1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Following exit from Conventional Reset, devices must be ready within 1 sec 69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 70 * Reset (PCIe r6.0 sec 5.8). 71 */ 72 #define PCI_RESET_WAIT 1000 /* msec */ 73 74 /* 75 * Devices may extend the 1 sec period through Request Retry Status 76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 77 * limit, but 60 sec ought to be enough for any device to become 78 * responsive. 79 */ 80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 81 82 static void pci_dev_d3_sleep(struct pci_dev *dev) 83 { 84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 85 unsigned int upper; 86 87 if (delay_ms) { 88 /* Use a 20% upper bound, 1ms minimum */ 89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 90 usleep_range(delay_ms * USEC_PER_MSEC, 91 (delay_ms + upper) * USEC_PER_MSEC); 92 } 93 } 94 95 bool pci_reset_supported(struct pci_dev *dev) 96 { 97 return dev->reset_methods[0] != 0; 98 } 99 100 #ifdef CONFIG_PCI_DOMAINS 101 int pci_domains_supported = 1; 102 #endif 103 104 #define DEFAULT_CARDBUS_IO_SIZE (256) 105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 109 110 #define DEFAULT_HOTPLUG_IO_SIZE (256) 111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 113 /* hpiosize=nn can override this */ 114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 115 /* 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 118 * pci=hpmemsize=nnM overrides both 119 */ 120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 122 123 #define DEFAULT_HOTPLUG_BUS_SIZE 1 124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 125 126 127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 130 #elif defined CONFIG_PCIE_BUS_SAFE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 134 #elif defined CONFIG_PCIE_BUS_PEER2PEER 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 136 #else 137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 138 #endif 139 140 /* 141 * The default CLS is used if arch didn't set CLS explicitly and not 142 * all pci devices agree on the same value. Arch can override either 143 * the dfl or actual value as it sees fit. Don't forget this is 144 * measured in 32-bit words, not bytes. 145 */ 146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 147 u8 pci_cache_line_size; 148 149 /* 150 * If we set up a device for bus mastering, we need to check the latency 151 * timer as certain BIOSes forget to set it properly. 152 */ 153 unsigned int pcibios_max_latency = 255; 154 155 /* If set, the PCIe ARI capability will not be used. */ 156 static bool pcie_ari_disabled; 157 158 /* If set, the PCIe ATS capability will not be used. */ 159 static bool pcie_ats_disabled; 160 161 /* If set, the PCI config space of each device is printed during boot. */ 162 bool pci_early_dump; 163 164 bool pci_ats_disabled(void) 165 { 166 return pcie_ats_disabled; 167 } 168 EXPORT_SYMBOL_GPL(pci_ats_disabled); 169 170 /* Disable bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_disable; 172 /* Force bridge_d3 for all PCIe ports */ 173 static bool pci_bridge_d3_force; 174 175 static int __init pcie_port_pm_setup(char *str) 176 { 177 if (!strcmp(str, "off")) 178 pci_bridge_d3_disable = true; 179 else if (!strcmp(str, "force")) 180 pci_bridge_d3_force = true; 181 return 1; 182 } 183 __setup("pcie_port_pm=", pcie_port_pm_setup); 184 185 /** 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 187 * @bus: pointer to PCI bus structure to search 188 * 189 * Given a PCI bus, returns the highest PCI bus number present in the set 190 * including the given PCI bus and its list of child PCI buses. 191 */ 192 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 193 { 194 struct pci_bus *tmp; 195 unsigned char max, n; 196 197 max = bus->busn_res.end; 198 list_for_each_entry(tmp, &bus->children, node) { 199 n = pci_bus_max_busnr(tmp); 200 if (n > max) 201 max = n; 202 } 203 return max; 204 } 205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 206 207 /** 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 209 * @pdev: the PCI device 210 * 211 * Returns error bits set in PCI_STATUS and clears them. 212 */ 213 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 214 { 215 u16 status; 216 int ret; 217 218 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 219 if (ret != PCIBIOS_SUCCESSFUL) 220 return -EIO; 221 222 status &= PCI_STATUS_ERROR_BITS; 223 if (status) 224 pci_write_config_word(pdev, PCI_STATUS, status); 225 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 229 230 #ifdef CONFIG_HAS_IOMEM 231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 232 bool write_combine) 233 { 234 struct resource *res = &pdev->resource[bar]; 235 resource_size_t start = res->start; 236 resource_size_t size = resource_size(res); 237 238 /* 239 * Make sure the BAR is actually a memory resource, not an IO resource 240 */ 241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 243 return NULL; 244 } 245 246 if (write_combine) 247 return ioremap_wc(start, size); 248 249 return ioremap(start, size); 250 } 251 252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 253 { 254 return __pci_ioremap_resource(pdev, bar, false); 255 } 256 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 257 258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 259 { 260 return __pci_ioremap_resource(pdev, bar, true); 261 } 262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 263 #endif 264 265 /** 266 * pci_dev_str_match_path - test if a path string matches a device 267 * @dev: the PCI device to test 268 * @path: string to match the device against 269 * @endptr: pointer to the string after the match 270 * 271 * Test if a string (typically from a kernel parameter) formatted as a 272 * path of device/function addresses matches a PCI device. The string must 273 * be of the form: 274 * 275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 276 * 277 * A path for a device can be obtained using 'lspci -t'. Using a path 278 * is more robust against bus renumbering than using only a single bus, 279 * device and function address. 280 * 281 * Returns 1 if the string matches the device, 0 if it does not and 282 * a negative error code if it fails to parse the string. 283 */ 284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 285 const char **endptr) 286 { 287 int ret; 288 unsigned int seg, bus, slot, func; 289 char *wpath, *p; 290 char end; 291 292 *endptr = strchrnul(path, ';'); 293 294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 295 if (!wpath) 296 return -ENOMEM; 297 298 while (1) { 299 p = strrchr(wpath, '/'); 300 if (!p) 301 break; 302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 303 if (ret != 2) { 304 ret = -EINVAL; 305 goto free_and_exit; 306 } 307 308 if (dev->devfn != PCI_DEVFN(slot, func)) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 /* 314 * Note: we don't need to get a reference to the upstream 315 * bridge because we hold a reference to the top level 316 * device which should hold a reference to the bridge, 317 * and so on. 318 */ 319 dev = pci_upstream_bridge(dev); 320 if (!dev) { 321 ret = 0; 322 goto free_and_exit; 323 } 324 325 *p = 0; 326 } 327 328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 329 &func, &end); 330 if (ret != 4) { 331 seg = 0; 332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 333 if (ret != 3) { 334 ret = -EINVAL; 335 goto free_and_exit; 336 } 337 } 338 339 ret = (seg == pci_domain_nr(dev->bus) && 340 bus == dev->bus->number && 341 dev->devfn == PCI_DEVFN(slot, func)); 342 343 free_and_exit: 344 kfree(wpath); 345 return ret; 346 } 347 348 /** 349 * pci_dev_str_match - test if a string matches a device 350 * @dev: the PCI device to test 351 * @p: string to match the device against 352 * @endptr: pointer to the string after the match 353 * 354 * Test if a string (typically from a kernel parameter) matches a specified 355 * PCI device. The string may be of one of the following formats: 356 * 357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 359 * 360 * The first format specifies a PCI bus/device/function address which 361 * may change if new hardware is inserted, if motherboard firmware changes, 362 * or due to changes caused in kernel parameters. If the domain is 363 * left unspecified, it is taken to be 0. In order to be robust against 364 * bus renumbering issues, a path of PCI device/function numbers may be used 365 * to address the specific device. The path for a device can be determined 366 * through the use of 'lspci -t'. 367 * 368 * The second format matches devices using IDs in the configuration 369 * space which may match multiple devices in the system. A value of 0 370 * for any field will match all devices. (Note: this differs from 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 372 * legacy reasons and convenience so users don't have to specify 373 * FFFFFFFFs on the command line.) 374 * 375 * Returns 1 if the string matches the device, 0 if it does not and 376 * a negative error code if the string cannot be parsed. 377 */ 378 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 379 const char **endptr) 380 { 381 int ret; 382 int count; 383 unsigned short vendor, device, subsystem_vendor, subsystem_device; 384 385 if (strncmp(p, "pci:", 4) == 0) { 386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 387 p += 4; 388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 389 &subsystem_vendor, &subsystem_device, &count); 390 if (ret != 4) { 391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 392 if (ret != 2) 393 return -EINVAL; 394 395 subsystem_vendor = 0; 396 subsystem_device = 0; 397 } 398 399 p += count; 400 401 if ((!vendor || vendor == dev->vendor) && 402 (!device || device == dev->device) && 403 (!subsystem_vendor || 404 subsystem_vendor == dev->subsystem_vendor) && 405 (!subsystem_device || 406 subsystem_device == dev->subsystem_device)) 407 goto found; 408 } else { 409 /* 410 * PCI Bus, Device, Function IDs are specified 411 * (optionally, may include a path of devfns following it) 412 */ 413 ret = pci_dev_str_match_path(dev, p, &p); 414 if (ret < 0) 415 return ret; 416 else if (ret) 417 goto found; 418 } 419 420 *endptr = p; 421 return 0; 422 423 found: 424 *endptr = p; 425 return 1; 426 } 427 428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 429 u8 pos, int cap, int *ttl) 430 { 431 u8 id; 432 u16 ent; 433 434 pci_bus_read_config_byte(bus, devfn, pos, &pos); 435 436 while ((*ttl)--) { 437 if (pos < 0x40) 438 break; 439 pos &= ~3; 440 pci_bus_read_config_word(bus, devfn, pos, &ent); 441 442 id = ent & 0xff; 443 if (id == 0xff) 444 break; 445 if (id == cap) 446 return pos; 447 pos = (ent >> 8); 448 } 449 return 0; 450 } 451 452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 453 u8 pos, int cap) 454 { 455 int ttl = PCI_FIND_CAP_TTL; 456 457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 458 } 459 460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 461 { 462 return __pci_find_next_cap(dev->bus, dev->devfn, 463 pos + PCI_CAP_LIST_NEXT, cap); 464 } 465 EXPORT_SYMBOL_GPL(pci_find_next_capability); 466 467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 468 unsigned int devfn, u8 hdr_type) 469 { 470 u16 status; 471 472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 473 if (!(status & PCI_STATUS_CAP_LIST)) 474 return 0; 475 476 switch (hdr_type) { 477 case PCI_HEADER_TYPE_NORMAL: 478 case PCI_HEADER_TYPE_BRIDGE: 479 return PCI_CAPABILITY_LIST; 480 case PCI_HEADER_TYPE_CARDBUS: 481 return PCI_CB_CAPABILITY_LIST; 482 } 483 484 return 0; 485 } 486 487 /** 488 * pci_find_capability - query for devices' capabilities 489 * @dev: PCI device to query 490 * @cap: capability code 491 * 492 * Tell if a device supports a given PCI capability. 493 * Returns the address of the requested capability structure within the 494 * device's PCI configuration space or 0 in case the device does not 495 * support it. Possible values for @cap include: 496 * 497 * %PCI_CAP_ID_PM Power Management 498 * %PCI_CAP_ID_AGP Accelerated Graphics Port 499 * %PCI_CAP_ID_VPD Vital Product Data 500 * %PCI_CAP_ID_SLOTID Slot Identification 501 * %PCI_CAP_ID_MSI Message Signalled Interrupts 502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 503 * %PCI_CAP_ID_PCIX PCI-X 504 * %PCI_CAP_ID_EXP PCI Express 505 */ 506 u8 pci_find_capability(struct pci_dev *dev, int cap) 507 { 508 u8 pos; 509 510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 511 if (pos) 512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 513 514 return pos; 515 } 516 EXPORT_SYMBOL(pci_find_capability); 517 518 /** 519 * pci_bus_find_capability - query for devices' capabilities 520 * @bus: the PCI bus to query 521 * @devfn: PCI device to query 522 * @cap: capability code 523 * 524 * Like pci_find_capability() but works for PCI devices that do not have a 525 * pci_dev structure set up yet. 526 * 527 * Returns the address of the requested capability structure within the 528 * device's PCI configuration space or 0 in case the device does not 529 * support it. 530 */ 531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 532 { 533 u8 hdr_type, pos; 534 535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 536 537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 538 if (pos) 539 pos = __pci_find_next_cap(bus, devfn, pos, cap); 540 541 return pos; 542 } 543 EXPORT_SYMBOL(pci_bus_find_capability); 544 545 /** 546 * pci_find_next_ext_capability - Find an extended capability 547 * @dev: PCI device to query 548 * @start: address at which to start looking (0 to start at beginning of list) 549 * @cap: capability code 550 * 551 * Returns the address of the next matching extended capability structure 552 * within the device's PCI configuration space or 0 if the device does 553 * not support it. Some capabilities can occur several times, e.g., the 554 * vendor-specific capability, and this provides a way to find them all. 555 */ 556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 557 { 558 u32 header; 559 int ttl; 560 u16 pos = PCI_CFG_SPACE_SIZE; 561 562 /* minimum 8 bytes per capability */ 563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 564 565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 566 return 0; 567 568 if (start) 569 pos = start; 570 571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 572 return 0; 573 574 /* 575 * If we have no capabilities, this is indicated by cap ID, 576 * cap version and next pointer all being 0. 577 */ 578 if (header == 0) 579 return 0; 580 581 while (ttl-- > 0) { 582 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 583 return pos; 584 585 pos = PCI_EXT_CAP_NEXT(header); 586 if (pos < PCI_CFG_SPACE_SIZE) 587 break; 588 589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 596 597 /** 598 * pci_find_ext_capability - Find an extended capability 599 * @dev: PCI device to query 600 * @cap: capability code 601 * 602 * Returns the address of the requested extended capability structure 603 * within the device's PCI configuration space or 0 if the device does 604 * not support it. Possible values for @cap include: 605 * 606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 607 * %PCI_EXT_CAP_ID_VC Virtual Channel 608 * %PCI_EXT_CAP_ID_DSN Device Serial Number 609 * %PCI_EXT_CAP_ID_PWR Power Budgeting 610 */ 611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 612 { 613 return pci_find_next_ext_capability(dev, 0, cap); 614 } 615 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 616 617 /** 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number 619 * @dev: PCI device to query 620 * 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 622 * Number. 623 * 624 * Returns the DSN, or zero if the capability does not exist. 625 */ 626 u64 pci_get_dsn(struct pci_dev *dev) 627 { 628 u32 dword; 629 u64 dsn; 630 int pos; 631 632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 633 if (!pos) 634 return 0; 635 636 /* 637 * The Device Serial Number is two dwords offset 4 bytes from the 638 * capability position. The specification says that the first dword is 639 * the lower half, and the second dword is the upper half. 640 */ 641 pos += 4; 642 pci_read_config_dword(dev, pos, &dword); 643 dsn = (u64)dword; 644 pci_read_config_dword(dev, pos + 4, &dword); 645 dsn |= ((u64)dword) << 32; 646 647 return dsn; 648 } 649 EXPORT_SYMBOL_GPL(pci_get_dsn); 650 651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 652 { 653 int rc, ttl = PCI_FIND_CAP_TTL; 654 u8 cap, mask; 655 656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 657 mask = HT_3BIT_CAP_MASK; 658 else 659 mask = HT_5BIT_CAP_MASK; 660 661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 662 PCI_CAP_ID_HT, &ttl); 663 while (pos) { 664 rc = pci_read_config_byte(dev, pos + 3, &cap); 665 if (rc != PCIBIOS_SUCCESSFUL) 666 return 0; 667 668 if ((cap & mask) == ht_cap) 669 return pos; 670 671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 672 pos + PCI_CAP_LIST_NEXT, 673 PCI_CAP_ID_HT, &ttl); 674 } 675 676 return 0; 677 } 678 679 /** 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 681 * @dev: PCI device to query 682 * @pos: Position from which to continue searching 683 * @ht_cap: HyperTransport capability code 684 * 685 * To be used in conjunction with pci_find_ht_capability() to search for 686 * all capabilities matching @ht_cap. @pos should always be a value returned 687 * from pci_find_ht_capability(). 688 * 689 * NB. To be 100% safe against broken PCI devices, the caller should take 690 * steps to avoid an infinite loop. 691 */ 692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 693 { 694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 695 } 696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 697 698 /** 699 * pci_find_ht_capability - query a device's HyperTransport capabilities 700 * @dev: PCI device to query 701 * @ht_cap: HyperTransport capability code 702 * 703 * Tell if a device supports a given HyperTransport capability. 704 * Returns an address within the device's PCI configuration space 705 * or 0 in case the device does not support the request capability. 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 707 * which has a HyperTransport capability matching @ht_cap. 708 */ 709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 710 { 711 u8 pos; 712 713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 714 if (pos) 715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 716 717 return pos; 718 } 719 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 720 721 /** 722 * pci_find_vsec_capability - Find a vendor-specific extended capability 723 * @dev: PCI device to query 724 * @vendor: Vendor ID for which capability is defined 725 * @cap: Vendor-specific capability ID 726 * 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with 728 * VSEC ID @cap. If found, return the capability offset in 729 * config space; otherwise return 0. 730 */ 731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 732 { 733 u16 vsec = 0; 734 u32 header; 735 int ret; 736 737 if (vendor != dev->vendor) 738 return 0; 739 740 while ((vsec = pci_find_next_ext_capability(dev, vsec, 741 PCI_EXT_CAP_ID_VNDR))) { 742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 743 if (ret != PCIBIOS_SUCCESSFUL) 744 continue; 745 746 if (PCI_VNDR_HEADER_ID(header) == cap) 747 return vsec; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 753 754 /** 755 * pci_find_dvsec_capability - Find DVSEC for vendor 756 * @dev: PCI device to query 757 * @vendor: Vendor ID to match for the DVSEC 758 * @dvsec: Designated Vendor-specific capability ID 759 * 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 761 * offset in config space; otherwise return 0. 762 */ 763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 764 { 765 int pos; 766 767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 768 if (!pos) 769 return 0; 770 771 while (pos) { 772 u16 v, id; 773 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 776 if (vendor == v && dvsec == id) 777 return pos; 778 779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 785 786 /** 787 * pci_find_parent_resource - return resource region of parent bus of given 788 * region 789 * @dev: PCI device structure contains resources to be searched 790 * @res: child resource record for which parent is sought 791 * 792 * For given resource region of given device, return the resource region of 793 * parent bus the given region is contained in. 794 */ 795 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 796 struct resource *res) 797 { 798 const struct pci_bus *bus = dev->bus; 799 struct resource *r; 800 801 pci_bus_for_each_resource(bus, r) { 802 if (!r) 803 continue; 804 if (resource_contains(r, res)) { 805 806 /* 807 * If the window is prefetchable but the BAR is 808 * not, the allocator made a mistake. 809 */ 810 if (r->flags & IORESOURCE_PREFETCH && 811 !(res->flags & IORESOURCE_PREFETCH)) 812 return NULL; 813 814 /* 815 * If we're below a transparent bridge, there may 816 * be both a positively-decoded aperture and a 817 * subtractively-decoded region that contain the BAR. 818 * We want the positively-decoded one, so this depends 819 * on pci_bus_for_each_resource() giving us those 820 * first. 821 */ 822 return r; 823 } 824 } 825 return NULL; 826 } 827 EXPORT_SYMBOL(pci_find_parent_resource); 828 829 /** 830 * pci_find_resource - Return matching PCI device resource 831 * @dev: PCI device to query 832 * @res: Resource to look for 833 * 834 * Goes over standard PCI resources (BARs) and checks if the given resource 835 * is partially or fully contained in any of them. In that case the 836 * matching resource is returned, %NULL otherwise. 837 */ 838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 839 { 840 int i; 841 842 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 843 struct resource *r = &dev->resource[i]; 844 845 if (r->start && resource_contains(r, res)) 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(pci_find_resource); 852 853 /** 854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 855 * @dev: the PCI device to operate on 856 * @pos: config space offset of status word 857 * @mask: mask of bit(s) to care about in status word 858 * 859 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 860 */ 861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 862 { 863 int i; 864 865 /* Wait for Transaction Pending bit clean */ 866 for (i = 0; i < 4; i++) { 867 u16 status; 868 if (i) 869 msleep((1 << (i - 1)) * 100); 870 871 pci_read_config_word(dev, pos, &status); 872 if (!(status & mask)) 873 return 1; 874 } 875 876 return 0; 877 } 878 879 static int pci_acs_enable; 880 881 /** 882 * pci_request_acs - ask for ACS to be enabled if supported 883 */ 884 void pci_request_acs(void) 885 { 886 pci_acs_enable = 1; 887 } 888 889 static const char *disable_acs_redir_param; 890 891 /** 892 * pci_disable_acs_redir - disable ACS redirect capabilities 893 * @dev: the PCI device 894 * 895 * For only devices specified in the disable_acs_redir parameter. 896 */ 897 static void pci_disable_acs_redir(struct pci_dev *dev) 898 { 899 int ret = 0; 900 const char *p; 901 int pos; 902 u16 ctrl; 903 904 if (!disable_acs_redir_param) 905 return; 906 907 p = disable_acs_redir_param; 908 while (*p) { 909 ret = pci_dev_str_match(dev, p, &p); 910 if (ret < 0) { 911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 912 disable_acs_redir_param); 913 914 break; 915 } else if (ret == 1) { 916 /* Found a match */ 917 break; 918 } 919 920 if (*p != ';' && *p != ',') { 921 /* End of param or invalid format */ 922 break; 923 } 924 p++; 925 } 926 927 if (ret != 1) 928 return; 929 930 if (!pci_dev_specific_disable_acs_redir(dev)) 931 return; 932 933 pos = dev->acs_cap; 934 if (!pos) { 935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 936 return; 937 } 938 939 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 940 941 /* P2P Request & Completion Redirect */ 942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 943 944 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 945 946 pci_info(dev, "disabled ACS redirect\n"); 947 } 948 949 /** 950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 951 * @dev: the PCI device 952 */ 953 static void pci_std_enable_acs(struct pci_dev *dev) 954 { 955 int pos; 956 u16 cap; 957 u16 ctrl; 958 959 pos = dev->acs_cap; 960 if (!pos) 961 return; 962 963 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 964 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 965 966 /* Source Validation */ 967 ctrl |= (cap & PCI_ACS_SV); 968 969 /* P2P Request Redirect */ 970 ctrl |= (cap & PCI_ACS_RR); 971 972 /* P2P Completion Redirect */ 973 ctrl |= (cap & PCI_ACS_CR); 974 975 /* Upstream Forwarding */ 976 ctrl |= (cap & PCI_ACS_UF); 977 978 /* Enable Translation Blocking for external devices and noats */ 979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 980 ctrl |= (cap & PCI_ACS_TB); 981 982 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 983 } 984 985 /** 986 * pci_enable_acs - enable ACS if hardware support it 987 * @dev: the PCI device 988 */ 989 static void pci_enable_acs(struct pci_dev *dev) 990 { 991 if (!pci_acs_enable) 992 goto disable_acs_redir; 993 994 if (!pci_dev_specific_enable_acs(dev)) 995 goto disable_acs_redir; 996 997 pci_std_enable_acs(dev); 998 999 disable_acs_redir: 1000 /* 1001 * Note: pci_disable_acs_redir() must be called even if ACS was not 1002 * enabled by the kernel because it may have been enabled by 1003 * platform firmware. So if we are told to disable it, we should 1004 * always disable it after setting the kernel's default 1005 * preferences. 1006 */ 1007 pci_disable_acs_redir(dev); 1008 } 1009 1010 /** 1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1012 * @dev: PCI device to have its BARs restored 1013 * 1014 * Restore the BAR values for a given device, so as to make it 1015 * accessible by its driver. 1016 */ 1017 static void pci_restore_bars(struct pci_dev *dev) 1018 { 1019 int i; 1020 1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1022 pci_update_resource(dev, i); 1023 } 1024 1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1026 { 1027 if (pci_use_mid_pm()) 1028 return true; 1029 1030 return acpi_pci_power_manageable(dev); 1031 } 1032 1033 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1034 pci_power_t t) 1035 { 1036 if (pci_use_mid_pm()) 1037 return mid_pci_set_power_state(dev, t); 1038 1039 return acpi_pci_set_power_state(dev, t); 1040 } 1041 1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1043 { 1044 if (pci_use_mid_pm()) 1045 return mid_pci_get_power_state(dev); 1046 1047 return acpi_pci_get_power_state(dev); 1048 } 1049 1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1051 { 1052 if (!pci_use_mid_pm()) 1053 acpi_pci_refresh_power_state(dev); 1054 } 1055 1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1057 { 1058 if (pci_use_mid_pm()) 1059 return PCI_POWER_ERROR; 1060 1061 return acpi_pci_choose_state(dev); 1062 } 1063 1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1065 { 1066 if (pci_use_mid_pm()) 1067 return PCI_POWER_ERROR; 1068 1069 return acpi_pci_wakeup(dev, enable); 1070 } 1071 1072 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1073 { 1074 if (pci_use_mid_pm()) 1075 return false; 1076 1077 return acpi_pci_need_resume(dev); 1078 } 1079 1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1081 { 1082 if (pci_use_mid_pm()) 1083 return false; 1084 1085 return acpi_pci_bridge_d3(dev); 1086 } 1087 1088 /** 1089 * pci_update_current_state - Read power state of given device and cache it 1090 * @dev: PCI device to handle. 1091 * @state: State to cache in case the device doesn't have the PM capability 1092 * 1093 * The power state is read from the PMCSR register, which however is 1094 * inaccessible in D3cold. The platform firmware is therefore queried first 1095 * to detect accessibility of the register. In case the platform firmware 1096 * reports an incorrect state or the device isn't power manageable by the 1097 * platform at all, we try to detect D3cold by testing accessibility of the 1098 * vendor ID in config space. 1099 */ 1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1101 { 1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1103 dev->current_state = PCI_D3cold; 1104 } else if (dev->pm_cap) { 1105 u16 pmcsr; 1106 1107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1108 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1109 dev->current_state = PCI_D3cold; 1110 return; 1111 } 1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1113 } else { 1114 dev->current_state = state; 1115 } 1116 } 1117 1118 /** 1119 * pci_refresh_power_state - Refresh the given device's power state data 1120 * @dev: Target PCI device. 1121 * 1122 * Ask the platform to refresh the devices power state information and invoke 1123 * pci_update_current_state() to update its current PCI power state. 1124 */ 1125 void pci_refresh_power_state(struct pci_dev *dev) 1126 { 1127 platform_pci_refresh_power_state(dev); 1128 pci_update_current_state(dev, dev->current_state); 1129 } 1130 1131 /** 1132 * pci_platform_power_transition - Use platform to change device power state 1133 * @dev: PCI device to handle. 1134 * @state: State to put the device into. 1135 */ 1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1137 { 1138 int error; 1139 1140 error = platform_pci_set_power_state(dev, state); 1141 if (!error) 1142 pci_update_current_state(dev, state); 1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1144 dev->current_state = PCI_D0; 1145 1146 return error; 1147 } 1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1149 1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1151 { 1152 pm_request_resume(&pci_dev->dev); 1153 return 0; 1154 } 1155 1156 /** 1157 * pci_resume_bus - Walk given bus and runtime resume devices on it 1158 * @bus: Top bus of the subtree to walk. 1159 */ 1160 void pci_resume_bus(struct pci_bus *bus) 1161 { 1162 if (bus) 1163 pci_walk_bus(bus, pci_resume_one, NULL); 1164 } 1165 1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1167 { 1168 int delay = 1; 1169 bool retrain = false; 1170 struct pci_dev *bridge; 1171 1172 if (pci_is_pcie(dev)) { 1173 bridge = pci_upstream_bridge(dev); 1174 if (bridge) 1175 retrain = true; 1176 } 1177 1178 /* 1179 * After reset, the device should not silently discard config 1180 * requests, but it may still indicate that it needs more time by 1181 * responding to them with CRS completions. The Root Port will 1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1183 * the read (except when CRS SV is enabled and the read was for the 1184 * Vendor ID; in that case it synthesizes 0x0001 data). 1185 * 1186 * Wait for the device to return a non-CRS completion. Read the 1187 * Command register instead of Vendor ID so we don't have to 1188 * contend with the CRS SV value. 1189 */ 1190 for (;;) { 1191 u32 id; 1192 1193 pci_read_config_dword(dev, PCI_COMMAND, &id); 1194 if (!PCI_POSSIBLE_ERROR(id)) 1195 break; 1196 1197 if (delay > timeout) { 1198 pci_warn(dev, "not ready %dms after %s; giving up\n", 1199 delay - 1, reset_type); 1200 return -ENOTTY; 1201 } 1202 1203 if (delay > PCI_RESET_WAIT) { 1204 if (retrain) { 1205 retrain = false; 1206 if (pcie_failed_link_retrain(bridge)) { 1207 delay = 1; 1208 continue; 1209 } 1210 } 1211 pci_info(dev, "not ready %dms after %s; waiting\n", 1212 delay - 1, reset_type); 1213 } 1214 1215 msleep(delay); 1216 delay *= 2; 1217 } 1218 1219 if (delay > PCI_RESET_WAIT) 1220 pci_info(dev, "ready %dms after %s\n", delay - 1, 1221 reset_type); 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * pci_power_up - Put the given device into D0 1228 * @dev: PCI device to power up 1229 * 1230 * On success, return 0 or 1, depending on whether or not it is necessary to 1231 * restore the device's BARs subsequently (1 is returned in that case). 1232 * 1233 * On failure, return a negative error code. Always return failure if @dev 1234 * lacks a Power Management Capability, even if the platform was able to 1235 * put the device in D0 via non-PCI means. 1236 */ 1237 int pci_power_up(struct pci_dev *dev) 1238 { 1239 bool need_restore; 1240 pci_power_t state; 1241 u16 pmcsr; 1242 1243 platform_pci_set_power_state(dev, PCI_D0); 1244 1245 if (!dev->pm_cap) { 1246 state = platform_pci_get_power_state(dev); 1247 if (state == PCI_UNKNOWN) 1248 dev->current_state = PCI_D0; 1249 else 1250 dev->current_state = state; 1251 1252 return -EIO; 1253 } 1254 1255 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1256 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1257 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1258 pci_power_name(dev->current_state)); 1259 dev->current_state = PCI_D3cold; 1260 return -EIO; 1261 } 1262 1263 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1264 1265 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1266 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1267 1268 if (state == PCI_D0) 1269 goto end; 1270 1271 /* 1272 * Force the entire word to 0. This doesn't affect PME_Status, disables 1273 * PME_En, and sets PowerState to 0. 1274 */ 1275 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1276 1277 /* Mandatory transition delays; see PCI PM 1.2. */ 1278 if (state == PCI_D3hot) 1279 pci_dev_d3_sleep(dev); 1280 else if (state == PCI_D2) 1281 udelay(PCI_PM_D2_DELAY); 1282 1283 end: 1284 dev->current_state = PCI_D0; 1285 if (need_restore) 1286 return 1; 1287 1288 return 0; 1289 } 1290 1291 /** 1292 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1293 * @dev: PCI device to power up 1294 * 1295 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1296 * to confirm the state change, restore its BARs if they might be lost and 1297 * reconfigure ASPM in accordance with the new power state. 1298 * 1299 * If pci_restore_state() is going to be called right after a power state change 1300 * to D0, it is more efficient to use pci_power_up() directly instead of this 1301 * function. 1302 */ 1303 static int pci_set_full_power_state(struct pci_dev *dev) 1304 { 1305 u16 pmcsr; 1306 int ret; 1307 1308 ret = pci_power_up(dev); 1309 if (ret < 0) { 1310 if (dev->current_state == PCI_D0) 1311 return 0; 1312 1313 return ret; 1314 } 1315 1316 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1317 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1318 if (dev->current_state != PCI_D0) { 1319 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1320 pci_power_name(dev->current_state)); 1321 } else if (ret > 0) { 1322 /* 1323 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1324 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1325 * from D3hot to D0 _may_ perform an internal reset, thereby 1326 * going to "D0 Uninitialized" rather than "D0 Initialized". 1327 * For example, at least some versions of the 3c905B and the 1328 * 3c556B exhibit this behaviour. 1329 * 1330 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1331 * devices in a D3hot state at boot. Consequently, we need to 1332 * restore at least the BARs so that the device will be 1333 * accessible to its driver. 1334 */ 1335 pci_restore_bars(dev); 1336 } 1337 1338 return 0; 1339 } 1340 1341 /** 1342 * __pci_dev_set_current_state - Set current state of a PCI device 1343 * @dev: Device to handle 1344 * @data: pointer to state to be set 1345 */ 1346 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1347 { 1348 pci_power_t state = *(pci_power_t *)data; 1349 1350 dev->current_state = state; 1351 return 0; 1352 } 1353 1354 /** 1355 * pci_bus_set_current_state - Walk given bus and set current state of devices 1356 * @bus: Top bus of the subtree to walk. 1357 * @state: state to be set 1358 */ 1359 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1360 { 1361 if (bus) 1362 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1363 } 1364 1365 /** 1366 * pci_set_low_power_state - Put a PCI device into a low-power state. 1367 * @dev: PCI device to handle. 1368 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1369 * 1370 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1371 * 1372 * RETURN VALUE: 1373 * -EINVAL if the requested state is invalid. 1374 * -EIO if device does not support PCI PM or its PM capabilities register has a 1375 * wrong version, or device doesn't support the requested state. 1376 * 0 if device already is in the requested state. 1377 * 0 if device's power state has been successfully changed. 1378 */ 1379 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state) 1380 { 1381 u16 pmcsr; 1382 1383 if (!dev->pm_cap) 1384 return -EIO; 1385 1386 /* 1387 * Validate transition: We can enter D0 from any state, but if 1388 * we're already in a low-power state, we can only go deeper. E.g., 1389 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1390 * we'd have to go from D3 to D0, then to D1. 1391 */ 1392 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1393 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1394 pci_power_name(dev->current_state), 1395 pci_power_name(state)); 1396 return -EINVAL; 1397 } 1398 1399 /* Check if this device supports the desired state */ 1400 if ((state == PCI_D1 && !dev->d1_support) 1401 || (state == PCI_D2 && !dev->d2_support)) 1402 return -EIO; 1403 1404 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1405 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1406 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1407 pci_power_name(dev->current_state), 1408 pci_power_name(state)); 1409 dev->current_state = PCI_D3cold; 1410 return -EIO; 1411 } 1412 1413 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1414 pmcsr |= state; 1415 1416 /* Enter specified state */ 1417 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1418 1419 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1420 if (state == PCI_D3hot) 1421 pci_dev_d3_sleep(dev); 1422 else if (state == PCI_D2) 1423 udelay(PCI_PM_D2_DELAY); 1424 1425 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1426 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1427 if (dev->current_state != state) 1428 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1429 pci_power_name(dev->current_state), 1430 pci_power_name(state)); 1431 1432 return 0; 1433 } 1434 1435 /** 1436 * pci_set_power_state - Set the power state of a PCI device 1437 * @dev: PCI device to handle. 1438 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1439 * 1440 * Transition a device to a new power state, using the platform firmware and/or 1441 * the device's PCI PM registers. 1442 * 1443 * RETURN VALUE: 1444 * -EINVAL if the requested state is invalid. 1445 * -EIO if device does not support PCI PM or its PM capabilities register has a 1446 * wrong version, or device doesn't support the requested state. 1447 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1448 * 0 if device already is in the requested state. 1449 * 0 if the transition is to D3 but D3 is not supported. 1450 * 0 if device's power state has been successfully changed. 1451 */ 1452 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1453 { 1454 int error; 1455 1456 /* Bound the state we're entering */ 1457 if (state > PCI_D3cold) 1458 state = PCI_D3cold; 1459 else if (state < PCI_D0) 1460 state = PCI_D0; 1461 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1462 1463 /* 1464 * If the device or the parent bridge do not support PCI 1465 * PM, ignore the request if we're doing anything other 1466 * than putting it into D0 (which would only happen on 1467 * boot). 1468 */ 1469 return 0; 1470 1471 /* Check if we're already there */ 1472 if (dev->current_state == state) 1473 return 0; 1474 1475 if (state == PCI_D0) 1476 return pci_set_full_power_state(dev); 1477 1478 /* 1479 * This device is quirked not to be put into D3, so don't put it in 1480 * D3 1481 */ 1482 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1483 return 0; 1484 1485 if (state == PCI_D3cold) { 1486 /* 1487 * To put the device in D3cold, put it into D3hot in the native 1488 * way, then put it into D3cold using platform ops. 1489 */ 1490 error = pci_set_low_power_state(dev, PCI_D3hot); 1491 1492 if (pci_platform_power_transition(dev, PCI_D3cold)) 1493 return error; 1494 1495 /* Powering off a bridge may power off the whole hierarchy */ 1496 if (dev->current_state == PCI_D3cold) 1497 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1498 } else { 1499 error = pci_set_low_power_state(dev, state); 1500 1501 if (pci_platform_power_transition(dev, state)) 1502 return error; 1503 } 1504 1505 return 0; 1506 } 1507 EXPORT_SYMBOL(pci_set_power_state); 1508 1509 #define PCI_EXP_SAVE_REGS 7 1510 1511 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1512 u16 cap, bool extended) 1513 { 1514 struct pci_cap_saved_state *tmp; 1515 1516 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1517 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1518 return tmp; 1519 } 1520 return NULL; 1521 } 1522 1523 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1524 { 1525 return _pci_find_saved_cap(dev, cap, false); 1526 } 1527 1528 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1529 { 1530 return _pci_find_saved_cap(dev, cap, true); 1531 } 1532 1533 static int pci_save_pcie_state(struct pci_dev *dev) 1534 { 1535 int i = 0; 1536 struct pci_cap_saved_state *save_state; 1537 u16 *cap; 1538 1539 if (!pci_is_pcie(dev)) 1540 return 0; 1541 1542 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1543 if (!save_state) { 1544 pci_err(dev, "buffer not found in %s\n", __func__); 1545 return -ENOMEM; 1546 } 1547 1548 cap = (u16 *)&save_state->cap.data[0]; 1549 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1550 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1551 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1552 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1553 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1554 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1555 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1556 1557 return 0; 1558 } 1559 1560 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1561 { 1562 #ifdef CONFIG_PCIEASPM 1563 struct pci_dev *bridge; 1564 u32 ctl; 1565 1566 bridge = pci_upstream_bridge(dev); 1567 if (bridge && bridge->ltr_path) { 1568 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1569 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1570 pci_dbg(bridge, "re-enabling LTR\n"); 1571 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1572 PCI_EXP_DEVCTL2_LTR_EN); 1573 } 1574 } 1575 #endif 1576 } 1577 1578 static void pci_restore_pcie_state(struct pci_dev *dev) 1579 { 1580 int i = 0; 1581 struct pci_cap_saved_state *save_state; 1582 u16 *cap; 1583 1584 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1585 if (!save_state) 1586 return; 1587 1588 /* 1589 * Downstream ports reset the LTR enable bit when link goes down. 1590 * Check and re-configure the bit here before restoring device. 1591 * PCIe r5.0, sec 7.5.3.16. 1592 */ 1593 pci_bridge_reconfigure_ltr(dev); 1594 1595 cap = (u16 *)&save_state->cap.data[0]; 1596 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1597 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1598 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1599 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1600 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1601 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1602 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1603 } 1604 1605 static int pci_save_pcix_state(struct pci_dev *dev) 1606 { 1607 int pos; 1608 struct pci_cap_saved_state *save_state; 1609 1610 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1611 if (!pos) 1612 return 0; 1613 1614 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1615 if (!save_state) { 1616 pci_err(dev, "buffer not found in %s\n", __func__); 1617 return -ENOMEM; 1618 } 1619 1620 pci_read_config_word(dev, pos + PCI_X_CMD, 1621 (u16 *)save_state->cap.data); 1622 1623 return 0; 1624 } 1625 1626 static void pci_restore_pcix_state(struct pci_dev *dev) 1627 { 1628 int i = 0, pos; 1629 struct pci_cap_saved_state *save_state; 1630 u16 *cap; 1631 1632 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1633 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1634 if (!save_state || !pos) 1635 return; 1636 cap = (u16 *)&save_state->cap.data[0]; 1637 1638 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1639 } 1640 1641 static void pci_save_ltr_state(struct pci_dev *dev) 1642 { 1643 int ltr; 1644 struct pci_cap_saved_state *save_state; 1645 u32 *cap; 1646 1647 if (!pci_is_pcie(dev)) 1648 return; 1649 1650 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1651 if (!ltr) 1652 return; 1653 1654 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1655 if (!save_state) { 1656 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1657 return; 1658 } 1659 1660 /* Some broken devices only support dword access to LTR */ 1661 cap = &save_state->cap.data[0]; 1662 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1663 } 1664 1665 static void pci_restore_ltr_state(struct pci_dev *dev) 1666 { 1667 struct pci_cap_saved_state *save_state; 1668 int ltr; 1669 u32 *cap; 1670 1671 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1672 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1673 if (!save_state || !ltr) 1674 return; 1675 1676 /* Some broken devices only support dword access to LTR */ 1677 cap = &save_state->cap.data[0]; 1678 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1679 } 1680 1681 /** 1682 * pci_save_state - save the PCI configuration space of a device before 1683 * suspending 1684 * @dev: PCI device that we're dealing with 1685 */ 1686 int pci_save_state(struct pci_dev *dev) 1687 { 1688 int i; 1689 /* XXX: 100% dword access ok here? */ 1690 for (i = 0; i < 16; i++) { 1691 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1692 pci_dbg(dev, "save config %#04x: %#010x\n", 1693 i * 4, dev->saved_config_space[i]); 1694 } 1695 dev->state_saved = true; 1696 1697 i = pci_save_pcie_state(dev); 1698 if (i != 0) 1699 return i; 1700 1701 i = pci_save_pcix_state(dev); 1702 if (i != 0) 1703 return i; 1704 1705 pci_save_ltr_state(dev); 1706 pci_save_dpc_state(dev); 1707 pci_save_aer_state(dev); 1708 pci_save_ptm_state(dev); 1709 return pci_save_vc_state(dev); 1710 } 1711 EXPORT_SYMBOL(pci_save_state); 1712 1713 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1714 u32 saved_val, int retry, bool force) 1715 { 1716 u32 val; 1717 1718 pci_read_config_dword(pdev, offset, &val); 1719 if (!force && val == saved_val) 1720 return; 1721 1722 for (;;) { 1723 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1724 offset, val, saved_val); 1725 pci_write_config_dword(pdev, offset, saved_val); 1726 if (retry-- <= 0) 1727 return; 1728 1729 pci_read_config_dword(pdev, offset, &val); 1730 if (val == saved_val) 1731 return; 1732 1733 mdelay(1); 1734 } 1735 } 1736 1737 static void pci_restore_config_space_range(struct pci_dev *pdev, 1738 int start, int end, int retry, 1739 bool force) 1740 { 1741 int index; 1742 1743 for (index = end; index >= start; index--) 1744 pci_restore_config_dword(pdev, 4 * index, 1745 pdev->saved_config_space[index], 1746 retry, force); 1747 } 1748 1749 static void pci_restore_config_space(struct pci_dev *pdev) 1750 { 1751 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1752 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1753 /* Restore BARs before the command register. */ 1754 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1755 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1756 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1757 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1758 1759 /* 1760 * Force rewriting of prefetch registers to avoid S3 resume 1761 * issues on Intel PCI bridges that occur when these 1762 * registers are not explicitly written. 1763 */ 1764 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1765 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1766 } else { 1767 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1768 } 1769 } 1770 1771 static void pci_restore_rebar_state(struct pci_dev *pdev) 1772 { 1773 unsigned int pos, nbars, i; 1774 u32 ctrl; 1775 1776 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1777 if (!pos) 1778 return; 1779 1780 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1781 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1782 1783 for (i = 0; i < nbars; i++, pos += 8) { 1784 struct resource *res; 1785 int bar_idx, size; 1786 1787 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1788 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1789 res = pdev->resource + bar_idx; 1790 size = pci_rebar_bytes_to_size(resource_size(res)); 1791 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1792 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1793 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1794 } 1795 } 1796 1797 /** 1798 * pci_restore_state - Restore the saved state of a PCI device 1799 * @dev: PCI device that we're dealing with 1800 */ 1801 void pci_restore_state(struct pci_dev *dev) 1802 { 1803 if (!dev->state_saved) 1804 return; 1805 1806 /* 1807 * Restore max latencies (in the LTR capability) before enabling 1808 * LTR itself (in the PCIe capability). 1809 */ 1810 pci_restore_ltr_state(dev); 1811 1812 pci_restore_pcie_state(dev); 1813 pci_restore_pasid_state(dev); 1814 pci_restore_pri_state(dev); 1815 pci_restore_ats_state(dev); 1816 pci_restore_vc_state(dev); 1817 pci_restore_rebar_state(dev); 1818 pci_restore_dpc_state(dev); 1819 pci_restore_ptm_state(dev); 1820 1821 pci_aer_clear_status(dev); 1822 pci_restore_aer_state(dev); 1823 1824 pci_restore_config_space(dev); 1825 1826 pci_restore_pcix_state(dev); 1827 pci_restore_msi_state(dev); 1828 1829 /* Restore ACS and IOV configuration state */ 1830 pci_enable_acs(dev); 1831 pci_restore_iov_state(dev); 1832 1833 dev->state_saved = false; 1834 } 1835 EXPORT_SYMBOL(pci_restore_state); 1836 1837 struct pci_saved_state { 1838 u32 config_space[16]; 1839 struct pci_cap_saved_data cap[]; 1840 }; 1841 1842 /** 1843 * pci_store_saved_state - Allocate and return an opaque struct containing 1844 * the device saved state. 1845 * @dev: PCI device that we're dealing with 1846 * 1847 * Return NULL if no state or error. 1848 */ 1849 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1850 { 1851 struct pci_saved_state *state; 1852 struct pci_cap_saved_state *tmp; 1853 struct pci_cap_saved_data *cap; 1854 size_t size; 1855 1856 if (!dev->state_saved) 1857 return NULL; 1858 1859 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1860 1861 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1862 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1863 1864 state = kzalloc(size, GFP_KERNEL); 1865 if (!state) 1866 return NULL; 1867 1868 memcpy(state->config_space, dev->saved_config_space, 1869 sizeof(state->config_space)); 1870 1871 cap = state->cap; 1872 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1873 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1874 memcpy(cap, &tmp->cap, len); 1875 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1876 } 1877 /* Empty cap_save terminates list */ 1878 1879 return state; 1880 } 1881 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1882 1883 /** 1884 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1885 * @dev: PCI device that we're dealing with 1886 * @state: Saved state returned from pci_store_saved_state() 1887 */ 1888 int pci_load_saved_state(struct pci_dev *dev, 1889 struct pci_saved_state *state) 1890 { 1891 struct pci_cap_saved_data *cap; 1892 1893 dev->state_saved = false; 1894 1895 if (!state) 1896 return 0; 1897 1898 memcpy(dev->saved_config_space, state->config_space, 1899 sizeof(state->config_space)); 1900 1901 cap = state->cap; 1902 while (cap->size) { 1903 struct pci_cap_saved_state *tmp; 1904 1905 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1906 if (!tmp || tmp->cap.size != cap->size) 1907 return -EINVAL; 1908 1909 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1910 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1911 sizeof(struct pci_cap_saved_data) + cap->size); 1912 } 1913 1914 dev->state_saved = true; 1915 return 0; 1916 } 1917 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1918 1919 /** 1920 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1921 * and free the memory allocated for it. 1922 * @dev: PCI device that we're dealing with 1923 * @state: Pointer to saved state returned from pci_store_saved_state() 1924 */ 1925 int pci_load_and_free_saved_state(struct pci_dev *dev, 1926 struct pci_saved_state **state) 1927 { 1928 int ret = pci_load_saved_state(dev, *state); 1929 kfree(*state); 1930 *state = NULL; 1931 return ret; 1932 } 1933 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1934 1935 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1936 { 1937 return pci_enable_resources(dev, bars); 1938 } 1939 1940 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1941 { 1942 int err; 1943 struct pci_dev *bridge; 1944 u16 cmd; 1945 u8 pin; 1946 1947 err = pci_set_power_state(dev, PCI_D0); 1948 if (err < 0 && err != -EIO) 1949 return err; 1950 1951 bridge = pci_upstream_bridge(dev); 1952 if (bridge) 1953 pcie_aspm_powersave_config_link(bridge); 1954 1955 err = pcibios_enable_device(dev, bars); 1956 if (err < 0) 1957 return err; 1958 pci_fixup_device(pci_fixup_enable, dev); 1959 1960 if (dev->msi_enabled || dev->msix_enabled) 1961 return 0; 1962 1963 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1964 if (pin) { 1965 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1966 if (cmd & PCI_COMMAND_INTX_DISABLE) 1967 pci_write_config_word(dev, PCI_COMMAND, 1968 cmd & ~PCI_COMMAND_INTX_DISABLE); 1969 } 1970 1971 return 0; 1972 } 1973 1974 /** 1975 * pci_reenable_device - Resume abandoned device 1976 * @dev: PCI device to be resumed 1977 * 1978 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1979 * to be called by normal code, write proper resume handler and use it instead. 1980 */ 1981 int pci_reenable_device(struct pci_dev *dev) 1982 { 1983 if (pci_is_enabled(dev)) 1984 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1985 return 0; 1986 } 1987 EXPORT_SYMBOL(pci_reenable_device); 1988 1989 static void pci_enable_bridge(struct pci_dev *dev) 1990 { 1991 struct pci_dev *bridge; 1992 int retval; 1993 1994 bridge = pci_upstream_bridge(dev); 1995 if (bridge) 1996 pci_enable_bridge(bridge); 1997 1998 if (pci_is_enabled(dev)) { 1999 if (!dev->is_busmaster) 2000 pci_set_master(dev); 2001 return; 2002 } 2003 2004 retval = pci_enable_device(dev); 2005 if (retval) 2006 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2007 retval); 2008 pci_set_master(dev); 2009 } 2010 2011 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2012 { 2013 struct pci_dev *bridge; 2014 int err; 2015 int i, bars = 0; 2016 2017 /* 2018 * Power state could be unknown at this point, either due to a fresh 2019 * boot or a device removal call. So get the current power state 2020 * so that things like MSI message writing will behave as expected 2021 * (e.g. if the device really is in D0 at enable time). 2022 */ 2023 pci_update_current_state(dev, dev->current_state); 2024 2025 if (atomic_inc_return(&dev->enable_cnt) > 1) 2026 return 0; /* already enabled */ 2027 2028 bridge = pci_upstream_bridge(dev); 2029 if (bridge) 2030 pci_enable_bridge(bridge); 2031 2032 /* only skip sriov related */ 2033 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2034 if (dev->resource[i].flags & flags) 2035 bars |= (1 << i); 2036 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2037 if (dev->resource[i].flags & flags) 2038 bars |= (1 << i); 2039 2040 err = do_pci_enable_device(dev, bars); 2041 if (err < 0) 2042 atomic_dec(&dev->enable_cnt); 2043 return err; 2044 } 2045 2046 /** 2047 * pci_enable_device_io - Initialize a device for use with IO space 2048 * @dev: PCI device to be initialized 2049 * 2050 * Initialize device before it's used by a driver. Ask low-level code 2051 * to enable I/O resources. Wake up the device if it was suspended. 2052 * Beware, this function can fail. 2053 */ 2054 int pci_enable_device_io(struct pci_dev *dev) 2055 { 2056 return pci_enable_device_flags(dev, IORESOURCE_IO); 2057 } 2058 EXPORT_SYMBOL(pci_enable_device_io); 2059 2060 /** 2061 * pci_enable_device_mem - Initialize a device for use with Memory space 2062 * @dev: PCI device to be initialized 2063 * 2064 * Initialize device before it's used by a driver. Ask low-level code 2065 * to enable Memory resources. Wake up the device if it was suspended. 2066 * Beware, this function can fail. 2067 */ 2068 int pci_enable_device_mem(struct pci_dev *dev) 2069 { 2070 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2071 } 2072 EXPORT_SYMBOL(pci_enable_device_mem); 2073 2074 /** 2075 * pci_enable_device - Initialize device before it's used by a driver. 2076 * @dev: PCI device to be initialized 2077 * 2078 * Initialize device before it's used by a driver. Ask low-level code 2079 * to enable I/O and memory. Wake up the device if it was suspended. 2080 * Beware, this function can fail. 2081 * 2082 * Note we don't actually enable the device many times if we call 2083 * this function repeatedly (we just increment the count). 2084 */ 2085 int pci_enable_device(struct pci_dev *dev) 2086 { 2087 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2088 } 2089 EXPORT_SYMBOL(pci_enable_device); 2090 2091 /* 2092 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2093 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2094 * there's no need to track it separately. pci_devres is initialized 2095 * when a device is enabled using managed PCI device enable interface. 2096 */ 2097 struct pci_devres { 2098 unsigned int enabled:1; 2099 unsigned int pinned:1; 2100 unsigned int orig_intx:1; 2101 unsigned int restore_intx:1; 2102 unsigned int mwi:1; 2103 u32 region_mask; 2104 }; 2105 2106 static void pcim_release(struct device *gendev, void *res) 2107 { 2108 struct pci_dev *dev = to_pci_dev(gendev); 2109 struct pci_devres *this = res; 2110 int i; 2111 2112 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2113 if (this->region_mask & (1 << i)) 2114 pci_release_region(dev, i); 2115 2116 if (this->mwi) 2117 pci_clear_mwi(dev); 2118 2119 if (this->restore_intx) 2120 pci_intx(dev, this->orig_intx); 2121 2122 if (this->enabled && !this->pinned) 2123 pci_disable_device(dev); 2124 } 2125 2126 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2127 { 2128 struct pci_devres *dr, *new_dr; 2129 2130 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2131 if (dr) 2132 return dr; 2133 2134 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2135 if (!new_dr) 2136 return NULL; 2137 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2138 } 2139 2140 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2141 { 2142 if (pci_is_managed(pdev)) 2143 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2144 return NULL; 2145 } 2146 2147 /** 2148 * pcim_enable_device - Managed pci_enable_device() 2149 * @pdev: PCI device to be initialized 2150 * 2151 * Managed pci_enable_device(). 2152 */ 2153 int pcim_enable_device(struct pci_dev *pdev) 2154 { 2155 struct pci_devres *dr; 2156 int rc; 2157 2158 dr = get_pci_dr(pdev); 2159 if (unlikely(!dr)) 2160 return -ENOMEM; 2161 if (dr->enabled) 2162 return 0; 2163 2164 rc = pci_enable_device(pdev); 2165 if (!rc) { 2166 pdev->is_managed = 1; 2167 dr->enabled = 1; 2168 } 2169 return rc; 2170 } 2171 EXPORT_SYMBOL(pcim_enable_device); 2172 2173 /** 2174 * pcim_pin_device - Pin managed PCI device 2175 * @pdev: PCI device to pin 2176 * 2177 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2178 * driver detach. @pdev must have been enabled with 2179 * pcim_enable_device(). 2180 */ 2181 void pcim_pin_device(struct pci_dev *pdev) 2182 { 2183 struct pci_devres *dr; 2184 2185 dr = find_pci_dr(pdev); 2186 WARN_ON(!dr || !dr->enabled); 2187 if (dr) 2188 dr->pinned = 1; 2189 } 2190 EXPORT_SYMBOL(pcim_pin_device); 2191 2192 /* 2193 * pcibios_device_add - provide arch specific hooks when adding device dev 2194 * @dev: the PCI device being added 2195 * 2196 * Permits the platform to provide architecture specific functionality when 2197 * devices are added. This is the default implementation. Architecture 2198 * implementations can override this. 2199 */ 2200 int __weak pcibios_device_add(struct pci_dev *dev) 2201 { 2202 return 0; 2203 } 2204 2205 /** 2206 * pcibios_release_device - provide arch specific hooks when releasing 2207 * device dev 2208 * @dev: the PCI device being released 2209 * 2210 * Permits the platform to provide architecture specific functionality when 2211 * devices are released. This is the default implementation. Architecture 2212 * implementations can override this. 2213 */ 2214 void __weak pcibios_release_device(struct pci_dev *dev) {} 2215 2216 /** 2217 * pcibios_disable_device - disable arch specific PCI resources for device dev 2218 * @dev: the PCI device to disable 2219 * 2220 * Disables architecture specific PCI resources for the device. This 2221 * is the default implementation. Architecture implementations can 2222 * override this. 2223 */ 2224 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2225 2226 /** 2227 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2228 * @irq: ISA IRQ to penalize 2229 * @active: IRQ active or not 2230 * 2231 * Permits the platform to provide architecture-specific functionality when 2232 * penalizing ISA IRQs. This is the default implementation. Architecture 2233 * implementations can override this. 2234 */ 2235 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2236 2237 static void do_pci_disable_device(struct pci_dev *dev) 2238 { 2239 u16 pci_command; 2240 2241 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2242 if (pci_command & PCI_COMMAND_MASTER) { 2243 pci_command &= ~PCI_COMMAND_MASTER; 2244 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2245 } 2246 2247 pcibios_disable_device(dev); 2248 } 2249 2250 /** 2251 * pci_disable_enabled_device - Disable device without updating enable_cnt 2252 * @dev: PCI device to disable 2253 * 2254 * NOTE: This function is a backend of PCI power management routines and is 2255 * not supposed to be called drivers. 2256 */ 2257 void pci_disable_enabled_device(struct pci_dev *dev) 2258 { 2259 if (pci_is_enabled(dev)) 2260 do_pci_disable_device(dev); 2261 } 2262 2263 /** 2264 * pci_disable_device - Disable PCI device after use 2265 * @dev: PCI device to be disabled 2266 * 2267 * Signal to the system that the PCI device is not in use by the system 2268 * anymore. This only involves disabling PCI bus-mastering, if active. 2269 * 2270 * Note we don't actually disable the device until all callers of 2271 * pci_enable_device() have called pci_disable_device(). 2272 */ 2273 void pci_disable_device(struct pci_dev *dev) 2274 { 2275 struct pci_devres *dr; 2276 2277 dr = find_pci_dr(dev); 2278 if (dr) 2279 dr->enabled = 0; 2280 2281 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2282 "disabling already-disabled device"); 2283 2284 if (atomic_dec_return(&dev->enable_cnt) != 0) 2285 return; 2286 2287 do_pci_disable_device(dev); 2288 2289 dev->is_busmaster = 0; 2290 } 2291 EXPORT_SYMBOL(pci_disable_device); 2292 2293 /** 2294 * pcibios_set_pcie_reset_state - set reset state for device dev 2295 * @dev: the PCIe device reset 2296 * @state: Reset state to enter into 2297 * 2298 * Set the PCIe reset state for the device. This is the default 2299 * implementation. Architecture implementations can override this. 2300 */ 2301 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2302 enum pcie_reset_state state) 2303 { 2304 return -EINVAL; 2305 } 2306 2307 /** 2308 * pci_set_pcie_reset_state - set reset state for device dev 2309 * @dev: the PCIe device reset 2310 * @state: Reset state to enter into 2311 * 2312 * Sets the PCI reset state for the device. 2313 */ 2314 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2315 { 2316 return pcibios_set_pcie_reset_state(dev, state); 2317 } 2318 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2319 2320 #ifdef CONFIG_PCIEAER 2321 void pcie_clear_device_status(struct pci_dev *dev) 2322 { 2323 u16 sta; 2324 2325 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2326 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2327 } 2328 #endif 2329 2330 /** 2331 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2332 * @dev: PCIe root port or event collector. 2333 */ 2334 void pcie_clear_root_pme_status(struct pci_dev *dev) 2335 { 2336 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2337 } 2338 2339 /** 2340 * pci_check_pme_status - Check if given device has generated PME. 2341 * @dev: Device to check. 2342 * 2343 * Check the PME status of the device and if set, clear it and clear PME enable 2344 * (if set). Return 'true' if PME status and PME enable were both set or 2345 * 'false' otherwise. 2346 */ 2347 bool pci_check_pme_status(struct pci_dev *dev) 2348 { 2349 int pmcsr_pos; 2350 u16 pmcsr; 2351 bool ret = false; 2352 2353 if (!dev->pm_cap) 2354 return false; 2355 2356 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2357 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2358 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2359 return false; 2360 2361 /* Clear PME status. */ 2362 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2363 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2364 /* Disable PME to avoid interrupt flood. */ 2365 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2366 ret = true; 2367 } 2368 2369 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2370 2371 return ret; 2372 } 2373 2374 /** 2375 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2376 * @dev: Device to handle. 2377 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2378 * 2379 * Check if @dev has generated PME and queue a resume request for it in that 2380 * case. 2381 */ 2382 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2383 { 2384 if (pme_poll_reset && dev->pme_poll) 2385 dev->pme_poll = false; 2386 2387 if (pci_check_pme_status(dev)) { 2388 pci_wakeup_event(dev); 2389 pm_request_resume(&dev->dev); 2390 } 2391 return 0; 2392 } 2393 2394 /** 2395 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2396 * @bus: Top bus of the subtree to walk. 2397 */ 2398 void pci_pme_wakeup_bus(struct pci_bus *bus) 2399 { 2400 if (bus) 2401 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2402 } 2403 2404 2405 /** 2406 * pci_pme_capable - check the capability of PCI device to generate PME# 2407 * @dev: PCI device to handle. 2408 * @state: PCI state from which device will issue PME#. 2409 */ 2410 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2411 { 2412 if (!dev->pm_cap) 2413 return false; 2414 2415 return !!(dev->pme_support & (1 << state)); 2416 } 2417 EXPORT_SYMBOL(pci_pme_capable); 2418 2419 static void pci_pme_list_scan(struct work_struct *work) 2420 { 2421 struct pci_pme_device *pme_dev, *n; 2422 2423 mutex_lock(&pci_pme_list_mutex); 2424 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2425 struct pci_dev *pdev = pme_dev->dev; 2426 2427 if (pdev->pme_poll) { 2428 struct pci_dev *bridge = pdev->bus->self; 2429 struct device *dev = &pdev->dev; 2430 int pm_status; 2431 2432 /* 2433 * If bridge is in low power state, the 2434 * configuration space of subordinate devices 2435 * may be not accessible 2436 */ 2437 if (bridge && bridge->current_state != PCI_D0) 2438 continue; 2439 2440 /* 2441 * If the device is in a low power state it 2442 * should not be polled either. 2443 */ 2444 pm_status = pm_runtime_get_if_active(dev, true); 2445 if (!pm_status) 2446 continue; 2447 2448 if (pdev->current_state != PCI_D3cold) 2449 pci_pme_wakeup(pdev, NULL); 2450 2451 if (pm_status > 0) 2452 pm_runtime_put(dev); 2453 } else { 2454 list_del(&pme_dev->list); 2455 kfree(pme_dev); 2456 } 2457 } 2458 if (!list_empty(&pci_pme_list)) 2459 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2460 msecs_to_jiffies(PME_TIMEOUT)); 2461 mutex_unlock(&pci_pme_list_mutex); 2462 } 2463 2464 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2465 { 2466 u16 pmcsr; 2467 2468 if (!dev->pme_support) 2469 return; 2470 2471 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2472 /* Clear PME_Status by writing 1 to it and enable PME# */ 2473 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2474 if (!enable) 2475 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2476 2477 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2478 } 2479 2480 /** 2481 * pci_pme_restore - Restore PME configuration after config space restore. 2482 * @dev: PCI device to update. 2483 */ 2484 void pci_pme_restore(struct pci_dev *dev) 2485 { 2486 u16 pmcsr; 2487 2488 if (!dev->pme_support) 2489 return; 2490 2491 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2492 if (dev->wakeup_prepared) { 2493 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2494 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2495 } else { 2496 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2497 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2498 } 2499 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2500 } 2501 2502 /** 2503 * pci_pme_active - enable or disable PCI device's PME# function 2504 * @dev: PCI device to handle. 2505 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2506 * 2507 * The caller must verify that the device is capable of generating PME# before 2508 * calling this function with @enable equal to 'true'. 2509 */ 2510 void pci_pme_active(struct pci_dev *dev, bool enable) 2511 { 2512 __pci_pme_active(dev, enable); 2513 2514 /* 2515 * PCI (as opposed to PCIe) PME requires that the device have 2516 * its PME# line hooked up correctly. Not all hardware vendors 2517 * do this, so the PME never gets delivered and the device 2518 * remains asleep. The easiest way around this is to 2519 * periodically walk the list of suspended devices and check 2520 * whether any have their PME flag set. The assumption is that 2521 * we'll wake up often enough anyway that this won't be a huge 2522 * hit, and the power savings from the devices will still be a 2523 * win. 2524 * 2525 * Although PCIe uses in-band PME message instead of PME# line 2526 * to report PME, PME does not work for some PCIe devices in 2527 * reality. For example, there are devices that set their PME 2528 * status bits, but don't really bother to send a PME message; 2529 * there are PCI Express Root Ports that don't bother to 2530 * trigger interrupts when they receive PME messages from the 2531 * devices below. So PME poll is used for PCIe devices too. 2532 */ 2533 2534 if (dev->pme_poll) { 2535 struct pci_pme_device *pme_dev; 2536 if (enable) { 2537 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2538 GFP_KERNEL); 2539 if (!pme_dev) { 2540 pci_warn(dev, "can't enable PME#\n"); 2541 return; 2542 } 2543 pme_dev->dev = dev; 2544 mutex_lock(&pci_pme_list_mutex); 2545 list_add(&pme_dev->list, &pci_pme_list); 2546 if (list_is_singular(&pci_pme_list)) 2547 queue_delayed_work(system_freezable_wq, 2548 &pci_pme_work, 2549 msecs_to_jiffies(PME_TIMEOUT)); 2550 mutex_unlock(&pci_pme_list_mutex); 2551 } else { 2552 mutex_lock(&pci_pme_list_mutex); 2553 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2554 if (pme_dev->dev == dev) { 2555 list_del(&pme_dev->list); 2556 kfree(pme_dev); 2557 break; 2558 } 2559 } 2560 mutex_unlock(&pci_pme_list_mutex); 2561 } 2562 } 2563 2564 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2565 } 2566 EXPORT_SYMBOL(pci_pme_active); 2567 2568 /** 2569 * __pci_enable_wake - enable PCI device as wakeup event source 2570 * @dev: PCI device affected 2571 * @state: PCI state from which device will issue wakeup events 2572 * @enable: True to enable event generation; false to disable 2573 * 2574 * This enables the device as a wakeup event source, or disables it. 2575 * When such events involves platform-specific hooks, those hooks are 2576 * called automatically by this routine. 2577 * 2578 * Devices with legacy power management (no standard PCI PM capabilities) 2579 * always require such platform hooks. 2580 * 2581 * RETURN VALUE: 2582 * 0 is returned on success 2583 * -EINVAL is returned if device is not supposed to wake up the system 2584 * Error code depending on the platform is returned if both the platform and 2585 * the native mechanism fail to enable the generation of wake-up events 2586 */ 2587 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2588 { 2589 int ret = 0; 2590 2591 /* 2592 * Bridges that are not power-manageable directly only signal 2593 * wakeup on behalf of subordinate devices which is set up 2594 * elsewhere, so skip them. However, bridges that are 2595 * power-manageable may signal wakeup for themselves (for example, 2596 * on a hotplug event) and they need to be covered here. 2597 */ 2598 if (!pci_power_manageable(dev)) 2599 return 0; 2600 2601 /* Don't do the same thing twice in a row for one device. */ 2602 if (!!enable == !!dev->wakeup_prepared) 2603 return 0; 2604 2605 /* 2606 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2607 * Anderson we should be doing PME# wake enable followed by ACPI wake 2608 * enable. To disable wake-up we call the platform first, for symmetry. 2609 */ 2610 2611 if (enable) { 2612 int error; 2613 2614 /* 2615 * Enable PME signaling if the device can signal PME from 2616 * D3cold regardless of whether or not it can signal PME from 2617 * the current target state, because that will allow it to 2618 * signal PME when the hierarchy above it goes into D3cold and 2619 * the device itself ends up in D3cold as a result of that. 2620 */ 2621 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2622 pci_pme_active(dev, true); 2623 else 2624 ret = 1; 2625 error = platform_pci_set_wakeup(dev, true); 2626 if (ret) 2627 ret = error; 2628 if (!ret) 2629 dev->wakeup_prepared = true; 2630 } else { 2631 platform_pci_set_wakeup(dev, false); 2632 pci_pme_active(dev, false); 2633 dev->wakeup_prepared = false; 2634 } 2635 2636 return ret; 2637 } 2638 2639 /** 2640 * pci_enable_wake - change wakeup settings for a PCI device 2641 * @pci_dev: Target device 2642 * @state: PCI state from which device will issue wakeup events 2643 * @enable: Whether or not to enable event generation 2644 * 2645 * If @enable is set, check device_may_wakeup() for the device before calling 2646 * __pci_enable_wake() for it. 2647 */ 2648 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2649 { 2650 if (enable && !device_may_wakeup(&pci_dev->dev)) 2651 return -EINVAL; 2652 2653 return __pci_enable_wake(pci_dev, state, enable); 2654 } 2655 EXPORT_SYMBOL(pci_enable_wake); 2656 2657 /** 2658 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2659 * @dev: PCI device to prepare 2660 * @enable: True to enable wake-up event generation; false to disable 2661 * 2662 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2663 * and this function allows them to set that up cleanly - pci_enable_wake() 2664 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2665 * ordering constraints. 2666 * 2667 * This function only returns error code if the device is not allowed to wake 2668 * up the system from sleep or it is not capable of generating PME# from both 2669 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2670 */ 2671 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2672 { 2673 return pci_pme_capable(dev, PCI_D3cold) ? 2674 pci_enable_wake(dev, PCI_D3cold, enable) : 2675 pci_enable_wake(dev, PCI_D3hot, enable); 2676 } 2677 EXPORT_SYMBOL(pci_wake_from_d3); 2678 2679 /** 2680 * pci_target_state - find an appropriate low power state for a given PCI dev 2681 * @dev: PCI device 2682 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2683 * 2684 * Use underlying platform code to find a supported low power state for @dev. 2685 * If the platform can't manage @dev, return the deepest state from which it 2686 * can generate wake events, based on any available PME info. 2687 */ 2688 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2689 { 2690 if (platform_pci_power_manageable(dev)) { 2691 /* 2692 * Call the platform to find the target state for the device. 2693 */ 2694 pci_power_t state = platform_pci_choose_state(dev); 2695 2696 switch (state) { 2697 case PCI_POWER_ERROR: 2698 case PCI_UNKNOWN: 2699 return PCI_D3hot; 2700 2701 case PCI_D1: 2702 case PCI_D2: 2703 if (pci_no_d1d2(dev)) 2704 return PCI_D3hot; 2705 } 2706 2707 return state; 2708 } 2709 2710 /* 2711 * If the device is in D3cold even though it's not power-manageable by 2712 * the platform, it may have been powered down by non-standard means. 2713 * Best to let it slumber. 2714 */ 2715 if (dev->current_state == PCI_D3cold) 2716 return PCI_D3cold; 2717 else if (!dev->pm_cap) 2718 return PCI_D0; 2719 2720 if (wakeup && dev->pme_support) { 2721 pci_power_t state = PCI_D3hot; 2722 2723 /* 2724 * Find the deepest state from which the device can generate 2725 * PME#. 2726 */ 2727 while (state && !(dev->pme_support & (1 << state))) 2728 state--; 2729 2730 if (state) 2731 return state; 2732 else if (dev->pme_support & 1) 2733 return PCI_D0; 2734 } 2735 2736 return PCI_D3hot; 2737 } 2738 2739 /** 2740 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2741 * into a sleep state 2742 * @dev: Device to handle. 2743 * 2744 * Choose the power state appropriate for the device depending on whether 2745 * it can wake up the system and/or is power manageable by the platform 2746 * (PCI_D3hot is the default) and put the device into that state. 2747 */ 2748 int pci_prepare_to_sleep(struct pci_dev *dev) 2749 { 2750 bool wakeup = device_may_wakeup(&dev->dev); 2751 pci_power_t target_state = pci_target_state(dev, wakeup); 2752 int error; 2753 2754 if (target_state == PCI_POWER_ERROR) 2755 return -EIO; 2756 2757 pci_enable_wake(dev, target_state, wakeup); 2758 2759 error = pci_set_power_state(dev, target_state); 2760 2761 if (error) 2762 pci_enable_wake(dev, target_state, false); 2763 2764 return error; 2765 } 2766 EXPORT_SYMBOL(pci_prepare_to_sleep); 2767 2768 /** 2769 * pci_back_from_sleep - turn PCI device on during system-wide transition 2770 * into working state 2771 * @dev: Device to handle. 2772 * 2773 * Disable device's system wake-up capability and put it into D0. 2774 */ 2775 int pci_back_from_sleep(struct pci_dev *dev) 2776 { 2777 int ret = pci_set_power_state(dev, PCI_D0); 2778 2779 if (ret) 2780 return ret; 2781 2782 pci_enable_wake(dev, PCI_D0, false); 2783 return 0; 2784 } 2785 EXPORT_SYMBOL(pci_back_from_sleep); 2786 2787 /** 2788 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2789 * @dev: PCI device being suspended. 2790 * 2791 * Prepare @dev to generate wake-up events at run time and put it into a low 2792 * power state. 2793 */ 2794 int pci_finish_runtime_suspend(struct pci_dev *dev) 2795 { 2796 pci_power_t target_state; 2797 int error; 2798 2799 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2800 if (target_state == PCI_POWER_ERROR) 2801 return -EIO; 2802 2803 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2804 2805 error = pci_set_power_state(dev, target_state); 2806 2807 if (error) 2808 pci_enable_wake(dev, target_state, false); 2809 2810 return error; 2811 } 2812 2813 /** 2814 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2815 * @dev: Device to check. 2816 * 2817 * Return true if the device itself is capable of generating wake-up events 2818 * (through the platform or using the native PCIe PME) or if the device supports 2819 * PME and one of its upstream bridges can generate wake-up events. 2820 */ 2821 bool pci_dev_run_wake(struct pci_dev *dev) 2822 { 2823 struct pci_bus *bus = dev->bus; 2824 2825 if (!dev->pme_support) 2826 return false; 2827 2828 /* PME-capable in principle, but not from the target power state */ 2829 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2830 return false; 2831 2832 if (device_can_wakeup(&dev->dev)) 2833 return true; 2834 2835 while (bus->parent) { 2836 struct pci_dev *bridge = bus->self; 2837 2838 if (device_can_wakeup(&bridge->dev)) 2839 return true; 2840 2841 bus = bus->parent; 2842 } 2843 2844 /* We have reached the root bus. */ 2845 if (bus->bridge) 2846 return device_can_wakeup(bus->bridge); 2847 2848 return false; 2849 } 2850 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2851 2852 /** 2853 * pci_dev_need_resume - Check if it is necessary to resume the device. 2854 * @pci_dev: Device to check. 2855 * 2856 * Return 'true' if the device is not runtime-suspended or it has to be 2857 * reconfigured due to wakeup settings difference between system and runtime 2858 * suspend, or the current power state of it is not suitable for the upcoming 2859 * (system-wide) transition. 2860 */ 2861 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2862 { 2863 struct device *dev = &pci_dev->dev; 2864 pci_power_t target_state; 2865 2866 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2867 return true; 2868 2869 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2870 2871 /* 2872 * If the earlier platform check has not triggered, D3cold is just power 2873 * removal on top of D3hot, so no need to resume the device in that 2874 * case. 2875 */ 2876 return target_state != pci_dev->current_state && 2877 target_state != PCI_D3cold && 2878 pci_dev->current_state != PCI_D3hot; 2879 } 2880 2881 /** 2882 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2883 * @pci_dev: Device to check. 2884 * 2885 * If the device is suspended and it is not configured for system wakeup, 2886 * disable PME for it to prevent it from waking up the system unnecessarily. 2887 * 2888 * Note that if the device's power state is D3cold and the platform check in 2889 * pci_dev_need_resume() has not triggered, the device's configuration need not 2890 * be changed. 2891 */ 2892 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2893 { 2894 struct device *dev = &pci_dev->dev; 2895 2896 spin_lock_irq(&dev->power.lock); 2897 2898 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2899 pci_dev->current_state < PCI_D3cold) 2900 __pci_pme_active(pci_dev, false); 2901 2902 spin_unlock_irq(&dev->power.lock); 2903 } 2904 2905 /** 2906 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2907 * @pci_dev: Device to handle. 2908 * 2909 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2910 * it might have been disabled during the prepare phase of system suspend if 2911 * the device was not configured for system wakeup. 2912 */ 2913 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2914 { 2915 struct device *dev = &pci_dev->dev; 2916 2917 if (!pci_dev_run_wake(pci_dev)) 2918 return; 2919 2920 spin_lock_irq(&dev->power.lock); 2921 2922 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2923 __pci_pme_active(pci_dev, true); 2924 2925 spin_unlock_irq(&dev->power.lock); 2926 } 2927 2928 /** 2929 * pci_choose_state - Choose the power state of a PCI device. 2930 * @dev: Target PCI device. 2931 * @state: Target state for the whole system. 2932 * 2933 * Returns PCI power state suitable for @dev and @state. 2934 */ 2935 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2936 { 2937 if (state.event == PM_EVENT_ON) 2938 return PCI_D0; 2939 2940 return pci_target_state(dev, false); 2941 } 2942 EXPORT_SYMBOL(pci_choose_state); 2943 2944 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2945 { 2946 struct device *dev = &pdev->dev; 2947 struct device *parent = dev->parent; 2948 2949 if (parent) 2950 pm_runtime_get_sync(parent); 2951 pm_runtime_get_noresume(dev); 2952 /* 2953 * pdev->current_state is set to PCI_D3cold during suspending, 2954 * so wait until suspending completes 2955 */ 2956 pm_runtime_barrier(dev); 2957 /* 2958 * Only need to resume devices in D3cold, because config 2959 * registers are still accessible for devices suspended but 2960 * not in D3cold. 2961 */ 2962 if (pdev->current_state == PCI_D3cold) 2963 pm_runtime_resume(dev); 2964 } 2965 2966 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2967 { 2968 struct device *dev = &pdev->dev; 2969 struct device *parent = dev->parent; 2970 2971 pm_runtime_put(dev); 2972 if (parent) 2973 pm_runtime_put_sync(parent); 2974 } 2975 2976 static const struct dmi_system_id bridge_d3_blacklist[] = { 2977 #ifdef CONFIG_X86 2978 { 2979 /* 2980 * Gigabyte X299 root port is not marked as hotplug capable 2981 * which allows Linux to power manage it. However, this 2982 * confuses the BIOS SMI handler so don't power manage root 2983 * ports on that system. 2984 */ 2985 .ident = "X299 DESIGNARE EX-CF", 2986 .matches = { 2987 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2988 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2989 }, 2990 }, 2991 { 2992 /* 2993 * Downstream device is not accessible after putting a root port 2994 * into D3cold and back into D0 on Elo Continental Z2 board 2995 */ 2996 .ident = "Elo Continental Z2", 2997 .matches = { 2998 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 2999 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3000 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3001 }, 3002 }, 3003 #endif 3004 { } 3005 }; 3006 3007 /** 3008 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3009 * @bridge: Bridge to check 3010 * 3011 * This function checks if it is possible to move the bridge to D3. 3012 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3013 */ 3014 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3015 { 3016 if (!pci_is_pcie(bridge)) 3017 return false; 3018 3019 switch (pci_pcie_type(bridge)) { 3020 case PCI_EXP_TYPE_ROOT_PORT: 3021 case PCI_EXP_TYPE_UPSTREAM: 3022 case PCI_EXP_TYPE_DOWNSTREAM: 3023 if (pci_bridge_d3_disable) 3024 return false; 3025 3026 /* 3027 * Hotplug ports handled by firmware in System Management Mode 3028 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3029 */ 3030 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3031 return false; 3032 3033 if (pci_bridge_d3_force) 3034 return true; 3035 3036 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3037 if (bridge->is_thunderbolt) 3038 return true; 3039 3040 /* Platform might know better if the bridge supports D3 */ 3041 if (platform_pci_bridge_d3(bridge)) 3042 return true; 3043 3044 /* 3045 * Hotplug ports handled natively by the OS were not validated 3046 * by vendors for runtime D3 at least until 2018 because there 3047 * was no OS support. 3048 */ 3049 if (bridge->is_hotplug_bridge) 3050 return false; 3051 3052 if (dmi_check_system(bridge_d3_blacklist)) 3053 return false; 3054 3055 /* 3056 * It should be safe to put PCIe ports from 2015 or newer 3057 * to D3. 3058 */ 3059 if (dmi_get_bios_year() >= 2015) 3060 return true; 3061 break; 3062 } 3063 3064 return false; 3065 } 3066 3067 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3068 { 3069 bool *d3cold_ok = data; 3070 3071 if (/* The device needs to be allowed to go D3cold ... */ 3072 dev->no_d3cold || !dev->d3cold_allowed || 3073 3074 /* ... and if it is wakeup capable to do so from D3cold. */ 3075 (device_may_wakeup(&dev->dev) && 3076 !pci_pme_capable(dev, PCI_D3cold)) || 3077 3078 /* If it is a bridge it must be allowed to go to D3. */ 3079 !pci_power_manageable(dev)) 3080 3081 *d3cold_ok = false; 3082 3083 return !*d3cold_ok; 3084 } 3085 3086 /* 3087 * pci_bridge_d3_update - Update bridge D3 capabilities 3088 * @dev: PCI device which is changed 3089 * 3090 * Update upstream bridge PM capabilities accordingly depending on if the 3091 * device PM configuration was changed or the device is being removed. The 3092 * change is also propagated upstream. 3093 */ 3094 void pci_bridge_d3_update(struct pci_dev *dev) 3095 { 3096 bool remove = !device_is_registered(&dev->dev); 3097 struct pci_dev *bridge; 3098 bool d3cold_ok = true; 3099 3100 bridge = pci_upstream_bridge(dev); 3101 if (!bridge || !pci_bridge_d3_possible(bridge)) 3102 return; 3103 3104 /* 3105 * If D3 is currently allowed for the bridge, removing one of its 3106 * children won't change that. 3107 */ 3108 if (remove && bridge->bridge_d3) 3109 return; 3110 3111 /* 3112 * If D3 is currently allowed for the bridge and a child is added or 3113 * changed, disallowance of D3 can only be caused by that child, so 3114 * we only need to check that single device, not any of its siblings. 3115 * 3116 * If D3 is currently not allowed for the bridge, checking the device 3117 * first may allow us to skip checking its siblings. 3118 */ 3119 if (!remove) 3120 pci_dev_check_d3cold(dev, &d3cold_ok); 3121 3122 /* 3123 * If D3 is currently not allowed for the bridge, this may be caused 3124 * either by the device being changed/removed or any of its siblings, 3125 * so we need to go through all children to find out if one of them 3126 * continues to block D3. 3127 */ 3128 if (d3cold_ok && !bridge->bridge_d3) 3129 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3130 &d3cold_ok); 3131 3132 if (bridge->bridge_d3 != d3cold_ok) { 3133 bridge->bridge_d3 = d3cold_ok; 3134 /* Propagate change to upstream bridges */ 3135 pci_bridge_d3_update(bridge); 3136 } 3137 } 3138 3139 /** 3140 * pci_d3cold_enable - Enable D3cold for device 3141 * @dev: PCI device to handle 3142 * 3143 * This function can be used in drivers to enable D3cold from the device 3144 * they handle. It also updates upstream PCI bridge PM capabilities 3145 * accordingly. 3146 */ 3147 void pci_d3cold_enable(struct pci_dev *dev) 3148 { 3149 if (dev->no_d3cold) { 3150 dev->no_d3cold = false; 3151 pci_bridge_d3_update(dev); 3152 } 3153 } 3154 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3155 3156 /** 3157 * pci_d3cold_disable - Disable D3cold for device 3158 * @dev: PCI device to handle 3159 * 3160 * This function can be used in drivers to disable D3cold from the device 3161 * they handle. It also updates upstream PCI bridge PM capabilities 3162 * accordingly. 3163 */ 3164 void pci_d3cold_disable(struct pci_dev *dev) 3165 { 3166 if (!dev->no_d3cold) { 3167 dev->no_d3cold = true; 3168 pci_bridge_d3_update(dev); 3169 } 3170 } 3171 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3172 3173 /** 3174 * pci_pm_init - Initialize PM functions of given PCI device 3175 * @dev: PCI device to handle. 3176 */ 3177 void pci_pm_init(struct pci_dev *dev) 3178 { 3179 int pm; 3180 u16 status; 3181 u16 pmc; 3182 3183 pm_runtime_forbid(&dev->dev); 3184 pm_runtime_set_active(&dev->dev); 3185 pm_runtime_enable(&dev->dev); 3186 device_enable_async_suspend(&dev->dev); 3187 dev->wakeup_prepared = false; 3188 3189 dev->pm_cap = 0; 3190 dev->pme_support = 0; 3191 3192 /* find PCI PM capability in list */ 3193 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3194 if (!pm) 3195 return; 3196 /* Check device's ability to generate PME# */ 3197 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3198 3199 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3200 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3201 pmc & PCI_PM_CAP_VER_MASK); 3202 return; 3203 } 3204 3205 dev->pm_cap = pm; 3206 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3207 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3208 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3209 dev->d3cold_allowed = true; 3210 3211 dev->d1_support = false; 3212 dev->d2_support = false; 3213 if (!pci_no_d1d2(dev)) { 3214 if (pmc & PCI_PM_CAP_D1) 3215 dev->d1_support = true; 3216 if (pmc & PCI_PM_CAP_D2) 3217 dev->d2_support = true; 3218 3219 if (dev->d1_support || dev->d2_support) 3220 pci_info(dev, "supports%s%s\n", 3221 dev->d1_support ? " D1" : "", 3222 dev->d2_support ? " D2" : ""); 3223 } 3224 3225 pmc &= PCI_PM_CAP_PME_MASK; 3226 if (pmc) { 3227 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3228 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3229 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3230 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3231 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3232 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3233 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3234 dev->pme_poll = true; 3235 /* 3236 * Make device's PM flags reflect the wake-up capability, but 3237 * let the user space enable it to wake up the system as needed. 3238 */ 3239 device_set_wakeup_capable(&dev->dev, true); 3240 /* Disable the PME# generation functionality */ 3241 pci_pme_active(dev, false); 3242 } 3243 3244 pci_read_config_word(dev, PCI_STATUS, &status); 3245 if (status & PCI_STATUS_IMM_READY) 3246 dev->imm_ready = 1; 3247 } 3248 3249 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3250 { 3251 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3252 3253 switch (prop) { 3254 case PCI_EA_P_MEM: 3255 case PCI_EA_P_VF_MEM: 3256 flags |= IORESOURCE_MEM; 3257 break; 3258 case PCI_EA_P_MEM_PREFETCH: 3259 case PCI_EA_P_VF_MEM_PREFETCH: 3260 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3261 break; 3262 case PCI_EA_P_IO: 3263 flags |= IORESOURCE_IO; 3264 break; 3265 default: 3266 return 0; 3267 } 3268 3269 return flags; 3270 } 3271 3272 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3273 u8 prop) 3274 { 3275 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3276 return &dev->resource[bei]; 3277 #ifdef CONFIG_PCI_IOV 3278 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3279 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3280 return &dev->resource[PCI_IOV_RESOURCES + 3281 bei - PCI_EA_BEI_VF_BAR0]; 3282 #endif 3283 else if (bei == PCI_EA_BEI_ROM) 3284 return &dev->resource[PCI_ROM_RESOURCE]; 3285 else 3286 return NULL; 3287 } 3288 3289 /* Read an Enhanced Allocation (EA) entry */ 3290 static int pci_ea_read(struct pci_dev *dev, int offset) 3291 { 3292 struct resource *res; 3293 int ent_size, ent_offset = offset; 3294 resource_size_t start, end; 3295 unsigned long flags; 3296 u32 dw0, bei, base, max_offset; 3297 u8 prop; 3298 bool support_64 = (sizeof(resource_size_t) >= 8); 3299 3300 pci_read_config_dword(dev, ent_offset, &dw0); 3301 ent_offset += 4; 3302 3303 /* Entry size field indicates DWORDs after 1st */ 3304 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3305 3306 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3307 goto out; 3308 3309 bei = FIELD_GET(PCI_EA_BEI, dw0); 3310 prop = FIELD_GET(PCI_EA_PP, dw0); 3311 3312 /* 3313 * If the Property is in the reserved range, try the Secondary 3314 * Property instead. 3315 */ 3316 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3317 prop = FIELD_GET(PCI_EA_SP, dw0); 3318 if (prop > PCI_EA_P_BRIDGE_IO) 3319 goto out; 3320 3321 res = pci_ea_get_resource(dev, bei, prop); 3322 if (!res) { 3323 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3324 goto out; 3325 } 3326 3327 flags = pci_ea_flags(dev, prop); 3328 if (!flags) { 3329 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3330 goto out; 3331 } 3332 3333 /* Read Base */ 3334 pci_read_config_dword(dev, ent_offset, &base); 3335 start = (base & PCI_EA_FIELD_MASK); 3336 ent_offset += 4; 3337 3338 /* Read MaxOffset */ 3339 pci_read_config_dword(dev, ent_offset, &max_offset); 3340 ent_offset += 4; 3341 3342 /* Read Base MSBs (if 64-bit entry) */ 3343 if (base & PCI_EA_IS_64) { 3344 u32 base_upper; 3345 3346 pci_read_config_dword(dev, ent_offset, &base_upper); 3347 ent_offset += 4; 3348 3349 flags |= IORESOURCE_MEM_64; 3350 3351 /* entry starts above 32-bit boundary, can't use */ 3352 if (!support_64 && base_upper) 3353 goto out; 3354 3355 if (support_64) 3356 start |= ((u64)base_upper << 32); 3357 } 3358 3359 end = start + (max_offset | 0x03); 3360 3361 /* Read MaxOffset MSBs (if 64-bit entry) */ 3362 if (max_offset & PCI_EA_IS_64) { 3363 u32 max_offset_upper; 3364 3365 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3366 ent_offset += 4; 3367 3368 flags |= IORESOURCE_MEM_64; 3369 3370 /* entry too big, can't use */ 3371 if (!support_64 && max_offset_upper) 3372 goto out; 3373 3374 if (support_64) 3375 end += ((u64)max_offset_upper << 32); 3376 } 3377 3378 if (end < start) { 3379 pci_err(dev, "EA Entry crosses address boundary\n"); 3380 goto out; 3381 } 3382 3383 if (ent_size != ent_offset - offset) { 3384 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3385 ent_size, ent_offset - offset); 3386 goto out; 3387 } 3388 3389 res->name = pci_name(dev); 3390 res->start = start; 3391 res->end = end; 3392 res->flags = flags; 3393 3394 if (bei <= PCI_EA_BEI_BAR5) 3395 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3396 bei, res, prop); 3397 else if (bei == PCI_EA_BEI_ROM) 3398 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3399 res, prop); 3400 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3401 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3402 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3403 else 3404 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3405 bei, res, prop); 3406 3407 out: 3408 return offset + ent_size; 3409 } 3410 3411 /* Enhanced Allocation Initialization */ 3412 void pci_ea_init(struct pci_dev *dev) 3413 { 3414 int ea; 3415 u8 num_ent; 3416 int offset; 3417 int i; 3418 3419 /* find PCI EA capability in list */ 3420 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3421 if (!ea) 3422 return; 3423 3424 /* determine the number of entries */ 3425 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3426 &num_ent); 3427 num_ent &= PCI_EA_NUM_ENT_MASK; 3428 3429 offset = ea + PCI_EA_FIRST_ENT; 3430 3431 /* Skip DWORD 2 for type 1 functions */ 3432 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3433 offset += 4; 3434 3435 /* parse each EA entry */ 3436 for (i = 0; i < num_ent; ++i) 3437 offset = pci_ea_read(dev, offset); 3438 } 3439 3440 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3441 struct pci_cap_saved_state *new_cap) 3442 { 3443 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3444 } 3445 3446 /** 3447 * _pci_add_cap_save_buffer - allocate buffer for saving given 3448 * capability registers 3449 * @dev: the PCI device 3450 * @cap: the capability to allocate the buffer for 3451 * @extended: Standard or Extended capability ID 3452 * @size: requested size of the buffer 3453 */ 3454 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3455 bool extended, unsigned int size) 3456 { 3457 int pos; 3458 struct pci_cap_saved_state *save_state; 3459 3460 if (extended) 3461 pos = pci_find_ext_capability(dev, cap); 3462 else 3463 pos = pci_find_capability(dev, cap); 3464 3465 if (!pos) 3466 return 0; 3467 3468 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3469 if (!save_state) 3470 return -ENOMEM; 3471 3472 save_state->cap.cap_nr = cap; 3473 save_state->cap.cap_extended = extended; 3474 save_state->cap.size = size; 3475 pci_add_saved_cap(dev, save_state); 3476 3477 return 0; 3478 } 3479 3480 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3481 { 3482 return _pci_add_cap_save_buffer(dev, cap, false, size); 3483 } 3484 3485 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3486 { 3487 return _pci_add_cap_save_buffer(dev, cap, true, size); 3488 } 3489 3490 /** 3491 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3492 * @dev: the PCI device 3493 */ 3494 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3495 { 3496 int error; 3497 3498 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3499 PCI_EXP_SAVE_REGS * sizeof(u16)); 3500 if (error) 3501 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3502 3503 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3504 if (error) 3505 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3506 3507 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3508 2 * sizeof(u16)); 3509 if (error) 3510 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3511 3512 pci_allocate_vc_save_buffers(dev); 3513 } 3514 3515 void pci_free_cap_save_buffers(struct pci_dev *dev) 3516 { 3517 struct pci_cap_saved_state *tmp; 3518 struct hlist_node *n; 3519 3520 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3521 kfree(tmp); 3522 } 3523 3524 /** 3525 * pci_configure_ari - enable or disable ARI forwarding 3526 * @dev: the PCI device 3527 * 3528 * If @dev and its upstream bridge both support ARI, enable ARI in the 3529 * bridge. Otherwise, disable ARI in the bridge. 3530 */ 3531 void pci_configure_ari(struct pci_dev *dev) 3532 { 3533 u32 cap; 3534 struct pci_dev *bridge; 3535 3536 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3537 return; 3538 3539 bridge = dev->bus->self; 3540 if (!bridge) 3541 return; 3542 3543 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3544 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3545 return; 3546 3547 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3548 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3549 PCI_EXP_DEVCTL2_ARI); 3550 bridge->ari_enabled = 1; 3551 } else { 3552 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3553 PCI_EXP_DEVCTL2_ARI); 3554 bridge->ari_enabled = 0; 3555 } 3556 } 3557 3558 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3559 { 3560 int pos; 3561 u16 cap, ctrl; 3562 3563 pos = pdev->acs_cap; 3564 if (!pos) 3565 return false; 3566 3567 /* 3568 * Except for egress control, capabilities are either required 3569 * or only required if controllable. Features missing from the 3570 * capability field can therefore be assumed as hard-wired enabled. 3571 */ 3572 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3573 acs_flags &= (cap | PCI_ACS_EC); 3574 3575 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3576 return (ctrl & acs_flags) == acs_flags; 3577 } 3578 3579 /** 3580 * pci_acs_enabled - test ACS against required flags for a given device 3581 * @pdev: device to test 3582 * @acs_flags: required PCI ACS flags 3583 * 3584 * Return true if the device supports the provided flags. Automatically 3585 * filters out flags that are not implemented on multifunction devices. 3586 * 3587 * Note that this interface checks the effective ACS capabilities of the 3588 * device rather than the actual capabilities. For instance, most single 3589 * function endpoints are not required to support ACS because they have no 3590 * opportunity for peer-to-peer access. We therefore return 'true' 3591 * regardless of whether the device exposes an ACS capability. This makes 3592 * it much easier for callers of this function to ignore the actual type 3593 * or topology of the device when testing ACS support. 3594 */ 3595 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3596 { 3597 int ret; 3598 3599 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3600 if (ret >= 0) 3601 return ret > 0; 3602 3603 /* 3604 * Conventional PCI and PCI-X devices never support ACS, either 3605 * effectively or actually. The shared bus topology implies that 3606 * any device on the bus can receive or snoop DMA. 3607 */ 3608 if (!pci_is_pcie(pdev)) 3609 return false; 3610 3611 switch (pci_pcie_type(pdev)) { 3612 /* 3613 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3614 * but since their primary interface is PCI/X, we conservatively 3615 * handle them as we would a non-PCIe device. 3616 */ 3617 case PCI_EXP_TYPE_PCIE_BRIDGE: 3618 /* 3619 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3620 * applicable... must never implement an ACS Extended Capability...". 3621 * This seems arbitrary, but we take a conservative interpretation 3622 * of this statement. 3623 */ 3624 case PCI_EXP_TYPE_PCI_BRIDGE: 3625 case PCI_EXP_TYPE_RC_EC: 3626 return false; 3627 /* 3628 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3629 * implement ACS in order to indicate their peer-to-peer capabilities, 3630 * regardless of whether they are single- or multi-function devices. 3631 */ 3632 case PCI_EXP_TYPE_DOWNSTREAM: 3633 case PCI_EXP_TYPE_ROOT_PORT: 3634 return pci_acs_flags_enabled(pdev, acs_flags); 3635 /* 3636 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3637 * implemented by the remaining PCIe types to indicate peer-to-peer 3638 * capabilities, but only when they are part of a multifunction 3639 * device. The footnote for section 6.12 indicates the specific 3640 * PCIe types included here. 3641 */ 3642 case PCI_EXP_TYPE_ENDPOINT: 3643 case PCI_EXP_TYPE_UPSTREAM: 3644 case PCI_EXP_TYPE_LEG_END: 3645 case PCI_EXP_TYPE_RC_END: 3646 if (!pdev->multifunction) 3647 break; 3648 3649 return pci_acs_flags_enabled(pdev, acs_flags); 3650 } 3651 3652 /* 3653 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3654 * to single function devices with the exception of downstream ports. 3655 */ 3656 return true; 3657 } 3658 3659 /** 3660 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3661 * @start: starting downstream device 3662 * @end: ending upstream device or NULL to search to the root bus 3663 * @acs_flags: required flags 3664 * 3665 * Walk up a device tree from start to end testing PCI ACS support. If 3666 * any step along the way does not support the required flags, return false. 3667 */ 3668 bool pci_acs_path_enabled(struct pci_dev *start, 3669 struct pci_dev *end, u16 acs_flags) 3670 { 3671 struct pci_dev *pdev, *parent = start; 3672 3673 do { 3674 pdev = parent; 3675 3676 if (!pci_acs_enabled(pdev, acs_flags)) 3677 return false; 3678 3679 if (pci_is_root_bus(pdev->bus)) 3680 return (end == NULL); 3681 3682 parent = pdev->bus->self; 3683 } while (pdev != end); 3684 3685 return true; 3686 } 3687 3688 /** 3689 * pci_acs_init - Initialize ACS if hardware supports it 3690 * @dev: the PCI device 3691 */ 3692 void pci_acs_init(struct pci_dev *dev) 3693 { 3694 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3695 3696 /* 3697 * Attempt to enable ACS regardless of capability because some Root 3698 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3699 * the standard ACS capability but still support ACS via those 3700 * quirks. 3701 */ 3702 pci_enable_acs(dev); 3703 } 3704 3705 /** 3706 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3707 * @pdev: PCI device 3708 * @bar: BAR to find 3709 * 3710 * Helper to find the position of the ctrl register for a BAR. 3711 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3712 * Returns -ENOENT if no ctrl register for the BAR could be found. 3713 */ 3714 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3715 { 3716 unsigned int pos, nbars, i; 3717 u32 ctrl; 3718 3719 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3720 if (!pos) 3721 return -ENOTSUPP; 3722 3723 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3724 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3725 3726 for (i = 0; i < nbars; i++, pos += 8) { 3727 int bar_idx; 3728 3729 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3730 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3731 if (bar_idx == bar) 3732 return pos; 3733 } 3734 3735 return -ENOENT; 3736 } 3737 3738 /** 3739 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3740 * @pdev: PCI device 3741 * @bar: BAR to query 3742 * 3743 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3744 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3745 */ 3746 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3747 { 3748 int pos; 3749 u32 cap; 3750 3751 pos = pci_rebar_find_pos(pdev, bar); 3752 if (pos < 0) 3753 return 0; 3754 3755 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3756 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3757 3758 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3759 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3760 bar == 0 && cap == 0x700) 3761 return 0x3f00; 3762 3763 return cap; 3764 } 3765 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3766 3767 /** 3768 * pci_rebar_get_current_size - get the current size of a BAR 3769 * @pdev: PCI device 3770 * @bar: BAR to set size to 3771 * 3772 * Read the size of a BAR from the resizable BAR config. 3773 * Returns size if found or negative error code. 3774 */ 3775 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3776 { 3777 int pos; 3778 u32 ctrl; 3779 3780 pos = pci_rebar_find_pos(pdev, bar); 3781 if (pos < 0) 3782 return pos; 3783 3784 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3785 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3786 } 3787 3788 /** 3789 * pci_rebar_set_size - set a new size for a BAR 3790 * @pdev: PCI device 3791 * @bar: BAR to set size to 3792 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3793 * 3794 * Set the new size of a BAR as defined in the spec. 3795 * Returns zero if resizing was successful, error code otherwise. 3796 */ 3797 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3798 { 3799 int pos; 3800 u32 ctrl; 3801 3802 pos = pci_rebar_find_pos(pdev, bar); 3803 if (pos < 0) 3804 return pos; 3805 3806 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3807 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3808 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3809 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3810 return 0; 3811 } 3812 3813 /** 3814 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3815 * @dev: the PCI device 3816 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3817 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3818 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3819 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3820 * 3821 * Return 0 if all upstream bridges support AtomicOp routing, egress 3822 * blocking is disabled on all upstream ports, and the root port supports 3823 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3824 * AtomicOp completion), or negative otherwise. 3825 */ 3826 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3827 { 3828 struct pci_bus *bus = dev->bus; 3829 struct pci_dev *bridge; 3830 u32 cap, ctl2; 3831 3832 /* 3833 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3834 * in Device Control 2 is reserved in VFs and the PF value applies 3835 * to all associated VFs. 3836 */ 3837 if (dev->is_virtfn) 3838 return -EINVAL; 3839 3840 if (!pci_is_pcie(dev)) 3841 return -EINVAL; 3842 3843 /* 3844 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3845 * AtomicOp requesters. For now, we only support endpoints as 3846 * requesters and root ports as completers. No endpoints as 3847 * completers, and no peer-to-peer. 3848 */ 3849 3850 switch (pci_pcie_type(dev)) { 3851 case PCI_EXP_TYPE_ENDPOINT: 3852 case PCI_EXP_TYPE_LEG_END: 3853 case PCI_EXP_TYPE_RC_END: 3854 break; 3855 default: 3856 return -EINVAL; 3857 } 3858 3859 while (bus->parent) { 3860 bridge = bus->self; 3861 3862 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3863 3864 switch (pci_pcie_type(bridge)) { 3865 /* Ensure switch ports support AtomicOp routing */ 3866 case PCI_EXP_TYPE_UPSTREAM: 3867 case PCI_EXP_TYPE_DOWNSTREAM: 3868 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3869 return -EINVAL; 3870 break; 3871 3872 /* Ensure root port supports all the sizes we care about */ 3873 case PCI_EXP_TYPE_ROOT_PORT: 3874 if ((cap & cap_mask) != cap_mask) 3875 return -EINVAL; 3876 break; 3877 } 3878 3879 /* Ensure upstream ports don't block AtomicOps on egress */ 3880 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3881 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3882 &ctl2); 3883 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3884 return -EINVAL; 3885 } 3886 3887 bus = bus->parent; 3888 } 3889 3890 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3891 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3892 return 0; 3893 } 3894 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3895 3896 /** 3897 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3898 * @dev: the PCI device 3899 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3900 * 3901 * Perform INTx swizzling for a device behind one level of bridge. This is 3902 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3903 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3904 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3905 * the PCI Express Base Specification, Revision 2.1) 3906 */ 3907 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3908 { 3909 int slot; 3910 3911 if (pci_ari_enabled(dev->bus)) 3912 slot = 0; 3913 else 3914 slot = PCI_SLOT(dev->devfn); 3915 3916 return (((pin - 1) + slot) % 4) + 1; 3917 } 3918 3919 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3920 { 3921 u8 pin; 3922 3923 pin = dev->pin; 3924 if (!pin) 3925 return -1; 3926 3927 while (!pci_is_root_bus(dev->bus)) { 3928 pin = pci_swizzle_interrupt_pin(dev, pin); 3929 dev = dev->bus->self; 3930 } 3931 *bridge = dev; 3932 return pin; 3933 } 3934 3935 /** 3936 * pci_common_swizzle - swizzle INTx all the way to root bridge 3937 * @dev: the PCI device 3938 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3939 * 3940 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3941 * bridges all the way up to a PCI root bus. 3942 */ 3943 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3944 { 3945 u8 pin = *pinp; 3946 3947 while (!pci_is_root_bus(dev->bus)) { 3948 pin = pci_swizzle_interrupt_pin(dev, pin); 3949 dev = dev->bus->self; 3950 } 3951 *pinp = pin; 3952 return PCI_SLOT(dev->devfn); 3953 } 3954 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3955 3956 /** 3957 * pci_release_region - Release a PCI bar 3958 * @pdev: PCI device whose resources were previously reserved by 3959 * pci_request_region() 3960 * @bar: BAR to release 3961 * 3962 * Releases the PCI I/O and memory resources previously reserved by a 3963 * successful call to pci_request_region(). Call this function only 3964 * after all use of the PCI regions has ceased. 3965 */ 3966 void pci_release_region(struct pci_dev *pdev, int bar) 3967 { 3968 struct pci_devres *dr; 3969 3970 if (pci_resource_len(pdev, bar) == 0) 3971 return; 3972 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3973 release_region(pci_resource_start(pdev, bar), 3974 pci_resource_len(pdev, bar)); 3975 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3976 release_mem_region(pci_resource_start(pdev, bar), 3977 pci_resource_len(pdev, bar)); 3978 3979 dr = find_pci_dr(pdev); 3980 if (dr) 3981 dr->region_mask &= ~(1 << bar); 3982 } 3983 EXPORT_SYMBOL(pci_release_region); 3984 3985 /** 3986 * __pci_request_region - Reserved PCI I/O and memory resource 3987 * @pdev: PCI device whose resources are to be reserved 3988 * @bar: BAR to be reserved 3989 * @res_name: Name to be associated with resource. 3990 * @exclusive: whether the region access is exclusive or not 3991 * 3992 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3993 * being reserved by owner @res_name. Do not access any 3994 * address inside the PCI regions unless this call returns 3995 * successfully. 3996 * 3997 * If @exclusive is set, then the region is marked so that userspace 3998 * is explicitly not allowed to map the resource via /dev/mem or 3999 * sysfs MMIO access. 4000 * 4001 * Returns 0 on success, or %EBUSY on error. A warning 4002 * message is also printed on failure. 4003 */ 4004 static int __pci_request_region(struct pci_dev *pdev, int bar, 4005 const char *res_name, int exclusive) 4006 { 4007 struct pci_devres *dr; 4008 4009 if (pci_resource_len(pdev, bar) == 0) 4010 return 0; 4011 4012 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 4013 if (!request_region(pci_resource_start(pdev, bar), 4014 pci_resource_len(pdev, bar), res_name)) 4015 goto err_out; 4016 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 4017 if (!__request_mem_region(pci_resource_start(pdev, bar), 4018 pci_resource_len(pdev, bar), res_name, 4019 exclusive)) 4020 goto err_out; 4021 } 4022 4023 dr = find_pci_dr(pdev); 4024 if (dr) 4025 dr->region_mask |= 1 << bar; 4026 4027 return 0; 4028 4029 err_out: 4030 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4031 &pdev->resource[bar]); 4032 return -EBUSY; 4033 } 4034 4035 /** 4036 * pci_request_region - Reserve PCI I/O and memory resource 4037 * @pdev: PCI device whose resources are to be reserved 4038 * @bar: BAR to be reserved 4039 * @res_name: Name to be associated with resource 4040 * 4041 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4042 * being reserved by owner @res_name. Do not access any 4043 * address inside the PCI regions unless this call returns 4044 * successfully. 4045 * 4046 * Returns 0 on success, or %EBUSY on error. A warning 4047 * message is also printed on failure. 4048 */ 4049 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4050 { 4051 return __pci_request_region(pdev, bar, res_name, 0); 4052 } 4053 EXPORT_SYMBOL(pci_request_region); 4054 4055 /** 4056 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4057 * @pdev: PCI device whose resources were previously reserved 4058 * @bars: Bitmask of BARs to be released 4059 * 4060 * Release selected PCI I/O and memory resources previously reserved. 4061 * Call this function only after all use of the PCI regions has ceased. 4062 */ 4063 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4064 { 4065 int i; 4066 4067 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4068 if (bars & (1 << i)) 4069 pci_release_region(pdev, i); 4070 } 4071 EXPORT_SYMBOL(pci_release_selected_regions); 4072 4073 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4074 const char *res_name, int excl) 4075 { 4076 int i; 4077 4078 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4079 if (bars & (1 << i)) 4080 if (__pci_request_region(pdev, i, res_name, excl)) 4081 goto err_out; 4082 return 0; 4083 4084 err_out: 4085 while (--i >= 0) 4086 if (bars & (1 << i)) 4087 pci_release_region(pdev, i); 4088 4089 return -EBUSY; 4090 } 4091 4092 4093 /** 4094 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4095 * @pdev: PCI device whose resources are to be reserved 4096 * @bars: Bitmask of BARs to be requested 4097 * @res_name: Name to be associated with resource 4098 */ 4099 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4100 const char *res_name) 4101 { 4102 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4103 } 4104 EXPORT_SYMBOL(pci_request_selected_regions); 4105 4106 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4107 const char *res_name) 4108 { 4109 return __pci_request_selected_regions(pdev, bars, res_name, 4110 IORESOURCE_EXCLUSIVE); 4111 } 4112 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4113 4114 /** 4115 * pci_release_regions - Release reserved PCI I/O and memory resources 4116 * @pdev: PCI device whose resources were previously reserved by 4117 * pci_request_regions() 4118 * 4119 * Releases all PCI I/O and memory resources previously reserved by a 4120 * successful call to pci_request_regions(). Call this function only 4121 * after all use of the PCI regions has ceased. 4122 */ 4123 4124 void pci_release_regions(struct pci_dev *pdev) 4125 { 4126 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4127 } 4128 EXPORT_SYMBOL(pci_release_regions); 4129 4130 /** 4131 * pci_request_regions - Reserve PCI I/O and memory resources 4132 * @pdev: PCI device whose resources are to be reserved 4133 * @res_name: Name to be associated with resource. 4134 * 4135 * Mark all PCI regions associated with PCI device @pdev as 4136 * being reserved by owner @res_name. Do not access any 4137 * address inside the PCI regions unless this call returns 4138 * successfully. 4139 * 4140 * Returns 0 on success, or %EBUSY on error. A warning 4141 * message is also printed on failure. 4142 */ 4143 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4144 { 4145 return pci_request_selected_regions(pdev, 4146 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4147 } 4148 EXPORT_SYMBOL(pci_request_regions); 4149 4150 /** 4151 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4152 * @pdev: PCI device whose resources are to be reserved 4153 * @res_name: Name to be associated with resource. 4154 * 4155 * Mark all PCI regions associated with PCI device @pdev as being reserved 4156 * by owner @res_name. Do not access any address inside the PCI regions 4157 * unless this call returns successfully. 4158 * 4159 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4160 * and the sysfs MMIO access will not be allowed. 4161 * 4162 * Returns 0 on success, or %EBUSY on error. A warning message is also 4163 * printed on failure. 4164 */ 4165 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4166 { 4167 return pci_request_selected_regions_exclusive(pdev, 4168 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4169 } 4170 EXPORT_SYMBOL(pci_request_regions_exclusive); 4171 4172 /* 4173 * Record the PCI IO range (expressed as CPU physical address + size). 4174 * Return a negative value if an error has occurred, zero otherwise 4175 */ 4176 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4177 resource_size_t size) 4178 { 4179 int ret = 0; 4180 #ifdef PCI_IOBASE 4181 struct logic_pio_hwaddr *range; 4182 4183 if (!size || addr + size < addr) 4184 return -EINVAL; 4185 4186 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4187 if (!range) 4188 return -ENOMEM; 4189 4190 range->fwnode = fwnode; 4191 range->size = size; 4192 range->hw_start = addr; 4193 range->flags = LOGIC_PIO_CPU_MMIO; 4194 4195 ret = logic_pio_register_range(range); 4196 if (ret) 4197 kfree(range); 4198 4199 /* Ignore duplicates due to deferred probing */ 4200 if (ret == -EEXIST) 4201 ret = 0; 4202 #endif 4203 4204 return ret; 4205 } 4206 4207 phys_addr_t pci_pio_to_address(unsigned long pio) 4208 { 4209 #ifdef PCI_IOBASE 4210 if (pio < MMIO_UPPER_LIMIT) 4211 return logic_pio_to_hwaddr(pio); 4212 #endif 4213 4214 return (phys_addr_t) OF_BAD_ADDR; 4215 } 4216 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4217 4218 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4219 { 4220 #ifdef PCI_IOBASE 4221 return logic_pio_trans_cpuaddr(address); 4222 #else 4223 if (address > IO_SPACE_LIMIT) 4224 return (unsigned long)-1; 4225 4226 return (unsigned long) address; 4227 #endif 4228 } 4229 4230 /** 4231 * pci_remap_iospace - Remap the memory mapped I/O space 4232 * @res: Resource describing the I/O space 4233 * @phys_addr: physical address of range to be mapped 4234 * 4235 * Remap the memory mapped I/O space described by the @res and the CPU 4236 * physical address @phys_addr into virtual address space. Only 4237 * architectures that have memory mapped IO functions defined (and the 4238 * PCI_IOBASE value defined) should call this function. 4239 */ 4240 #ifndef pci_remap_iospace 4241 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4242 { 4243 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4244 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4245 4246 if (!(res->flags & IORESOURCE_IO)) 4247 return -EINVAL; 4248 4249 if (res->end > IO_SPACE_LIMIT) 4250 return -EINVAL; 4251 4252 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4253 pgprot_device(PAGE_KERNEL)); 4254 #else 4255 /* 4256 * This architecture does not have memory mapped I/O space, 4257 * so this function should never be called 4258 */ 4259 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4260 return -ENODEV; 4261 #endif 4262 } 4263 EXPORT_SYMBOL(pci_remap_iospace); 4264 #endif 4265 4266 /** 4267 * pci_unmap_iospace - Unmap the memory mapped I/O space 4268 * @res: resource to be unmapped 4269 * 4270 * Unmap the CPU virtual address @res from virtual address space. Only 4271 * architectures that have memory mapped IO functions defined (and the 4272 * PCI_IOBASE value defined) should call this function. 4273 */ 4274 void pci_unmap_iospace(struct resource *res) 4275 { 4276 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4277 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4278 4279 vunmap_range(vaddr, vaddr + resource_size(res)); 4280 #endif 4281 } 4282 EXPORT_SYMBOL(pci_unmap_iospace); 4283 4284 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4285 { 4286 struct resource **res = ptr; 4287 4288 pci_unmap_iospace(*res); 4289 } 4290 4291 /** 4292 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4293 * @dev: Generic device to remap IO address for 4294 * @res: Resource describing the I/O space 4295 * @phys_addr: physical address of range to be mapped 4296 * 4297 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4298 * detach. 4299 */ 4300 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4301 phys_addr_t phys_addr) 4302 { 4303 const struct resource **ptr; 4304 int error; 4305 4306 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4307 if (!ptr) 4308 return -ENOMEM; 4309 4310 error = pci_remap_iospace(res, phys_addr); 4311 if (error) { 4312 devres_free(ptr); 4313 } else { 4314 *ptr = res; 4315 devres_add(dev, ptr); 4316 } 4317 4318 return error; 4319 } 4320 EXPORT_SYMBOL(devm_pci_remap_iospace); 4321 4322 /** 4323 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4324 * @dev: Generic device to remap IO address for 4325 * @offset: Resource address to map 4326 * @size: Size of map 4327 * 4328 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4329 * detach. 4330 */ 4331 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4332 resource_size_t offset, 4333 resource_size_t size) 4334 { 4335 void __iomem **ptr, *addr; 4336 4337 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4338 if (!ptr) 4339 return NULL; 4340 4341 addr = pci_remap_cfgspace(offset, size); 4342 if (addr) { 4343 *ptr = addr; 4344 devres_add(dev, ptr); 4345 } else 4346 devres_free(ptr); 4347 4348 return addr; 4349 } 4350 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4351 4352 /** 4353 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4354 * @dev: generic device to handle the resource for 4355 * @res: configuration space resource to be handled 4356 * 4357 * Checks that a resource is a valid memory region, requests the memory 4358 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4359 * proper PCI configuration space memory attributes are guaranteed. 4360 * 4361 * All operations are managed and will be undone on driver detach. 4362 * 4363 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4364 * on failure. Usage example:: 4365 * 4366 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4367 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4368 * if (IS_ERR(base)) 4369 * return PTR_ERR(base); 4370 */ 4371 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4372 struct resource *res) 4373 { 4374 resource_size_t size; 4375 const char *name; 4376 void __iomem *dest_ptr; 4377 4378 BUG_ON(!dev); 4379 4380 if (!res || resource_type(res) != IORESOURCE_MEM) { 4381 dev_err(dev, "invalid resource\n"); 4382 return IOMEM_ERR_PTR(-EINVAL); 4383 } 4384 4385 size = resource_size(res); 4386 4387 if (res->name) 4388 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4389 res->name); 4390 else 4391 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4392 if (!name) 4393 return IOMEM_ERR_PTR(-ENOMEM); 4394 4395 if (!devm_request_mem_region(dev, res->start, size, name)) { 4396 dev_err(dev, "can't request region for resource %pR\n", res); 4397 return IOMEM_ERR_PTR(-EBUSY); 4398 } 4399 4400 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4401 if (!dest_ptr) { 4402 dev_err(dev, "ioremap failed for resource %pR\n", res); 4403 devm_release_mem_region(dev, res->start, size); 4404 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4405 } 4406 4407 return dest_ptr; 4408 } 4409 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4410 4411 static void __pci_set_master(struct pci_dev *dev, bool enable) 4412 { 4413 u16 old_cmd, cmd; 4414 4415 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4416 if (enable) 4417 cmd = old_cmd | PCI_COMMAND_MASTER; 4418 else 4419 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4420 if (cmd != old_cmd) { 4421 pci_dbg(dev, "%s bus mastering\n", 4422 enable ? "enabling" : "disabling"); 4423 pci_write_config_word(dev, PCI_COMMAND, cmd); 4424 } 4425 dev->is_busmaster = enable; 4426 } 4427 4428 /** 4429 * pcibios_setup - process "pci=" kernel boot arguments 4430 * @str: string used to pass in "pci=" kernel boot arguments 4431 * 4432 * Process kernel boot arguments. This is the default implementation. 4433 * Architecture specific implementations can override this as necessary. 4434 */ 4435 char * __weak __init pcibios_setup(char *str) 4436 { 4437 return str; 4438 } 4439 4440 /** 4441 * pcibios_set_master - enable PCI bus-mastering for device dev 4442 * @dev: the PCI device to enable 4443 * 4444 * Enables PCI bus-mastering for the device. This is the default 4445 * implementation. Architecture specific implementations can override 4446 * this if necessary. 4447 */ 4448 void __weak pcibios_set_master(struct pci_dev *dev) 4449 { 4450 u8 lat; 4451 4452 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4453 if (pci_is_pcie(dev)) 4454 return; 4455 4456 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4457 if (lat < 16) 4458 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4459 else if (lat > pcibios_max_latency) 4460 lat = pcibios_max_latency; 4461 else 4462 return; 4463 4464 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4465 } 4466 4467 /** 4468 * pci_set_master - enables bus-mastering for device dev 4469 * @dev: the PCI device to enable 4470 * 4471 * Enables bus-mastering on the device and calls pcibios_set_master() 4472 * to do the needed arch specific settings. 4473 */ 4474 void pci_set_master(struct pci_dev *dev) 4475 { 4476 __pci_set_master(dev, true); 4477 pcibios_set_master(dev); 4478 } 4479 EXPORT_SYMBOL(pci_set_master); 4480 4481 /** 4482 * pci_clear_master - disables bus-mastering for device dev 4483 * @dev: the PCI device to disable 4484 */ 4485 void pci_clear_master(struct pci_dev *dev) 4486 { 4487 __pci_set_master(dev, false); 4488 } 4489 EXPORT_SYMBOL(pci_clear_master); 4490 4491 /** 4492 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4493 * @dev: the PCI device for which MWI is to be enabled 4494 * 4495 * Helper function for pci_set_mwi. 4496 * Originally copied from drivers/net/acenic.c. 4497 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4498 * 4499 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4500 */ 4501 int pci_set_cacheline_size(struct pci_dev *dev) 4502 { 4503 u8 cacheline_size; 4504 4505 if (!pci_cache_line_size) 4506 return -EINVAL; 4507 4508 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4509 equal to or multiple of the right value. */ 4510 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4511 if (cacheline_size >= pci_cache_line_size && 4512 (cacheline_size % pci_cache_line_size) == 0) 4513 return 0; 4514 4515 /* Write the correct value. */ 4516 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4517 /* Read it back. */ 4518 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4519 if (cacheline_size == pci_cache_line_size) 4520 return 0; 4521 4522 pci_dbg(dev, "cache line size of %d is not supported\n", 4523 pci_cache_line_size << 2); 4524 4525 return -EINVAL; 4526 } 4527 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4528 4529 /** 4530 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4531 * @dev: the PCI device for which MWI is enabled 4532 * 4533 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4534 * 4535 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4536 */ 4537 int pci_set_mwi(struct pci_dev *dev) 4538 { 4539 #ifdef PCI_DISABLE_MWI 4540 return 0; 4541 #else 4542 int rc; 4543 u16 cmd; 4544 4545 rc = pci_set_cacheline_size(dev); 4546 if (rc) 4547 return rc; 4548 4549 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4550 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4551 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4552 cmd |= PCI_COMMAND_INVALIDATE; 4553 pci_write_config_word(dev, PCI_COMMAND, cmd); 4554 } 4555 return 0; 4556 #endif 4557 } 4558 EXPORT_SYMBOL(pci_set_mwi); 4559 4560 /** 4561 * pcim_set_mwi - a device-managed pci_set_mwi() 4562 * @dev: the PCI device for which MWI is enabled 4563 * 4564 * Managed pci_set_mwi(). 4565 * 4566 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4567 */ 4568 int pcim_set_mwi(struct pci_dev *dev) 4569 { 4570 struct pci_devres *dr; 4571 4572 dr = find_pci_dr(dev); 4573 if (!dr) 4574 return -ENOMEM; 4575 4576 dr->mwi = 1; 4577 return pci_set_mwi(dev); 4578 } 4579 EXPORT_SYMBOL(pcim_set_mwi); 4580 4581 /** 4582 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4583 * @dev: the PCI device for which MWI is enabled 4584 * 4585 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4586 * Callers are not required to check the return value. 4587 * 4588 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4589 */ 4590 int pci_try_set_mwi(struct pci_dev *dev) 4591 { 4592 #ifdef PCI_DISABLE_MWI 4593 return 0; 4594 #else 4595 return pci_set_mwi(dev); 4596 #endif 4597 } 4598 EXPORT_SYMBOL(pci_try_set_mwi); 4599 4600 /** 4601 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4602 * @dev: the PCI device to disable 4603 * 4604 * Disables PCI Memory-Write-Invalidate transaction on the device 4605 */ 4606 void pci_clear_mwi(struct pci_dev *dev) 4607 { 4608 #ifndef PCI_DISABLE_MWI 4609 u16 cmd; 4610 4611 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4612 if (cmd & PCI_COMMAND_INVALIDATE) { 4613 cmd &= ~PCI_COMMAND_INVALIDATE; 4614 pci_write_config_word(dev, PCI_COMMAND, cmd); 4615 } 4616 #endif 4617 } 4618 EXPORT_SYMBOL(pci_clear_mwi); 4619 4620 /** 4621 * pci_disable_parity - disable parity checking for device 4622 * @dev: the PCI device to operate on 4623 * 4624 * Disable parity checking for device @dev 4625 */ 4626 void pci_disable_parity(struct pci_dev *dev) 4627 { 4628 u16 cmd; 4629 4630 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4631 if (cmd & PCI_COMMAND_PARITY) { 4632 cmd &= ~PCI_COMMAND_PARITY; 4633 pci_write_config_word(dev, PCI_COMMAND, cmd); 4634 } 4635 } 4636 4637 /** 4638 * pci_intx - enables/disables PCI INTx for device dev 4639 * @pdev: the PCI device to operate on 4640 * @enable: boolean: whether to enable or disable PCI INTx 4641 * 4642 * Enables/disables PCI INTx for device @pdev 4643 */ 4644 void pci_intx(struct pci_dev *pdev, int enable) 4645 { 4646 u16 pci_command, new; 4647 4648 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4649 4650 if (enable) 4651 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4652 else 4653 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4654 4655 if (new != pci_command) { 4656 struct pci_devres *dr; 4657 4658 pci_write_config_word(pdev, PCI_COMMAND, new); 4659 4660 dr = find_pci_dr(pdev); 4661 if (dr && !dr->restore_intx) { 4662 dr->restore_intx = 1; 4663 dr->orig_intx = !enable; 4664 } 4665 } 4666 } 4667 EXPORT_SYMBOL_GPL(pci_intx); 4668 4669 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4670 { 4671 struct pci_bus *bus = dev->bus; 4672 bool mask_updated = true; 4673 u32 cmd_status_dword; 4674 u16 origcmd, newcmd; 4675 unsigned long flags; 4676 bool irq_pending; 4677 4678 /* 4679 * We do a single dword read to retrieve both command and status. 4680 * Document assumptions that make this possible. 4681 */ 4682 BUILD_BUG_ON(PCI_COMMAND % 4); 4683 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4684 4685 raw_spin_lock_irqsave(&pci_lock, flags); 4686 4687 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4688 4689 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4690 4691 /* 4692 * Check interrupt status register to see whether our device 4693 * triggered the interrupt (when masking) or the next IRQ is 4694 * already pending (when unmasking). 4695 */ 4696 if (mask != irq_pending) { 4697 mask_updated = false; 4698 goto done; 4699 } 4700 4701 origcmd = cmd_status_dword; 4702 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4703 if (mask) 4704 newcmd |= PCI_COMMAND_INTX_DISABLE; 4705 if (newcmd != origcmd) 4706 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4707 4708 done: 4709 raw_spin_unlock_irqrestore(&pci_lock, flags); 4710 4711 return mask_updated; 4712 } 4713 4714 /** 4715 * pci_check_and_mask_intx - mask INTx on pending interrupt 4716 * @dev: the PCI device to operate on 4717 * 4718 * Check if the device dev has its INTx line asserted, mask it and return 4719 * true in that case. False is returned if no interrupt was pending. 4720 */ 4721 bool pci_check_and_mask_intx(struct pci_dev *dev) 4722 { 4723 return pci_check_and_set_intx_mask(dev, true); 4724 } 4725 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4726 4727 /** 4728 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4729 * @dev: the PCI device to operate on 4730 * 4731 * Check if the device dev has its INTx line asserted, unmask it if not and 4732 * return true. False is returned and the mask remains active if there was 4733 * still an interrupt pending. 4734 */ 4735 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4736 { 4737 return pci_check_and_set_intx_mask(dev, false); 4738 } 4739 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4740 4741 /** 4742 * pci_wait_for_pending_transaction - wait for pending transaction 4743 * @dev: the PCI device to operate on 4744 * 4745 * Return 0 if transaction is pending 1 otherwise. 4746 */ 4747 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4748 { 4749 if (!pci_is_pcie(dev)) 4750 return 1; 4751 4752 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4753 PCI_EXP_DEVSTA_TRPND); 4754 } 4755 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4756 4757 /** 4758 * pcie_flr - initiate a PCIe function level reset 4759 * @dev: device to reset 4760 * 4761 * Initiate a function level reset unconditionally on @dev without 4762 * checking any flags and DEVCAP 4763 */ 4764 int pcie_flr(struct pci_dev *dev) 4765 { 4766 if (!pci_wait_for_pending_transaction(dev)) 4767 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4768 4769 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4770 4771 if (dev->imm_ready) 4772 return 0; 4773 4774 /* 4775 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4776 * 100ms, but may silently discard requests while the FLR is in 4777 * progress. Wait 100ms before trying to access the device. 4778 */ 4779 msleep(100); 4780 4781 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4782 } 4783 EXPORT_SYMBOL_GPL(pcie_flr); 4784 4785 /** 4786 * pcie_reset_flr - initiate a PCIe function level reset 4787 * @dev: device to reset 4788 * @probe: if true, return 0 if device can be reset this way 4789 * 4790 * Initiate a function level reset on @dev. 4791 */ 4792 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4793 { 4794 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4795 return -ENOTTY; 4796 4797 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4798 return -ENOTTY; 4799 4800 if (probe) 4801 return 0; 4802 4803 return pcie_flr(dev); 4804 } 4805 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4806 4807 static int pci_af_flr(struct pci_dev *dev, bool probe) 4808 { 4809 int pos; 4810 u8 cap; 4811 4812 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4813 if (!pos) 4814 return -ENOTTY; 4815 4816 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4817 return -ENOTTY; 4818 4819 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4820 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4821 return -ENOTTY; 4822 4823 if (probe) 4824 return 0; 4825 4826 /* 4827 * Wait for Transaction Pending bit to clear. A word-aligned test 4828 * is used, so we use the control offset rather than status and shift 4829 * the test bit to match. 4830 */ 4831 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4832 PCI_AF_STATUS_TP << 8)) 4833 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4834 4835 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4836 4837 if (dev->imm_ready) 4838 return 0; 4839 4840 /* 4841 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4842 * updated 27 July 2006; a device must complete an FLR within 4843 * 100ms, but may silently discard requests while the FLR is in 4844 * progress. Wait 100ms before trying to access the device. 4845 */ 4846 msleep(100); 4847 4848 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4849 } 4850 4851 /** 4852 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4853 * @dev: Device to reset. 4854 * @probe: if true, return 0 if the device can be reset this way. 4855 * 4856 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4857 * unset, it will be reinitialized internally when going from PCI_D3hot to 4858 * PCI_D0. If that's the case and the device is not in a low-power state 4859 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4860 * 4861 * NOTE: This causes the caller to sleep for twice the device power transition 4862 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4863 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4864 * Moreover, only devices in D0 can be reset by this function. 4865 */ 4866 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4867 { 4868 u16 csr; 4869 4870 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4871 return -ENOTTY; 4872 4873 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4874 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4875 return -ENOTTY; 4876 4877 if (probe) 4878 return 0; 4879 4880 if (dev->current_state != PCI_D0) 4881 return -EINVAL; 4882 4883 csr &= ~PCI_PM_CTRL_STATE_MASK; 4884 csr |= PCI_D3hot; 4885 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4886 pci_dev_d3_sleep(dev); 4887 4888 csr &= ~PCI_PM_CTRL_STATE_MASK; 4889 csr |= PCI_D0; 4890 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4891 pci_dev_d3_sleep(dev); 4892 4893 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4894 } 4895 4896 /** 4897 * pcie_wait_for_link_status - Wait for link status change 4898 * @pdev: Device whose link to wait for. 4899 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4900 * @active: Waiting for active or inactive? 4901 * 4902 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4903 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4904 */ 4905 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4906 bool use_lt, bool active) 4907 { 4908 u16 lnksta_mask, lnksta_match; 4909 unsigned long end_jiffies; 4910 u16 lnksta; 4911 4912 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4913 lnksta_match = active ? lnksta_mask : 0; 4914 4915 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4916 do { 4917 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4918 if ((lnksta & lnksta_mask) == lnksta_match) 4919 return 0; 4920 msleep(1); 4921 } while (time_before(jiffies, end_jiffies)); 4922 4923 return -ETIMEDOUT; 4924 } 4925 4926 /** 4927 * pcie_retrain_link - Request a link retrain and wait for it to complete 4928 * @pdev: Device whose link to retrain. 4929 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4930 * 4931 * Retrain completion status is retrieved from the Link Status Register 4932 * according to @use_lt. It is not verified whether the use of the DLLLA 4933 * bit is valid. 4934 * 4935 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4936 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4937 */ 4938 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4939 { 4940 int rc; 4941 4942 /* 4943 * Ensure the updated LNKCTL parameters are used during link 4944 * training by checking that there is no ongoing link training to 4945 * avoid LTSSM race as recommended in Implementation Note at the 4946 * end of PCIe r6.0.1 sec 7.5.3.7. 4947 */ 4948 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4949 if (rc) 4950 return rc; 4951 4952 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4953 if (pdev->clear_retrain_link) { 4954 /* 4955 * Due to an erratum in some devices the Retrain Link bit 4956 * needs to be cleared again manually to allow the link 4957 * training to succeed. 4958 */ 4959 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4960 } 4961 4962 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4963 } 4964 4965 /** 4966 * pcie_wait_for_link_delay - Wait until link is active or inactive 4967 * @pdev: Bridge device 4968 * @active: waiting for active or inactive? 4969 * @delay: Delay to wait after link has become active (in ms) 4970 * 4971 * Use this to wait till link becomes active or inactive. 4972 */ 4973 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4974 int delay) 4975 { 4976 int rc; 4977 4978 /* 4979 * Some controllers might not implement link active reporting. In this 4980 * case, we wait for 1000 ms + any delay requested by the caller. 4981 */ 4982 if (!pdev->link_active_reporting) { 4983 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4984 return true; 4985 } 4986 4987 /* 4988 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4989 * after which we should expect an link active if the reset was 4990 * successful. If so, software must wait a minimum 100ms before sending 4991 * configuration requests to devices downstream this port. 4992 * 4993 * If the link fails to activate, either the device was physically 4994 * removed or the link is permanently failed. 4995 */ 4996 if (active) 4997 msleep(20); 4998 rc = pcie_wait_for_link_status(pdev, false, active); 4999 if (active) { 5000 if (rc) 5001 rc = pcie_failed_link_retrain(pdev); 5002 if (rc) 5003 return false; 5004 5005 msleep(delay); 5006 return true; 5007 } 5008 5009 if (rc) 5010 return false; 5011 5012 return true; 5013 } 5014 5015 /** 5016 * pcie_wait_for_link - Wait until link is active or inactive 5017 * @pdev: Bridge device 5018 * @active: waiting for active or inactive? 5019 * 5020 * Use this to wait till link becomes active or inactive. 5021 */ 5022 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 5023 { 5024 return pcie_wait_for_link_delay(pdev, active, 100); 5025 } 5026 5027 /* 5028 * Find maximum D3cold delay required by all the devices on the bus. The 5029 * spec says 100 ms, but firmware can lower it and we allow drivers to 5030 * increase it as well. 5031 * 5032 * Called with @pci_bus_sem locked for reading. 5033 */ 5034 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 5035 { 5036 const struct pci_dev *pdev; 5037 int min_delay = 100; 5038 int max_delay = 0; 5039 5040 list_for_each_entry(pdev, &bus->devices, bus_list) { 5041 if (pdev->d3cold_delay < min_delay) 5042 min_delay = pdev->d3cold_delay; 5043 if (pdev->d3cold_delay > max_delay) 5044 max_delay = pdev->d3cold_delay; 5045 } 5046 5047 return max(min_delay, max_delay); 5048 } 5049 5050 /** 5051 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 5052 * @dev: PCI bridge 5053 * @reset_type: reset type in human-readable form 5054 * 5055 * Handle necessary delays before access to the devices on the secondary 5056 * side of the bridge are permitted after D3cold to D0 transition 5057 * or Conventional Reset. 5058 * 5059 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 5060 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 5061 * 4.3.2. 5062 * 5063 * Return 0 on success or -ENOTTY if the first device on the secondary bus 5064 * failed to become accessible. 5065 */ 5066 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 5067 { 5068 struct pci_dev *child; 5069 int delay; 5070 5071 if (pci_dev_is_disconnected(dev)) 5072 return 0; 5073 5074 if (!pci_is_bridge(dev)) 5075 return 0; 5076 5077 down_read(&pci_bus_sem); 5078 5079 /* 5080 * We only deal with devices that are present currently on the bus. 5081 * For any hot-added devices the access delay is handled in pciehp 5082 * board_added(). In case of ACPI hotplug the firmware is expected 5083 * to configure the devices before OS is notified. 5084 */ 5085 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 5086 up_read(&pci_bus_sem); 5087 return 0; 5088 } 5089 5090 /* Take d3cold_delay requirements into account */ 5091 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5092 if (!delay) { 5093 up_read(&pci_bus_sem); 5094 return 0; 5095 } 5096 5097 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 5098 bus_list); 5099 up_read(&pci_bus_sem); 5100 5101 /* 5102 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5103 * accessing the device after reset (that is 1000 ms + 100 ms). 5104 */ 5105 if (!pci_is_pcie(dev)) { 5106 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5107 msleep(1000 + delay); 5108 return 0; 5109 } 5110 5111 /* 5112 * For PCIe downstream and root ports that do not support speeds 5113 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5114 * speeds (gen3) we need to wait first for the data link layer to 5115 * become active. 5116 * 5117 * However, 100 ms is the minimum and the PCIe spec says the 5118 * software must allow at least 1s before it can determine that the 5119 * device that did not respond is a broken device. Also device can 5120 * take longer than that to respond if it indicates so through Request 5121 * Retry Status completions. 5122 * 5123 * Therefore we wait for 100 ms and check for the device presence 5124 * until the timeout expires. 5125 */ 5126 if (!pcie_downstream_port(dev)) 5127 return 0; 5128 5129 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5130 u16 status; 5131 5132 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5133 msleep(delay); 5134 5135 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 5136 return 0; 5137 5138 /* 5139 * If the port supports active link reporting we now check 5140 * whether the link is active and if not bail out early with 5141 * the assumption that the device is not present anymore. 5142 */ 5143 if (!dev->link_active_reporting) 5144 return -ENOTTY; 5145 5146 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 5147 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 5148 return -ENOTTY; 5149 5150 return pci_dev_wait(child, reset_type, 5151 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 5152 } 5153 5154 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5155 delay); 5156 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5157 /* Did not train, no need to wait any further */ 5158 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5159 return -ENOTTY; 5160 } 5161 5162 return pci_dev_wait(child, reset_type, 5163 PCIE_RESET_READY_POLL_MS - delay); 5164 } 5165 5166 void pci_reset_secondary_bus(struct pci_dev *dev) 5167 { 5168 u16 ctrl; 5169 5170 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5171 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5172 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5173 5174 /* 5175 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5176 * this to 2ms to ensure that we meet the minimum requirement. 5177 */ 5178 msleep(2); 5179 5180 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5181 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5182 } 5183 5184 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5185 { 5186 pci_reset_secondary_bus(dev); 5187 } 5188 5189 /** 5190 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5191 * @dev: Bridge device 5192 * 5193 * Use the bridge control register to assert reset on the secondary bus. 5194 * Devices on the secondary bus are left in power-on state. 5195 */ 5196 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5197 { 5198 pcibios_reset_secondary_bus(dev); 5199 5200 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5201 } 5202 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5203 5204 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5205 { 5206 struct pci_dev *pdev; 5207 5208 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5209 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5210 return -ENOTTY; 5211 5212 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5213 if (pdev != dev) 5214 return -ENOTTY; 5215 5216 if (probe) 5217 return 0; 5218 5219 return pci_bridge_secondary_bus_reset(dev->bus->self); 5220 } 5221 5222 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5223 { 5224 int rc = -ENOTTY; 5225 5226 if (!hotplug || !try_module_get(hotplug->owner)) 5227 return rc; 5228 5229 if (hotplug->ops->reset_slot) 5230 rc = hotplug->ops->reset_slot(hotplug, probe); 5231 5232 module_put(hotplug->owner); 5233 5234 return rc; 5235 } 5236 5237 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5238 { 5239 if (dev->multifunction || dev->subordinate || !dev->slot || 5240 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5241 return -ENOTTY; 5242 5243 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5244 } 5245 5246 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5247 { 5248 int rc; 5249 5250 rc = pci_dev_reset_slot_function(dev, probe); 5251 if (rc != -ENOTTY) 5252 return rc; 5253 return pci_parent_bus_reset(dev, probe); 5254 } 5255 5256 void pci_dev_lock(struct pci_dev *dev) 5257 { 5258 /* block PM suspend, driver probe, etc. */ 5259 device_lock(&dev->dev); 5260 pci_cfg_access_lock(dev); 5261 } 5262 EXPORT_SYMBOL_GPL(pci_dev_lock); 5263 5264 /* Return 1 on successful lock, 0 on contention */ 5265 int pci_dev_trylock(struct pci_dev *dev) 5266 { 5267 if (device_trylock(&dev->dev)) { 5268 if (pci_cfg_access_trylock(dev)) 5269 return 1; 5270 device_unlock(&dev->dev); 5271 } 5272 5273 return 0; 5274 } 5275 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5276 5277 void pci_dev_unlock(struct pci_dev *dev) 5278 { 5279 pci_cfg_access_unlock(dev); 5280 device_unlock(&dev->dev); 5281 } 5282 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5283 5284 static void pci_dev_save_and_disable(struct pci_dev *dev) 5285 { 5286 const struct pci_error_handlers *err_handler = 5287 dev->driver ? dev->driver->err_handler : NULL; 5288 5289 /* 5290 * dev->driver->err_handler->reset_prepare() is protected against 5291 * races with ->remove() by the device lock, which must be held by 5292 * the caller. 5293 */ 5294 if (err_handler && err_handler->reset_prepare) 5295 err_handler->reset_prepare(dev); 5296 5297 /* 5298 * Wake-up device prior to save. PM registers default to D0 after 5299 * reset and a simple register restore doesn't reliably return 5300 * to a non-D0 state anyway. 5301 */ 5302 pci_set_power_state(dev, PCI_D0); 5303 5304 pci_save_state(dev); 5305 /* 5306 * Disable the device by clearing the Command register, except for 5307 * INTx-disable which is set. This not only disables MMIO and I/O port 5308 * BARs, but also prevents the device from being Bus Master, preventing 5309 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5310 * compliant devices, INTx-disable prevents legacy interrupts. 5311 */ 5312 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5313 } 5314 5315 static void pci_dev_restore(struct pci_dev *dev) 5316 { 5317 const struct pci_error_handlers *err_handler = 5318 dev->driver ? dev->driver->err_handler : NULL; 5319 5320 pci_restore_state(dev); 5321 5322 /* 5323 * dev->driver->err_handler->reset_done() is protected against 5324 * races with ->remove() by the device lock, which must be held by 5325 * the caller. 5326 */ 5327 if (err_handler && err_handler->reset_done) 5328 err_handler->reset_done(dev); 5329 } 5330 5331 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5332 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5333 { }, 5334 { pci_dev_specific_reset, .name = "device_specific" }, 5335 { pci_dev_acpi_reset, .name = "acpi" }, 5336 { pcie_reset_flr, .name = "flr" }, 5337 { pci_af_flr, .name = "af_flr" }, 5338 { pci_pm_reset, .name = "pm" }, 5339 { pci_reset_bus_function, .name = "bus" }, 5340 }; 5341 5342 static ssize_t reset_method_show(struct device *dev, 5343 struct device_attribute *attr, char *buf) 5344 { 5345 struct pci_dev *pdev = to_pci_dev(dev); 5346 ssize_t len = 0; 5347 int i, m; 5348 5349 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5350 m = pdev->reset_methods[i]; 5351 if (!m) 5352 break; 5353 5354 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5355 pci_reset_fn_methods[m].name); 5356 } 5357 5358 if (len) 5359 len += sysfs_emit_at(buf, len, "\n"); 5360 5361 return len; 5362 } 5363 5364 static int reset_method_lookup(const char *name) 5365 { 5366 int m; 5367 5368 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5369 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5370 return m; 5371 } 5372 5373 return 0; /* not found */ 5374 } 5375 5376 static ssize_t reset_method_store(struct device *dev, 5377 struct device_attribute *attr, 5378 const char *buf, size_t count) 5379 { 5380 struct pci_dev *pdev = to_pci_dev(dev); 5381 char *options, *name; 5382 int m, n; 5383 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5384 5385 if (sysfs_streq(buf, "")) { 5386 pdev->reset_methods[0] = 0; 5387 pci_warn(pdev, "All device reset methods disabled by user"); 5388 return count; 5389 } 5390 5391 if (sysfs_streq(buf, "default")) { 5392 pci_init_reset_methods(pdev); 5393 return count; 5394 } 5395 5396 options = kstrndup(buf, count, GFP_KERNEL); 5397 if (!options) 5398 return -ENOMEM; 5399 5400 n = 0; 5401 while ((name = strsep(&options, " ")) != NULL) { 5402 if (sysfs_streq(name, "")) 5403 continue; 5404 5405 name = strim(name); 5406 5407 m = reset_method_lookup(name); 5408 if (!m) { 5409 pci_err(pdev, "Invalid reset method '%s'", name); 5410 goto error; 5411 } 5412 5413 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5414 pci_err(pdev, "Unsupported reset method '%s'", name); 5415 goto error; 5416 } 5417 5418 if (n == PCI_NUM_RESET_METHODS - 1) { 5419 pci_err(pdev, "Too many reset methods\n"); 5420 goto error; 5421 } 5422 5423 reset_methods[n++] = m; 5424 } 5425 5426 reset_methods[n] = 0; 5427 5428 /* Warn if dev-specific supported but not highest priority */ 5429 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5430 reset_methods[0] != 1) 5431 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5432 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5433 kfree(options); 5434 return count; 5435 5436 error: 5437 /* Leave previous methods unchanged */ 5438 kfree(options); 5439 return -EINVAL; 5440 } 5441 static DEVICE_ATTR_RW(reset_method); 5442 5443 static struct attribute *pci_dev_reset_method_attrs[] = { 5444 &dev_attr_reset_method.attr, 5445 NULL, 5446 }; 5447 5448 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5449 struct attribute *a, int n) 5450 { 5451 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5452 5453 if (!pci_reset_supported(pdev)) 5454 return 0; 5455 5456 return a->mode; 5457 } 5458 5459 const struct attribute_group pci_dev_reset_method_attr_group = { 5460 .attrs = pci_dev_reset_method_attrs, 5461 .is_visible = pci_dev_reset_method_attr_is_visible, 5462 }; 5463 5464 /** 5465 * __pci_reset_function_locked - reset a PCI device function while holding 5466 * the @dev mutex lock. 5467 * @dev: PCI device to reset 5468 * 5469 * Some devices allow an individual function to be reset without affecting 5470 * other functions in the same device. The PCI device must be responsive 5471 * to PCI config space in order to use this function. 5472 * 5473 * The device function is presumed to be unused and the caller is holding 5474 * the device mutex lock when this function is called. 5475 * 5476 * Resetting the device will make the contents of PCI configuration space 5477 * random, so any caller of this must be prepared to reinitialise the 5478 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5479 * etc. 5480 * 5481 * Returns 0 if the device function was successfully reset or negative if the 5482 * device doesn't support resetting a single function. 5483 */ 5484 int __pci_reset_function_locked(struct pci_dev *dev) 5485 { 5486 int i, m, rc; 5487 5488 might_sleep(); 5489 5490 /* 5491 * A reset method returns -ENOTTY if it doesn't support this device and 5492 * we should try the next method. 5493 * 5494 * If it returns 0 (success), we're finished. If it returns any other 5495 * error, we're also finished: this indicates that further reset 5496 * mechanisms might be broken on the device. 5497 */ 5498 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5499 m = dev->reset_methods[i]; 5500 if (!m) 5501 return -ENOTTY; 5502 5503 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5504 if (!rc) 5505 return 0; 5506 if (rc != -ENOTTY) 5507 return rc; 5508 } 5509 5510 return -ENOTTY; 5511 } 5512 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5513 5514 /** 5515 * pci_init_reset_methods - check whether device can be safely reset 5516 * and store supported reset mechanisms. 5517 * @dev: PCI device to check for reset mechanisms 5518 * 5519 * Some devices allow an individual function to be reset without affecting 5520 * other functions in the same device. The PCI device must be in D0-D3hot 5521 * state. 5522 * 5523 * Stores reset mechanisms supported by device in reset_methods byte array 5524 * which is a member of struct pci_dev. 5525 */ 5526 void pci_init_reset_methods(struct pci_dev *dev) 5527 { 5528 int m, i, rc; 5529 5530 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5531 5532 might_sleep(); 5533 5534 i = 0; 5535 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5536 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5537 if (!rc) 5538 dev->reset_methods[i++] = m; 5539 else if (rc != -ENOTTY) 5540 break; 5541 } 5542 5543 dev->reset_methods[i] = 0; 5544 } 5545 5546 /** 5547 * pci_reset_function - quiesce and reset a PCI device function 5548 * @dev: PCI device to reset 5549 * 5550 * Some devices allow an individual function to be reset without affecting 5551 * other functions in the same device. The PCI device must be responsive 5552 * to PCI config space in order to use this function. 5553 * 5554 * This function does not just reset the PCI portion of a device, but 5555 * clears all the state associated with the device. This function differs 5556 * from __pci_reset_function_locked() in that it saves and restores device state 5557 * over the reset and takes the PCI device lock. 5558 * 5559 * Returns 0 if the device function was successfully reset or negative if the 5560 * device doesn't support resetting a single function. 5561 */ 5562 int pci_reset_function(struct pci_dev *dev) 5563 { 5564 int rc; 5565 5566 if (!pci_reset_supported(dev)) 5567 return -ENOTTY; 5568 5569 pci_dev_lock(dev); 5570 pci_dev_save_and_disable(dev); 5571 5572 rc = __pci_reset_function_locked(dev); 5573 5574 pci_dev_restore(dev); 5575 pci_dev_unlock(dev); 5576 5577 return rc; 5578 } 5579 EXPORT_SYMBOL_GPL(pci_reset_function); 5580 5581 /** 5582 * pci_reset_function_locked - quiesce and reset a PCI device function 5583 * @dev: PCI device to reset 5584 * 5585 * Some devices allow an individual function to be reset without affecting 5586 * other functions in the same device. The PCI device must be responsive 5587 * to PCI config space in order to use this function. 5588 * 5589 * This function does not just reset the PCI portion of a device, but 5590 * clears all the state associated with the device. This function differs 5591 * from __pci_reset_function_locked() in that it saves and restores device state 5592 * over the reset. It also differs from pci_reset_function() in that it 5593 * requires the PCI device lock to be held. 5594 * 5595 * Returns 0 if the device function was successfully reset or negative if the 5596 * device doesn't support resetting a single function. 5597 */ 5598 int pci_reset_function_locked(struct pci_dev *dev) 5599 { 5600 int rc; 5601 5602 if (!pci_reset_supported(dev)) 5603 return -ENOTTY; 5604 5605 pci_dev_save_and_disable(dev); 5606 5607 rc = __pci_reset_function_locked(dev); 5608 5609 pci_dev_restore(dev); 5610 5611 return rc; 5612 } 5613 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5614 5615 /** 5616 * pci_try_reset_function - quiesce and reset a PCI device function 5617 * @dev: PCI device to reset 5618 * 5619 * Same as above, except return -EAGAIN if unable to lock device. 5620 */ 5621 int pci_try_reset_function(struct pci_dev *dev) 5622 { 5623 int rc; 5624 5625 if (!pci_reset_supported(dev)) 5626 return -ENOTTY; 5627 5628 if (!pci_dev_trylock(dev)) 5629 return -EAGAIN; 5630 5631 pci_dev_save_and_disable(dev); 5632 rc = __pci_reset_function_locked(dev); 5633 pci_dev_restore(dev); 5634 pci_dev_unlock(dev); 5635 5636 return rc; 5637 } 5638 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5639 5640 /* Do any devices on or below this bus prevent a bus reset? */ 5641 static bool pci_bus_resettable(struct pci_bus *bus) 5642 { 5643 struct pci_dev *dev; 5644 5645 5646 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5647 return false; 5648 5649 list_for_each_entry(dev, &bus->devices, bus_list) { 5650 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5651 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5652 return false; 5653 } 5654 5655 return true; 5656 } 5657 5658 /* Lock devices from the top of the tree down */ 5659 static void pci_bus_lock(struct pci_bus *bus) 5660 { 5661 struct pci_dev *dev; 5662 5663 list_for_each_entry(dev, &bus->devices, bus_list) { 5664 pci_dev_lock(dev); 5665 if (dev->subordinate) 5666 pci_bus_lock(dev->subordinate); 5667 } 5668 } 5669 5670 /* Unlock devices from the bottom of the tree up */ 5671 static void pci_bus_unlock(struct pci_bus *bus) 5672 { 5673 struct pci_dev *dev; 5674 5675 list_for_each_entry(dev, &bus->devices, bus_list) { 5676 if (dev->subordinate) 5677 pci_bus_unlock(dev->subordinate); 5678 pci_dev_unlock(dev); 5679 } 5680 } 5681 5682 /* Return 1 on successful lock, 0 on contention */ 5683 static int pci_bus_trylock(struct pci_bus *bus) 5684 { 5685 struct pci_dev *dev; 5686 5687 list_for_each_entry(dev, &bus->devices, bus_list) { 5688 if (!pci_dev_trylock(dev)) 5689 goto unlock; 5690 if (dev->subordinate) { 5691 if (!pci_bus_trylock(dev->subordinate)) { 5692 pci_dev_unlock(dev); 5693 goto unlock; 5694 } 5695 } 5696 } 5697 return 1; 5698 5699 unlock: 5700 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5701 if (dev->subordinate) 5702 pci_bus_unlock(dev->subordinate); 5703 pci_dev_unlock(dev); 5704 } 5705 return 0; 5706 } 5707 5708 /* Do any devices on or below this slot prevent a bus reset? */ 5709 static bool pci_slot_resettable(struct pci_slot *slot) 5710 { 5711 struct pci_dev *dev; 5712 5713 if (slot->bus->self && 5714 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5715 return false; 5716 5717 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5718 if (!dev->slot || dev->slot != slot) 5719 continue; 5720 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5721 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5722 return false; 5723 } 5724 5725 return true; 5726 } 5727 5728 /* Lock devices from the top of the tree down */ 5729 static void pci_slot_lock(struct pci_slot *slot) 5730 { 5731 struct pci_dev *dev; 5732 5733 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5734 if (!dev->slot || dev->slot != slot) 5735 continue; 5736 pci_dev_lock(dev); 5737 if (dev->subordinate) 5738 pci_bus_lock(dev->subordinate); 5739 } 5740 } 5741 5742 /* Unlock devices from the bottom of the tree up */ 5743 static void pci_slot_unlock(struct pci_slot *slot) 5744 { 5745 struct pci_dev *dev; 5746 5747 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5748 if (!dev->slot || dev->slot != slot) 5749 continue; 5750 if (dev->subordinate) 5751 pci_bus_unlock(dev->subordinate); 5752 pci_dev_unlock(dev); 5753 } 5754 } 5755 5756 /* Return 1 on successful lock, 0 on contention */ 5757 static int pci_slot_trylock(struct pci_slot *slot) 5758 { 5759 struct pci_dev *dev; 5760 5761 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5762 if (!dev->slot || dev->slot != slot) 5763 continue; 5764 if (!pci_dev_trylock(dev)) 5765 goto unlock; 5766 if (dev->subordinate) { 5767 if (!pci_bus_trylock(dev->subordinate)) { 5768 pci_dev_unlock(dev); 5769 goto unlock; 5770 } 5771 } 5772 } 5773 return 1; 5774 5775 unlock: 5776 list_for_each_entry_continue_reverse(dev, 5777 &slot->bus->devices, bus_list) { 5778 if (!dev->slot || dev->slot != slot) 5779 continue; 5780 if (dev->subordinate) 5781 pci_bus_unlock(dev->subordinate); 5782 pci_dev_unlock(dev); 5783 } 5784 return 0; 5785 } 5786 5787 /* 5788 * Save and disable devices from the top of the tree down while holding 5789 * the @dev mutex lock for the entire tree. 5790 */ 5791 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5792 { 5793 struct pci_dev *dev; 5794 5795 list_for_each_entry(dev, &bus->devices, bus_list) { 5796 pci_dev_save_and_disable(dev); 5797 if (dev->subordinate) 5798 pci_bus_save_and_disable_locked(dev->subordinate); 5799 } 5800 } 5801 5802 /* 5803 * Restore devices from top of the tree down while holding @dev mutex lock 5804 * for the entire tree. Parent bridges need to be restored before we can 5805 * get to subordinate devices. 5806 */ 5807 static void pci_bus_restore_locked(struct pci_bus *bus) 5808 { 5809 struct pci_dev *dev; 5810 5811 list_for_each_entry(dev, &bus->devices, bus_list) { 5812 pci_dev_restore(dev); 5813 if (dev->subordinate) 5814 pci_bus_restore_locked(dev->subordinate); 5815 } 5816 } 5817 5818 /* 5819 * Save and disable devices from the top of the tree down while holding 5820 * the @dev mutex lock for the entire tree. 5821 */ 5822 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5823 { 5824 struct pci_dev *dev; 5825 5826 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5827 if (!dev->slot || dev->slot != slot) 5828 continue; 5829 pci_dev_save_and_disable(dev); 5830 if (dev->subordinate) 5831 pci_bus_save_and_disable_locked(dev->subordinate); 5832 } 5833 } 5834 5835 /* 5836 * Restore devices from top of the tree down while holding @dev mutex lock 5837 * for the entire tree. Parent bridges need to be restored before we can 5838 * get to subordinate devices. 5839 */ 5840 static void pci_slot_restore_locked(struct pci_slot *slot) 5841 { 5842 struct pci_dev *dev; 5843 5844 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5845 if (!dev->slot || dev->slot != slot) 5846 continue; 5847 pci_dev_restore(dev); 5848 if (dev->subordinate) 5849 pci_bus_restore_locked(dev->subordinate); 5850 } 5851 } 5852 5853 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5854 { 5855 int rc; 5856 5857 if (!slot || !pci_slot_resettable(slot)) 5858 return -ENOTTY; 5859 5860 if (!probe) 5861 pci_slot_lock(slot); 5862 5863 might_sleep(); 5864 5865 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5866 5867 if (!probe) 5868 pci_slot_unlock(slot); 5869 5870 return rc; 5871 } 5872 5873 /** 5874 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5875 * @slot: PCI slot to probe 5876 * 5877 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5878 */ 5879 int pci_probe_reset_slot(struct pci_slot *slot) 5880 { 5881 return pci_slot_reset(slot, PCI_RESET_PROBE); 5882 } 5883 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5884 5885 /** 5886 * __pci_reset_slot - Try to reset a PCI slot 5887 * @slot: PCI slot to reset 5888 * 5889 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5890 * independent of other slots. For instance, some slots may support slot power 5891 * control. In the case of a 1:1 bus to slot architecture, this function may 5892 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5893 * Generally a slot reset should be attempted before a bus reset. All of the 5894 * function of the slot and any subordinate buses behind the slot are reset 5895 * through this function. PCI config space of all devices in the slot and 5896 * behind the slot is saved before and restored after reset. 5897 * 5898 * Same as above except return -EAGAIN if the slot cannot be locked 5899 */ 5900 static int __pci_reset_slot(struct pci_slot *slot) 5901 { 5902 int rc; 5903 5904 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5905 if (rc) 5906 return rc; 5907 5908 if (pci_slot_trylock(slot)) { 5909 pci_slot_save_and_disable_locked(slot); 5910 might_sleep(); 5911 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5912 pci_slot_restore_locked(slot); 5913 pci_slot_unlock(slot); 5914 } else 5915 rc = -EAGAIN; 5916 5917 return rc; 5918 } 5919 5920 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5921 { 5922 int ret; 5923 5924 if (!bus->self || !pci_bus_resettable(bus)) 5925 return -ENOTTY; 5926 5927 if (probe) 5928 return 0; 5929 5930 pci_bus_lock(bus); 5931 5932 might_sleep(); 5933 5934 ret = pci_bridge_secondary_bus_reset(bus->self); 5935 5936 pci_bus_unlock(bus); 5937 5938 return ret; 5939 } 5940 5941 /** 5942 * pci_bus_error_reset - reset the bridge's subordinate bus 5943 * @bridge: The parent device that connects to the bus to reset 5944 * 5945 * This function will first try to reset the slots on this bus if the method is 5946 * available. If slot reset fails or is not available, this will fall back to a 5947 * secondary bus reset. 5948 */ 5949 int pci_bus_error_reset(struct pci_dev *bridge) 5950 { 5951 struct pci_bus *bus = bridge->subordinate; 5952 struct pci_slot *slot; 5953 5954 if (!bus) 5955 return -ENOTTY; 5956 5957 mutex_lock(&pci_slot_mutex); 5958 if (list_empty(&bus->slots)) 5959 goto bus_reset; 5960 5961 list_for_each_entry(slot, &bus->slots, list) 5962 if (pci_probe_reset_slot(slot)) 5963 goto bus_reset; 5964 5965 list_for_each_entry(slot, &bus->slots, list) 5966 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5967 goto bus_reset; 5968 5969 mutex_unlock(&pci_slot_mutex); 5970 return 0; 5971 bus_reset: 5972 mutex_unlock(&pci_slot_mutex); 5973 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5974 } 5975 5976 /** 5977 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5978 * @bus: PCI bus to probe 5979 * 5980 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5981 */ 5982 int pci_probe_reset_bus(struct pci_bus *bus) 5983 { 5984 return pci_bus_reset(bus, PCI_RESET_PROBE); 5985 } 5986 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5987 5988 /** 5989 * __pci_reset_bus - Try to reset a PCI bus 5990 * @bus: top level PCI bus to reset 5991 * 5992 * Same as above except return -EAGAIN if the bus cannot be locked 5993 */ 5994 static int __pci_reset_bus(struct pci_bus *bus) 5995 { 5996 int rc; 5997 5998 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5999 if (rc) 6000 return rc; 6001 6002 if (pci_bus_trylock(bus)) { 6003 pci_bus_save_and_disable_locked(bus); 6004 might_sleep(); 6005 rc = pci_bridge_secondary_bus_reset(bus->self); 6006 pci_bus_restore_locked(bus); 6007 pci_bus_unlock(bus); 6008 } else 6009 rc = -EAGAIN; 6010 6011 return rc; 6012 } 6013 6014 /** 6015 * pci_reset_bus - Try to reset a PCI bus 6016 * @pdev: top level PCI device to reset via slot/bus 6017 * 6018 * Same as above except return -EAGAIN if the bus cannot be locked 6019 */ 6020 int pci_reset_bus(struct pci_dev *pdev) 6021 { 6022 return (!pci_probe_reset_slot(pdev->slot)) ? 6023 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 6024 } 6025 EXPORT_SYMBOL_GPL(pci_reset_bus); 6026 6027 /** 6028 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 6029 * @dev: PCI device to query 6030 * 6031 * Returns mmrbc: maximum designed memory read count in bytes or 6032 * appropriate error value. 6033 */ 6034 int pcix_get_max_mmrbc(struct pci_dev *dev) 6035 { 6036 int cap; 6037 u32 stat; 6038 6039 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6040 if (!cap) 6041 return -EINVAL; 6042 6043 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6044 return -EINVAL; 6045 6046 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 6047 } 6048 EXPORT_SYMBOL(pcix_get_max_mmrbc); 6049 6050 /** 6051 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 6052 * @dev: PCI device to query 6053 * 6054 * Returns mmrbc: maximum memory read count in bytes or appropriate error 6055 * value. 6056 */ 6057 int pcix_get_mmrbc(struct pci_dev *dev) 6058 { 6059 int cap; 6060 u16 cmd; 6061 6062 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6063 if (!cap) 6064 return -EINVAL; 6065 6066 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6067 return -EINVAL; 6068 6069 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6070 } 6071 EXPORT_SYMBOL(pcix_get_mmrbc); 6072 6073 /** 6074 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 6075 * @dev: PCI device to query 6076 * @mmrbc: maximum memory read count in bytes 6077 * valid values are 512, 1024, 2048, 4096 6078 * 6079 * If possible sets maximum memory read byte count, some bridges have errata 6080 * that prevent this. 6081 */ 6082 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 6083 { 6084 int cap; 6085 u32 stat, v, o; 6086 u16 cmd; 6087 6088 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 6089 return -EINVAL; 6090 6091 v = ffs(mmrbc) - 10; 6092 6093 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6094 if (!cap) 6095 return -EINVAL; 6096 6097 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6098 return -EINVAL; 6099 6100 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 6101 return -E2BIG; 6102 6103 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6104 return -EINVAL; 6105 6106 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6107 if (o != v) { 6108 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6109 return -EIO; 6110 6111 cmd &= ~PCI_X_CMD_MAX_READ; 6112 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 6113 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6114 return -EIO; 6115 } 6116 return 0; 6117 } 6118 EXPORT_SYMBOL(pcix_set_mmrbc); 6119 6120 /** 6121 * pcie_get_readrq - get PCI Express read request size 6122 * @dev: PCI device to query 6123 * 6124 * Returns maximum memory read request in bytes or appropriate error value. 6125 */ 6126 int pcie_get_readrq(struct pci_dev *dev) 6127 { 6128 u16 ctl; 6129 6130 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6131 6132 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 6133 } 6134 EXPORT_SYMBOL(pcie_get_readrq); 6135 6136 /** 6137 * pcie_set_readrq - set PCI Express maximum memory read request 6138 * @dev: PCI device to query 6139 * @rq: maximum memory read count in bytes 6140 * valid values are 128, 256, 512, 1024, 2048, 4096 6141 * 6142 * If possible sets maximum memory read request in bytes 6143 */ 6144 int pcie_set_readrq(struct pci_dev *dev, int rq) 6145 { 6146 u16 v; 6147 int ret; 6148 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6149 6150 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6151 return -EINVAL; 6152 6153 /* 6154 * If using the "performance" PCIe config, we clamp the read rq 6155 * size to the max packet size to keep the host bridge from 6156 * generating requests larger than we can cope with. 6157 */ 6158 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6159 int mps = pcie_get_mps(dev); 6160 6161 if (mps < rq) 6162 rq = mps; 6163 } 6164 6165 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 6166 6167 if (bridge->no_inc_mrrs) { 6168 int max_mrrs = pcie_get_readrq(dev); 6169 6170 if (rq > max_mrrs) { 6171 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6172 return -EINVAL; 6173 } 6174 } 6175 6176 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6177 PCI_EXP_DEVCTL_READRQ, v); 6178 6179 return pcibios_err_to_errno(ret); 6180 } 6181 EXPORT_SYMBOL(pcie_set_readrq); 6182 6183 /** 6184 * pcie_get_mps - get PCI Express maximum payload size 6185 * @dev: PCI device to query 6186 * 6187 * Returns maximum payload size in bytes 6188 */ 6189 int pcie_get_mps(struct pci_dev *dev) 6190 { 6191 u16 ctl; 6192 6193 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6194 6195 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 6196 } 6197 EXPORT_SYMBOL(pcie_get_mps); 6198 6199 /** 6200 * pcie_set_mps - set PCI Express maximum payload size 6201 * @dev: PCI device to query 6202 * @mps: maximum payload size in bytes 6203 * valid values are 128, 256, 512, 1024, 2048, 4096 6204 * 6205 * If possible sets maximum payload size 6206 */ 6207 int pcie_set_mps(struct pci_dev *dev, int mps) 6208 { 6209 u16 v; 6210 int ret; 6211 6212 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6213 return -EINVAL; 6214 6215 v = ffs(mps) - 8; 6216 if (v > dev->pcie_mpss) 6217 return -EINVAL; 6218 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 6219 6220 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6221 PCI_EXP_DEVCTL_PAYLOAD, v); 6222 6223 return pcibios_err_to_errno(ret); 6224 } 6225 EXPORT_SYMBOL(pcie_set_mps); 6226 6227 /** 6228 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6229 * device and its bandwidth limitation 6230 * @dev: PCI device to query 6231 * @limiting_dev: storage for device causing the bandwidth limitation 6232 * @speed: storage for speed of limiting device 6233 * @width: storage for width of limiting device 6234 * 6235 * Walk up the PCI device chain and find the point where the minimum 6236 * bandwidth is available. Return the bandwidth available there and (if 6237 * limiting_dev, speed, and width pointers are supplied) information about 6238 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6239 * raw bandwidth. 6240 */ 6241 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6242 enum pci_bus_speed *speed, 6243 enum pcie_link_width *width) 6244 { 6245 u16 lnksta; 6246 enum pci_bus_speed next_speed; 6247 enum pcie_link_width next_width; 6248 u32 bw, next_bw; 6249 6250 if (speed) 6251 *speed = PCI_SPEED_UNKNOWN; 6252 if (width) 6253 *width = PCIE_LNK_WIDTH_UNKNOWN; 6254 6255 bw = 0; 6256 6257 while (dev) { 6258 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6259 6260 next_speed = pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, 6261 lnksta)]; 6262 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6263 6264 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6265 6266 /* Check if current device limits the total bandwidth */ 6267 if (!bw || next_bw <= bw) { 6268 bw = next_bw; 6269 6270 if (limiting_dev) 6271 *limiting_dev = dev; 6272 if (speed) 6273 *speed = next_speed; 6274 if (width) 6275 *width = next_width; 6276 } 6277 6278 dev = pci_upstream_bridge(dev); 6279 } 6280 6281 return bw; 6282 } 6283 EXPORT_SYMBOL(pcie_bandwidth_available); 6284 6285 /** 6286 * pcie_get_speed_cap - query for the PCI device's link speed capability 6287 * @dev: PCI device to query 6288 * 6289 * Query the PCI device speed capability. Return the maximum link speed 6290 * supported by the device. 6291 */ 6292 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6293 { 6294 u32 lnkcap2, lnkcap; 6295 6296 /* 6297 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6298 * implementation note there recommends using the Supported Link 6299 * Speeds Vector in Link Capabilities 2 when supported. 6300 * 6301 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6302 * should use the Supported Link Speeds field in Link Capabilities, 6303 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6304 */ 6305 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6306 6307 /* PCIe r3.0-compliant */ 6308 if (lnkcap2) 6309 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6310 6311 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6312 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6313 return PCIE_SPEED_5_0GT; 6314 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6315 return PCIE_SPEED_2_5GT; 6316 6317 return PCI_SPEED_UNKNOWN; 6318 } 6319 EXPORT_SYMBOL(pcie_get_speed_cap); 6320 6321 /** 6322 * pcie_get_width_cap - query for the PCI device's link width capability 6323 * @dev: PCI device to query 6324 * 6325 * Query the PCI device width capability. Return the maximum link width 6326 * supported by the device. 6327 */ 6328 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6329 { 6330 u32 lnkcap; 6331 6332 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6333 if (lnkcap) 6334 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6335 6336 return PCIE_LNK_WIDTH_UNKNOWN; 6337 } 6338 EXPORT_SYMBOL(pcie_get_width_cap); 6339 6340 /** 6341 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6342 * @dev: PCI device 6343 * @speed: storage for link speed 6344 * @width: storage for link width 6345 * 6346 * Calculate a PCI device's link bandwidth by querying for its link speed 6347 * and width, multiplying them, and applying encoding overhead. The result 6348 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6349 */ 6350 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6351 enum pcie_link_width *width) 6352 { 6353 *speed = pcie_get_speed_cap(dev); 6354 *width = pcie_get_width_cap(dev); 6355 6356 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6357 return 0; 6358 6359 return *width * PCIE_SPEED2MBS_ENC(*speed); 6360 } 6361 6362 /** 6363 * __pcie_print_link_status - Report the PCI device's link speed and width 6364 * @dev: PCI device to query 6365 * @verbose: Print info even when enough bandwidth is available 6366 * 6367 * If the available bandwidth at the device is less than the device is 6368 * capable of, report the device's maximum possible bandwidth and the 6369 * upstream link that limits its performance. If @verbose, always print 6370 * the available bandwidth, even if the device isn't constrained. 6371 */ 6372 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6373 { 6374 enum pcie_link_width width, width_cap; 6375 enum pci_bus_speed speed, speed_cap; 6376 struct pci_dev *limiting_dev = NULL; 6377 u32 bw_avail, bw_cap; 6378 6379 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6380 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6381 6382 if (bw_avail >= bw_cap && verbose) 6383 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6384 bw_cap / 1000, bw_cap % 1000, 6385 pci_speed_string(speed_cap), width_cap); 6386 else if (bw_avail < bw_cap) 6387 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6388 bw_avail / 1000, bw_avail % 1000, 6389 pci_speed_string(speed), width, 6390 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6391 bw_cap / 1000, bw_cap % 1000, 6392 pci_speed_string(speed_cap), width_cap); 6393 } 6394 6395 /** 6396 * pcie_print_link_status - Report the PCI device's link speed and width 6397 * @dev: PCI device to query 6398 * 6399 * Report the available bandwidth at the device. 6400 */ 6401 void pcie_print_link_status(struct pci_dev *dev) 6402 { 6403 __pcie_print_link_status(dev, true); 6404 } 6405 EXPORT_SYMBOL(pcie_print_link_status); 6406 6407 /** 6408 * pci_select_bars - Make BAR mask from the type of resource 6409 * @dev: the PCI device for which BAR mask is made 6410 * @flags: resource type mask to be selected 6411 * 6412 * This helper routine makes bar mask from the type of resource. 6413 */ 6414 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6415 { 6416 int i, bars = 0; 6417 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6418 if (pci_resource_flags(dev, i) & flags) 6419 bars |= (1 << i); 6420 return bars; 6421 } 6422 EXPORT_SYMBOL(pci_select_bars); 6423 6424 /* Some architectures require additional programming to enable VGA */ 6425 static arch_set_vga_state_t arch_set_vga_state; 6426 6427 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6428 { 6429 arch_set_vga_state = func; /* NULL disables */ 6430 } 6431 6432 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6433 unsigned int command_bits, u32 flags) 6434 { 6435 if (arch_set_vga_state) 6436 return arch_set_vga_state(dev, decode, command_bits, 6437 flags); 6438 return 0; 6439 } 6440 6441 /** 6442 * pci_set_vga_state - set VGA decode state on device and parents if requested 6443 * @dev: the PCI device 6444 * @decode: true = enable decoding, false = disable decoding 6445 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6446 * @flags: traverse ancestors and change bridges 6447 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6448 */ 6449 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6450 unsigned int command_bits, u32 flags) 6451 { 6452 struct pci_bus *bus; 6453 struct pci_dev *bridge; 6454 u16 cmd; 6455 int rc; 6456 6457 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6458 6459 /* ARCH specific VGA enables */ 6460 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6461 if (rc) 6462 return rc; 6463 6464 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6465 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6466 if (decode) 6467 cmd |= command_bits; 6468 else 6469 cmd &= ~command_bits; 6470 pci_write_config_word(dev, PCI_COMMAND, cmd); 6471 } 6472 6473 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6474 return 0; 6475 6476 bus = dev->bus; 6477 while (bus) { 6478 bridge = bus->self; 6479 if (bridge) { 6480 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6481 &cmd); 6482 if (decode) 6483 cmd |= PCI_BRIDGE_CTL_VGA; 6484 else 6485 cmd &= ~PCI_BRIDGE_CTL_VGA; 6486 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6487 cmd); 6488 } 6489 bus = bus->parent; 6490 } 6491 return 0; 6492 } 6493 6494 #ifdef CONFIG_ACPI 6495 bool pci_pr3_present(struct pci_dev *pdev) 6496 { 6497 struct acpi_device *adev; 6498 6499 if (acpi_disabled) 6500 return false; 6501 6502 adev = ACPI_COMPANION(&pdev->dev); 6503 if (!adev) 6504 return false; 6505 6506 return adev->power.flags.power_resources && 6507 acpi_has_method(adev->handle, "_PR3"); 6508 } 6509 EXPORT_SYMBOL_GPL(pci_pr3_present); 6510 #endif 6511 6512 /** 6513 * pci_add_dma_alias - Add a DMA devfn alias for a device 6514 * @dev: the PCI device for which alias is added 6515 * @devfn_from: alias slot and function 6516 * @nr_devfns: number of subsequent devfns to alias 6517 * 6518 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6519 * which is used to program permissible bus-devfn source addresses for DMA 6520 * requests in an IOMMU. These aliases factor into IOMMU group creation 6521 * and are useful for devices generating DMA requests beyond or different 6522 * from their logical bus-devfn. Examples include device quirks where the 6523 * device simply uses the wrong devfn, as well as non-transparent bridges 6524 * where the alias may be a proxy for devices in another domain. 6525 * 6526 * IOMMU group creation is performed during device discovery or addition, 6527 * prior to any potential DMA mapping and therefore prior to driver probing 6528 * (especially for userspace assigned devices where IOMMU group definition 6529 * cannot be left as a userspace activity). DMA aliases should therefore 6530 * be configured via quirks, such as the PCI fixup header quirk. 6531 */ 6532 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6533 unsigned int nr_devfns) 6534 { 6535 int devfn_to; 6536 6537 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6538 devfn_to = devfn_from + nr_devfns - 1; 6539 6540 if (!dev->dma_alias_mask) 6541 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6542 if (!dev->dma_alias_mask) { 6543 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6544 return; 6545 } 6546 6547 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6548 6549 if (nr_devfns == 1) 6550 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6551 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6552 else if (nr_devfns > 1) 6553 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6554 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6555 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6556 } 6557 6558 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6559 { 6560 return (dev1->dma_alias_mask && 6561 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6562 (dev2->dma_alias_mask && 6563 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6564 pci_real_dma_dev(dev1) == dev2 || 6565 pci_real_dma_dev(dev2) == dev1; 6566 } 6567 6568 bool pci_device_is_present(struct pci_dev *pdev) 6569 { 6570 u32 v; 6571 6572 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6573 pdev = pci_physfn(pdev); 6574 if (pci_dev_is_disconnected(pdev)) 6575 return false; 6576 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6577 } 6578 EXPORT_SYMBOL_GPL(pci_device_is_present); 6579 6580 void pci_ignore_hotplug(struct pci_dev *dev) 6581 { 6582 struct pci_dev *bridge = dev->bus->self; 6583 6584 dev->ignore_hotplug = 1; 6585 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6586 if (bridge) 6587 bridge->ignore_hotplug = 1; 6588 } 6589 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6590 6591 /** 6592 * pci_real_dma_dev - Get PCI DMA device for PCI device 6593 * @dev: the PCI device that may have a PCI DMA alias 6594 * 6595 * Permits the platform to provide architecture-specific functionality to 6596 * devices needing to alias DMA to another PCI device on another PCI bus. If 6597 * the PCI device is on the same bus, it is recommended to use 6598 * pci_add_dma_alias(). This is the default implementation. Architecture 6599 * implementations can override this. 6600 */ 6601 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6602 { 6603 return dev; 6604 } 6605 6606 resource_size_t __weak pcibios_default_alignment(void) 6607 { 6608 return 0; 6609 } 6610 6611 /* 6612 * Arches that don't want to expose struct resource to userland as-is in 6613 * sysfs and /proc can implement their own pci_resource_to_user(). 6614 */ 6615 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6616 const struct resource *rsrc, 6617 resource_size_t *start, resource_size_t *end) 6618 { 6619 *start = rsrc->start; 6620 *end = rsrc->end; 6621 } 6622 6623 static char *resource_alignment_param; 6624 static DEFINE_SPINLOCK(resource_alignment_lock); 6625 6626 /** 6627 * pci_specified_resource_alignment - get resource alignment specified by user. 6628 * @dev: the PCI device to get 6629 * @resize: whether or not to change resources' size when reassigning alignment 6630 * 6631 * RETURNS: Resource alignment if it is specified. 6632 * Zero if it is not specified. 6633 */ 6634 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6635 bool *resize) 6636 { 6637 int align_order, count; 6638 resource_size_t align = pcibios_default_alignment(); 6639 const char *p; 6640 int ret; 6641 6642 spin_lock(&resource_alignment_lock); 6643 p = resource_alignment_param; 6644 if (!p || !*p) 6645 goto out; 6646 if (pci_has_flag(PCI_PROBE_ONLY)) { 6647 align = 0; 6648 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6649 goto out; 6650 } 6651 6652 while (*p) { 6653 count = 0; 6654 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6655 p[count] == '@') { 6656 p += count + 1; 6657 if (align_order > 63) { 6658 pr_err("PCI: Invalid requested alignment (order %d)\n", 6659 align_order); 6660 align_order = PAGE_SHIFT; 6661 } 6662 } else { 6663 align_order = PAGE_SHIFT; 6664 } 6665 6666 ret = pci_dev_str_match(dev, p, &p); 6667 if (ret == 1) { 6668 *resize = true; 6669 align = 1ULL << align_order; 6670 break; 6671 } else if (ret < 0) { 6672 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6673 p); 6674 break; 6675 } 6676 6677 if (*p != ';' && *p != ',') { 6678 /* End of param or invalid format */ 6679 break; 6680 } 6681 p++; 6682 } 6683 out: 6684 spin_unlock(&resource_alignment_lock); 6685 return align; 6686 } 6687 6688 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6689 resource_size_t align, bool resize) 6690 { 6691 struct resource *r = &dev->resource[bar]; 6692 resource_size_t size; 6693 6694 if (!(r->flags & IORESOURCE_MEM)) 6695 return; 6696 6697 if (r->flags & IORESOURCE_PCI_FIXED) { 6698 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6699 bar, r, (unsigned long long)align); 6700 return; 6701 } 6702 6703 size = resource_size(r); 6704 if (size >= align) 6705 return; 6706 6707 /* 6708 * Increase the alignment of the resource. There are two ways we 6709 * can do this: 6710 * 6711 * 1) Increase the size of the resource. BARs are aligned on their 6712 * size, so when we reallocate space for this resource, we'll 6713 * allocate it with the larger alignment. This also prevents 6714 * assignment of any other BARs inside the alignment region, so 6715 * if we're requesting page alignment, this means no other BARs 6716 * will share the page. 6717 * 6718 * The disadvantage is that this makes the resource larger than 6719 * the hardware BAR, which may break drivers that compute things 6720 * based on the resource size, e.g., to find registers at a 6721 * fixed offset before the end of the BAR. 6722 * 6723 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6724 * set r->start to the desired alignment. By itself this 6725 * doesn't prevent other BARs being put inside the alignment 6726 * region, but if we realign *every* resource of every device in 6727 * the system, none of them will share an alignment region. 6728 * 6729 * When the user has requested alignment for only some devices via 6730 * the "pci=resource_alignment" argument, "resize" is true and we 6731 * use the first method. Otherwise we assume we're aligning all 6732 * devices and we use the second. 6733 */ 6734 6735 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6736 bar, r, (unsigned long long)align); 6737 6738 if (resize) { 6739 r->start = 0; 6740 r->end = align - 1; 6741 } else { 6742 r->flags &= ~IORESOURCE_SIZEALIGN; 6743 r->flags |= IORESOURCE_STARTALIGN; 6744 r->start = align; 6745 r->end = r->start + size - 1; 6746 } 6747 r->flags |= IORESOURCE_UNSET; 6748 } 6749 6750 /* 6751 * This function disables memory decoding and releases memory resources 6752 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6753 * It also rounds up size to specified alignment. 6754 * Later on, the kernel will assign page-aligned memory resource back 6755 * to the device. 6756 */ 6757 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6758 { 6759 int i; 6760 struct resource *r; 6761 resource_size_t align; 6762 u16 command; 6763 bool resize = false; 6764 6765 /* 6766 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6767 * 3.4.1.11. Their resources are allocated from the space 6768 * described by the VF BARx register in the PF's SR-IOV capability. 6769 * We can't influence their alignment here. 6770 */ 6771 if (dev->is_virtfn) 6772 return; 6773 6774 /* check if specified PCI is target device to reassign */ 6775 align = pci_specified_resource_alignment(dev, &resize); 6776 if (!align) 6777 return; 6778 6779 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6780 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6781 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6782 return; 6783 } 6784 6785 pci_read_config_word(dev, PCI_COMMAND, &command); 6786 command &= ~PCI_COMMAND_MEMORY; 6787 pci_write_config_word(dev, PCI_COMMAND, command); 6788 6789 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6790 pci_request_resource_alignment(dev, i, align, resize); 6791 6792 /* 6793 * Need to disable bridge's resource window, 6794 * to enable the kernel to reassign new resource 6795 * window later on. 6796 */ 6797 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6798 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6799 r = &dev->resource[i]; 6800 if (!(r->flags & IORESOURCE_MEM)) 6801 continue; 6802 r->flags |= IORESOURCE_UNSET; 6803 r->end = resource_size(r) - 1; 6804 r->start = 0; 6805 } 6806 pci_disable_bridge_window(dev); 6807 } 6808 } 6809 6810 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6811 { 6812 size_t count = 0; 6813 6814 spin_lock(&resource_alignment_lock); 6815 if (resource_alignment_param) 6816 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6817 spin_unlock(&resource_alignment_lock); 6818 6819 return count; 6820 } 6821 6822 static ssize_t resource_alignment_store(const struct bus_type *bus, 6823 const char *buf, size_t count) 6824 { 6825 char *param, *old, *end; 6826 6827 if (count >= (PAGE_SIZE - 1)) 6828 return -EINVAL; 6829 6830 param = kstrndup(buf, count, GFP_KERNEL); 6831 if (!param) 6832 return -ENOMEM; 6833 6834 end = strchr(param, '\n'); 6835 if (end) 6836 *end = '\0'; 6837 6838 spin_lock(&resource_alignment_lock); 6839 old = resource_alignment_param; 6840 if (strlen(param)) { 6841 resource_alignment_param = param; 6842 } else { 6843 kfree(param); 6844 resource_alignment_param = NULL; 6845 } 6846 spin_unlock(&resource_alignment_lock); 6847 6848 kfree(old); 6849 6850 return count; 6851 } 6852 6853 static BUS_ATTR_RW(resource_alignment); 6854 6855 static int __init pci_resource_alignment_sysfs_init(void) 6856 { 6857 return bus_create_file(&pci_bus_type, 6858 &bus_attr_resource_alignment); 6859 } 6860 late_initcall(pci_resource_alignment_sysfs_init); 6861 6862 static void pci_no_domains(void) 6863 { 6864 #ifdef CONFIG_PCI_DOMAINS 6865 pci_domains_supported = 0; 6866 #endif 6867 } 6868 6869 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6870 static DEFINE_IDA(pci_domain_nr_static_ida); 6871 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6872 6873 static void of_pci_reserve_static_domain_nr(void) 6874 { 6875 struct device_node *np; 6876 int domain_nr; 6877 6878 for_each_node_by_type(np, "pci") { 6879 domain_nr = of_get_pci_domain_nr(np); 6880 if (domain_nr < 0) 6881 continue; 6882 /* 6883 * Permanently allocate domain_nr in dynamic_ida 6884 * to prevent it from dynamic allocation. 6885 */ 6886 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6887 domain_nr, domain_nr, GFP_KERNEL); 6888 } 6889 } 6890 6891 static int of_pci_bus_find_domain_nr(struct device *parent) 6892 { 6893 static bool static_domains_reserved = false; 6894 int domain_nr; 6895 6896 /* On the first call scan device tree for static allocations. */ 6897 if (!static_domains_reserved) { 6898 of_pci_reserve_static_domain_nr(); 6899 static_domains_reserved = true; 6900 } 6901 6902 if (parent) { 6903 /* 6904 * If domain is in DT, allocate it in static IDA. This 6905 * prevents duplicate static allocations in case of errors 6906 * in DT. 6907 */ 6908 domain_nr = of_get_pci_domain_nr(parent->of_node); 6909 if (domain_nr >= 0) 6910 return ida_alloc_range(&pci_domain_nr_static_ida, 6911 domain_nr, domain_nr, 6912 GFP_KERNEL); 6913 } 6914 6915 /* 6916 * If domain was not specified in DT, choose a free ID from dynamic 6917 * allocations. All domain numbers from DT are permanently in 6918 * dynamic allocations to prevent assigning them to other DT nodes 6919 * without static domain. 6920 */ 6921 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6922 } 6923 6924 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6925 { 6926 if (bus->domain_nr < 0) 6927 return; 6928 6929 /* Release domain from IDA where it was allocated. */ 6930 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6931 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6932 else 6933 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6934 } 6935 6936 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6937 { 6938 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6939 acpi_pci_bus_find_domain_nr(bus); 6940 } 6941 6942 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6943 { 6944 if (!acpi_disabled) 6945 return; 6946 of_pci_bus_release_domain_nr(bus, parent); 6947 } 6948 #endif 6949 6950 /** 6951 * pci_ext_cfg_avail - can we access extended PCI config space? 6952 * 6953 * Returns 1 if we can access PCI extended config space (offsets 6954 * greater than 0xff). This is the default implementation. Architecture 6955 * implementations can override this. 6956 */ 6957 int __weak pci_ext_cfg_avail(void) 6958 { 6959 return 1; 6960 } 6961 6962 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6963 { 6964 } 6965 EXPORT_SYMBOL(pci_fixup_cardbus); 6966 6967 static int __init pci_setup(char *str) 6968 { 6969 while (str) { 6970 char *k = strchr(str, ','); 6971 if (k) 6972 *k++ = 0; 6973 if (*str && (str = pcibios_setup(str)) && *str) { 6974 if (!strcmp(str, "nomsi")) { 6975 pci_no_msi(); 6976 } else if (!strncmp(str, "noats", 5)) { 6977 pr_info("PCIe: ATS is disabled\n"); 6978 pcie_ats_disabled = true; 6979 } else if (!strcmp(str, "noaer")) { 6980 pci_no_aer(); 6981 } else if (!strcmp(str, "earlydump")) { 6982 pci_early_dump = true; 6983 } else if (!strncmp(str, "realloc=", 8)) { 6984 pci_realloc_get_opt(str + 8); 6985 } else if (!strncmp(str, "realloc", 7)) { 6986 pci_realloc_get_opt("on"); 6987 } else if (!strcmp(str, "nodomains")) { 6988 pci_no_domains(); 6989 } else if (!strncmp(str, "noari", 5)) { 6990 pcie_ari_disabled = true; 6991 } else if (!strncmp(str, "cbiosize=", 9)) { 6992 pci_cardbus_io_size = memparse(str + 9, &str); 6993 } else if (!strncmp(str, "cbmemsize=", 10)) { 6994 pci_cardbus_mem_size = memparse(str + 10, &str); 6995 } else if (!strncmp(str, "resource_alignment=", 19)) { 6996 resource_alignment_param = str + 19; 6997 } else if (!strncmp(str, "ecrc=", 5)) { 6998 pcie_ecrc_get_policy(str + 5); 6999 } else if (!strncmp(str, "hpiosize=", 9)) { 7000 pci_hotplug_io_size = memparse(str + 9, &str); 7001 } else if (!strncmp(str, "hpmmiosize=", 11)) { 7002 pci_hotplug_mmio_size = memparse(str + 11, &str); 7003 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 7004 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 7005 } else if (!strncmp(str, "hpmemsize=", 10)) { 7006 pci_hotplug_mmio_size = memparse(str + 10, &str); 7007 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 7008 } else if (!strncmp(str, "hpbussize=", 10)) { 7009 pci_hotplug_bus_size = 7010 simple_strtoul(str + 10, &str, 0); 7011 if (pci_hotplug_bus_size > 0xff) 7012 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 7013 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 7014 pcie_bus_config = PCIE_BUS_TUNE_OFF; 7015 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 7016 pcie_bus_config = PCIE_BUS_SAFE; 7017 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 7018 pcie_bus_config = PCIE_BUS_PERFORMANCE; 7019 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 7020 pcie_bus_config = PCIE_BUS_PEER2PEER; 7021 } else if (!strncmp(str, "pcie_scan_all", 13)) { 7022 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 7023 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 7024 disable_acs_redir_param = str + 18; 7025 } else { 7026 pr_err("PCI: Unknown option `%s'\n", str); 7027 } 7028 } 7029 str = k; 7030 } 7031 return 0; 7032 } 7033 early_param("pci", pci_setup); 7034 7035 /* 7036 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 7037 * in pci_setup(), above, to point to data in the __initdata section which 7038 * will be freed after the init sequence is complete. We can't allocate memory 7039 * in pci_setup() because some architectures do not have any memory allocation 7040 * service available during an early_param() call. So we allocate memory and 7041 * copy the variable here before the init section is freed. 7042 * 7043 */ 7044 static int __init pci_realloc_setup_params(void) 7045 { 7046 resource_alignment_param = kstrdup(resource_alignment_param, 7047 GFP_KERNEL); 7048 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 7049 7050 return 0; 7051 } 7052 pure_initcall(pci_realloc_setup_params); 7053