;
6226 
6227 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6228 
6229 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6230 }
6231 EXPORT_SYMBOL(pcie_get_readrq);
6232 
6233 /**
6234  * pcie_set_readrq - set PCI Express maximum memory read request
6235  * @dev: PCI device to query
6236  * @rq: maximum memory read count in bytes
6237  *    valid values are 128, 256, 512, 1024, 2048, 4096
6238  *
6239  * If possible sets maximum memory read request in bytes
6240  */
6241 int pcie_set_readrq(struct pci_dev *dev, int rq)
6242 {
6243 	u16 v;
6244 	int ret;
6245 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6246 
6247 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6248 		return -EINVAL;
6249 
6250 	/*
6251 	 * If using the "performance" PCIe config, we clamp the read rq
6252 	 * size to the max packet size to keep the host bridge from
6253 	 * generating requests larger than we can cope with.
6254 	 */
6255 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6256 		int mps = pcie_get_mps(dev);
6257 
6258 		if (mps < rq)
6259 			rq = mps;
6260 	}
6261 
6262 	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6263 
6264 	if (bridge->no_inc_mrrs) {
6265 		int max_mrrs = pcie_get_readrq(dev);
6266 
6267 		if (rq > max_mrrs) {
6268 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6269 			return -EINVAL;
6270 		}
6271 	}
6272 
6273 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6274 						  PCI_EXP_DEVCTL_READRQ, v);
6275 
6276 	return pcibios_err_to_errno(ret);
6277 }
6278 EXPORT_SYMBOL(pcie_set_readrq);
6279 
6280 /**
6281  * pcie_get_mps - get PCI Express maximum payload size
6282  * @dev: PCI device to query
6283  *
6284  * Returns maximum payload size in bytes
6285  */
6286 int pcie_get_mps(struct pci_dev *dev)
6287 {
6288 	u16 ctl;
6289 
6290 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6291 
6292 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6293 }
6294 EXPORT_SYMBOL(pcie_get_mps);
6295 
6296 /**
6297  * pcie_set_mps - set PCI Express maximum payload size
6298  * @dev: PCI device to query
6299  * @mps: maximum payload size in bytes
6300  *    valid values are 128, 256, 512, 1024, 2048, 4096
6301  *
6302  * If possible sets maximum payload size
6303  */
6304 int pcie_set_mps(struct pci_dev *dev, int mps)
6305 {
6306 	u16 v;
6307 	int ret;
6308 
6309 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6310 		return -EINVAL;
6311 
6312 	v = ffs(mps) - 8;
6313 	if (v > dev->pcie_mpss)
6314 		return -EINVAL;
6315 	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6316 
6317 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6318 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6319 
6320 	return pcibios_err_to_errno(ret);
6321 }
6322 EXPORT_SYMBOL(pcie_set_mps);
6323 
6324 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6325 {
6326 	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6327 }
6328 
6329 int pcie_link_speed_mbps(struct pci_dev *pdev)
6330 {
6331 	u16 lnksta;
6332 	int err;
6333 
6334 	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6335 	if (err)
6336 		return err;
6337 
6338 	switch (to_pcie_link_speed(lnksta)) {
6339 	case PCIE_SPEED_2_5GT:
6340 		return 2500;
6341 	case PCIE_SPEED_5_0GT:
6342 		return 5000;
6343 	case PCIE_SPEED_8_0GT:
6344 		return 8000;
6345 	case PCIE_SPEED_16_0GT:
6346 		return 16000;
6347 	case PCIE_SPEED_32_0GT:
6348 		return 32000;
6349 	case PCIE_SPEED_64_0GT:
6350 		return 64000;
6351 	default:
6352 		break;
6353 	}
6354 
6355 	return -EINVAL;
6356 }
6357 EXPORT_SYMBOL(pcie_link_speed_mbps);
6358 
6359 /**
6360  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6361  *			      device and its bandwidth limitation
6362  * @dev: PCI device to query
6363  * @limiting_dev: storage for device causing the bandwidth limitation
6364  * @speed: storage for speed of limiting device
6365  * @width: storage for width of limiting device
6366  *
6367  * Walk up the PCI device chain and find the point where the minimum
6368  * bandwidth is available.  Return the bandwidth available there and (if
6369  * limiting_dev, speed, and width pointers are supplied) information about
6370  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6371  * raw bandwidth.
6372  */
6373 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6374 			     enum pci_bus_speed *speed,
6375 			     enum pcie_link_width *width)
6376 {
6377 	u16 lnksta;
6378 	enum pci_bus_speed next_speed;
6379 	enum pcie_link_width next_width;
6380 	u32 bw, next_bw;
6381 
6382 	if (speed)
6383 		*speed = PCI_SPEED_UNKNOWN;
6384 	if (width)
6385 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6386 
6387 	bw = 0;
6388 
6389 	while (dev) {
6390 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6391 
6392 		next_speed = to_pcie_link_speed(lnksta);
6393 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6394 
6395 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6396 
6397 		/* Check if current device limits the total bandwidth */
6398 		if (!bw || next_bw <= bw) {
6399 			bw = next_bw;
6400 
6401 			if (limiting_dev)
6402 				*limiting_dev = dev;
6403 			if (speed)
6404 				*speed = next_speed;
6405 			if (width)
6406 				*width = next_width;
6407 		}
6408 
6409 		dev = pci_upstream_bridge(dev);
6410 	}
6411 
6412 	return bw;
6413 }
6414 EXPORT_SYMBOL(pcie_bandwidth_available);
6415 
6416 /**
6417  * pcie_get_speed_cap - query for the PCI device's link speed capability
6418  * @dev: PCI device to query
6419  *
6420  * Query the PCI device speed capability.  Return the maximum link speed
6421  * supported by the device.
6422  */
6423 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6424 {
6425 	u32 lnkcap2, lnkcap;
6426 
6427 	/*
6428 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6429 	 * implementation note there recommends using the Supported Link
6430 	 * Speeds Vector in Link Capabilities 2 when supported.
6431 	 *
6432 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6433 	 * should use the Supported Link Speeds field in Link Capabilities,
6434 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6435 	 */
6436 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6437 
6438 	/* PCIe r3.0-compliant */
6439 	if (lnkcap2)
6440 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6441 
6442 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6443 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6444 		return PCIE_SPEED_5_0GT;
6445 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6446 		return PCIE_SPEED_2_5GT;
6447 
6448 	return PCI_SPEED_UNKNOWN;
6449 }
6450 EXPORT_SYMBOL(pcie_get_speed_cap);
6451 
6452 /**
6453  * pcie_get_width_cap - query for the PCI device's link width capability
6454  * @dev: PCI device to query
6455  *
6456  * Query the PCI device width capability.  Return the maximum link width
6457  * supported by the device.
6458  */
6459 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6460 {
6461 	u32 lnkcap;
6462 
6463 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6464 	if (lnkcap)
6465 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6466 
6467 	return PCIE_LNK_WIDTH_UNKNOWN;
6468 }
6469 EXPORT_SYMBOL(pcie_get_width_cap);
6470 
6471 /**
6472  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6473  * @dev: PCI device
6474  * @speed: storage for link speed
6475  * @width: storage for link width
6476  *
6477  * Calculate a PCI device's link bandwidth by querying for its link speed
6478  * and width, multiplying them, and applying encoding overhead.  The result
6479  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6480  */
6481 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6482 			   enum pcie_link_width *width)
6483 {
6484 	*speed = pcie_get_speed_cap(dev);
6485 	*width = pcie_get_width_cap(dev);
6486 
6487 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6488 		return 0;
6489 
6490 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6491 }
6492 
6493 /**
6494  * __pcie_print_link_status - Report the PCI device's link speed and width
6495  * @dev: PCI device to query
6496  * @verbose: Print info even when enough bandwidth is available
6497  *
6498  * If the available bandwidth at the device is less than the device is
6499  * capable of, report the device's maximum possible bandwidth and the
6500  * upstream link that limits its performance.  If @verbose, always print
6501  * the available bandwidth, even if the device isn't constrained.
6502  */
6503 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6504 {
6505 	enum pcie_link_width width, width_cap;
6506 	enum pci_bus_speed speed, speed_cap;
6507 	struct pci_dev *limiting_dev = NULL;
6508 	u32 bw_avail, bw_cap;
6509 
6510 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6511 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6512 
6513 	if (bw_avail >= bw_cap && verbose)
6514 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6515 			 bw_cap / 1000, bw_cap % 1000,
6516 			 pci_speed_string(speed_cap), width_cap);
6517 	else if (bw_avail < bw_cap)
6518 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6519 			 bw_avail / 1000, bw_avail % 1000,
6520 			 pci_speed_string(speed), width,
6521 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6522 			 bw_cap / 1000, bw_cap % 1000,
6523 			 pci_speed_string(speed_cap), width_cap);
6524 }
6525 
6526 /**
6527  * pcie_print_link_status - Report the PCI device's link speed and width
6528  * @dev: PCI device to query
6529  *
6530  * Report the available bandwidth at the device.
6531  */
6532 void pcie_print_link_status(struct pci_dev *dev)
6533 {
6534 	__pcie_print_link_status(dev, true);
6535 }
6536 EXPORT_SYMBOL(pcie_print_link_status);
6537 
6538 /**
6539  * pci_select_bars - Make BAR mask from the type of resource
6540  * @dev: the PCI device for which BAR mask is made
6541  * @flags: resource type mask to be selected
6542  *
6543  * This helper routine makes bar mask from the type of resource.
6544  */
6545 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6546 {
6547 	int i, bars = 0;
6548 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6549 		if (pci_resource_flags(dev, i) & flags)
6550 			bars |= (1 << i);
6551 	return bars;
6552 }
6553 EXPORT_SYMBOL(pci_select_bars);
6554 
6555 /* Some architectures require additional programming to enable VGA */
6556 static arch_set_vga_state_t arch_set_vga_state;
6557 
6558 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6559 {
6560 	arch_set_vga_state = func;	/* NULL disables */
6561 }
6562 
6563 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6564 				  unsigned int command_bits, u32 flags)
6565 {
6566 	if (arch_set_vga_state)
6567 		return arch_set_vga_state(dev, decode, command_bits,
6568 						flags);
6569 	return 0;
6570 }
6571 
6572 /**
6573  * pci_set_vga_state - set VGA decode state on device and parents if requested
6574  * @dev: the PCI device
6575  * @decode: true = enable decoding, false = disable decoding
6576  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6577  * @flags: traverse ancestors and change bridges
6578  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6579  */
6580 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6581 		      unsigned int command_bits, u32 flags)
6582 {
6583 	struct pci_bus *bus;
6584 	struct pci_dev *bridge;
6585 	u16 cmd;
6586 	int rc;
6587 
6588 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6589 
6590 	/* ARCH specific VGA enables */
6591 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6592 	if (rc)
6593 		return rc;
6594 
6595 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6596 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6597 		if (decode)
6598 			cmd |= command_bits;
6599 		else
6600 			cmd &= ~command_bits;
6601 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6602 	}
6603 
6604 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6605 		return 0;
6606 
6607 	bus = dev->bus;
6608 	while (bus) {
6609 		bridge = bus->self;
6610 		if (bridge) {
6611 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6612 					     &cmd);
6613 			if (decode)
6614 				cmd |= PCI_BRIDGE_CTL_VGA;
6615 			else
6616 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6617 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6618 					      cmd);
6619 		}
6620 		bus = bus->parent;
6621 	}
6622 	return 0;
6623 }
6624 
6625 #ifdef CONFIG_ACPI
6626 bool pci_pr3_present(struct pci_dev *pdev)
6627 {
6628 	struct acpi_device *adev;
6629 
6630 	if (acpi_disabled)
6631 		return false;
6632 
6633 	adev = ACPI_COMPANION(&pdev->dev);
6634 	if (!adev)
6635 		return false;
6636 
6637 	return adev->power.flags.power_resources &&
6638 		acpi_has_method(adev->handle, "_PR3");
6639 }
6640 EXPORT_SYMBOL_GPL(pci_pr3_present);
6641 #endif
6642 
6643 /**
6644  * pci_add_dma_alias - Add a DMA devfn alias for a device
6645  * @dev: the PCI device for which alias is added
6646  * @devfn_from: alias slot and function
6647  * @nr_devfns: number of subsequent devfns to alias
6648  *
6649  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6650  * which is used to program permissible bus-devfn source addresses for DMA
6651  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6652  * and are useful for devices generating DMA requests beyond or different
6653  * from their logical bus-devfn.  Examples include device quirks where the
6654  * device simply uses the wrong devfn, as well as non-transparent bridges
6655  * where the alias may be a proxy for devices in another domain.
6656  *
6657  * IOMMU group creation is performed during device discovery or addition,
6658  * prior to any potential DMA mapping and therefore prior to driver probing
6659  * (especially for userspace assigned devices where IOMMU group definition
6660  * cannot be left as a userspace activity).  DMA aliases should therefore
6661  * be configured via quirks, such as the PCI fixup header quirk.
6662  */
6663 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6664 		       unsigned int nr_devfns)
6665 {
6666 	int devfn_to;
6667 
6668 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6669 	devfn_to = devfn_from + nr_devfns - 1;
6670 
6671 	if (!dev->dma_alias_mask)
6672 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6673 	if (!dev->dma_alias_mask) {
6674 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6675 		return;
6676 	}
6677 
6678 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6679 
6680 	if (nr_devfns == 1)
6681 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6682 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6683 	else if (nr_devfns > 1)
6684 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6685 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6686 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6687 }
6688 
6689 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6690 {
6691 	return (dev1->dma_alias_mask &&
6692 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6693 	       (dev2->dma_alias_mask &&
6694 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6695 	       pci_real_dma_dev(dev1) == dev2 ||
6696 	       pci_real_dma_dev(dev2) == dev1;
6697 }
6698 
6699 bool pci_device_is_present(struct pci_dev *pdev)
6700 {
6701 	u32 v;
6702 
6703 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6704 	pdev = pci_physfn(pdev);
6705 	if (pci_dev_is_disconnected(pdev))
6706 		return false;
6707 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6708 }
6709 EXPORT_SYMBOL_GPL(pci_device_is_present);
6710 
6711 void pci_ignore_hotplug(struct pci_dev *dev)
6712 {
6713 	struct pci_dev *bridge = dev->bus->self;
6714 
6715 	dev->ignore_hotplug = 1;
6716 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6717 	if (bridge)
6718 		bridge->ignore_hotplug = 1;
6719 }
6720 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6721 
6722 /**
6723  * pci_real_dma_dev - Get PCI DMA device for PCI device
6724  * @dev: the PCI device that may have a PCI DMA alias
6725  *
6726  * Permits the platform to provide architecture-specific functionality to
6727  * devices needing to alias DMA to another PCI device on another PCI bus. If
6728  * the PCI device is on the same bus, it is recommended to use
6729  * pci_add_dma_alias(). This is the default implementation. Architecture
6730  * implementations can override this.
6731  */
6732 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6733 {
6734 	return dev;
6735 }
6736 
6737 resource_size_t __weak pcibios_default_alignment(void)
6738 {
6739 	return 0;
6740 }
6741 
6742 /*
6743  * Arches that don't want to expose struct resource to userland as-is in
6744  * sysfs and /proc can implement their own pci_resource_to_user().
6745  */
6746 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6747 				 const struct resource *rsrc,
6748 				 resource_size_t *start, resource_size_t *end)
6749 {
6750 	*start = rsrc->start;
6751 	*end = rsrc->end;
6752 }
6753 
6754 static char *resource_alignment_param;
6755 static DEFINE_SPINLOCK(resource_alignment_lock);
6756 
6757 /**
6758  * pci_specified_resource_alignment - get resource alignment specified by user.
6759  * @dev: the PCI device to get
6760  * @resize: whether or not to change resources' size when reassigning alignment
6761  *
6762  * RETURNS: Resource alignment if it is specified.
6763  *          Zero if it is not specified.
6764  */
6765 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6766 							bool *resize)
6767 {
6768 	int align_order, count;
6769 	resource_size_t align = pcibios_default_alignment();
6770 	const char *p;
6771 	int ret;
6772 
6773 	spin_lock(&resource_alignment_lock);
6774 	p = resource_alignment_param;
6775 	if (!p || !*p)
6776 		goto out;
6777 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6778 		align = 0;
6779 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6780 		goto out;
6781 	}
6782 
6783 	while (*p) {
6784 		count = 0;
6785 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6786 		    p[count] == '@') {
6787 			p += count + 1;
6788 			if (align_order > 63) {
6789 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6790 				       align_order);
6791 				align_order = PAGE_SHIFT;
6792 			}
6793 		} else {
6794 			align_order = PAGE_SHIFT;
6795 		}
6796 
6797 		ret = pci_dev_str_match(dev, p, &p);
6798 		if (ret == 1) {
6799 			*resize = true;
6800 			align = 1ULL << align_order;
6801 			break;
6802 		} else if (ret < 0) {
6803 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6804 			       p);
6805 			break;
6806 		}
6807 
6808 		if (*p != ';' && *p != ',') {
6809 			/* End of param or invalid format */
6810 			break;
6811 		}
6812 		p++;
6813 	}
6814 out:
6815 	spin_unlock(&resource_alignment_lock);
6816 	return align;
6817 }
6818 
6819 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6820 					   resource_size_t align, bool resize)
6821 {
6822 	struct resource *r = &dev->resource[bar];
6823 	const char *r_name = pci_resource_name(dev, bar);
6824 	resource_size_t size;
6825 
6826 	if (!(r->flags & IORESOURCE_MEM))
6827 		return;
6828 
6829 	if (r->flags & IORESOURCE_PCI_FIXED) {
6830 		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6831 			 r_name, r, (unsigned long long)align);
6832 		return;
6833 	}
6834 
6835 	size = resource_size(r);
6836 	if (size >= align)
6837 		return;
6838 
6839 	/*
6840 	 * Increase the alignment of the resource.  There are two ways we
6841 	 * can do this:
6842 	 *
6843 	 * 1) Increase the size of the resource.  BARs are aligned on their
6844 	 *    size, so when we reallocate space for this resource, we'll
6845 	 *    allocate it with the larger alignment.  This also prevents
6846 	 *    assignment of any other BARs inside the alignment region, so
6847 	 *    if we're requesting page alignment, this means no other BARs
6848 	 *    will share the page.
6849 	 *
6850 	 *    The disadvantage is that this makes the resource larger than
6851 	 *    the hardware BAR, which may break drivers that compute things
6852 	 *    based on the resource size, e.g., to find registers at a
6853 	 *    fixed offset before the end of the BAR.
6854 	 *
6855 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6856 	 *    set r->start to the desired alignment.  By itself this
6857 	 *    doesn't prevent other BARs being put inside the alignment
6858 	 *    region, but if we realign *every* resource of every device in
6859 	 *    the system, none of them will share an alignment region.
6860 	 *
6861 	 * When the user has requested alignment for only some devices via
6862 	 * the "pci=resource_alignment" argument, "resize" is true and we
6863 	 * use the first method.  Otherwise we assume we're aligning all
6864 	 * devices and we use the second.
6865 	 */
6866 
6867 	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6868 		 r_name, r, (unsigned long long)align);
6869 
6870 	if (resize) {
6871 		r->start = 0;
6872 		r->end = align - 1;
6873 	} else {
6874 		r->flags &= ~IORESOURCE_SIZEALIGN;
6875 		r->flags |= IORESOURCE_STARTALIGN;
6876 		r->start = align;
6877 		r->end = r->start + size - 1;
6878 	}
6879 	r->flags |= IORESOURCE_UNSET;
6880 }
6881 
6882 /*
6883  * This function disables memory decoding and releases memory resources
6884  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6885  * It also rounds up size to specified alignment.
6886  * Later on, the kernel will assign page-aligned memory resource back
6887  * to the device.
6888  */
6889 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6890 {
6891 	int i;
6892 	struct resource *r;
6893 	resource_size_t align;
6894 	u16 command;
6895 	bool resize = false;
6896 
6897 	/*
6898 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6899 	 * 3.4.1.11.  Their resources are allocated from the space
6900 	 * described by the VF BARx register in the PF's SR-IOV capability.
6901 	 * We can't influence their alignment here.
6902 	 */
6903 	if (dev->is_virtfn)
6904 		return;
6905 
6906 	/* check if specified PCI is target device to reassign */
6907 	align = pci_specified_resource_alignment(dev, &resize);
6908 	if (!align)
6909 		return;
6910 
6911 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6912 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6913 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6914 		return;
6915 	}
6916 
6917 	pci_read_config_word(dev, PCI_COMMAND, &command);
6918 	command &= ~PCI_COMMAND_MEMORY;
6919 	pci_write_config_word(dev, PCI_COMMAND, command);
6920 
6921 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6922 		pci_request_resource_alignment(dev, i, align, resize);
6923 
6924 	/*
6925 	 * Need to disable bridge's resource window,
6926 	 * to enable the kernel to reassign new resource
6927 	 * window later on.
6928 	 */
6929 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6930 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6931 			r = &dev->resource[i];
6932 			if (!(r->flags & IORESOURCE_MEM))
6933 				continue;
6934 			r->flags |= IORESOURCE_UNSET;
6935 			r->end = resource_size(r) - 1;
6936 			r->start = 0;
6937 		}
6938 		pci_disable_bridge_window(dev);
6939 	}
6940 }
6941 
6942 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6943 {
6944 	size_t count = 0;
6945 
6946 	spin_lock(&resource_alignment_lock);
6947 	if (resource_alignment_param)
6948 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6949 	spin_unlock(&resource_alignment_lock);
6950 
6951 	return count;
6952 }
6953 
6954 static ssize_t resource_alignment_store(const struct bus_type *bus,
6955 					const char *buf, size_t count)
6956 {
6957 	char *param, *old, *end;
6958 
6959 	if (count >= (PAGE_SIZE - 1))
6960 		return -EINVAL;
6961 
6962 	param = kstrndup(buf, count, GFP_KERNEL);
6963 	if (!param)
6964 		return -ENOMEM;
6965 
6966 	end = strchr(param, '\n');
6967 	if (end)
6968 		*end = '\0';
6969 
6970 	spin_lock(&resource_alignment_lock);
6971 	old = resource_alignment_param;
6972 	if (strlen(param)) {
6973 		resource_alignment_param = param;
6974 	} else {
6975 		kfree(param);
6976 		resource_alignment_param = NULL;
6977 	}
6978 	spin_unlock(&resource_alignment_lock);
6979 
6980 	kfree(old);
6981 
6982 	return count;
6983 }
6984 
6985 static BUS_ATTR_RW(resource_alignment);
6986 
6987 static int __init pci_resource_alignment_sysfs_init(void)
6988 {
6989 	return bus_create_file(&pci_bus_type,
6990 					&bus_attr_resource_alignment);
6991 }
6992 late_initcall(pci_resource_alignment_sysfs_init);
6993 
6994 static void pci_no_domains(void)
6995 {
6996 #ifdef CONFIG_PCI_DOMAINS
6997 	pci_domains_supported = 0;
6998 #endif
6999 }
7000 
7001 #ifdef CONFIG_PCI_DOMAINS_GENERIC
7002 static DEFINE_IDA(pci_domain_nr_static_ida);
7003 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
7004 
7005 static void of_pci_reserve_static_domain_nr(void)
7006 {
7007 	struct device_node *np;
7008 	int domain_nr;
7009 
7010 	for_each_node_by_type(np, "pci") {
7011 		domain_nr = of_get_pci_domain_nr(np);
7012 		if (domain_nr < 0)
7013 			continue;
7014 		/*
7015 		 * Permanently allocate domain_nr in dynamic_ida
7016 		 * to prevent it from dynamic allocation.
7017 		 */
7018 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
7019 				domain_nr, domain_nr, GFP_KERNEL);
7020 	}
7021 }
7022 
7023 static int of_pci_bus_find_domain_nr(struct device *parent)
7024 {
7025 	static bool static_domains_reserved = false;
7026 	int domain_nr;
7027 
7028 	/* On the first call scan device tree for static allocations. */
7029 	if (!static_domains_reserved) {
7030 		of_pci_reserve_static_domain_nr();
7031 		static_domains_reserved = true;
7032 	}
7033 
7034 	if (parent) {
7035 		/*
7036 		 * If domain is in DT, allocate it in static IDA.  This
7037 		 * prevents duplicate static allocations in case of errors
7038 		 * in DT.
7039 		 */
7040 		domain_nr = of_get_pci_domain_nr(parent->of_node);
7041 		if (domain_nr >= 0)
7042 			return ida_alloc_range(&pci_domain_nr_static_ida,
7043 					       domain_nr, domain_nr,
7044 					       GFP_KERNEL);
7045 	}
7046 
7047 	/*
7048 	 * If domain was not specified in DT, choose a free ID from dynamic
7049 	 * allocations. All domain numbers from DT are permanently in
7050 	 * dynamic allocations to prevent assigning them to other DT nodes
7051 	 * without static domain.
7052 	 */
7053 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
7054 }
7055 
7056 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7057 {
7058 	if (bus->domain_nr < 0)
7059 		return;
7060 
7061 	/* Release domain from IDA where it was allocated. */
7062 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
7063 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
7064 	else
7065 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
7066 }
7067 
7068 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
7069 {
7070 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
7071 			       acpi_pci_bus_find_domain_nr(bus);
7072 }
7073 
7074 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7075 {
7076 	if (!acpi_disabled)
7077 		return;
7078 	of_pci_bus_release_domain_nr(bus, parent);
7079 }
7080 #endif
7081 
7082 /**
7083  * pci_ext_cfg_avail - can we access extended PCI config space?
7084  *
7085  * Returns 1 if we can access PCI extended config space (offsets
7086  * greater than 0xff). This is the default implementation. Architecture
7087  * implementations can override this.
7088  */
7089 int __weak pci_ext_cfg_avail(void)
7090 {
7091 	return 1;
7092 }
7093 
7094 void __weak pci_fixup_cardbus(struct pci_bus *bus)
7095 {
7096 }
7097 EXPORT_SYMBOL(pci_fixup_cardbus);
7098 
7099 static int __init pci_setup(char *str)
7100 {
7101 	while (str) {
7102 		char *k = strchr(str, ',');
7103 		if (k)
7104 			*k++ = 0;
7105 		if (*str && (str = pcibios_setup(str)) && *str) {
7106 			if (!strcmp(str, "nomsi")) {
7107 				pci_no_msi();
7108 			} else if (!strncmp(str, "noats", 5)) {
7109 				pr_info("PCIe: ATS is disabled\n");
7110 				pcie_ats_disabled = true;
7111 			} else if (!strcmp(str, "noaer")) {
7112 				pci_no_aer();
7113 			} else if (!strcmp(str, "earlydump")) {
7114 				pci_early_dump = true;
7115 			} else if (!strncmp(str, "realloc=", 8)) {
7116 				pci_realloc_get_opt(str + 8);
7117 			} else if (!strncmp(str, "realloc", 7)) {
7118 				pci_realloc_get_opt("on");
7119 			} else if (!strcmp(str, "nodomains")) {
7120 				pci_no_domains();
7121 			} else if (!strncmp(str, "noari", 5)) {
7122 				pcie_ari_disabled = true;
7123 			} else if (!strncmp(str, "cbiosize=", 9)) {
7124 				pci_cardbus_io_size = memparse(str + 9, &str);
7125 			} else if (!strncmp(str, "cbmemsize=", 10)) {
7126 				pci_cardbus_mem_size = memparse(str + 10, &str);
7127 			} else if (!strncmp(str, "resource_alignment=", 19)) {
7128 				resource_alignment_param = str + 19;
7129 			} else if (!strncmp(str, "ecrc=", 5)) {
7130 				pcie_ecrc_get_policy(str + 5);
7131 			} else if (!strncmp(str, "hpiosize=", 9)) {
7132 				pci_hotplug_io_size = memparse(str + 9, &str);
7133 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7134 				pci_hotplug_mmio_size = memparse(str + 11, &str);
7135 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7136 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7137 			} else if (!strncmp(str, "hpmemsize=", 10)) {
7138 				pci_hotplug_mmio_size = memparse(str + 10, &str);
7139 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7140 			} else if (!strncmp(str, "hpbussize=", 10)) {
7141 				pci_hotplug_bus_size =
7142 					simple_strtoul(str + 10, &str, 0);
7143 				if (pci_hotplug_bus_size > 0xff)
7144 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7145 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7146 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7147 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7148 				pcie_bus_config = PCIE_BUS_SAFE;
7149 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7150 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7151 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7152 				pcie_bus_config = PCIE_BUS_PEER2PEER;
7153 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7154 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7155 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7156 				disable_acs_redir_param = str + 18;
7157 			} else {
7158 				pr_err("PCI: Unknown option `%s'\n", str);
7159 			}
7160 		}
7161 		str = k;
7162 	}
7163 	return 0;
7164 }
7165 early_param("pci", pci_setup);
7166 
7167 /*
7168  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7169  * in pci_setup(), above, to point to data in the __initdata section which
7170  * will be freed after the init sequence is complete. We can't allocate memory
7171  * in pci_setup() because some architectures do not have any memory allocation
7172  * service available during an early_param() call. So we allocate memory and
7173  * copy the variable here before the init section is freed.
7174  *
7175  */
7176 static int __init pci_realloc_setup_params(void)
7177 {
7178 	resource_alignment_param = kstrdup(resource_alignment_param,
7179 					   GFP_KERNEL);
7180 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7181 
7182 	return 0;
7183 }
7184 pure_initcall(pci_realloc_setup_params);
7185