xref: /linux/drivers/pci/pci.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48 
49 unsigned int pci_pm_d3hot_delay;
50 
51 static void pci_pme_list_scan(struct work_struct *work);
52 
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56 
57 struct pci_pme_device {
58 	struct list_head list;
59 	struct pci_dev *dev;
60 };
61 
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63 
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 	unsigned int delay = dev->d3hot_delay;
67 
68 	if (delay < pci_pm_d3hot_delay)
69 		delay = pci_pm_d3hot_delay;
70 
71 	if (delay)
72 		msleep(delay);
73 }
74 
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78 
79 #define DEFAULT_CARDBUS_IO_SIZE		(256)
80 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84 
85 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
90 /*
91  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93  * pci=hpmemsize=nnM overrides both
94  */
95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97 
98 #define DEFAULT_HOTPLUG_BUS_SIZE	1
99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100 
101 
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111 #else
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113 #endif
114 
115 /*
116  * The default CLS is used if arch didn't set CLS explicitly and not
117  * all pci devices agree on the same value.  Arch can override either
118  * the dfl or actual value as it sees fit.  Don't forget this is
119  * measured in 32-bit words, not bytes.
120  */
121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122 u8 pci_cache_line_size;
123 
124 /*
125  * If we set up a device for bus mastering, we need to check the latency
126  * timer as certain BIOSes forget to set it properly.
127  */
128 unsigned int pcibios_max_latency = 255;
129 
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled;
132 
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled;
135 
136 /* If set, the PCI config space of each device is printed during boot. */
137 bool pci_early_dump;
138 
139 bool pci_ats_disabled(void)
140 {
141 	return pcie_ats_disabled;
142 }
143 EXPORT_SYMBOL_GPL(pci_ats_disabled);
144 
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force;
149 
150 static int __init pcie_port_pm_setup(char *str)
151 {
152 	if (!strcmp(str, "off"))
153 		pci_bridge_d3_disable = true;
154 	else if (!strcmp(str, "force"))
155 		pci_bridge_d3_force = true;
156 	return 1;
157 }
158 __setup("pcie_port_pm=", pcie_port_pm_setup);
159 
160 /* Time to wait after a reset for device to become responsive */
161 #define PCIE_RESET_READY_POLL_MS 60000
162 
163 /**
164  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165  * @bus: pointer to PCI bus structure to search
166  *
167  * Given a PCI bus, returns the highest PCI bus number present in the set
168  * including the given PCI bus and its list of child PCI buses.
169  */
170 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
171 {
172 	struct pci_bus *tmp;
173 	unsigned char max, n;
174 
175 	max = bus->busn_res.end;
176 	list_for_each_entry(tmp, &bus->children, node) {
177 		n = pci_bus_max_busnr(tmp);
178 		if (n > max)
179 			max = n;
180 	}
181 	return max;
182 }
183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
184 
185 /**
186  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187  * @pdev: the PCI device
188  *
189  * Returns error bits set in PCI_STATUS and clears them.
190  */
191 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192 {
193 	u16 status;
194 	int ret;
195 
196 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 	if (ret != PCIBIOS_SUCCESSFUL)
198 		return -EIO;
199 
200 	status &= PCI_STATUS_ERROR_BITS;
201 	if (status)
202 		pci_write_config_word(pdev, PCI_STATUS, status);
203 
204 	return status;
205 }
206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207 
208 #ifdef CONFIG_HAS_IOMEM
209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210 {
211 	struct resource *res = &pdev->resource[bar];
212 
213 	/*
214 	 * Make sure the BAR is actually a memory resource, not an IO resource
215 	 */
216 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 		return NULL;
219 	}
220 	return ioremap(res->start, resource_size(res));
221 }
222 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
223 
224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225 {
226 	/*
227 	 * Make sure the BAR is actually a memory resource, not an IO resource
228 	 */
229 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 		WARN_ON(1);
231 		return NULL;
232 	}
233 	return ioremap_wc(pci_resource_start(pdev, bar),
234 			  pci_resource_len(pdev, bar));
235 }
236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237 #endif
238 
239 /**
240  * pci_dev_str_match_path - test if a path string matches a device
241  * @dev: the PCI device to test
242  * @path: string to match the device against
243  * @endptr: pointer to the string after the match
244  *
245  * Test if a string (typically from a kernel parameter) formatted as a
246  * path of device/function addresses matches a PCI device. The string must
247  * be of the form:
248  *
249  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250  *
251  * A path for a device can be obtained using 'lspci -t'.  Using a path
252  * is more robust against bus renumbering than using only a single bus,
253  * device and function address.
254  *
255  * Returns 1 if the string matches the device, 0 if it does not and
256  * a negative error code if it fails to parse the string.
257  */
258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 				  const char **endptr)
260 {
261 	int ret;
262 	int seg, bus, slot, func;
263 	char *wpath, *p;
264 	char end;
265 
266 	*endptr = strchrnul(path, ';');
267 
268 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
269 	if (!wpath)
270 		return -ENOMEM;
271 
272 	while (1) {
273 		p = strrchr(wpath, '/');
274 		if (!p)
275 			break;
276 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 		if (ret != 2) {
278 			ret = -EINVAL;
279 			goto free_and_exit;
280 		}
281 
282 		if (dev->devfn != PCI_DEVFN(slot, func)) {
283 			ret = 0;
284 			goto free_and_exit;
285 		}
286 
287 		/*
288 		 * Note: we don't need to get a reference to the upstream
289 		 * bridge because we hold a reference to the top level
290 		 * device which should hold a reference to the bridge,
291 		 * and so on.
292 		 */
293 		dev = pci_upstream_bridge(dev);
294 		if (!dev) {
295 			ret = 0;
296 			goto free_and_exit;
297 		}
298 
299 		*p = 0;
300 	}
301 
302 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 		     &func, &end);
304 	if (ret != 4) {
305 		seg = 0;
306 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 		if (ret != 3) {
308 			ret = -EINVAL;
309 			goto free_and_exit;
310 		}
311 	}
312 
313 	ret = (seg == pci_domain_nr(dev->bus) &&
314 	       bus == dev->bus->number &&
315 	       dev->devfn == PCI_DEVFN(slot, func));
316 
317 free_and_exit:
318 	kfree(wpath);
319 	return ret;
320 }
321 
322 /**
323  * pci_dev_str_match - test if a string matches a device
324  * @dev: the PCI device to test
325  * @p: string to match the device against
326  * @endptr: pointer to the string after the match
327  *
328  * Test if a string (typically from a kernel parameter) matches a specified
329  * PCI device. The string may be of one of the following formats:
330  *
331  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333  *
334  * The first format specifies a PCI bus/device/function address which
335  * may change if new hardware is inserted, if motherboard firmware changes,
336  * or due to changes caused in kernel parameters. If the domain is
337  * left unspecified, it is taken to be 0.  In order to be robust against
338  * bus renumbering issues, a path of PCI device/function numbers may be used
339  * to address the specific device.  The path for a device can be determined
340  * through the use of 'lspci -t'.
341  *
342  * The second format matches devices using IDs in the configuration
343  * space which may match multiple devices in the system. A value of 0
344  * for any field will match all devices. (Note: this differs from
345  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346  * legacy reasons and convenience so users don't have to specify
347  * FFFFFFFFs on the command line.)
348  *
349  * Returns 1 if the string matches the device, 0 if it does not and
350  * a negative error code if the string cannot be parsed.
351  */
352 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 			     const char **endptr)
354 {
355 	int ret;
356 	int count;
357 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
358 
359 	if (strncmp(p, "pci:", 4) == 0) {
360 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 		p += 4;
362 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 			     &subsystem_vendor, &subsystem_device, &count);
364 		if (ret != 4) {
365 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 			if (ret != 2)
367 				return -EINVAL;
368 
369 			subsystem_vendor = 0;
370 			subsystem_device = 0;
371 		}
372 
373 		p += count;
374 
375 		if ((!vendor || vendor == dev->vendor) &&
376 		    (!device || device == dev->device) &&
377 		    (!subsystem_vendor ||
378 			    subsystem_vendor == dev->subsystem_vendor) &&
379 		    (!subsystem_device ||
380 			    subsystem_device == dev->subsystem_device))
381 			goto found;
382 	} else {
383 		/*
384 		 * PCI Bus, Device, Function IDs are specified
385 		 * (optionally, may include a path of devfns following it)
386 		 */
387 		ret = pci_dev_str_match_path(dev, p, &p);
388 		if (ret < 0)
389 			return ret;
390 		else if (ret)
391 			goto found;
392 	}
393 
394 	*endptr = p;
395 	return 0;
396 
397 found:
398 	*endptr = p;
399 	return 1;
400 }
401 
402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 				  u8 pos, int cap, int *ttl)
404 {
405 	u8 id;
406 	u16 ent;
407 
408 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
409 
410 	while ((*ttl)--) {
411 		if (pos < 0x40)
412 			break;
413 		pos &= ~3;
414 		pci_bus_read_config_word(bus, devfn, pos, &ent);
415 
416 		id = ent & 0xff;
417 		if (id == 0xff)
418 			break;
419 		if (id == cap)
420 			return pos;
421 		pos = (ent >> 8);
422 	}
423 	return 0;
424 }
425 
426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 			      u8 pos, int cap)
428 {
429 	int ttl = PCI_FIND_CAP_TTL;
430 
431 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432 }
433 
434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
435 {
436 	return __pci_find_next_cap(dev->bus, dev->devfn,
437 				   pos + PCI_CAP_LIST_NEXT, cap);
438 }
439 EXPORT_SYMBOL_GPL(pci_find_next_capability);
440 
441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
442 				    unsigned int devfn, u8 hdr_type)
443 {
444 	u16 status;
445 
446 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 	if (!(status & PCI_STATUS_CAP_LIST))
448 		return 0;
449 
450 	switch (hdr_type) {
451 	case PCI_HEADER_TYPE_NORMAL:
452 	case PCI_HEADER_TYPE_BRIDGE:
453 		return PCI_CAPABILITY_LIST;
454 	case PCI_HEADER_TYPE_CARDBUS:
455 		return PCI_CB_CAPABILITY_LIST;
456 	}
457 
458 	return 0;
459 }
460 
461 /**
462  * pci_find_capability - query for devices' capabilities
463  * @dev: PCI device to query
464  * @cap: capability code
465  *
466  * Tell if a device supports a given PCI capability.
467  * Returns the address of the requested capability structure within the
468  * device's PCI configuration space or 0 in case the device does not
469  * support it.  Possible values for @cap include:
470  *
471  *  %PCI_CAP_ID_PM           Power Management
472  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
473  *  %PCI_CAP_ID_VPD          Vital Product Data
474  *  %PCI_CAP_ID_SLOTID       Slot Identification
475  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
476  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
477  *  %PCI_CAP_ID_PCIX         PCI-X
478  *  %PCI_CAP_ID_EXP          PCI Express
479  */
480 u8 pci_find_capability(struct pci_dev *dev, int cap)
481 {
482 	u8 pos;
483 
484 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 	if (pos)
486 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487 
488 	return pos;
489 }
490 EXPORT_SYMBOL(pci_find_capability);
491 
492 /**
493  * pci_bus_find_capability - query for devices' capabilities
494  * @bus: the PCI bus to query
495  * @devfn: PCI device to query
496  * @cap: capability code
497  *
498  * Like pci_find_capability() but works for PCI devices that do not have a
499  * pci_dev structure set up yet.
500  *
501  * Returns the address of the requested capability structure within the
502  * device's PCI configuration space or 0 in case the device does not
503  * support it.
504  */
505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
506 {
507 	u8 hdr_type, pos;
508 
509 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
510 
511 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
512 	if (pos)
513 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
514 
515 	return pos;
516 }
517 EXPORT_SYMBOL(pci_bus_find_capability);
518 
519 /**
520  * pci_find_next_ext_capability - Find an extended capability
521  * @dev: PCI device to query
522  * @start: address at which to start looking (0 to start at beginning of list)
523  * @cap: capability code
524  *
525  * Returns the address of the next matching extended capability structure
526  * within the device's PCI configuration space or 0 if the device does
527  * not support it.  Some capabilities can occur several times, e.g., the
528  * vendor-specific capability, and this provides a way to find them all.
529  */
530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
531 {
532 	u32 header;
533 	int ttl;
534 	u16 pos = PCI_CFG_SPACE_SIZE;
535 
536 	/* minimum 8 bytes per capability */
537 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
538 
539 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
540 		return 0;
541 
542 	if (start)
543 		pos = start;
544 
545 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
546 		return 0;
547 
548 	/*
549 	 * If we have no capabilities, this is indicated by cap ID,
550 	 * cap version and next pointer all being 0.
551 	 */
552 	if (header == 0)
553 		return 0;
554 
555 	while (ttl-- > 0) {
556 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
557 			return pos;
558 
559 		pos = PCI_EXT_CAP_NEXT(header);
560 		if (pos < PCI_CFG_SPACE_SIZE)
561 			break;
562 
563 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
564 			break;
565 	}
566 
567 	return 0;
568 }
569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
570 
571 /**
572  * pci_find_ext_capability - Find an extended capability
573  * @dev: PCI device to query
574  * @cap: capability code
575  *
576  * Returns the address of the requested extended capability structure
577  * within the device's PCI configuration space or 0 if the device does
578  * not support it.  Possible values for @cap include:
579  *
580  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
581  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
582  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
583  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
584  */
585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
586 {
587 	return pci_find_next_ext_capability(dev, 0, cap);
588 }
589 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
590 
591 /**
592  * pci_get_dsn - Read and return the 8-byte Device Serial Number
593  * @dev: PCI device to query
594  *
595  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
596  * Number.
597  *
598  * Returns the DSN, or zero if the capability does not exist.
599  */
600 u64 pci_get_dsn(struct pci_dev *dev)
601 {
602 	u32 dword;
603 	u64 dsn;
604 	int pos;
605 
606 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
607 	if (!pos)
608 		return 0;
609 
610 	/*
611 	 * The Device Serial Number is two dwords offset 4 bytes from the
612 	 * capability position. The specification says that the first dword is
613 	 * the lower half, and the second dword is the upper half.
614 	 */
615 	pos += 4;
616 	pci_read_config_dword(dev, pos, &dword);
617 	dsn = (u64)dword;
618 	pci_read_config_dword(dev, pos + 4, &dword);
619 	dsn |= ((u64)dword) << 32;
620 
621 	return dsn;
622 }
623 EXPORT_SYMBOL_GPL(pci_get_dsn);
624 
625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
626 {
627 	int rc, ttl = PCI_FIND_CAP_TTL;
628 	u8 cap, mask;
629 
630 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
631 		mask = HT_3BIT_CAP_MASK;
632 	else
633 		mask = HT_5BIT_CAP_MASK;
634 
635 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
636 				      PCI_CAP_ID_HT, &ttl);
637 	while (pos) {
638 		rc = pci_read_config_byte(dev, pos + 3, &cap);
639 		if (rc != PCIBIOS_SUCCESSFUL)
640 			return 0;
641 
642 		if ((cap & mask) == ht_cap)
643 			return pos;
644 
645 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
646 					      pos + PCI_CAP_LIST_NEXT,
647 					      PCI_CAP_ID_HT, &ttl);
648 	}
649 
650 	return 0;
651 }
652 
653 /**
654  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
655  * @dev: PCI device to query
656  * @pos: Position from which to continue searching
657  * @ht_cap: HyperTransport capability code
658  *
659  * To be used in conjunction with pci_find_ht_capability() to search for
660  * all capabilities matching @ht_cap. @pos should always be a value returned
661  * from pci_find_ht_capability().
662  *
663  * NB. To be 100% safe against broken PCI devices, the caller should take
664  * steps to avoid an infinite loop.
665  */
666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
667 {
668 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669 }
670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671 
672 /**
673  * pci_find_ht_capability - query a device's HyperTransport capabilities
674  * @dev: PCI device to query
675  * @ht_cap: HyperTransport capability code
676  *
677  * Tell if a device supports a given HyperTransport capability.
678  * Returns an address within the device's PCI configuration space
679  * or 0 in case the device does not support the request capability.
680  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681  * which has a HyperTransport capability matching @ht_cap.
682  */
683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
684 {
685 	u8 pos;
686 
687 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 	if (pos)
689 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690 
691 	return pos;
692 }
693 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694 
695 /**
696  * pci_find_parent_resource - return resource region of parent bus of given
697  *			      region
698  * @dev: PCI device structure contains resources to be searched
699  * @res: child resource record for which parent is sought
700  *
701  * For given resource region of given device, return the resource region of
702  * parent bus the given region is contained in.
703  */
704 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
705 					  struct resource *res)
706 {
707 	const struct pci_bus *bus = dev->bus;
708 	struct resource *r;
709 	int i;
710 
711 	pci_bus_for_each_resource(bus, r, i) {
712 		if (!r)
713 			continue;
714 		if (resource_contains(r, res)) {
715 
716 			/*
717 			 * If the window is prefetchable but the BAR is
718 			 * not, the allocator made a mistake.
719 			 */
720 			if (r->flags & IORESOURCE_PREFETCH &&
721 			    !(res->flags & IORESOURCE_PREFETCH))
722 				return NULL;
723 
724 			/*
725 			 * If we're below a transparent bridge, there may
726 			 * be both a positively-decoded aperture and a
727 			 * subtractively-decoded region that contain the BAR.
728 			 * We want the positively-decoded one, so this depends
729 			 * on pci_bus_for_each_resource() giving us those
730 			 * first.
731 			 */
732 			return r;
733 		}
734 	}
735 	return NULL;
736 }
737 EXPORT_SYMBOL(pci_find_parent_resource);
738 
739 /**
740  * pci_find_resource - Return matching PCI device resource
741  * @dev: PCI device to query
742  * @res: Resource to look for
743  *
744  * Goes over standard PCI resources (BARs) and checks if the given resource
745  * is partially or fully contained in any of them. In that case the
746  * matching resource is returned, %NULL otherwise.
747  */
748 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
749 {
750 	int i;
751 
752 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
753 		struct resource *r = &dev->resource[i];
754 
755 		if (r->start && resource_contains(r, res))
756 			return r;
757 	}
758 
759 	return NULL;
760 }
761 EXPORT_SYMBOL(pci_find_resource);
762 
763 /**
764  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
765  * @dev: the PCI device to operate on
766  * @pos: config space offset of status word
767  * @mask: mask of bit(s) to care about in status word
768  *
769  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
770  */
771 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
772 {
773 	int i;
774 
775 	/* Wait for Transaction Pending bit clean */
776 	for (i = 0; i < 4; i++) {
777 		u16 status;
778 		if (i)
779 			msleep((1 << (i - 1)) * 100);
780 
781 		pci_read_config_word(dev, pos, &status);
782 		if (!(status & mask))
783 			return 1;
784 	}
785 
786 	return 0;
787 }
788 
789 static int pci_acs_enable;
790 
791 /**
792  * pci_request_acs - ask for ACS to be enabled if supported
793  */
794 void pci_request_acs(void)
795 {
796 	pci_acs_enable = 1;
797 }
798 
799 static const char *disable_acs_redir_param;
800 
801 /**
802  * pci_disable_acs_redir - disable ACS redirect capabilities
803  * @dev: the PCI device
804  *
805  * For only devices specified in the disable_acs_redir parameter.
806  */
807 static void pci_disable_acs_redir(struct pci_dev *dev)
808 {
809 	int ret = 0;
810 	const char *p;
811 	int pos;
812 	u16 ctrl;
813 
814 	if (!disable_acs_redir_param)
815 		return;
816 
817 	p = disable_acs_redir_param;
818 	while (*p) {
819 		ret = pci_dev_str_match(dev, p, &p);
820 		if (ret < 0) {
821 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
822 				     disable_acs_redir_param);
823 
824 			break;
825 		} else if (ret == 1) {
826 			/* Found a match */
827 			break;
828 		}
829 
830 		if (*p != ';' && *p != ',') {
831 			/* End of param or invalid format */
832 			break;
833 		}
834 		p++;
835 	}
836 
837 	if (ret != 1)
838 		return;
839 
840 	if (!pci_dev_specific_disable_acs_redir(dev))
841 		return;
842 
843 	pos = dev->acs_cap;
844 	if (!pos) {
845 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
846 		return;
847 	}
848 
849 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
850 
851 	/* P2P Request & Completion Redirect */
852 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
853 
854 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
855 
856 	pci_info(dev, "disabled ACS redirect\n");
857 }
858 
859 /**
860  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
861  * @dev: the PCI device
862  */
863 static void pci_std_enable_acs(struct pci_dev *dev)
864 {
865 	int pos;
866 	u16 cap;
867 	u16 ctrl;
868 
869 	pos = dev->acs_cap;
870 	if (!pos)
871 		return;
872 
873 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
874 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
875 
876 	/* Source Validation */
877 	ctrl |= (cap & PCI_ACS_SV);
878 
879 	/* P2P Request Redirect */
880 	ctrl |= (cap & PCI_ACS_RR);
881 
882 	/* P2P Completion Redirect */
883 	ctrl |= (cap & PCI_ACS_CR);
884 
885 	/* Upstream Forwarding */
886 	ctrl |= (cap & PCI_ACS_UF);
887 
888 	/* Enable Translation Blocking for external devices */
889 	if (dev->external_facing || dev->untrusted)
890 		ctrl |= (cap & PCI_ACS_TB);
891 
892 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
893 }
894 
895 /**
896  * pci_enable_acs - enable ACS if hardware support it
897  * @dev: the PCI device
898  */
899 static void pci_enable_acs(struct pci_dev *dev)
900 {
901 	if (!pci_acs_enable)
902 		goto disable_acs_redir;
903 
904 	if (!pci_dev_specific_enable_acs(dev))
905 		goto disable_acs_redir;
906 
907 	pci_std_enable_acs(dev);
908 
909 disable_acs_redir:
910 	/*
911 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
912 	 * enabled by the kernel because it may have been enabled by
913 	 * platform firmware.  So if we are told to disable it, we should
914 	 * always disable it after setting the kernel's default
915 	 * preferences.
916 	 */
917 	pci_disable_acs_redir(dev);
918 }
919 
920 /**
921  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
922  * @dev: PCI device to have its BARs restored
923  *
924  * Restore the BAR values for a given device, so as to make it
925  * accessible by its driver.
926  */
927 static void pci_restore_bars(struct pci_dev *dev)
928 {
929 	int i;
930 
931 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
932 		pci_update_resource(dev, i);
933 }
934 
935 static const struct pci_platform_pm_ops *pci_platform_pm;
936 
937 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
938 {
939 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
940 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
941 		return -EINVAL;
942 	pci_platform_pm = ops;
943 	return 0;
944 }
945 
946 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
947 {
948 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
949 }
950 
951 static inline int platform_pci_set_power_state(struct pci_dev *dev,
952 					       pci_power_t t)
953 {
954 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
955 }
956 
957 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
958 {
959 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
960 }
961 
962 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
963 {
964 	if (pci_platform_pm && pci_platform_pm->refresh_state)
965 		pci_platform_pm->refresh_state(dev);
966 }
967 
968 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
969 {
970 	return pci_platform_pm ?
971 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
972 }
973 
974 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
975 {
976 	return pci_platform_pm ?
977 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
978 }
979 
980 static inline bool platform_pci_need_resume(struct pci_dev *dev)
981 {
982 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
983 }
984 
985 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
986 {
987 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
988 		return pci_platform_pm->bridge_d3(dev);
989 	return false;
990 }
991 
992 /**
993  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
994  *			     given PCI device
995  * @dev: PCI device to handle.
996  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
997  *
998  * RETURN VALUE:
999  * -EINVAL if the requested state is invalid.
1000  * -EIO if device does not support PCI PM or its PM capabilities register has a
1001  * wrong version, or device doesn't support the requested state.
1002  * 0 if device already is in the requested state.
1003  * 0 if device's power state has been successfully changed.
1004  */
1005 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1006 {
1007 	u16 pmcsr;
1008 	bool need_restore = false;
1009 
1010 	/* Check if we're already there */
1011 	if (dev->current_state == state)
1012 		return 0;
1013 
1014 	if (!dev->pm_cap)
1015 		return -EIO;
1016 
1017 	if (state < PCI_D0 || state > PCI_D3hot)
1018 		return -EINVAL;
1019 
1020 	/*
1021 	 * Validate transition: We can enter D0 from any state, but if
1022 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1023 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1024 	 * we'd have to go from D3 to D0, then to D1.
1025 	 */
1026 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1027 	    && dev->current_state > state) {
1028 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1029 			pci_power_name(dev->current_state),
1030 			pci_power_name(state));
1031 		return -EINVAL;
1032 	}
1033 
1034 	/* Check if this device supports the desired state */
1035 	if ((state == PCI_D1 && !dev->d1_support)
1036 	   || (state == PCI_D2 && !dev->d2_support))
1037 		return -EIO;
1038 
1039 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1040 	if (pmcsr == (u16) ~0) {
1041 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1042 			pci_power_name(dev->current_state),
1043 			pci_power_name(state));
1044 		return -EIO;
1045 	}
1046 
1047 	/*
1048 	 * If we're (effectively) in D3, force entire word to 0.
1049 	 * This doesn't affect PME_Status, disables PME_En, and
1050 	 * sets PowerState to 0.
1051 	 */
1052 	switch (dev->current_state) {
1053 	case PCI_D0:
1054 	case PCI_D1:
1055 	case PCI_D2:
1056 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1057 		pmcsr |= state;
1058 		break;
1059 	case PCI_D3hot:
1060 	case PCI_D3cold:
1061 	case PCI_UNKNOWN: /* Boot-up */
1062 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1063 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1064 			need_restore = true;
1065 		fallthrough;	/* force to D0 */
1066 	default:
1067 		pmcsr = 0;
1068 		break;
1069 	}
1070 
1071 	/* Enter specified state */
1072 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1073 
1074 	/*
1075 	 * Mandatory power management transition delays; see PCI PM 1.1
1076 	 * 5.6.1 table 18
1077 	 */
1078 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1079 		pci_dev_d3_sleep(dev);
1080 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1081 		udelay(PCI_PM_D2_DELAY);
1082 
1083 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1084 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1085 	if (dev->current_state != state)
1086 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1087 			 pci_power_name(dev->current_state),
1088 			 pci_power_name(state));
1089 
1090 	/*
1091 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1092 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1093 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1094 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1095 	 * For example, at least some versions of the 3c905B and the
1096 	 * 3c556B exhibit this behaviour.
1097 	 *
1098 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1099 	 * devices in a D3hot state at boot.  Consequently, we need to
1100 	 * restore at least the BARs so that the device will be
1101 	 * accessible to its driver.
1102 	 */
1103 	if (need_restore)
1104 		pci_restore_bars(dev);
1105 
1106 	if (dev->bus->self)
1107 		pcie_aspm_pm_state_change(dev->bus->self);
1108 
1109 	return 0;
1110 }
1111 
1112 /**
1113  * pci_update_current_state - Read power state of given device and cache it
1114  * @dev: PCI device to handle.
1115  * @state: State to cache in case the device doesn't have the PM capability
1116  *
1117  * The power state is read from the PMCSR register, which however is
1118  * inaccessible in D3cold.  The platform firmware is therefore queried first
1119  * to detect accessibility of the register.  In case the platform firmware
1120  * reports an incorrect state or the device isn't power manageable by the
1121  * platform at all, we try to detect D3cold by testing accessibility of the
1122  * vendor ID in config space.
1123  */
1124 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1125 {
1126 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1127 	    !pci_device_is_present(dev)) {
1128 		dev->current_state = PCI_D3cold;
1129 	} else if (dev->pm_cap) {
1130 		u16 pmcsr;
1131 
1132 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1133 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1134 	} else {
1135 		dev->current_state = state;
1136 	}
1137 }
1138 
1139 /**
1140  * pci_refresh_power_state - Refresh the given device's power state data
1141  * @dev: Target PCI device.
1142  *
1143  * Ask the platform to refresh the devices power state information and invoke
1144  * pci_update_current_state() to update its current PCI power state.
1145  */
1146 void pci_refresh_power_state(struct pci_dev *dev)
1147 {
1148 	if (platform_pci_power_manageable(dev))
1149 		platform_pci_refresh_power_state(dev);
1150 
1151 	pci_update_current_state(dev, dev->current_state);
1152 }
1153 
1154 /**
1155  * pci_platform_power_transition - Use platform to change device power state
1156  * @dev: PCI device to handle.
1157  * @state: State to put the device into.
1158  */
1159 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1160 {
1161 	int error;
1162 
1163 	if (platform_pci_power_manageable(dev)) {
1164 		error = platform_pci_set_power_state(dev, state);
1165 		if (!error)
1166 			pci_update_current_state(dev, state);
1167 	} else
1168 		error = -ENODEV;
1169 
1170 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1171 		dev->current_state = PCI_D0;
1172 
1173 	return error;
1174 }
1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1176 
1177 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1178 {
1179 	pm_request_resume(&pci_dev->dev);
1180 	return 0;
1181 }
1182 
1183 /**
1184  * pci_resume_bus - Walk given bus and runtime resume devices on it
1185  * @bus: Top bus of the subtree to walk.
1186  */
1187 void pci_resume_bus(struct pci_bus *bus)
1188 {
1189 	if (bus)
1190 		pci_walk_bus(bus, pci_resume_one, NULL);
1191 }
1192 
1193 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1194 {
1195 	int delay = 1;
1196 	u32 id;
1197 
1198 	/*
1199 	 * After reset, the device should not silently discard config
1200 	 * requests, but it may still indicate that it needs more time by
1201 	 * responding to them with CRS completions.  The Root Port will
1202 	 * generally synthesize ~0 data to complete the read (except when
1203 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1204 	 * case it synthesizes 0x0001 data).
1205 	 *
1206 	 * Wait for the device to return a non-CRS completion.  Read the
1207 	 * Command register instead of Vendor ID so we don't have to
1208 	 * contend with the CRS SV value.
1209 	 */
1210 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1211 	while (id == ~0) {
1212 		if (delay > timeout) {
1213 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1214 				 delay - 1, reset_type);
1215 			return -ENOTTY;
1216 		}
1217 
1218 		if (delay > 1000)
1219 			pci_info(dev, "not ready %dms after %s; waiting\n",
1220 				 delay - 1, reset_type);
1221 
1222 		msleep(delay);
1223 		delay *= 2;
1224 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1225 	}
1226 
1227 	if (delay > 1000)
1228 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1229 			 reset_type);
1230 
1231 	return 0;
1232 }
1233 
1234 /**
1235  * pci_power_up - Put the given device into D0
1236  * @dev: PCI device to power up
1237  */
1238 int pci_power_up(struct pci_dev *dev)
1239 {
1240 	pci_platform_power_transition(dev, PCI_D0);
1241 
1242 	/*
1243 	 * Mandatory power management transition delays are handled in
1244 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1245 	 * corresponding bridge.
1246 	 */
1247 	if (dev->runtime_d3cold) {
1248 		/*
1249 		 * When powering on a bridge from D3cold, the whole hierarchy
1250 		 * may be powered on into D0uninitialized state, resume them to
1251 		 * give them a chance to suspend again
1252 		 */
1253 		pci_resume_bus(dev->subordinate);
1254 	}
1255 
1256 	return pci_raw_set_power_state(dev, PCI_D0);
1257 }
1258 
1259 /**
1260  * __pci_dev_set_current_state - Set current state of a PCI device
1261  * @dev: Device to handle
1262  * @data: pointer to state to be set
1263  */
1264 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1265 {
1266 	pci_power_t state = *(pci_power_t *)data;
1267 
1268 	dev->current_state = state;
1269 	return 0;
1270 }
1271 
1272 /**
1273  * pci_bus_set_current_state - Walk given bus and set current state of devices
1274  * @bus: Top bus of the subtree to walk.
1275  * @state: state to be set
1276  */
1277 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1278 {
1279 	if (bus)
1280 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1281 }
1282 
1283 /**
1284  * pci_set_power_state - Set the power state of a PCI device
1285  * @dev: PCI device to handle.
1286  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1287  *
1288  * Transition a device to a new power state, using the platform firmware and/or
1289  * the device's PCI PM registers.
1290  *
1291  * RETURN VALUE:
1292  * -EINVAL if the requested state is invalid.
1293  * -EIO if device does not support PCI PM or its PM capabilities register has a
1294  * wrong version, or device doesn't support the requested state.
1295  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1296  * 0 if device already is in the requested state.
1297  * 0 if the transition is to D3 but D3 is not supported.
1298  * 0 if device's power state has been successfully changed.
1299  */
1300 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1301 {
1302 	int error;
1303 
1304 	/* Bound the state we're entering */
1305 	if (state > PCI_D3cold)
1306 		state = PCI_D3cold;
1307 	else if (state < PCI_D0)
1308 		state = PCI_D0;
1309 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1310 
1311 		/*
1312 		 * If the device or the parent bridge do not support PCI
1313 		 * PM, ignore the request if we're doing anything other
1314 		 * than putting it into D0 (which would only happen on
1315 		 * boot).
1316 		 */
1317 		return 0;
1318 
1319 	/* Check if we're already there */
1320 	if (dev->current_state == state)
1321 		return 0;
1322 
1323 	if (state == PCI_D0)
1324 		return pci_power_up(dev);
1325 
1326 	/*
1327 	 * This device is quirked not to be put into D3, so don't put it in
1328 	 * D3
1329 	 */
1330 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1331 		return 0;
1332 
1333 	/*
1334 	 * To put device in D3cold, we put device into D3hot in native
1335 	 * way, then put device into D3cold with platform ops
1336 	 */
1337 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1338 					PCI_D3hot : state);
1339 
1340 	if (pci_platform_power_transition(dev, state))
1341 		return error;
1342 
1343 	/* Powering off a bridge may power off the whole hierarchy */
1344 	if (state == PCI_D3cold)
1345 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1346 
1347 	return 0;
1348 }
1349 EXPORT_SYMBOL(pci_set_power_state);
1350 
1351 /**
1352  * pci_choose_state - Choose the power state of a PCI device
1353  * @dev: PCI device to be suspended
1354  * @state: target sleep state for the whole system. This is the value
1355  *	   that is passed to suspend() function.
1356  *
1357  * Returns PCI power state suitable for given device and given system
1358  * message.
1359  */
1360 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1361 {
1362 	pci_power_t ret;
1363 
1364 	if (!dev->pm_cap)
1365 		return PCI_D0;
1366 
1367 	ret = platform_pci_choose_state(dev);
1368 	if (ret != PCI_POWER_ERROR)
1369 		return ret;
1370 
1371 	switch (state.event) {
1372 	case PM_EVENT_ON:
1373 		return PCI_D0;
1374 	case PM_EVENT_FREEZE:
1375 	case PM_EVENT_PRETHAW:
1376 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1377 	case PM_EVENT_SUSPEND:
1378 	case PM_EVENT_HIBERNATE:
1379 		return PCI_D3hot;
1380 	default:
1381 		pci_info(dev, "unrecognized suspend event %d\n",
1382 			 state.event);
1383 		BUG();
1384 	}
1385 	return PCI_D0;
1386 }
1387 EXPORT_SYMBOL(pci_choose_state);
1388 
1389 #define PCI_EXP_SAVE_REGS	7
1390 
1391 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1392 						       u16 cap, bool extended)
1393 {
1394 	struct pci_cap_saved_state *tmp;
1395 
1396 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1397 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1398 			return tmp;
1399 	}
1400 	return NULL;
1401 }
1402 
1403 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1404 {
1405 	return _pci_find_saved_cap(dev, cap, false);
1406 }
1407 
1408 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1409 {
1410 	return _pci_find_saved_cap(dev, cap, true);
1411 }
1412 
1413 static int pci_save_pcie_state(struct pci_dev *dev)
1414 {
1415 	int i = 0;
1416 	struct pci_cap_saved_state *save_state;
1417 	u16 *cap;
1418 
1419 	if (!pci_is_pcie(dev))
1420 		return 0;
1421 
1422 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1423 	if (!save_state) {
1424 		pci_err(dev, "buffer not found in %s\n", __func__);
1425 		return -ENOMEM;
1426 	}
1427 
1428 	cap = (u16 *)&save_state->cap.data[0];
1429 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1430 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1431 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1432 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1433 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1434 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1435 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1436 
1437 	return 0;
1438 }
1439 
1440 static void pci_restore_pcie_state(struct pci_dev *dev)
1441 {
1442 	int i = 0;
1443 	struct pci_cap_saved_state *save_state;
1444 	u16 *cap;
1445 
1446 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1447 	if (!save_state)
1448 		return;
1449 
1450 	cap = (u16 *)&save_state->cap.data[0];
1451 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1452 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1453 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1454 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1455 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1456 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1457 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1458 }
1459 
1460 static int pci_save_pcix_state(struct pci_dev *dev)
1461 {
1462 	int pos;
1463 	struct pci_cap_saved_state *save_state;
1464 
1465 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1466 	if (!pos)
1467 		return 0;
1468 
1469 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1470 	if (!save_state) {
1471 		pci_err(dev, "buffer not found in %s\n", __func__);
1472 		return -ENOMEM;
1473 	}
1474 
1475 	pci_read_config_word(dev, pos + PCI_X_CMD,
1476 			     (u16 *)save_state->cap.data);
1477 
1478 	return 0;
1479 }
1480 
1481 static void pci_restore_pcix_state(struct pci_dev *dev)
1482 {
1483 	int i = 0, pos;
1484 	struct pci_cap_saved_state *save_state;
1485 	u16 *cap;
1486 
1487 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1488 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1489 	if (!save_state || !pos)
1490 		return;
1491 	cap = (u16 *)&save_state->cap.data[0];
1492 
1493 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1494 }
1495 
1496 static void pci_save_ltr_state(struct pci_dev *dev)
1497 {
1498 	int ltr;
1499 	struct pci_cap_saved_state *save_state;
1500 	u16 *cap;
1501 
1502 	if (!pci_is_pcie(dev))
1503 		return;
1504 
1505 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1506 	if (!ltr)
1507 		return;
1508 
1509 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1510 	if (!save_state) {
1511 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1512 		return;
1513 	}
1514 
1515 	cap = (u16 *)&save_state->cap.data[0];
1516 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1517 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1518 }
1519 
1520 static void pci_restore_ltr_state(struct pci_dev *dev)
1521 {
1522 	struct pci_cap_saved_state *save_state;
1523 	int ltr;
1524 	u16 *cap;
1525 
1526 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1527 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1528 	if (!save_state || !ltr)
1529 		return;
1530 
1531 	cap = (u16 *)&save_state->cap.data[0];
1532 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1533 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1534 }
1535 
1536 /**
1537  * pci_save_state - save the PCI configuration space of a device before
1538  *		    suspending
1539  * @dev: PCI device that we're dealing with
1540  */
1541 int pci_save_state(struct pci_dev *dev)
1542 {
1543 	int i;
1544 	/* XXX: 100% dword access ok here? */
1545 	for (i = 0; i < 16; i++) {
1546 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1547 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1548 			i * 4, dev->saved_config_space[i]);
1549 	}
1550 	dev->state_saved = true;
1551 
1552 	i = pci_save_pcie_state(dev);
1553 	if (i != 0)
1554 		return i;
1555 
1556 	i = pci_save_pcix_state(dev);
1557 	if (i != 0)
1558 		return i;
1559 
1560 	pci_save_ltr_state(dev);
1561 	pci_save_aspm_l1ss_state(dev);
1562 	pci_save_dpc_state(dev);
1563 	pci_save_aer_state(dev);
1564 	pci_save_ptm_state(dev);
1565 	return pci_save_vc_state(dev);
1566 }
1567 EXPORT_SYMBOL(pci_save_state);
1568 
1569 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1570 				     u32 saved_val, int retry, bool force)
1571 {
1572 	u32 val;
1573 
1574 	pci_read_config_dword(pdev, offset, &val);
1575 	if (!force && val == saved_val)
1576 		return;
1577 
1578 	for (;;) {
1579 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1580 			offset, val, saved_val);
1581 		pci_write_config_dword(pdev, offset, saved_val);
1582 		if (retry-- <= 0)
1583 			return;
1584 
1585 		pci_read_config_dword(pdev, offset, &val);
1586 		if (val == saved_val)
1587 			return;
1588 
1589 		mdelay(1);
1590 	}
1591 }
1592 
1593 static void pci_restore_config_space_range(struct pci_dev *pdev,
1594 					   int start, int end, int retry,
1595 					   bool force)
1596 {
1597 	int index;
1598 
1599 	for (index = end; index >= start; index--)
1600 		pci_restore_config_dword(pdev, 4 * index,
1601 					 pdev->saved_config_space[index],
1602 					 retry, force);
1603 }
1604 
1605 static void pci_restore_config_space(struct pci_dev *pdev)
1606 {
1607 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1608 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1609 		/* Restore BARs before the command register. */
1610 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1611 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1612 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1613 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1614 
1615 		/*
1616 		 * Force rewriting of prefetch registers to avoid S3 resume
1617 		 * issues on Intel PCI bridges that occur when these
1618 		 * registers are not explicitly written.
1619 		 */
1620 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1621 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1622 	} else {
1623 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1624 	}
1625 }
1626 
1627 static void pci_restore_rebar_state(struct pci_dev *pdev)
1628 {
1629 	unsigned int pos, nbars, i;
1630 	u32 ctrl;
1631 
1632 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1633 	if (!pos)
1634 		return;
1635 
1636 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1637 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1638 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1639 
1640 	for (i = 0; i < nbars; i++, pos += 8) {
1641 		struct resource *res;
1642 		int bar_idx, size;
1643 
1644 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1645 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1646 		res = pdev->resource + bar_idx;
1647 		size = ilog2(resource_size(res)) - 20;
1648 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1649 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1650 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1651 	}
1652 }
1653 
1654 /**
1655  * pci_restore_state - Restore the saved state of a PCI device
1656  * @dev: PCI device that we're dealing with
1657  */
1658 void pci_restore_state(struct pci_dev *dev)
1659 {
1660 	if (!dev->state_saved)
1661 		return;
1662 
1663 	/*
1664 	 * Restore max latencies (in the LTR capability) before enabling
1665 	 * LTR itself (in the PCIe capability).
1666 	 */
1667 	pci_restore_ltr_state(dev);
1668 	pci_restore_aspm_l1ss_state(dev);
1669 
1670 	pci_restore_pcie_state(dev);
1671 	pci_restore_pasid_state(dev);
1672 	pci_restore_pri_state(dev);
1673 	pci_restore_ats_state(dev);
1674 	pci_restore_vc_state(dev);
1675 	pci_restore_rebar_state(dev);
1676 	pci_restore_dpc_state(dev);
1677 	pci_restore_ptm_state(dev);
1678 
1679 	pci_aer_clear_status(dev);
1680 	pci_restore_aer_state(dev);
1681 
1682 	pci_restore_config_space(dev);
1683 
1684 	pci_restore_pcix_state(dev);
1685 	pci_restore_msi_state(dev);
1686 
1687 	/* Restore ACS and IOV configuration state */
1688 	pci_enable_acs(dev);
1689 	pci_restore_iov_state(dev);
1690 
1691 	dev->state_saved = false;
1692 }
1693 EXPORT_SYMBOL(pci_restore_state);
1694 
1695 struct pci_saved_state {
1696 	u32 config_space[16];
1697 	struct pci_cap_saved_data cap[];
1698 };
1699 
1700 /**
1701  * pci_store_saved_state - Allocate and return an opaque struct containing
1702  *			   the device saved state.
1703  * @dev: PCI device that we're dealing with
1704  *
1705  * Return NULL if no state or error.
1706  */
1707 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1708 {
1709 	struct pci_saved_state *state;
1710 	struct pci_cap_saved_state *tmp;
1711 	struct pci_cap_saved_data *cap;
1712 	size_t size;
1713 
1714 	if (!dev->state_saved)
1715 		return NULL;
1716 
1717 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1718 
1719 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1720 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1721 
1722 	state = kzalloc(size, GFP_KERNEL);
1723 	if (!state)
1724 		return NULL;
1725 
1726 	memcpy(state->config_space, dev->saved_config_space,
1727 	       sizeof(state->config_space));
1728 
1729 	cap = state->cap;
1730 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1731 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1732 		memcpy(cap, &tmp->cap, len);
1733 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1734 	}
1735 	/* Empty cap_save terminates list */
1736 
1737 	return state;
1738 }
1739 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1740 
1741 /**
1742  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1743  * @dev: PCI device that we're dealing with
1744  * @state: Saved state returned from pci_store_saved_state()
1745  */
1746 int pci_load_saved_state(struct pci_dev *dev,
1747 			 struct pci_saved_state *state)
1748 {
1749 	struct pci_cap_saved_data *cap;
1750 
1751 	dev->state_saved = false;
1752 
1753 	if (!state)
1754 		return 0;
1755 
1756 	memcpy(dev->saved_config_space, state->config_space,
1757 	       sizeof(state->config_space));
1758 
1759 	cap = state->cap;
1760 	while (cap->size) {
1761 		struct pci_cap_saved_state *tmp;
1762 
1763 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1764 		if (!tmp || tmp->cap.size != cap->size)
1765 			return -EINVAL;
1766 
1767 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1768 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1769 		       sizeof(struct pci_cap_saved_data) + cap->size);
1770 	}
1771 
1772 	dev->state_saved = true;
1773 	return 0;
1774 }
1775 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1776 
1777 /**
1778  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1779  *				   and free the memory allocated for it.
1780  * @dev: PCI device that we're dealing with
1781  * @state: Pointer to saved state returned from pci_store_saved_state()
1782  */
1783 int pci_load_and_free_saved_state(struct pci_dev *dev,
1784 				  struct pci_saved_state **state)
1785 {
1786 	int ret = pci_load_saved_state(dev, *state);
1787 	kfree(*state);
1788 	*state = NULL;
1789 	return ret;
1790 }
1791 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1792 
1793 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1794 {
1795 	return pci_enable_resources(dev, bars);
1796 }
1797 
1798 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1799 {
1800 	int err;
1801 	struct pci_dev *bridge;
1802 	u16 cmd;
1803 	u8 pin;
1804 
1805 	err = pci_set_power_state(dev, PCI_D0);
1806 	if (err < 0 && err != -EIO)
1807 		return err;
1808 
1809 	bridge = pci_upstream_bridge(dev);
1810 	if (bridge)
1811 		pcie_aspm_powersave_config_link(bridge);
1812 
1813 	err = pcibios_enable_device(dev, bars);
1814 	if (err < 0)
1815 		return err;
1816 	pci_fixup_device(pci_fixup_enable, dev);
1817 
1818 	if (dev->msi_enabled || dev->msix_enabled)
1819 		return 0;
1820 
1821 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1822 	if (pin) {
1823 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1824 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1825 			pci_write_config_word(dev, PCI_COMMAND,
1826 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 /**
1833  * pci_reenable_device - Resume abandoned device
1834  * @dev: PCI device to be resumed
1835  *
1836  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1837  * to be called by normal code, write proper resume handler and use it instead.
1838  */
1839 int pci_reenable_device(struct pci_dev *dev)
1840 {
1841 	if (pci_is_enabled(dev))
1842 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1843 	return 0;
1844 }
1845 EXPORT_SYMBOL(pci_reenable_device);
1846 
1847 static void pci_enable_bridge(struct pci_dev *dev)
1848 {
1849 	struct pci_dev *bridge;
1850 	int retval;
1851 
1852 	bridge = pci_upstream_bridge(dev);
1853 	if (bridge)
1854 		pci_enable_bridge(bridge);
1855 
1856 	if (pci_is_enabled(dev)) {
1857 		if (!dev->is_busmaster)
1858 			pci_set_master(dev);
1859 		return;
1860 	}
1861 
1862 	retval = pci_enable_device(dev);
1863 	if (retval)
1864 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1865 			retval);
1866 	pci_set_master(dev);
1867 }
1868 
1869 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1870 {
1871 	struct pci_dev *bridge;
1872 	int err;
1873 	int i, bars = 0;
1874 
1875 	/*
1876 	 * Power state could be unknown at this point, either due to a fresh
1877 	 * boot or a device removal call.  So get the current power state
1878 	 * so that things like MSI message writing will behave as expected
1879 	 * (e.g. if the device really is in D0 at enable time).
1880 	 */
1881 	if (dev->pm_cap) {
1882 		u16 pmcsr;
1883 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1884 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1885 	}
1886 
1887 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1888 		return 0;		/* already enabled */
1889 
1890 	bridge = pci_upstream_bridge(dev);
1891 	if (bridge)
1892 		pci_enable_bridge(bridge);
1893 
1894 	/* only skip sriov related */
1895 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1896 		if (dev->resource[i].flags & flags)
1897 			bars |= (1 << i);
1898 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1899 		if (dev->resource[i].flags & flags)
1900 			bars |= (1 << i);
1901 
1902 	err = do_pci_enable_device(dev, bars);
1903 	if (err < 0)
1904 		atomic_dec(&dev->enable_cnt);
1905 	return err;
1906 }
1907 
1908 /**
1909  * pci_enable_device_io - Initialize a device for use with IO space
1910  * @dev: PCI device to be initialized
1911  *
1912  * Initialize device before it's used by a driver. Ask low-level code
1913  * to enable I/O resources. Wake up the device if it was suspended.
1914  * Beware, this function can fail.
1915  */
1916 int pci_enable_device_io(struct pci_dev *dev)
1917 {
1918 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1919 }
1920 EXPORT_SYMBOL(pci_enable_device_io);
1921 
1922 /**
1923  * pci_enable_device_mem - Initialize a device for use with Memory space
1924  * @dev: PCI device to be initialized
1925  *
1926  * Initialize device before it's used by a driver. Ask low-level code
1927  * to enable Memory resources. Wake up the device if it was suspended.
1928  * Beware, this function can fail.
1929  */
1930 int pci_enable_device_mem(struct pci_dev *dev)
1931 {
1932 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1933 }
1934 EXPORT_SYMBOL(pci_enable_device_mem);
1935 
1936 /**
1937  * pci_enable_device - Initialize device before it's used by a driver.
1938  * @dev: PCI device to be initialized
1939  *
1940  * Initialize device before it's used by a driver. Ask low-level code
1941  * to enable I/O and memory. Wake up the device if it was suspended.
1942  * Beware, this function can fail.
1943  *
1944  * Note we don't actually enable the device many times if we call
1945  * this function repeatedly (we just increment the count).
1946  */
1947 int pci_enable_device(struct pci_dev *dev)
1948 {
1949 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1950 }
1951 EXPORT_SYMBOL(pci_enable_device);
1952 
1953 /*
1954  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1955  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1956  * there's no need to track it separately.  pci_devres is initialized
1957  * when a device is enabled using managed PCI device enable interface.
1958  */
1959 struct pci_devres {
1960 	unsigned int enabled:1;
1961 	unsigned int pinned:1;
1962 	unsigned int orig_intx:1;
1963 	unsigned int restore_intx:1;
1964 	unsigned int mwi:1;
1965 	u32 region_mask;
1966 };
1967 
1968 static void pcim_release(struct device *gendev, void *res)
1969 {
1970 	struct pci_dev *dev = to_pci_dev(gendev);
1971 	struct pci_devres *this = res;
1972 	int i;
1973 
1974 	if (dev->msi_enabled)
1975 		pci_disable_msi(dev);
1976 	if (dev->msix_enabled)
1977 		pci_disable_msix(dev);
1978 
1979 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1980 		if (this->region_mask & (1 << i))
1981 			pci_release_region(dev, i);
1982 
1983 	if (this->mwi)
1984 		pci_clear_mwi(dev);
1985 
1986 	if (this->restore_intx)
1987 		pci_intx(dev, this->orig_intx);
1988 
1989 	if (this->enabled && !this->pinned)
1990 		pci_disable_device(dev);
1991 }
1992 
1993 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1994 {
1995 	struct pci_devres *dr, *new_dr;
1996 
1997 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1998 	if (dr)
1999 		return dr;
2000 
2001 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2002 	if (!new_dr)
2003 		return NULL;
2004 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2005 }
2006 
2007 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2008 {
2009 	if (pci_is_managed(pdev))
2010 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2011 	return NULL;
2012 }
2013 
2014 /**
2015  * pcim_enable_device - Managed pci_enable_device()
2016  * @pdev: PCI device to be initialized
2017  *
2018  * Managed pci_enable_device().
2019  */
2020 int pcim_enable_device(struct pci_dev *pdev)
2021 {
2022 	struct pci_devres *dr;
2023 	int rc;
2024 
2025 	dr = get_pci_dr(pdev);
2026 	if (unlikely(!dr))
2027 		return -ENOMEM;
2028 	if (dr->enabled)
2029 		return 0;
2030 
2031 	rc = pci_enable_device(pdev);
2032 	if (!rc) {
2033 		pdev->is_managed = 1;
2034 		dr->enabled = 1;
2035 	}
2036 	return rc;
2037 }
2038 EXPORT_SYMBOL(pcim_enable_device);
2039 
2040 /**
2041  * pcim_pin_device - Pin managed PCI device
2042  * @pdev: PCI device to pin
2043  *
2044  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2045  * driver detach.  @pdev must have been enabled with
2046  * pcim_enable_device().
2047  */
2048 void pcim_pin_device(struct pci_dev *pdev)
2049 {
2050 	struct pci_devres *dr;
2051 
2052 	dr = find_pci_dr(pdev);
2053 	WARN_ON(!dr || !dr->enabled);
2054 	if (dr)
2055 		dr->pinned = 1;
2056 }
2057 EXPORT_SYMBOL(pcim_pin_device);
2058 
2059 /*
2060  * pcibios_add_device - provide arch specific hooks when adding device dev
2061  * @dev: the PCI device being added
2062  *
2063  * Permits the platform to provide architecture specific functionality when
2064  * devices are added. This is the default implementation. Architecture
2065  * implementations can override this.
2066  */
2067 int __weak pcibios_add_device(struct pci_dev *dev)
2068 {
2069 	return 0;
2070 }
2071 
2072 /**
2073  * pcibios_release_device - provide arch specific hooks when releasing
2074  *			    device dev
2075  * @dev: the PCI device being released
2076  *
2077  * Permits the platform to provide architecture specific functionality when
2078  * devices are released. This is the default implementation. Architecture
2079  * implementations can override this.
2080  */
2081 void __weak pcibios_release_device(struct pci_dev *dev) {}
2082 
2083 /**
2084  * pcibios_disable_device - disable arch specific PCI resources for device dev
2085  * @dev: the PCI device to disable
2086  *
2087  * Disables architecture specific PCI resources for the device. This
2088  * is the default implementation. Architecture implementations can
2089  * override this.
2090  */
2091 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2092 
2093 /**
2094  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2095  * @irq: ISA IRQ to penalize
2096  * @active: IRQ active or not
2097  *
2098  * Permits the platform to provide architecture-specific functionality when
2099  * penalizing ISA IRQs. This is the default implementation. Architecture
2100  * implementations can override this.
2101  */
2102 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2103 
2104 static void do_pci_disable_device(struct pci_dev *dev)
2105 {
2106 	u16 pci_command;
2107 
2108 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2109 	if (pci_command & PCI_COMMAND_MASTER) {
2110 		pci_command &= ~PCI_COMMAND_MASTER;
2111 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2112 	}
2113 
2114 	pcibios_disable_device(dev);
2115 }
2116 
2117 /**
2118  * pci_disable_enabled_device - Disable device without updating enable_cnt
2119  * @dev: PCI device to disable
2120  *
2121  * NOTE: This function is a backend of PCI power management routines and is
2122  * not supposed to be called drivers.
2123  */
2124 void pci_disable_enabled_device(struct pci_dev *dev)
2125 {
2126 	if (pci_is_enabled(dev))
2127 		do_pci_disable_device(dev);
2128 }
2129 
2130 /**
2131  * pci_disable_device - Disable PCI device after use
2132  * @dev: PCI device to be disabled
2133  *
2134  * Signal to the system that the PCI device is not in use by the system
2135  * anymore.  This only involves disabling PCI bus-mastering, if active.
2136  *
2137  * Note we don't actually disable the device until all callers of
2138  * pci_enable_device() have called pci_disable_device().
2139  */
2140 void pci_disable_device(struct pci_dev *dev)
2141 {
2142 	struct pci_devres *dr;
2143 
2144 	dr = find_pci_dr(dev);
2145 	if (dr)
2146 		dr->enabled = 0;
2147 
2148 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2149 		      "disabling already-disabled device");
2150 
2151 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2152 		return;
2153 
2154 	do_pci_disable_device(dev);
2155 
2156 	dev->is_busmaster = 0;
2157 }
2158 EXPORT_SYMBOL(pci_disable_device);
2159 
2160 /**
2161  * pcibios_set_pcie_reset_state - set reset state for device dev
2162  * @dev: the PCIe device reset
2163  * @state: Reset state to enter into
2164  *
2165  * Set the PCIe reset state for the device. This is the default
2166  * implementation. Architecture implementations can override this.
2167  */
2168 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2169 					enum pcie_reset_state state)
2170 {
2171 	return -EINVAL;
2172 }
2173 
2174 /**
2175  * pci_set_pcie_reset_state - set reset state for device dev
2176  * @dev: the PCIe device reset
2177  * @state: Reset state to enter into
2178  *
2179  * Sets the PCI reset state for the device.
2180  */
2181 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2182 {
2183 	return pcibios_set_pcie_reset_state(dev, state);
2184 }
2185 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2186 
2187 void pcie_clear_device_status(struct pci_dev *dev)
2188 {
2189 	u16 sta;
2190 
2191 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2192 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2193 }
2194 
2195 /**
2196  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2197  * @dev: PCIe root port or event collector.
2198  */
2199 void pcie_clear_root_pme_status(struct pci_dev *dev)
2200 {
2201 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2202 }
2203 
2204 /**
2205  * pci_check_pme_status - Check if given device has generated PME.
2206  * @dev: Device to check.
2207  *
2208  * Check the PME status of the device and if set, clear it and clear PME enable
2209  * (if set).  Return 'true' if PME status and PME enable were both set or
2210  * 'false' otherwise.
2211  */
2212 bool pci_check_pme_status(struct pci_dev *dev)
2213 {
2214 	int pmcsr_pos;
2215 	u16 pmcsr;
2216 	bool ret = false;
2217 
2218 	if (!dev->pm_cap)
2219 		return false;
2220 
2221 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2222 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2223 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2224 		return false;
2225 
2226 	/* Clear PME status. */
2227 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2228 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2229 		/* Disable PME to avoid interrupt flood. */
2230 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2231 		ret = true;
2232 	}
2233 
2234 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2235 
2236 	return ret;
2237 }
2238 
2239 /**
2240  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2241  * @dev: Device to handle.
2242  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2243  *
2244  * Check if @dev has generated PME and queue a resume request for it in that
2245  * case.
2246  */
2247 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2248 {
2249 	if (pme_poll_reset && dev->pme_poll)
2250 		dev->pme_poll = false;
2251 
2252 	if (pci_check_pme_status(dev)) {
2253 		pci_wakeup_event(dev);
2254 		pm_request_resume(&dev->dev);
2255 	}
2256 	return 0;
2257 }
2258 
2259 /**
2260  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2261  * @bus: Top bus of the subtree to walk.
2262  */
2263 void pci_pme_wakeup_bus(struct pci_bus *bus)
2264 {
2265 	if (bus)
2266 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2267 }
2268 
2269 
2270 /**
2271  * pci_pme_capable - check the capability of PCI device to generate PME#
2272  * @dev: PCI device to handle.
2273  * @state: PCI state from which device will issue PME#.
2274  */
2275 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2276 {
2277 	if (!dev->pm_cap)
2278 		return false;
2279 
2280 	return !!(dev->pme_support & (1 << state));
2281 }
2282 EXPORT_SYMBOL(pci_pme_capable);
2283 
2284 static void pci_pme_list_scan(struct work_struct *work)
2285 {
2286 	struct pci_pme_device *pme_dev, *n;
2287 
2288 	mutex_lock(&pci_pme_list_mutex);
2289 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2290 		if (pme_dev->dev->pme_poll) {
2291 			struct pci_dev *bridge;
2292 
2293 			bridge = pme_dev->dev->bus->self;
2294 			/*
2295 			 * If bridge is in low power state, the
2296 			 * configuration space of subordinate devices
2297 			 * may be not accessible
2298 			 */
2299 			if (bridge && bridge->current_state != PCI_D0)
2300 				continue;
2301 			/*
2302 			 * If the device is in D3cold it should not be
2303 			 * polled either.
2304 			 */
2305 			if (pme_dev->dev->current_state == PCI_D3cold)
2306 				continue;
2307 
2308 			pci_pme_wakeup(pme_dev->dev, NULL);
2309 		} else {
2310 			list_del(&pme_dev->list);
2311 			kfree(pme_dev);
2312 		}
2313 	}
2314 	if (!list_empty(&pci_pme_list))
2315 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2316 				   msecs_to_jiffies(PME_TIMEOUT));
2317 	mutex_unlock(&pci_pme_list_mutex);
2318 }
2319 
2320 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2321 {
2322 	u16 pmcsr;
2323 
2324 	if (!dev->pme_support)
2325 		return;
2326 
2327 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2328 	/* Clear PME_Status by writing 1 to it and enable PME# */
2329 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2330 	if (!enable)
2331 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2332 
2333 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2334 }
2335 
2336 /**
2337  * pci_pme_restore - Restore PME configuration after config space restore.
2338  * @dev: PCI device to update.
2339  */
2340 void pci_pme_restore(struct pci_dev *dev)
2341 {
2342 	u16 pmcsr;
2343 
2344 	if (!dev->pme_support)
2345 		return;
2346 
2347 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2348 	if (dev->wakeup_prepared) {
2349 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2350 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2351 	} else {
2352 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2353 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2354 	}
2355 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2356 }
2357 
2358 /**
2359  * pci_pme_active - enable or disable PCI device's PME# function
2360  * @dev: PCI device to handle.
2361  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2362  *
2363  * The caller must verify that the device is capable of generating PME# before
2364  * calling this function with @enable equal to 'true'.
2365  */
2366 void pci_pme_active(struct pci_dev *dev, bool enable)
2367 {
2368 	__pci_pme_active(dev, enable);
2369 
2370 	/*
2371 	 * PCI (as opposed to PCIe) PME requires that the device have
2372 	 * its PME# line hooked up correctly. Not all hardware vendors
2373 	 * do this, so the PME never gets delivered and the device
2374 	 * remains asleep. The easiest way around this is to
2375 	 * periodically walk the list of suspended devices and check
2376 	 * whether any have their PME flag set. The assumption is that
2377 	 * we'll wake up often enough anyway that this won't be a huge
2378 	 * hit, and the power savings from the devices will still be a
2379 	 * win.
2380 	 *
2381 	 * Although PCIe uses in-band PME message instead of PME# line
2382 	 * to report PME, PME does not work for some PCIe devices in
2383 	 * reality.  For example, there are devices that set their PME
2384 	 * status bits, but don't really bother to send a PME message;
2385 	 * there are PCI Express Root Ports that don't bother to
2386 	 * trigger interrupts when they receive PME messages from the
2387 	 * devices below.  So PME poll is used for PCIe devices too.
2388 	 */
2389 
2390 	if (dev->pme_poll) {
2391 		struct pci_pme_device *pme_dev;
2392 		if (enable) {
2393 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2394 					  GFP_KERNEL);
2395 			if (!pme_dev) {
2396 				pci_warn(dev, "can't enable PME#\n");
2397 				return;
2398 			}
2399 			pme_dev->dev = dev;
2400 			mutex_lock(&pci_pme_list_mutex);
2401 			list_add(&pme_dev->list, &pci_pme_list);
2402 			if (list_is_singular(&pci_pme_list))
2403 				queue_delayed_work(system_freezable_wq,
2404 						   &pci_pme_work,
2405 						   msecs_to_jiffies(PME_TIMEOUT));
2406 			mutex_unlock(&pci_pme_list_mutex);
2407 		} else {
2408 			mutex_lock(&pci_pme_list_mutex);
2409 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2410 				if (pme_dev->dev == dev) {
2411 					list_del(&pme_dev->list);
2412 					kfree(pme_dev);
2413 					break;
2414 				}
2415 			}
2416 			mutex_unlock(&pci_pme_list_mutex);
2417 		}
2418 	}
2419 
2420 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2421 }
2422 EXPORT_SYMBOL(pci_pme_active);
2423 
2424 /**
2425  * __pci_enable_wake - enable PCI device as wakeup event source
2426  * @dev: PCI device affected
2427  * @state: PCI state from which device will issue wakeup events
2428  * @enable: True to enable event generation; false to disable
2429  *
2430  * This enables the device as a wakeup event source, or disables it.
2431  * When such events involves platform-specific hooks, those hooks are
2432  * called automatically by this routine.
2433  *
2434  * Devices with legacy power management (no standard PCI PM capabilities)
2435  * always require such platform hooks.
2436  *
2437  * RETURN VALUE:
2438  * 0 is returned on success
2439  * -EINVAL is returned if device is not supposed to wake up the system
2440  * Error code depending on the platform is returned if both the platform and
2441  * the native mechanism fail to enable the generation of wake-up events
2442  */
2443 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2444 {
2445 	int ret = 0;
2446 
2447 	/*
2448 	 * Bridges that are not power-manageable directly only signal
2449 	 * wakeup on behalf of subordinate devices which is set up
2450 	 * elsewhere, so skip them. However, bridges that are
2451 	 * power-manageable may signal wakeup for themselves (for example,
2452 	 * on a hotplug event) and they need to be covered here.
2453 	 */
2454 	if (!pci_power_manageable(dev))
2455 		return 0;
2456 
2457 	/* Don't do the same thing twice in a row for one device. */
2458 	if (!!enable == !!dev->wakeup_prepared)
2459 		return 0;
2460 
2461 	/*
2462 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2463 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2464 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2465 	 */
2466 
2467 	if (enable) {
2468 		int error;
2469 
2470 		if (pci_pme_capable(dev, state))
2471 			pci_pme_active(dev, true);
2472 		else
2473 			ret = 1;
2474 		error = platform_pci_set_wakeup(dev, true);
2475 		if (ret)
2476 			ret = error;
2477 		if (!ret)
2478 			dev->wakeup_prepared = true;
2479 	} else {
2480 		platform_pci_set_wakeup(dev, false);
2481 		pci_pme_active(dev, false);
2482 		dev->wakeup_prepared = false;
2483 	}
2484 
2485 	return ret;
2486 }
2487 
2488 /**
2489  * pci_enable_wake - change wakeup settings for a PCI device
2490  * @pci_dev: Target device
2491  * @state: PCI state from which device will issue wakeup events
2492  * @enable: Whether or not to enable event generation
2493  *
2494  * If @enable is set, check device_may_wakeup() for the device before calling
2495  * __pci_enable_wake() for it.
2496  */
2497 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2498 {
2499 	if (enable && !device_may_wakeup(&pci_dev->dev))
2500 		return -EINVAL;
2501 
2502 	return __pci_enable_wake(pci_dev, state, enable);
2503 }
2504 EXPORT_SYMBOL(pci_enable_wake);
2505 
2506 /**
2507  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2508  * @dev: PCI device to prepare
2509  * @enable: True to enable wake-up event generation; false to disable
2510  *
2511  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2512  * and this function allows them to set that up cleanly - pci_enable_wake()
2513  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2514  * ordering constraints.
2515  *
2516  * This function only returns error code if the device is not allowed to wake
2517  * up the system from sleep or it is not capable of generating PME# from both
2518  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2519  */
2520 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2521 {
2522 	return pci_pme_capable(dev, PCI_D3cold) ?
2523 			pci_enable_wake(dev, PCI_D3cold, enable) :
2524 			pci_enable_wake(dev, PCI_D3hot, enable);
2525 }
2526 EXPORT_SYMBOL(pci_wake_from_d3);
2527 
2528 /**
2529  * pci_target_state - find an appropriate low power state for a given PCI dev
2530  * @dev: PCI device
2531  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2532  *
2533  * Use underlying platform code to find a supported low power state for @dev.
2534  * If the platform can't manage @dev, return the deepest state from which it
2535  * can generate wake events, based on any available PME info.
2536  */
2537 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2538 {
2539 	pci_power_t target_state = PCI_D3hot;
2540 
2541 	if (platform_pci_power_manageable(dev)) {
2542 		/*
2543 		 * Call the platform to find the target state for the device.
2544 		 */
2545 		pci_power_t state = platform_pci_choose_state(dev);
2546 
2547 		switch (state) {
2548 		case PCI_POWER_ERROR:
2549 		case PCI_UNKNOWN:
2550 			break;
2551 		case PCI_D1:
2552 		case PCI_D2:
2553 			if (pci_no_d1d2(dev))
2554 				break;
2555 			fallthrough;
2556 		default:
2557 			target_state = state;
2558 		}
2559 
2560 		return target_state;
2561 	}
2562 
2563 	if (!dev->pm_cap)
2564 		target_state = PCI_D0;
2565 
2566 	/*
2567 	 * If the device is in D3cold even though it's not power-manageable by
2568 	 * the platform, it may have been powered down by non-standard means.
2569 	 * Best to let it slumber.
2570 	 */
2571 	if (dev->current_state == PCI_D3cold)
2572 		target_state = PCI_D3cold;
2573 
2574 	if (wakeup) {
2575 		/*
2576 		 * Find the deepest state from which the device can generate
2577 		 * PME#.
2578 		 */
2579 		if (dev->pme_support) {
2580 			while (target_state
2581 			      && !(dev->pme_support & (1 << target_state)))
2582 				target_state--;
2583 		}
2584 	}
2585 
2586 	return target_state;
2587 }
2588 
2589 /**
2590  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2591  *			  into a sleep state
2592  * @dev: Device to handle.
2593  *
2594  * Choose the power state appropriate for the device depending on whether
2595  * it can wake up the system and/or is power manageable by the platform
2596  * (PCI_D3hot is the default) and put the device into that state.
2597  */
2598 int pci_prepare_to_sleep(struct pci_dev *dev)
2599 {
2600 	bool wakeup = device_may_wakeup(&dev->dev);
2601 	pci_power_t target_state = pci_target_state(dev, wakeup);
2602 	int error;
2603 
2604 	if (target_state == PCI_POWER_ERROR)
2605 		return -EIO;
2606 
2607 	/*
2608 	 * There are systems (for example, Intel mobile chips since Coffee
2609 	 * Lake) where the power drawn while suspended can be significantly
2610 	 * reduced by disabling PTM on PCIe root ports as this allows the
2611 	 * port to enter a lower-power PM state and the SoC to reach a
2612 	 * lower-power idle state as a whole.
2613 	 */
2614 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2615 		pci_disable_ptm(dev);
2616 
2617 	pci_enable_wake(dev, target_state, wakeup);
2618 
2619 	error = pci_set_power_state(dev, target_state);
2620 
2621 	if (error) {
2622 		pci_enable_wake(dev, target_state, false);
2623 		pci_restore_ptm_state(dev);
2624 	}
2625 
2626 	return error;
2627 }
2628 EXPORT_SYMBOL(pci_prepare_to_sleep);
2629 
2630 /**
2631  * pci_back_from_sleep - turn PCI device on during system-wide transition
2632  *			 into working state
2633  * @dev: Device to handle.
2634  *
2635  * Disable device's system wake-up capability and put it into D0.
2636  */
2637 int pci_back_from_sleep(struct pci_dev *dev)
2638 {
2639 	pci_enable_wake(dev, PCI_D0, false);
2640 	return pci_set_power_state(dev, PCI_D0);
2641 }
2642 EXPORT_SYMBOL(pci_back_from_sleep);
2643 
2644 /**
2645  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2646  * @dev: PCI device being suspended.
2647  *
2648  * Prepare @dev to generate wake-up events at run time and put it into a low
2649  * power state.
2650  */
2651 int pci_finish_runtime_suspend(struct pci_dev *dev)
2652 {
2653 	pci_power_t target_state;
2654 	int error;
2655 
2656 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2657 	if (target_state == PCI_POWER_ERROR)
2658 		return -EIO;
2659 
2660 	dev->runtime_d3cold = target_state == PCI_D3cold;
2661 
2662 	/*
2663 	 * There are systems (for example, Intel mobile chips since Coffee
2664 	 * Lake) where the power drawn while suspended can be significantly
2665 	 * reduced by disabling PTM on PCIe root ports as this allows the
2666 	 * port to enter a lower-power PM state and the SoC to reach a
2667 	 * lower-power idle state as a whole.
2668 	 */
2669 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2670 		pci_disable_ptm(dev);
2671 
2672 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2673 
2674 	error = pci_set_power_state(dev, target_state);
2675 
2676 	if (error) {
2677 		pci_enable_wake(dev, target_state, false);
2678 		pci_restore_ptm_state(dev);
2679 		dev->runtime_d3cold = false;
2680 	}
2681 
2682 	return error;
2683 }
2684 
2685 /**
2686  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2687  * @dev: Device to check.
2688  *
2689  * Return true if the device itself is capable of generating wake-up events
2690  * (through the platform or using the native PCIe PME) or if the device supports
2691  * PME and one of its upstream bridges can generate wake-up events.
2692  */
2693 bool pci_dev_run_wake(struct pci_dev *dev)
2694 {
2695 	struct pci_bus *bus = dev->bus;
2696 
2697 	if (!dev->pme_support)
2698 		return false;
2699 
2700 	/* PME-capable in principle, but not from the target power state */
2701 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2702 		return false;
2703 
2704 	if (device_can_wakeup(&dev->dev))
2705 		return true;
2706 
2707 	while (bus->parent) {
2708 		struct pci_dev *bridge = bus->self;
2709 
2710 		if (device_can_wakeup(&bridge->dev))
2711 			return true;
2712 
2713 		bus = bus->parent;
2714 	}
2715 
2716 	/* We have reached the root bus. */
2717 	if (bus->bridge)
2718 		return device_can_wakeup(bus->bridge);
2719 
2720 	return false;
2721 }
2722 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2723 
2724 /**
2725  * pci_dev_need_resume - Check if it is necessary to resume the device.
2726  * @pci_dev: Device to check.
2727  *
2728  * Return 'true' if the device is not runtime-suspended or it has to be
2729  * reconfigured due to wakeup settings difference between system and runtime
2730  * suspend, or the current power state of it is not suitable for the upcoming
2731  * (system-wide) transition.
2732  */
2733 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2734 {
2735 	struct device *dev = &pci_dev->dev;
2736 	pci_power_t target_state;
2737 
2738 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2739 		return true;
2740 
2741 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2742 
2743 	/*
2744 	 * If the earlier platform check has not triggered, D3cold is just power
2745 	 * removal on top of D3hot, so no need to resume the device in that
2746 	 * case.
2747 	 */
2748 	return target_state != pci_dev->current_state &&
2749 		target_state != PCI_D3cold &&
2750 		pci_dev->current_state != PCI_D3hot;
2751 }
2752 
2753 /**
2754  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2755  * @pci_dev: Device to check.
2756  *
2757  * If the device is suspended and it is not configured for system wakeup,
2758  * disable PME for it to prevent it from waking up the system unnecessarily.
2759  *
2760  * Note that if the device's power state is D3cold and the platform check in
2761  * pci_dev_need_resume() has not triggered, the device's configuration need not
2762  * be changed.
2763  */
2764 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2765 {
2766 	struct device *dev = &pci_dev->dev;
2767 
2768 	spin_lock_irq(&dev->power.lock);
2769 
2770 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2771 	    pci_dev->current_state < PCI_D3cold)
2772 		__pci_pme_active(pci_dev, false);
2773 
2774 	spin_unlock_irq(&dev->power.lock);
2775 }
2776 
2777 /**
2778  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2779  * @pci_dev: Device to handle.
2780  *
2781  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2782  * it might have been disabled during the prepare phase of system suspend if
2783  * the device was not configured for system wakeup.
2784  */
2785 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2786 {
2787 	struct device *dev = &pci_dev->dev;
2788 
2789 	if (!pci_dev_run_wake(pci_dev))
2790 		return;
2791 
2792 	spin_lock_irq(&dev->power.lock);
2793 
2794 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2795 		__pci_pme_active(pci_dev, true);
2796 
2797 	spin_unlock_irq(&dev->power.lock);
2798 }
2799 
2800 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2801 {
2802 	struct device *dev = &pdev->dev;
2803 	struct device *parent = dev->parent;
2804 
2805 	if (parent)
2806 		pm_runtime_get_sync(parent);
2807 	pm_runtime_get_noresume(dev);
2808 	/*
2809 	 * pdev->current_state is set to PCI_D3cold during suspending,
2810 	 * so wait until suspending completes
2811 	 */
2812 	pm_runtime_barrier(dev);
2813 	/*
2814 	 * Only need to resume devices in D3cold, because config
2815 	 * registers are still accessible for devices suspended but
2816 	 * not in D3cold.
2817 	 */
2818 	if (pdev->current_state == PCI_D3cold)
2819 		pm_runtime_resume(dev);
2820 }
2821 
2822 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2823 {
2824 	struct device *dev = &pdev->dev;
2825 	struct device *parent = dev->parent;
2826 
2827 	pm_runtime_put(dev);
2828 	if (parent)
2829 		pm_runtime_put_sync(parent);
2830 }
2831 
2832 static const struct dmi_system_id bridge_d3_blacklist[] = {
2833 #ifdef CONFIG_X86
2834 	{
2835 		/*
2836 		 * Gigabyte X299 root port is not marked as hotplug capable
2837 		 * which allows Linux to power manage it.  However, this
2838 		 * confuses the BIOS SMI handler so don't power manage root
2839 		 * ports on that system.
2840 		 */
2841 		.ident = "X299 DESIGNARE EX-CF",
2842 		.matches = {
2843 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2844 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2845 		},
2846 	},
2847 #endif
2848 	{ }
2849 };
2850 
2851 /**
2852  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2853  * @bridge: Bridge to check
2854  *
2855  * This function checks if it is possible to move the bridge to D3.
2856  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2857  */
2858 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2859 {
2860 	if (!pci_is_pcie(bridge))
2861 		return false;
2862 
2863 	switch (pci_pcie_type(bridge)) {
2864 	case PCI_EXP_TYPE_ROOT_PORT:
2865 	case PCI_EXP_TYPE_UPSTREAM:
2866 	case PCI_EXP_TYPE_DOWNSTREAM:
2867 		if (pci_bridge_d3_disable)
2868 			return false;
2869 
2870 		/*
2871 		 * Hotplug ports handled by firmware in System Management Mode
2872 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2873 		 */
2874 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2875 			return false;
2876 
2877 		if (pci_bridge_d3_force)
2878 			return true;
2879 
2880 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2881 		if (bridge->is_thunderbolt)
2882 			return true;
2883 
2884 		/* Platform might know better if the bridge supports D3 */
2885 		if (platform_pci_bridge_d3(bridge))
2886 			return true;
2887 
2888 		/*
2889 		 * Hotplug ports handled natively by the OS were not validated
2890 		 * by vendors for runtime D3 at least until 2018 because there
2891 		 * was no OS support.
2892 		 */
2893 		if (bridge->is_hotplug_bridge)
2894 			return false;
2895 
2896 		if (dmi_check_system(bridge_d3_blacklist))
2897 			return false;
2898 
2899 		/*
2900 		 * It should be safe to put PCIe ports from 2015 or newer
2901 		 * to D3.
2902 		 */
2903 		if (dmi_get_bios_year() >= 2015)
2904 			return true;
2905 		break;
2906 	}
2907 
2908 	return false;
2909 }
2910 
2911 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2912 {
2913 	bool *d3cold_ok = data;
2914 
2915 	if (/* The device needs to be allowed to go D3cold ... */
2916 	    dev->no_d3cold || !dev->d3cold_allowed ||
2917 
2918 	    /* ... and if it is wakeup capable to do so from D3cold. */
2919 	    (device_may_wakeup(&dev->dev) &&
2920 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2921 
2922 	    /* If it is a bridge it must be allowed to go to D3. */
2923 	    !pci_power_manageable(dev))
2924 
2925 		*d3cold_ok = false;
2926 
2927 	return !*d3cold_ok;
2928 }
2929 
2930 /*
2931  * pci_bridge_d3_update - Update bridge D3 capabilities
2932  * @dev: PCI device which is changed
2933  *
2934  * Update upstream bridge PM capabilities accordingly depending on if the
2935  * device PM configuration was changed or the device is being removed.  The
2936  * change is also propagated upstream.
2937  */
2938 void pci_bridge_d3_update(struct pci_dev *dev)
2939 {
2940 	bool remove = !device_is_registered(&dev->dev);
2941 	struct pci_dev *bridge;
2942 	bool d3cold_ok = true;
2943 
2944 	bridge = pci_upstream_bridge(dev);
2945 	if (!bridge || !pci_bridge_d3_possible(bridge))
2946 		return;
2947 
2948 	/*
2949 	 * If D3 is currently allowed for the bridge, removing one of its
2950 	 * children won't change that.
2951 	 */
2952 	if (remove && bridge->bridge_d3)
2953 		return;
2954 
2955 	/*
2956 	 * If D3 is currently allowed for the bridge and a child is added or
2957 	 * changed, disallowance of D3 can only be caused by that child, so
2958 	 * we only need to check that single device, not any of its siblings.
2959 	 *
2960 	 * If D3 is currently not allowed for the bridge, checking the device
2961 	 * first may allow us to skip checking its siblings.
2962 	 */
2963 	if (!remove)
2964 		pci_dev_check_d3cold(dev, &d3cold_ok);
2965 
2966 	/*
2967 	 * If D3 is currently not allowed for the bridge, this may be caused
2968 	 * either by the device being changed/removed or any of its siblings,
2969 	 * so we need to go through all children to find out if one of them
2970 	 * continues to block D3.
2971 	 */
2972 	if (d3cold_ok && !bridge->bridge_d3)
2973 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2974 			     &d3cold_ok);
2975 
2976 	if (bridge->bridge_d3 != d3cold_ok) {
2977 		bridge->bridge_d3 = d3cold_ok;
2978 		/* Propagate change to upstream bridges */
2979 		pci_bridge_d3_update(bridge);
2980 	}
2981 }
2982 
2983 /**
2984  * pci_d3cold_enable - Enable D3cold for device
2985  * @dev: PCI device to handle
2986  *
2987  * This function can be used in drivers to enable D3cold from the device
2988  * they handle.  It also updates upstream PCI bridge PM capabilities
2989  * accordingly.
2990  */
2991 void pci_d3cold_enable(struct pci_dev *dev)
2992 {
2993 	if (dev->no_d3cold) {
2994 		dev->no_d3cold = false;
2995 		pci_bridge_d3_update(dev);
2996 	}
2997 }
2998 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2999 
3000 /**
3001  * pci_d3cold_disable - Disable D3cold for device
3002  * @dev: PCI device to handle
3003  *
3004  * This function can be used in drivers to disable D3cold from the device
3005  * they handle.  It also updates upstream PCI bridge PM capabilities
3006  * accordingly.
3007  */
3008 void pci_d3cold_disable(struct pci_dev *dev)
3009 {
3010 	if (!dev->no_d3cold) {
3011 		dev->no_d3cold = true;
3012 		pci_bridge_d3_update(dev);
3013 	}
3014 }
3015 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3016 
3017 /**
3018  * pci_pm_init - Initialize PM functions of given PCI device
3019  * @dev: PCI device to handle.
3020  */
3021 void pci_pm_init(struct pci_dev *dev)
3022 {
3023 	int pm;
3024 	u16 status;
3025 	u16 pmc;
3026 
3027 	pm_runtime_forbid(&dev->dev);
3028 	pm_runtime_set_active(&dev->dev);
3029 	pm_runtime_enable(&dev->dev);
3030 	device_enable_async_suspend(&dev->dev);
3031 	dev->wakeup_prepared = false;
3032 
3033 	dev->pm_cap = 0;
3034 	dev->pme_support = 0;
3035 
3036 	/* find PCI PM capability in list */
3037 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3038 	if (!pm)
3039 		return;
3040 	/* Check device's ability to generate PME# */
3041 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3042 
3043 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3044 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3045 			pmc & PCI_PM_CAP_VER_MASK);
3046 		return;
3047 	}
3048 
3049 	dev->pm_cap = pm;
3050 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3051 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3052 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3053 	dev->d3cold_allowed = true;
3054 
3055 	dev->d1_support = false;
3056 	dev->d2_support = false;
3057 	if (!pci_no_d1d2(dev)) {
3058 		if (pmc & PCI_PM_CAP_D1)
3059 			dev->d1_support = true;
3060 		if (pmc & PCI_PM_CAP_D2)
3061 			dev->d2_support = true;
3062 
3063 		if (dev->d1_support || dev->d2_support)
3064 			pci_info(dev, "supports%s%s\n",
3065 				   dev->d1_support ? " D1" : "",
3066 				   dev->d2_support ? " D2" : "");
3067 	}
3068 
3069 	pmc &= PCI_PM_CAP_PME_MASK;
3070 	if (pmc) {
3071 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3072 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3073 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3074 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3075 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3076 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3077 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3078 		dev->pme_poll = true;
3079 		/*
3080 		 * Make device's PM flags reflect the wake-up capability, but
3081 		 * let the user space enable it to wake up the system as needed.
3082 		 */
3083 		device_set_wakeup_capable(&dev->dev, true);
3084 		/* Disable the PME# generation functionality */
3085 		pci_pme_active(dev, false);
3086 	}
3087 
3088 	pci_read_config_word(dev, PCI_STATUS, &status);
3089 	if (status & PCI_STATUS_IMM_READY)
3090 		dev->imm_ready = 1;
3091 }
3092 
3093 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3094 {
3095 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3096 
3097 	switch (prop) {
3098 	case PCI_EA_P_MEM:
3099 	case PCI_EA_P_VF_MEM:
3100 		flags |= IORESOURCE_MEM;
3101 		break;
3102 	case PCI_EA_P_MEM_PREFETCH:
3103 	case PCI_EA_P_VF_MEM_PREFETCH:
3104 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3105 		break;
3106 	case PCI_EA_P_IO:
3107 		flags |= IORESOURCE_IO;
3108 		break;
3109 	default:
3110 		return 0;
3111 	}
3112 
3113 	return flags;
3114 }
3115 
3116 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3117 					    u8 prop)
3118 {
3119 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3120 		return &dev->resource[bei];
3121 #ifdef CONFIG_PCI_IOV
3122 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3123 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3124 		return &dev->resource[PCI_IOV_RESOURCES +
3125 				      bei - PCI_EA_BEI_VF_BAR0];
3126 #endif
3127 	else if (bei == PCI_EA_BEI_ROM)
3128 		return &dev->resource[PCI_ROM_RESOURCE];
3129 	else
3130 		return NULL;
3131 }
3132 
3133 /* Read an Enhanced Allocation (EA) entry */
3134 static int pci_ea_read(struct pci_dev *dev, int offset)
3135 {
3136 	struct resource *res;
3137 	int ent_size, ent_offset = offset;
3138 	resource_size_t start, end;
3139 	unsigned long flags;
3140 	u32 dw0, bei, base, max_offset;
3141 	u8 prop;
3142 	bool support_64 = (sizeof(resource_size_t) >= 8);
3143 
3144 	pci_read_config_dword(dev, ent_offset, &dw0);
3145 	ent_offset += 4;
3146 
3147 	/* Entry size field indicates DWORDs after 1st */
3148 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3149 
3150 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3151 		goto out;
3152 
3153 	bei = (dw0 & PCI_EA_BEI) >> 4;
3154 	prop = (dw0 & PCI_EA_PP) >> 8;
3155 
3156 	/*
3157 	 * If the Property is in the reserved range, try the Secondary
3158 	 * Property instead.
3159 	 */
3160 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3161 		prop = (dw0 & PCI_EA_SP) >> 16;
3162 	if (prop > PCI_EA_P_BRIDGE_IO)
3163 		goto out;
3164 
3165 	res = pci_ea_get_resource(dev, bei, prop);
3166 	if (!res) {
3167 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3168 		goto out;
3169 	}
3170 
3171 	flags = pci_ea_flags(dev, prop);
3172 	if (!flags) {
3173 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3174 		goto out;
3175 	}
3176 
3177 	/* Read Base */
3178 	pci_read_config_dword(dev, ent_offset, &base);
3179 	start = (base & PCI_EA_FIELD_MASK);
3180 	ent_offset += 4;
3181 
3182 	/* Read MaxOffset */
3183 	pci_read_config_dword(dev, ent_offset, &max_offset);
3184 	ent_offset += 4;
3185 
3186 	/* Read Base MSBs (if 64-bit entry) */
3187 	if (base & PCI_EA_IS_64) {
3188 		u32 base_upper;
3189 
3190 		pci_read_config_dword(dev, ent_offset, &base_upper);
3191 		ent_offset += 4;
3192 
3193 		flags |= IORESOURCE_MEM_64;
3194 
3195 		/* entry starts above 32-bit boundary, can't use */
3196 		if (!support_64 && base_upper)
3197 			goto out;
3198 
3199 		if (support_64)
3200 			start |= ((u64)base_upper << 32);
3201 	}
3202 
3203 	end = start + (max_offset | 0x03);
3204 
3205 	/* Read MaxOffset MSBs (if 64-bit entry) */
3206 	if (max_offset & PCI_EA_IS_64) {
3207 		u32 max_offset_upper;
3208 
3209 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3210 		ent_offset += 4;
3211 
3212 		flags |= IORESOURCE_MEM_64;
3213 
3214 		/* entry too big, can't use */
3215 		if (!support_64 && max_offset_upper)
3216 			goto out;
3217 
3218 		if (support_64)
3219 			end += ((u64)max_offset_upper << 32);
3220 	}
3221 
3222 	if (end < start) {
3223 		pci_err(dev, "EA Entry crosses address boundary\n");
3224 		goto out;
3225 	}
3226 
3227 	if (ent_size != ent_offset - offset) {
3228 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3229 			ent_size, ent_offset - offset);
3230 		goto out;
3231 	}
3232 
3233 	res->name = pci_name(dev);
3234 	res->start = start;
3235 	res->end = end;
3236 	res->flags = flags;
3237 
3238 	if (bei <= PCI_EA_BEI_BAR5)
3239 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3240 			   bei, res, prop);
3241 	else if (bei == PCI_EA_BEI_ROM)
3242 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3243 			   res, prop);
3244 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3245 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3246 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3247 	else
3248 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3249 			   bei, res, prop);
3250 
3251 out:
3252 	return offset + ent_size;
3253 }
3254 
3255 /* Enhanced Allocation Initialization */
3256 void pci_ea_init(struct pci_dev *dev)
3257 {
3258 	int ea;
3259 	u8 num_ent;
3260 	int offset;
3261 	int i;
3262 
3263 	/* find PCI EA capability in list */
3264 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3265 	if (!ea)
3266 		return;
3267 
3268 	/* determine the number of entries */
3269 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3270 					&num_ent);
3271 	num_ent &= PCI_EA_NUM_ENT_MASK;
3272 
3273 	offset = ea + PCI_EA_FIRST_ENT;
3274 
3275 	/* Skip DWORD 2 for type 1 functions */
3276 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3277 		offset += 4;
3278 
3279 	/* parse each EA entry */
3280 	for (i = 0; i < num_ent; ++i)
3281 		offset = pci_ea_read(dev, offset);
3282 }
3283 
3284 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3285 	struct pci_cap_saved_state *new_cap)
3286 {
3287 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3288 }
3289 
3290 /**
3291  * _pci_add_cap_save_buffer - allocate buffer for saving given
3292  *			      capability registers
3293  * @dev: the PCI device
3294  * @cap: the capability to allocate the buffer for
3295  * @extended: Standard or Extended capability ID
3296  * @size: requested size of the buffer
3297  */
3298 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3299 				    bool extended, unsigned int size)
3300 {
3301 	int pos;
3302 	struct pci_cap_saved_state *save_state;
3303 
3304 	if (extended)
3305 		pos = pci_find_ext_capability(dev, cap);
3306 	else
3307 		pos = pci_find_capability(dev, cap);
3308 
3309 	if (!pos)
3310 		return 0;
3311 
3312 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3313 	if (!save_state)
3314 		return -ENOMEM;
3315 
3316 	save_state->cap.cap_nr = cap;
3317 	save_state->cap.cap_extended = extended;
3318 	save_state->cap.size = size;
3319 	pci_add_saved_cap(dev, save_state);
3320 
3321 	return 0;
3322 }
3323 
3324 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3325 {
3326 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3327 }
3328 
3329 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3330 {
3331 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3332 }
3333 
3334 /**
3335  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3336  * @dev: the PCI device
3337  */
3338 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3339 {
3340 	int error;
3341 
3342 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3343 					PCI_EXP_SAVE_REGS * sizeof(u16));
3344 	if (error)
3345 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3346 
3347 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3348 	if (error)
3349 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3350 
3351 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3352 					    2 * sizeof(u16));
3353 	if (error)
3354 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3355 
3356 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_L1SS,
3357 					    2 * sizeof(u32));
3358 	if (error)
3359 		pci_err(dev, "unable to allocate suspend buffer for ASPM-L1SS\n");
3360 
3361 	pci_allocate_vc_save_buffers(dev);
3362 }
3363 
3364 void pci_free_cap_save_buffers(struct pci_dev *dev)
3365 {
3366 	struct pci_cap_saved_state *tmp;
3367 	struct hlist_node *n;
3368 
3369 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3370 		kfree(tmp);
3371 }
3372 
3373 /**
3374  * pci_configure_ari - enable or disable ARI forwarding
3375  * @dev: the PCI device
3376  *
3377  * If @dev and its upstream bridge both support ARI, enable ARI in the
3378  * bridge.  Otherwise, disable ARI in the bridge.
3379  */
3380 void pci_configure_ari(struct pci_dev *dev)
3381 {
3382 	u32 cap;
3383 	struct pci_dev *bridge;
3384 
3385 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3386 		return;
3387 
3388 	bridge = dev->bus->self;
3389 	if (!bridge)
3390 		return;
3391 
3392 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3393 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3394 		return;
3395 
3396 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3397 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3398 					 PCI_EXP_DEVCTL2_ARI);
3399 		bridge->ari_enabled = 1;
3400 	} else {
3401 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3402 					   PCI_EXP_DEVCTL2_ARI);
3403 		bridge->ari_enabled = 0;
3404 	}
3405 }
3406 
3407 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3408 {
3409 	int pos;
3410 	u16 cap, ctrl;
3411 
3412 	pos = pdev->acs_cap;
3413 	if (!pos)
3414 		return false;
3415 
3416 	/*
3417 	 * Except for egress control, capabilities are either required
3418 	 * or only required if controllable.  Features missing from the
3419 	 * capability field can therefore be assumed as hard-wired enabled.
3420 	 */
3421 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3422 	acs_flags &= (cap | PCI_ACS_EC);
3423 
3424 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3425 	return (ctrl & acs_flags) == acs_flags;
3426 }
3427 
3428 /**
3429  * pci_acs_enabled - test ACS against required flags for a given device
3430  * @pdev: device to test
3431  * @acs_flags: required PCI ACS flags
3432  *
3433  * Return true if the device supports the provided flags.  Automatically
3434  * filters out flags that are not implemented on multifunction devices.
3435  *
3436  * Note that this interface checks the effective ACS capabilities of the
3437  * device rather than the actual capabilities.  For instance, most single
3438  * function endpoints are not required to support ACS because they have no
3439  * opportunity for peer-to-peer access.  We therefore return 'true'
3440  * regardless of whether the device exposes an ACS capability.  This makes
3441  * it much easier for callers of this function to ignore the actual type
3442  * or topology of the device when testing ACS support.
3443  */
3444 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3445 {
3446 	int ret;
3447 
3448 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3449 	if (ret >= 0)
3450 		return ret > 0;
3451 
3452 	/*
3453 	 * Conventional PCI and PCI-X devices never support ACS, either
3454 	 * effectively or actually.  The shared bus topology implies that
3455 	 * any device on the bus can receive or snoop DMA.
3456 	 */
3457 	if (!pci_is_pcie(pdev))
3458 		return false;
3459 
3460 	switch (pci_pcie_type(pdev)) {
3461 	/*
3462 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3463 	 * but since their primary interface is PCI/X, we conservatively
3464 	 * handle them as we would a non-PCIe device.
3465 	 */
3466 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3467 	/*
3468 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3469 	 * applicable... must never implement an ACS Extended Capability...".
3470 	 * This seems arbitrary, but we take a conservative interpretation
3471 	 * of this statement.
3472 	 */
3473 	case PCI_EXP_TYPE_PCI_BRIDGE:
3474 	case PCI_EXP_TYPE_RC_EC:
3475 		return false;
3476 	/*
3477 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3478 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3479 	 * regardless of whether they are single- or multi-function devices.
3480 	 */
3481 	case PCI_EXP_TYPE_DOWNSTREAM:
3482 	case PCI_EXP_TYPE_ROOT_PORT:
3483 		return pci_acs_flags_enabled(pdev, acs_flags);
3484 	/*
3485 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3486 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3487 	 * capabilities, but only when they are part of a multifunction
3488 	 * device.  The footnote for section 6.12 indicates the specific
3489 	 * PCIe types included here.
3490 	 */
3491 	case PCI_EXP_TYPE_ENDPOINT:
3492 	case PCI_EXP_TYPE_UPSTREAM:
3493 	case PCI_EXP_TYPE_LEG_END:
3494 	case PCI_EXP_TYPE_RC_END:
3495 		if (!pdev->multifunction)
3496 			break;
3497 
3498 		return pci_acs_flags_enabled(pdev, acs_flags);
3499 	}
3500 
3501 	/*
3502 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3503 	 * to single function devices with the exception of downstream ports.
3504 	 */
3505 	return true;
3506 }
3507 
3508 /**
3509  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3510  * @start: starting downstream device
3511  * @end: ending upstream device or NULL to search to the root bus
3512  * @acs_flags: required flags
3513  *
3514  * Walk up a device tree from start to end testing PCI ACS support.  If
3515  * any step along the way does not support the required flags, return false.
3516  */
3517 bool pci_acs_path_enabled(struct pci_dev *start,
3518 			  struct pci_dev *end, u16 acs_flags)
3519 {
3520 	struct pci_dev *pdev, *parent = start;
3521 
3522 	do {
3523 		pdev = parent;
3524 
3525 		if (!pci_acs_enabled(pdev, acs_flags))
3526 			return false;
3527 
3528 		if (pci_is_root_bus(pdev->bus))
3529 			return (end == NULL);
3530 
3531 		parent = pdev->bus->self;
3532 	} while (pdev != end);
3533 
3534 	return true;
3535 }
3536 
3537 /**
3538  * pci_acs_init - Initialize ACS if hardware supports it
3539  * @dev: the PCI device
3540  */
3541 void pci_acs_init(struct pci_dev *dev)
3542 {
3543 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3544 
3545 	/*
3546 	 * Attempt to enable ACS regardless of capability because some Root
3547 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3548 	 * the standard ACS capability but still support ACS via those
3549 	 * quirks.
3550 	 */
3551 	pci_enable_acs(dev);
3552 }
3553 
3554 /**
3555  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3556  * @pdev: PCI device
3557  * @bar: BAR to find
3558  *
3559  * Helper to find the position of the ctrl register for a BAR.
3560  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3561  * Returns -ENOENT if no ctrl register for the BAR could be found.
3562  */
3563 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3564 {
3565 	unsigned int pos, nbars, i;
3566 	u32 ctrl;
3567 
3568 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3569 	if (!pos)
3570 		return -ENOTSUPP;
3571 
3572 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3573 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3574 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3575 
3576 	for (i = 0; i < nbars; i++, pos += 8) {
3577 		int bar_idx;
3578 
3579 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3580 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3581 		if (bar_idx == bar)
3582 			return pos;
3583 	}
3584 
3585 	return -ENOENT;
3586 }
3587 
3588 /**
3589  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3590  * @pdev: PCI device
3591  * @bar: BAR to query
3592  *
3593  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3594  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3595  */
3596 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3597 {
3598 	int pos;
3599 	u32 cap;
3600 
3601 	pos = pci_rebar_find_pos(pdev, bar);
3602 	if (pos < 0)
3603 		return 0;
3604 
3605 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3606 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3607 }
3608 
3609 /**
3610  * pci_rebar_get_current_size - get the current size of a BAR
3611  * @pdev: PCI device
3612  * @bar: BAR to set size to
3613  *
3614  * Read the size of a BAR from the resizable BAR config.
3615  * Returns size if found or negative error code.
3616  */
3617 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3618 {
3619 	int pos;
3620 	u32 ctrl;
3621 
3622 	pos = pci_rebar_find_pos(pdev, bar);
3623 	if (pos < 0)
3624 		return pos;
3625 
3626 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3627 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3628 }
3629 
3630 /**
3631  * pci_rebar_set_size - set a new size for a BAR
3632  * @pdev: PCI device
3633  * @bar: BAR to set size to
3634  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3635  *
3636  * Set the new size of a BAR as defined in the spec.
3637  * Returns zero if resizing was successful, error code otherwise.
3638  */
3639 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3640 {
3641 	int pos;
3642 	u32 ctrl;
3643 
3644 	pos = pci_rebar_find_pos(pdev, bar);
3645 	if (pos < 0)
3646 		return pos;
3647 
3648 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3649 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3650 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3651 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3652 	return 0;
3653 }
3654 
3655 /**
3656  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3657  * @dev: the PCI device
3658  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3659  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3660  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3661  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3662  *
3663  * Return 0 if all upstream bridges support AtomicOp routing, egress
3664  * blocking is disabled on all upstream ports, and the root port supports
3665  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3666  * AtomicOp completion), or negative otherwise.
3667  */
3668 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3669 {
3670 	struct pci_bus *bus = dev->bus;
3671 	struct pci_dev *bridge;
3672 	u32 cap, ctl2;
3673 
3674 	if (!pci_is_pcie(dev))
3675 		return -EINVAL;
3676 
3677 	/*
3678 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3679 	 * AtomicOp requesters.  For now, we only support endpoints as
3680 	 * requesters and root ports as completers.  No endpoints as
3681 	 * completers, and no peer-to-peer.
3682 	 */
3683 
3684 	switch (pci_pcie_type(dev)) {
3685 	case PCI_EXP_TYPE_ENDPOINT:
3686 	case PCI_EXP_TYPE_LEG_END:
3687 	case PCI_EXP_TYPE_RC_END:
3688 		break;
3689 	default:
3690 		return -EINVAL;
3691 	}
3692 
3693 	while (bus->parent) {
3694 		bridge = bus->self;
3695 
3696 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3697 
3698 		switch (pci_pcie_type(bridge)) {
3699 		/* Ensure switch ports support AtomicOp routing */
3700 		case PCI_EXP_TYPE_UPSTREAM:
3701 		case PCI_EXP_TYPE_DOWNSTREAM:
3702 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3703 				return -EINVAL;
3704 			break;
3705 
3706 		/* Ensure root port supports all the sizes we care about */
3707 		case PCI_EXP_TYPE_ROOT_PORT:
3708 			if ((cap & cap_mask) != cap_mask)
3709 				return -EINVAL;
3710 			break;
3711 		}
3712 
3713 		/* Ensure upstream ports don't block AtomicOps on egress */
3714 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3715 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3716 						   &ctl2);
3717 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3718 				return -EINVAL;
3719 		}
3720 
3721 		bus = bus->parent;
3722 	}
3723 
3724 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3725 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3726 	return 0;
3727 }
3728 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3729 
3730 /**
3731  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3732  * @dev: the PCI device
3733  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3734  *
3735  * Perform INTx swizzling for a device behind one level of bridge.  This is
3736  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3737  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3738  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3739  * the PCI Express Base Specification, Revision 2.1)
3740  */
3741 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3742 {
3743 	int slot;
3744 
3745 	if (pci_ari_enabled(dev->bus))
3746 		slot = 0;
3747 	else
3748 		slot = PCI_SLOT(dev->devfn);
3749 
3750 	return (((pin - 1) + slot) % 4) + 1;
3751 }
3752 
3753 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3754 {
3755 	u8 pin;
3756 
3757 	pin = dev->pin;
3758 	if (!pin)
3759 		return -1;
3760 
3761 	while (!pci_is_root_bus(dev->bus)) {
3762 		pin = pci_swizzle_interrupt_pin(dev, pin);
3763 		dev = dev->bus->self;
3764 	}
3765 	*bridge = dev;
3766 	return pin;
3767 }
3768 
3769 /**
3770  * pci_common_swizzle - swizzle INTx all the way to root bridge
3771  * @dev: the PCI device
3772  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3773  *
3774  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3775  * bridges all the way up to a PCI root bus.
3776  */
3777 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3778 {
3779 	u8 pin = *pinp;
3780 
3781 	while (!pci_is_root_bus(dev->bus)) {
3782 		pin = pci_swizzle_interrupt_pin(dev, pin);
3783 		dev = dev->bus->self;
3784 	}
3785 	*pinp = pin;
3786 	return PCI_SLOT(dev->devfn);
3787 }
3788 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3789 
3790 /**
3791  * pci_release_region - Release a PCI bar
3792  * @pdev: PCI device whose resources were previously reserved by
3793  *	  pci_request_region()
3794  * @bar: BAR to release
3795  *
3796  * Releases the PCI I/O and memory resources previously reserved by a
3797  * successful call to pci_request_region().  Call this function only
3798  * after all use of the PCI regions has ceased.
3799  */
3800 void pci_release_region(struct pci_dev *pdev, int bar)
3801 {
3802 	struct pci_devres *dr;
3803 
3804 	if (pci_resource_len(pdev, bar) == 0)
3805 		return;
3806 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3807 		release_region(pci_resource_start(pdev, bar),
3808 				pci_resource_len(pdev, bar));
3809 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3810 		release_mem_region(pci_resource_start(pdev, bar),
3811 				pci_resource_len(pdev, bar));
3812 
3813 	dr = find_pci_dr(pdev);
3814 	if (dr)
3815 		dr->region_mask &= ~(1 << bar);
3816 }
3817 EXPORT_SYMBOL(pci_release_region);
3818 
3819 /**
3820  * __pci_request_region - Reserved PCI I/O and memory resource
3821  * @pdev: PCI device whose resources are to be reserved
3822  * @bar: BAR to be reserved
3823  * @res_name: Name to be associated with resource.
3824  * @exclusive: whether the region access is exclusive or not
3825  *
3826  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3827  * being reserved by owner @res_name.  Do not access any
3828  * address inside the PCI regions unless this call returns
3829  * successfully.
3830  *
3831  * If @exclusive is set, then the region is marked so that userspace
3832  * is explicitly not allowed to map the resource via /dev/mem or
3833  * sysfs MMIO access.
3834  *
3835  * Returns 0 on success, or %EBUSY on error.  A warning
3836  * message is also printed on failure.
3837  */
3838 static int __pci_request_region(struct pci_dev *pdev, int bar,
3839 				const char *res_name, int exclusive)
3840 {
3841 	struct pci_devres *dr;
3842 
3843 	if (pci_resource_len(pdev, bar) == 0)
3844 		return 0;
3845 
3846 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3847 		if (!request_region(pci_resource_start(pdev, bar),
3848 			    pci_resource_len(pdev, bar), res_name))
3849 			goto err_out;
3850 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3851 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3852 					pci_resource_len(pdev, bar), res_name,
3853 					exclusive))
3854 			goto err_out;
3855 	}
3856 
3857 	dr = find_pci_dr(pdev);
3858 	if (dr)
3859 		dr->region_mask |= 1 << bar;
3860 
3861 	return 0;
3862 
3863 err_out:
3864 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3865 		 &pdev->resource[bar]);
3866 	return -EBUSY;
3867 }
3868 
3869 /**
3870  * pci_request_region - Reserve PCI I/O and memory resource
3871  * @pdev: PCI device whose resources are to be reserved
3872  * @bar: BAR to be reserved
3873  * @res_name: Name to be associated with resource
3874  *
3875  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3876  * being reserved by owner @res_name.  Do not access any
3877  * address inside the PCI regions unless this call returns
3878  * successfully.
3879  *
3880  * Returns 0 on success, or %EBUSY on error.  A warning
3881  * message is also printed on failure.
3882  */
3883 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3884 {
3885 	return __pci_request_region(pdev, bar, res_name, 0);
3886 }
3887 EXPORT_SYMBOL(pci_request_region);
3888 
3889 /**
3890  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3891  * @pdev: PCI device whose resources were previously reserved
3892  * @bars: Bitmask of BARs to be released
3893  *
3894  * Release selected PCI I/O and memory resources previously reserved.
3895  * Call this function only after all use of the PCI regions has ceased.
3896  */
3897 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3898 {
3899 	int i;
3900 
3901 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3902 		if (bars & (1 << i))
3903 			pci_release_region(pdev, i);
3904 }
3905 EXPORT_SYMBOL(pci_release_selected_regions);
3906 
3907 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3908 					  const char *res_name, int excl)
3909 {
3910 	int i;
3911 
3912 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3913 		if (bars & (1 << i))
3914 			if (__pci_request_region(pdev, i, res_name, excl))
3915 				goto err_out;
3916 	return 0;
3917 
3918 err_out:
3919 	while (--i >= 0)
3920 		if (bars & (1 << i))
3921 			pci_release_region(pdev, i);
3922 
3923 	return -EBUSY;
3924 }
3925 
3926 
3927 /**
3928  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3929  * @pdev: PCI device whose resources are to be reserved
3930  * @bars: Bitmask of BARs to be requested
3931  * @res_name: Name to be associated with resource
3932  */
3933 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3934 				 const char *res_name)
3935 {
3936 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3937 }
3938 EXPORT_SYMBOL(pci_request_selected_regions);
3939 
3940 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3941 					   const char *res_name)
3942 {
3943 	return __pci_request_selected_regions(pdev, bars, res_name,
3944 			IORESOURCE_EXCLUSIVE);
3945 }
3946 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3947 
3948 /**
3949  * pci_release_regions - Release reserved PCI I/O and memory resources
3950  * @pdev: PCI device whose resources were previously reserved by
3951  *	  pci_request_regions()
3952  *
3953  * Releases all PCI I/O and memory resources previously reserved by a
3954  * successful call to pci_request_regions().  Call this function only
3955  * after all use of the PCI regions has ceased.
3956  */
3957 
3958 void pci_release_regions(struct pci_dev *pdev)
3959 {
3960 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3961 }
3962 EXPORT_SYMBOL(pci_release_regions);
3963 
3964 /**
3965  * pci_request_regions - Reserve PCI I/O and memory resources
3966  * @pdev: PCI device whose resources are to be reserved
3967  * @res_name: Name to be associated with resource.
3968  *
3969  * Mark all PCI regions associated with PCI device @pdev as
3970  * being reserved by owner @res_name.  Do not access any
3971  * address inside the PCI regions unless this call returns
3972  * successfully.
3973  *
3974  * Returns 0 on success, or %EBUSY on error.  A warning
3975  * message is also printed on failure.
3976  */
3977 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3978 {
3979 	return pci_request_selected_regions(pdev,
3980 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3981 }
3982 EXPORT_SYMBOL(pci_request_regions);
3983 
3984 /**
3985  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3986  * @pdev: PCI device whose resources are to be reserved
3987  * @res_name: Name to be associated with resource.
3988  *
3989  * Mark all PCI regions associated with PCI device @pdev as being reserved
3990  * by owner @res_name.  Do not access any address inside the PCI regions
3991  * unless this call returns successfully.
3992  *
3993  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3994  * and the sysfs MMIO access will not be allowed.
3995  *
3996  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3997  * printed on failure.
3998  */
3999 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4000 {
4001 	return pci_request_selected_regions_exclusive(pdev,
4002 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4003 }
4004 EXPORT_SYMBOL(pci_request_regions_exclusive);
4005 
4006 /*
4007  * Record the PCI IO range (expressed as CPU physical address + size).
4008  * Return a negative value if an error has occurred, zero otherwise
4009  */
4010 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4011 			resource_size_t	size)
4012 {
4013 	int ret = 0;
4014 #ifdef PCI_IOBASE
4015 	struct logic_pio_hwaddr *range;
4016 
4017 	if (!size || addr + size < addr)
4018 		return -EINVAL;
4019 
4020 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4021 	if (!range)
4022 		return -ENOMEM;
4023 
4024 	range->fwnode = fwnode;
4025 	range->size = size;
4026 	range->hw_start = addr;
4027 	range->flags = LOGIC_PIO_CPU_MMIO;
4028 
4029 	ret = logic_pio_register_range(range);
4030 	if (ret)
4031 		kfree(range);
4032 #endif
4033 
4034 	return ret;
4035 }
4036 
4037 phys_addr_t pci_pio_to_address(unsigned long pio)
4038 {
4039 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4040 
4041 #ifdef PCI_IOBASE
4042 	if (pio >= MMIO_UPPER_LIMIT)
4043 		return address;
4044 
4045 	address = logic_pio_to_hwaddr(pio);
4046 #endif
4047 
4048 	return address;
4049 }
4050 
4051 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4052 {
4053 #ifdef PCI_IOBASE
4054 	return logic_pio_trans_cpuaddr(address);
4055 #else
4056 	if (address > IO_SPACE_LIMIT)
4057 		return (unsigned long)-1;
4058 
4059 	return (unsigned long) address;
4060 #endif
4061 }
4062 
4063 /**
4064  * pci_remap_iospace - Remap the memory mapped I/O space
4065  * @res: Resource describing the I/O space
4066  * @phys_addr: physical address of range to be mapped
4067  *
4068  * Remap the memory mapped I/O space described by the @res and the CPU
4069  * physical address @phys_addr into virtual address space.  Only
4070  * architectures that have memory mapped IO functions defined (and the
4071  * PCI_IOBASE value defined) should call this function.
4072  */
4073 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4074 {
4075 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4076 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4077 
4078 	if (!(res->flags & IORESOURCE_IO))
4079 		return -EINVAL;
4080 
4081 	if (res->end > IO_SPACE_LIMIT)
4082 		return -EINVAL;
4083 
4084 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4085 				  pgprot_device(PAGE_KERNEL));
4086 #else
4087 	/*
4088 	 * This architecture does not have memory mapped I/O space,
4089 	 * so this function should never be called
4090 	 */
4091 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4092 	return -ENODEV;
4093 #endif
4094 }
4095 EXPORT_SYMBOL(pci_remap_iospace);
4096 
4097 /**
4098  * pci_unmap_iospace - Unmap the memory mapped I/O space
4099  * @res: resource to be unmapped
4100  *
4101  * Unmap the CPU virtual address @res from virtual address space.  Only
4102  * architectures that have memory mapped IO functions defined (and the
4103  * PCI_IOBASE value defined) should call this function.
4104  */
4105 void pci_unmap_iospace(struct resource *res)
4106 {
4107 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4108 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4109 
4110 	unmap_kernel_range(vaddr, resource_size(res));
4111 #endif
4112 }
4113 EXPORT_SYMBOL(pci_unmap_iospace);
4114 
4115 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4116 {
4117 	struct resource **res = ptr;
4118 
4119 	pci_unmap_iospace(*res);
4120 }
4121 
4122 /**
4123  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4124  * @dev: Generic device to remap IO address for
4125  * @res: Resource describing the I/O space
4126  * @phys_addr: physical address of range to be mapped
4127  *
4128  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4129  * detach.
4130  */
4131 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4132 			   phys_addr_t phys_addr)
4133 {
4134 	const struct resource **ptr;
4135 	int error;
4136 
4137 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4138 	if (!ptr)
4139 		return -ENOMEM;
4140 
4141 	error = pci_remap_iospace(res, phys_addr);
4142 	if (error) {
4143 		devres_free(ptr);
4144 	} else	{
4145 		*ptr = res;
4146 		devres_add(dev, ptr);
4147 	}
4148 
4149 	return error;
4150 }
4151 EXPORT_SYMBOL(devm_pci_remap_iospace);
4152 
4153 /**
4154  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4155  * @dev: Generic device to remap IO address for
4156  * @offset: Resource address to map
4157  * @size: Size of map
4158  *
4159  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4160  * detach.
4161  */
4162 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4163 				      resource_size_t offset,
4164 				      resource_size_t size)
4165 {
4166 	void __iomem **ptr, *addr;
4167 
4168 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4169 	if (!ptr)
4170 		return NULL;
4171 
4172 	addr = pci_remap_cfgspace(offset, size);
4173 	if (addr) {
4174 		*ptr = addr;
4175 		devres_add(dev, ptr);
4176 	} else
4177 		devres_free(ptr);
4178 
4179 	return addr;
4180 }
4181 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4182 
4183 /**
4184  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4185  * @dev: generic device to handle the resource for
4186  * @res: configuration space resource to be handled
4187  *
4188  * Checks that a resource is a valid memory region, requests the memory
4189  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4190  * proper PCI configuration space memory attributes are guaranteed.
4191  *
4192  * All operations are managed and will be undone on driver detach.
4193  *
4194  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4195  * on failure. Usage example::
4196  *
4197  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4198  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4199  *	if (IS_ERR(base))
4200  *		return PTR_ERR(base);
4201  */
4202 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4203 					  struct resource *res)
4204 {
4205 	resource_size_t size;
4206 	const char *name;
4207 	void __iomem *dest_ptr;
4208 
4209 	BUG_ON(!dev);
4210 
4211 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4212 		dev_err(dev, "invalid resource\n");
4213 		return IOMEM_ERR_PTR(-EINVAL);
4214 	}
4215 
4216 	size = resource_size(res);
4217 
4218 	if (res->name)
4219 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4220 				      res->name);
4221 	else
4222 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4223 	if (!name)
4224 		return IOMEM_ERR_PTR(-ENOMEM);
4225 
4226 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4227 		dev_err(dev, "can't request region for resource %pR\n", res);
4228 		return IOMEM_ERR_PTR(-EBUSY);
4229 	}
4230 
4231 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4232 	if (!dest_ptr) {
4233 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4234 		devm_release_mem_region(dev, res->start, size);
4235 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4236 	}
4237 
4238 	return dest_ptr;
4239 }
4240 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4241 
4242 static void __pci_set_master(struct pci_dev *dev, bool enable)
4243 {
4244 	u16 old_cmd, cmd;
4245 
4246 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4247 	if (enable)
4248 		cmd = old_cmd | PCI_COMMAND_MASTER;
4249 	else
4250 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4251 	if (cmd != old_cmd) {
4252 		pci_dbg(dev, "%s bus mastering\n",
4253 			enable ? "enabling" : "disabling");
4254 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4255 	}
4256 	dev->is_busmaster = enable;
4257 }
4258 
4259 /**
4260  * pcibios_setup - process "pci=" kernel boot arguments
4261  * @str: string used to pass in "pci=" kernel boot arguments
4262  *
4263  * Process kernel boot arguments.  This is the default implementation.
4264  * Architecture specific implementations can override this as necessary.
4265  */
4266 char * __weak __init pcibios_setup(char *str)
4267 {
4268 	return str;
4269 }
4270 
4271 /**
4272  * pcibios_set_master - enable PCI bus-mastering for device dev
4273  * @dev: the PCI device to enable
4274  *
4275  * Enables PCI bus-mastering for the device.  This is the default
4276  * implementation.  Architecture specific implementations can override
4277  * this if necessary.
4278  */
4279 void __weak pcibios_set_master(struct pci_dev *dev)
4280 {
4281 	u8 lat;
4282 
4283 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4284 	if (pci_is_pcie(dev))
4285 		return;
4286 
4287 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4288 	if (lat < 16)
4289 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4290 	else if (lat > pcibios_max_latency)
4291 		lat = pcibios_max_latency;
4292 	else
4293 		return;
4294 
4295 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4296 }
4297 
4298 /**
4299  * pci_set_master - enables bus-mastering for device dev
4300  * @dev: the PCI device to enable
4301  *
4302  * Enables bus-mastering on the device and calls pcibios_set_master()
4303  * to do the needed arch specific settings.
4304  */
4305 void pci_set_master(struct pci_dev *dev)
4306 {
4307 	__pci_set_master(dev, true);
4308 	pcibios_set_master(dev);
4309 }
4310 EXPORT_SYMBOL(pci_set_master);
4311 
4312 /**
4313  * pci_clear_master - disables bus-mastering for device dev
4314  * @dev: the PCI device to disable
4315  */
4316 void pci_clear_master(struct pci_dev *dev)
4317 {
4318 	__pci_set_master(dev, false);
4319 }
4320 EXPORT_SYMBOL(pci_clear_master);
4321 
4322 /**
4323  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4324  * @dev: the PCI device for which MWI is to be enabled
4325  *
4326  * Helper function for pci_set_mwi.
4327  * Originally copied from drivers/net/acenic.c.
4328  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4329  *
4330  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4331  */
4332 int pci_set_cacheline_size(struct pci_dev *dev)
4333 {
4334 	u8 cacheline_size;
4335 
4336 	if (!pci_cache_line_size)
4337 		return -EINVAL;
4338 
4339 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4340 	   equal to or multiple of the right value. */
4341 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4342 	if (cacheline_size >= pci_cache_line_size &&
4343 	    (cacheline_size % pci_cache_line_size) == 0)
4344 		return 0;
4345 
4346 	/* Write the correct value. */
4347 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4348 	/* Read it back. */
4349 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4350 	if (cacheline_size == pci_cache_line_size)
4351 		return 0;
4352 
4353 	pci_dbg(dev, "cache line size of %d is not supported\n",
4354 		   pci_cache_line_size << 2);
4355 
4356 	return -EINVAL;
4357 }
4358 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4359 
4360 /**
4361  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4362  * @dev: the PCI device for which MWI is enabled
4363  *
4364  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4365  *
4366  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4367  */
4368 int pci_set_mwi(struct pci_dev *dev)
4369 {
4370 #ifdef PCI_DISABLE_MWI
4371 	return 0;
4372 #else
4373 	int rc;
4374 	u16 cmd;
4375 
4376 	rc = pci_set_cacheline_size(dev);
4377 	if (rc)
4378 		return rc;
4379 
4380 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4381 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4382 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4383 		cmd |= PCI_COMMAND_INVALIDATE;
4384 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4385 	}
4386 	return 0;
4387 #endif
4388 }
4389 EXPORT_SYMBOL(pci_set_mwi);
4390 
4391 /**
4392  * pcim_set_mwi - a device-managed pci_set_mwi()
4393  * @dev: the PCI device for which MWI is enabled
4394  *
4395  * Managed pci_set_mwi().
4396  *
4397  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4398  */
4399 int pcim_set_mwi(struct pci_dev *dev)
4400 {
4401 	struct pci_devres *dr;
4402 
4403 	dr = find_pci_dr(dev);
4404 	if (!dr)
4405 		return -ENOMEM;
4406 
4407 	dr->mwi = 1;
4408 	return pci_set_mwi(dev);
4409 }
4410 EXPORT_SYMBOL(pcim_set_mwi);
4411 
4412 /**
4413  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4414  * @dev: the PCI device for which MWI is enabled
4415  *
4416  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4417  * Callers are not required to check the return value.
4418  *
4419  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4420  */
4421 int pci_try_set_mwi(struct pci_dev *dev)
4422 {
4423 #ifdef PCI_DISABLE_MWI
4424 	return 0;
4425 #else
4426 	return pci_set_mwi(dev);
4427 #endif
4428 }
4429 EXPORT_SYMBOL(pci_try_set_mwi);
4430 
4431 /**
4432  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4433  * @dev: the PCI device to disable
4434  *
4435  * Disables PCI Memory-Write-Invalidate transaction on the device
4436  */
4437 void pci_clear_mwi(struct pci_dev *dev)
4438 {
4439 #ifndef PCI_DISABLE_MWI
4440 	u16 cmd;
4441 
4442 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4443 	if (cmd & PCI_COMMAND_INVALIDATE) {
4444 		cmd &= ~PCI_COMMAND_INVALIDATE;
4445 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4446 	}
4447 #endif
4448 }
4449 EXPORT_SYMBOL(pci_clear_mwi);
4450 
4451 /**
4452  * pci_intx - enables/disables PCI INTx for device dev
4453  * @pdev: the PCI device to operate on
4454  * @enable: boolean: whether to enable or disable PCI INTx
4455  *
4456  * Enables/disables PCI INTx for device @pdev
4457  */
4458 void pci_intx(struct pci_dev *pdev, int enable)
4459 {
4460 	u16 pci_command, new;
4461 
4462 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4463 
4464 	if (enable)
4465 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4466 	else
4467 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4468 
4469 	if (new != pci_command) {
4470 		struct pci_devres *dr;
4471 
4472 		pci_write_config_word(pdev, PCI_COMMAND, new);
4473 
4474 		dr = find_pci_dr(pdev);
4475 		if (dr && !dr->restore_intx) {
4476 			dr->restore_intx = 1;
4477 			dr->orig_intx = !enable;
4478 		}
4479 	}
4480 }
4481 EXPORT_SYMBOL_GPL(pci_intx);
4482 
4483 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4484 {
4485 	struct pci_bus *bus = dev->bus;
4486 	bool mask_updated = true;
4487 	u32 cmd_status_dword;
4488 	u16 origcmd, newcmd;
4489 	unsigned long flags;
4490 	bool irq_pending;
4491 
4492 	/*
4493 	 * We do a single dword read to retrieve both command and status.
4494 	 * Document assumptions that make this possible.
4495 	 */
4496 	BUILD_BUG_ON(PCI_COMMAND % 4);
4497 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4498 
4499 	raw_spin_lock_irqsave(&pci_lock, flags);
4500 
4501 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4502 
4503 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4504 
4505 	/*
4506 	 * Check interrupt status register to see whether our device
4507 	 * triggered the interrupt (when masking) or the next IRQ is
4508 	 * already pending (when unmasking).
4509 	 */
4510 	if (mask != irq_pending) {
4511 		mask_updated = false;
4512 		goto done;
4513 	}
4514 
4515 	origcmd = cmd_status_dword;
4516 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4517 	if (mask)
4518 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4519 	if (newcmd != origcmd)
4520 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4521 
4522 done:
4523 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4524 
4525 	return mask_updated;
4526 }
4527 
4528 /**
4529  * pci_check_and_mask_intx - mask INTx on pending interrupt
4530  * @dev: the PCI device to operate on
4531  *
4532  * Check if the device dev has its INTx line asserted, mask it and return
4533  * true in that case. False is returned if no interrupt was pending.
4534  */
4535 bool pci_check_and_mask_intx(struct pci_dev *dev)
4536 {
4537 	return pci_check_and_set_intx_mask(dev, true);
4538 }
4539 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4540 
4541 /**
4542  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4543  * @dev: the PCI device to operate on
4544  *
4545  * Check if the device dev has its INTx line asserted, unmask it if not and
4546  * return true. False is returned and the mask remains active if there was
4547  * still an interrupt pending.
4548  */
4549 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4550 {
4551 	return pci_check_and_set_intx_mask(dev, false);
4552 }
4553 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4554 
4555 /**
4556  * pci_wait_for_pending_transaction - wait for pending transaction
4557  * @dev: the PCI device to operate on
4558  *
4559  * Return 0 if transaction is pending 1 otherwise.
4560  */
4561 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4562 {
4563 	if (!pci_is_pcie(dev))
4564 		return 1;
4565 
4566 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4567 				    PCI_EXP_DEVSTA_TRPND);
4568 }
4569 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4570 
4571 /**
4572  * pcie_has_flr - check if a device supports function level resets
4573  * @dev: device to check
4574  *
4575  * Returns true if the device advertises support for PCIe function level
4576  * resets.
4577  */
4578 bool pcie_has_flr(struct pci_dev *dev)
4579 {
4580 	u32 cap;
4581 
4582 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4583 		return false;
4584 
4585 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4586 	return cap & PCI_EXP_DEVCAP_FLR;
4587 }
4588 EXPORT_SYMBOL_GPL(pcie_has_flr);
4589 
4590 /**
4591  * pcie_flr - initiate a PCIe function level reset
4592  * @dev: device to reset
4593  *
4594  * Initiate a function level reset on @dev.  The caller should ensure the
4595  * device supports FLR before calling this function, e.g. by using the
4596  * pcie_has_flr() helper.
4597  */
4598 int pcie_flr(struct pci_dev *dev)
4599 {
4600 	if (!pci_wait_for_pending_transaction(dev))
4601 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4602 
4603 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4604 
4605 	if (dev->imm_ready)
4606 		return 0;
4607 
4608 	/*
4609 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4610 	 * 100ms, but may silently discard requests while the FLR is in
4611 	 * progress.  Wait 100ms before trying to access the device.
4612 	 */
4613 	msleep(100);
4614 
4615 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4616 }
4617 EXPORT_SYMBOL_GPL(pcie_flr);
4618 
4619 static int pci_af_flr(struct pci_dev *dev, int probe)
4620 {
4621 	int pos;
4622 	u8 cap;
4623 
4624 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4625 	if (!pos)
4626 		return -ENOTTY;
4627 
4628 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4629 		return -ENOTTY;
4630 
4631 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4632 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4633 		return -ENOTTY;
4634 
4635 	if (probe)
4636 		return 0;
4637 
4638 	/*
4639 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4640 	 * is used, so we use the control offset rather than status and shift
4641 	 * the test bit to match.
4642 	 */
4643 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4644 				 PCI_AF_STATUS_TP << 8))
4645 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4646 
4647 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4648 
4649 	if (dev->imm_ready)
4650 		return 0;
4651 
4652 	/*
4653 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4654 	 * updated 27 July 2006; a device must complete an FLR within
4655 	 * 100ms, but may silently discard requests while the FLR is in
4656 	 * progress.  Wait 100ms before trying to access the device.
4657 	 */
4658 	msleep(100);
4659 
4660 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4661 }
4662 
4663 /**
4664  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4665  * @dev: Device to reset.
4666  * @probe: If set, only check if the device can be reset this way.
4667  *
4668  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4669  * unset, it will be reinitialized internally when going from PCI_D3hot to
4670  * PCI_D0.  If that's the case and the device is not in a low-power state
4671  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4672  *
4673  * NOTE: This causes the caller to sleep for twice the device power transition
4674  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4675  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4676  * Moreover, only devices in D0 can be reset by this function.
4677  */
4678 static int pci_pm_reset(struct pci_dev *dev, int probe)
4679 {
4680 	u16 csr;
4681 
4682 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4683 		return -ENOTTY;
4684 
4685 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4686 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4687 		return -ENOTTY;
4688 
4689 	if (probe)
4690 		return 0;
4691 
4692 	if (dev->current_state != PCI_D0)
4693 		return -EINVAL;
4694 
4695 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4696 	csr |= PCI_D3hot;
4697 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4698 	pci_dev_d3_sleep(dev);
4699 
4700 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4701 	csr |= PCI_D0;
4702 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4703 	pci_dev_d3_sleep(dev);
4704 
4705 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4706 }
4707 
4708 /**
4709  * pcie_wait_for_link_delay - Wait until link is active or inactive
4710  * @pdev: Bridge device
4711  * @active: waiting for active or inactive?
4712  * @delay: Delay to wait after link has become active (in ms)
4713  *
4714  * Use this to wait till link becomes active or inactive.
4715  */
4716 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4717 				     int delay)
4718 {
4719 	int timeout = 1000;
4720 	bool ret;
4721 	u16 lnk_status;
4722 
4723 	/*
4724 	 * Some controllers might not implement link active reporting. In this
4725 	 * case, we wait for 1000 ms + any delay requested by the caller.
4726 	 */
4727 	if (!pdev->link_active_reporting) {
4728 		msleep(timeout + delay);
4729 		return true;
4730 	}
4731 
4732 	/*
4733 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4734 	 * after which we should expect an link active if the reset was
4735 	 * successful. If so, software must wait a minimum 100ms before sending
4736 	 * configuration requests to devices downstream this port.
4737 	 *
4738 	 * If the link fails to activate, either the device was physically
4739 	 * removed or the link is permanently failed.
4740 	 */
4741 	if (active)
4742 		msleep(20);
4743 	for (;;) {
4744 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4745 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4746 		if (ret == active)
4747 			break;
4748 		if (timeout <= 0)
4749 			break;
4750 		msleep(10);
4751 		timeout -= 10;
4752 	}
4753 	if (active && ret)
4754 		msleep(delay);
4755 
4756 	return ret == active;
4757 }
4758 
4759 /**
4760  * pcie_wait_for_link - Wait until link is active or inactive
4761  * @pdev: Bridge device
4762  * @active: waiting for active or inactive?
4763  *
4764  * Use this to wait till link becomes active or inactive.
4765  */
4766 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4767 {
4768 	return pcie_wait_for_link_delay(pdev, active, 100);
4769 }
4770 
4771 /*
4772  * Find maximum D3cold delay required by all the devices on the bus.  The
4773  * spec says 100 ms, but firmware can lower it and we allow drivers to
4774  * increase it as well.
4775  *
4776  * Called with @pci_bus_sem locked for reading.
4777  */
4778 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4779 {
4780 	const struct pci_dev *pdev;
4781 	int min_delay = 100;
4782 	int max_delay = 0;
4783 
4784 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4785 		if (pdev->d3cold_delay < min_delay)
4786 			min_delay = pdev->d3cold_delay;
4787 		if (pdev->d3cold_delay > max_delay)
4788 			max_delay = pdev->d3cold_delay;
4789 	}
4790 
4791 	return max(min_delay, max_delay);
4792 }
4793 
4794 /**
4795  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4796  * @dev: PCI bridge
4797  *
4798  * Handle necessary delays before access to the devices on the secondary
4799  * side of the bridge are permitted after D3cold to D0 transition.
4800  *
4801  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4802  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4803  * 4.3.2.
4804  */
4805 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4806 {
4807 	struct pci_dev *child;
4808 	int delay;
4809 
4810 	if (pci_dev_is_disconnected(dev))
4811 		return;
4812 
4813 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4814 		return;
4815 
4816 	down_read(&pci_bus_sem);
4817 
4818 	/*
4819 	 * We only deal with devices that are present currently on the bus.
4820 	 * For any hot-added devices the access delay is handled in pciehp
4821 	 * board_added(). In case of ACPI hotplug the firmware is expected
4822 	 * to configure the devices before OS is notified.
4823 	 */
4824 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4825 		up_read(&pci_bus_sem);
4826 		return;
4827 	}
4828 
4829 	/* Take d3cold_delay requirements into account */
4830 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4831 	if (!delay) {
4832 		up_read(&pci_bus_sem);
4833 		return;
4834 	}
4835 
4836 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4837 				 bus_list);
4838 	up_read(&pci_bus_sem);
4839 
4840 	/*
4841 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4842 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4843 	 * practice this should not be needed because we don't do power
4844 	 * management for them (see pci_bridge_d3_possible()).
4845 	 */
4846 	if (!pci_is_pcie(dev)) {
4847 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4848 		msleep(1000 + delay);
4849 		return;
4850 	}
4851 
4852 	/*
4853 	 * For PCIe downstream and root ports that do not support speeds
4854 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4855 	 * speeds (gen3) we need to wait first for the data link layer to
4856 	 * become active.
4857 	 *
4858 	 * However, 100 ms is the minimum and the PCIe spec says the
4859 	 * software must allow at least 1s before it can determine that the
4860 	 * device that did not respond is a broken device. There is
4861 	 * evidence that 100 ms is not always enough, for example certain
4862 	 * Titan Ridge xHCI controller does not always respond to
4863 	 * configuration requests if we only wait for 100 ms (see
4864 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4865 	 *
4866 	 * Therefore we wait for 100 ms and check for the device presence.
4867 	 * If it is still not present give it an additional 100 ms.
4868 	 */
4869 	if (!pcie_downstream_port(dev))
4870 		return;
4871 
4872 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4873 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4874 		msleep(delay);
4875 	} else {
4876 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4877 			delay);
4878 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4879 			/* Did not train, no need to wait any further */
4880 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4881 			return;
4882 		}
4883 	}
4884 
4885 	if (!pci_device_is_present(child)) {
4886 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4887 		msleep(delay);
4888 	}
4889 }
4890 
4891 void pci_reset_secondary_bus(struct pci_dev *dev)
4892 {
4893 	u16 ctrl;
4894 
4895 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4896 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4897 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4898 
4899 	/*
4900 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4901 	 * this to 2ms to ensure that we meet the minimum requirement.
4902 	 */
4903 	msleep(2);
4904 
4905 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4906 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4907 
4908 	/*
4909 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4910 	 * Assuming a minimum 33MHz clock this results in a 1s
4911 	 * delay before we can consider subordinate devices to
4912 	 * be re-initialized.  PCIe has some ways to shorten this,
4913 	 * but we don't make use of them yet.
4914 	 */
4915 	ssleep(1);
4916 }
4917 
4918 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4919 {
4920 	pci_reset_secondary_bus(dev);
4921 }
4922 
4923 /**
4924  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4925  * @dev: Bridge device
4926  *
4927  * Use the bridge control register to assert reset on the secondary bus.
4928  * Devices on the secondary bus are left in power-on state.
4929  */
4930 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4931 {
4932 	pcibios_reset_secondary_bus(dev);
4933 
4934 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4935 }
4936 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4937 
4938 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4939 {
4940 	struct pci_dev *pdev;
4941 
4942 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4943 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4944 		return -ENOTTY;
4945 
4946 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4947 		if (pdev != dev)
4948 			return -ENOTTY;
4949 
4950 	if (probe)
4951 		return 0;
4952 
4953 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4954 }
4955 
4956 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4957 {
4958 	int rc = -ENOTTY;
4959 
4960 	if (!hotplug || !try_module_get(hotplug->owner))
4961 		return rc;
4962 
4963 	if (hotplug->ops->reset_slot)
4964 		rc = hotplug->ops->reset_slot(hotplug, probe);
4965 
4966 	module_put(hotplug->owner);
4967 
4968 	return rc;
4969 }
4970 
4971 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4972 {
4973 	if (dev->multifunction || dev->subordinate || !dev->slot ||
4974 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4975 		return -ENOTTY;
4976 
4977 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4978 }
4979 
4980 static void pci_dev_lock(struct pci_dev *dev)
4981 {
4982 	pci_cfg_access_lock(dev);
4983 	/* block PM suspend, driver probe, etc. */
4984 	device_lock(&dev->dev);
4985 }
4986 
4987 /* Return 1 on successful lock, 0 on contention */
4988 static int pci_dev_trylock(struct pci_dev *dev)
4989 {
4990 	if (pci_cfg_access_trylock(dev)) {
4991 		if (device_trylock(&dev->dev))
4992 			return 1;
4993 		pci_cfg_access_unlock(dev);
4994 	}
4995 
4996 	return 0;
4997 }
4998 
4999 static void pci_dev_unlock(struct pci_dev *dev)
5000 {
5001 	device_unlock(&dev->dev);
5002 	pci_cfg_access_unlock(dev);
5003 }
5004 
5005 static void pci_dev_save_and_disable(struct pci_dev *dev)
5006 {
5007 	const struct pci_error_handlers *err_handler =
5008 			dev->driver ? dev->driver->err_handler : NULL;
5009 
5010 	/*
5011 	 * dev->driver->err_handler->reset_prepare() is protected against
5012 	 * races with ->remove() by the device lock, which must be held by
5013 	 * the caller.
5014 	 */
5015 	if (err_handler && err_handler->reset_prepare)
5016 		err_handler->reset_prepare(dev);
5017 
5018 	/*
5019 	 * Wake-up device prior to save.  PM registers default to D0 after
5020 	 * reset and a simple register restore doesn't reliably return
5021 	 * to a non-D0 state anyway.
5022 	 */
5023 	pci_set_power_state(dev, PCI_D0);
5024 
5025 	pci_save_state(dev);
5026 	/*
5027 	 * Disable the device by clearing the Command register, except for
5028 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5029 	 * BARs, but also prevents the device from being Bus Master, preventing
5030 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5031 	 * compliant devices, INTx-disable prevents legacy interrupts.
5032 	 */
5033 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5034 }
5035 
5036 static void pci_dev_restore(struct pci_dev *dev)
5037 {
5038 	const struct pci_error_handlers *err_handler =
5039 			dev->driver ? dev->driver->err_handler : NULL;
5040 
5041 	pci_restore_state(dev);
5042 
5043 	/*
5044 	 * dev->driver->err_handler->reset_done() is protected against
5045 	 * races with ->remove() by the device lock, which must be held by
5046 	 * the caller.
5047 	 */
5048 	if (err_handler && err_handler->reset_done)
5049 		err_handler->reset_done(dev);
5050 }
5051 
5052 /**
5053  * __pci_reset_function_locked - reset a PCI device function while holding
5054  * the @dev mutex lock.
5055  * @dev: PCI device to reset
5056  *
5057  * Some devices allow an individual function to be reset without affecting
5058  * other functions in the same device.  The PCI device must be responsive
5059  * to PCI config space in order to use this function.
5060  *
5061  * The device function is presumed to be unused and the caller is holding
5062  * the device mutex lock when this function is called.
5063  *
5064  * Resetting the device will make the contents of PCI configuration space
5065  * random, so any caller of this must be prepared to reinitialise the
5066  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5067  * etc.
5068  *
5069  * Returns 0 if the device function was successfully reset or negative if the
5070  * device doesn't support resetting a single function.
5071  */
5072 int __pci_reset_function_locked(struct pci_dev *dev)
5073 {
5074 	int rc;
5075 
5076 	might_sleep();
5077 
5078 	/*
5079 	 * A reset method returns -ENOTTY if it doesn't support this device
5080 	 * and we should try the next method.
5081 	 *
5082 	 * If it returns 0 (success), we're finished.  If it returns any
5083 	 * other error, we're also finished: this indicates that further
5084 	 * reset mechanisms might be broken on the device.
5085 	 */
5086 	rc = pci_dev_specific_reset(dev, 0);
5087 	if (rc != -ENOTTY)
5088 		return rc;
5089 	if (pcie_has_flr(dev)) {
5090 		rc = pcie_flr(dev);
5091 		if (rc != -ENOTTY)
5092 			return rc;
5093 	}
5094 	rc = pci_af_flr(dev, 0);
5095 	if (rc != -ENOTTY)
5096 		return rc;
5097 	rc = pci_pm_reset(dev, 0);
5098 	if (rc != -ENOTTY)
5099 		return rc;
5100 	rc = pci_dev_reset_slot_function(dev, 0);
5101 	if (rc != -ENOTTY)
5102 		return rc;
5103 	return pci_parent_bus_reset(dev, 0);
5104 }
5105 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5106 
5107 /**
5108  * pci_probe_reset_function - check whether the device can be safely reset
5109  * @dev: PCI device to reset
5110  *
5111  * Some devices allow an individual function to be reset without affecting
5112  * other functions in the same device.  The PCI device must be responsive
5113  * to PCI config space in order to use this function.
5114  *
5115  * Returns 0 if the device function can be reset or negative if the
5116  * device doesn't support resetting a single function.
5117  */
5118 int pci_probe_reset_function(struct pci_dev *dev)
5119 {
5120 	int rc;
5121 
5122 	might_sleep();
5123 
5124 	rc = pci_dev_specific_reset(dev, 1);
5125 	if (rc != -ENOTTY)
5126 		return rc;
5127 	if (pcie_has_flr(dev))
5128 		return 0;
5129 	rc = pci_af_flr(dev, 1);
5130 	if (rc != -ENOTTY)
5131 		return rc;
5132 	rc = pci_pm_reset(dev, 1);
5133 	if (rc != -ENOTTY)
5134 		return rc;
5135 	rc = pci_dev_reset_slot_function(dev, 1);
5136 	if (rc != -ENOTTY)
5137 		return rc;
5138 
5139 	return pci_parent_bus_reset(dev, 1);
5140 }
5141 
5142 /**
5143  * pci_reset_function - quiesce and reset a PCI device function
5144  * @dev: PCI device to reset
5145  *
5146  * Some devices allow an individual function to be reset without affecting
5147  * other functions in the same device.  The PCI device must be responsive
5148  * to PCI config space in order to use this function.
5149  *
5150  * This function does not just reset the PCI portion of a device, but
5151  * clears all the state associated with the device.  This function differs
5152  * from __pci_reset_function_locked() in that it saves and restores device state
5153  * over the reset and takes the PCI device lock.
5154  *
5155  * Returns 0 if the device function was successfully reset or negative if the
5156  * device doesn't support resetting a single function.
5157  */
5158 int pci_reset_function(struct pci_dev *dev)
5159 {
5160 	int rc;
5161 
5162 	if (!dev->reset_fn)
5163 		return -ENOTTY;
5164 
5165 	pci_dev_lock(dev);
5166 	pci_dev_save_and_disable(dev);
5167 
5168 	rc = __pci_reset_function_locked(dev);
5169 
5170 	pci_dev_restore(dev);
5171 	pci_dev_unlock(dev);
5172 
5173 	return rc;
5174 }
5175 EXPORT_SYMBOL_GPL(pci_reset_function);
5176 
5177 /**
5178  * pci_reset_function_locked - quiesce and reset a PCI device function
5179  * @dev: PCI device to reset
5180  *
5181  * Some devices allow an individual function to be reset without affecting
5182  * other functions in the same device.  The PCI device must be responsive
5183  * to PCI config space in order to use this function.
5184  *
5185  * This function does not just reset the PCI portion of a device, but
5186  * clears all the state associated with the device.  This function differs
5187  * from __pci_reset_function_locked() in that it saves and restores device state
5188  * over the reset.  It also differs from pci_reset_function() in that it
5189  * requires the PCI device lock to be held.
5190  *
5191  * Returns 0 if the device function was successfully reset or negative if the
5192  * device doesn't support resetting a single function.
5193  */
5194 int pci_reset_function_locked(struct pci_dev *dev)
5195 {
5196 	int rc;
5197 
5198 	if (!dev->reset_fn)
5199 		return -ENOTTY;
5200 
5201 	pci_dev_save_and_disable(dev);
5202 
5203 	rc = __pci_reset_function_locked(dev);
5204 
5205 	pci_dev_restore(dev);
5206 
5207 	return rc;
5208 }
5209 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5210 
5211 /**
5212  * pci_try_reset_function - quiesce and reset a PCI device function
5213  * @dev: PCI device to reset
5214  *
5215  * Same as above, except return -EAGAIN if unable to lock device.
5216  */
5217 int pci_try_reset_function(struct pci_dev *dev)
5218 {
5219 	int rc;
5220 
5221 	if (!dev->reset_fn)
5222 		return -ENOTTY;
5223 
5224 	if (!pci_dev_trylock(dev))
5225 		return -EAGAIN;
5226 
5227 	pci_dev_save_and_disable(dev);
5228 	rc = __pci_reset_function_locked(dev);
5229 	pci_dev_restore(dev);
5230 	pci_dev_unlock(dev);
5231 
5232 	return rc;
5233 }
5234 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5235 
5236 /* Do any devices on or below this bus prevent a bus reset? */
5237 static bool pci_bus_resetable(struct pci_bus *bus)
5238 {
5239 	struct pci_dev *dev;
5240 
5241 
5242 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5243 		return false;
5244 
5245 	list_for_each_entry(dev, &bus->devices, bus_list) {
5246 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5247 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5248 			return false;
5249 	}
5250 
5251 	return true;
5252 }
5253 
5254 /* Lock devices from the top of the tree down */
5255 static void pci_bus_lock(struct pci_bus *bus)
5256 {
5257 	struct pci_dev *dev;
5258 
5259 	list_for_each_entry(dev, &bus->devices, bus_list) {
5260 		pci_dev_lock(dev);
5261 		if (dev->subordinate)
5262 			pci_bus_lock(dev->subordinate);
5263 	}
5264 }
5265 
5266 /* Unlock devices from the bottom of the tree up */
5267 static void pci_bus_unlock(struct pci_bus *bus)
5268 {
5269 	struct pci_dev *dev;
5270 
5271 	list_for_each_entry(dev, &bus->devices, bus_list) {
5272 		if (dev->subordinate)
5273 			pci_bus_unlock(dev->subordinate);
5274 		pci_dev_unlock(dev);
5275 	}
5276 }
5277 
5278 /* Return 1 on successful lock, 0 on contention */
5279 static int pci_bus_trylock(struct pci_bus *bus)
5280 {
5281 	struct pci_dev *dev;
5282 
5283 	list_for_each_entry(dev, &bus->devices, bus_list) {
5284 		if (!pci_dev_trylock(dev))
5285 			goto unlock;
5286 		if (dev->subordinate) {
5287 			if (!pci_bus_trylock(dev->subordinate)) {
5288 				pci_dev_unlock(dev);
5289 				goto unlock;
5290 			}
5291 		}
5292 	}
5293 	return 1;
5294 
5295 unlock:
5296 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5297 		if (dev->subordinate)
5298 			pci_bus_unlock(dev->subordinate);
5299 		pci_dev_unlock(dev);
5300 	}
5301 	return 0;
5302 }
5303 
5304 /* Do any devices on or below this slot prevent a bus reset? */
5305 static bool pci_slot_resetable(struct pci_slot *slot)
5306 {
5307 	struct pci_dev *dev;
5308 
5309 	if (slot->bus->self &&
5310 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5311 		return false;
5312 
5313 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5314 		if (!dev->slot || dev->slot != slot)
5315 			continue;
5316 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5317 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5318 			return false;
5319 	}
5320 
5321 	return true;
5322 }
5323 
5324 /* Lock devices from the top of the tree down */
5325 static void pci_slot_lock(struct pci_slot *slot)
5326 {
5327 	struct pci_dev *dev;
5328 
5329 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5330 		if (!dev->slot || dev->slot != slot)
5331 			continue;
5332 		pci_dev_lock(dev);
5333 		if (dev->subordinate)
5334 			pci_bus_lock(dev->subordinate);
5335 	}
5336 }
5337 
5338 /* Unlock devices from the bottom of the tree up */
5339 static void pci_slot_unlock(struct pci_slot *slot)
5340 {
5341 	struct pci_dev *dev;
5342 
5343 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5344 		if (!dev->slot || dev->slot != slot)
5345 			continue;
5346 		if (dev->subordinate)
5347 			pci_bus_unlock(dev->subordinate);
5348 		pci_dev_unlock(dev);
5349 	}
5350 }
5351 
5352 /* Return 1 on successful lock, 0 on contention */
5353 static int pci_slot_trylock(struct pci_slot *slot)
5354 {
5355 	struct pci_dev *dev;
5356 
5357 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5358 		if (!dev->slot || dev->slot != slot)
5359 			continue;
5360 		if (!pci_dev_trylock(dev))
5361 			goto unlock;
5362 		if (dev->subordinate) {
5363 			if (!pci_bus_trylock(dev->subordinate)) {
5364 				pci_dev_unlock(dev);
5365 				goto unlock;
5366 			}
5367 		}
5368 	}
5369 	return 1;
5370 
5371 unlock:
5372 	list_for_each_entry_continue_reverse(dev,
5373 					     &slot->bus->devices, bus_list) {
5374 		if (!dev->slot || dev->slot != slot)
5375 			continue;
5376 		if (dev->subordinate)
5377 			pci_bus_unlock(dev->subordinate);
5378 		pci_dev_unlock(dev);
5379 	}
5380 	return 0;
5381 }
5382 
5383 /*
5384  * Save and disable devices from the top of the tree down while holding
5385  * the @dev mutex lock for the entire tree.
5386  */
5387 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5388 {
5389 	struct pci_dev *dev;
5390 
5391 	list_for_each_entry(dev, &bus->devices, bus_list) {
5392 		pci_dev_save_and_disable(dev);
5393 		if (dev->subordinate)
5394 			pci_bus_save_and_disable_locked(dev->subordinate);
5395 	}
5396 }
5397 
5398 /*
5399  * Restore devices from top of the tree down while holding @dev mutex lock
5400  * for the entire tree.  Parent bridges need to be restored before we can
5401  * get to subordinate devices.
5402  */
5403 static void pci_bus_restore_locked(struct pci_bus *bus)
5404 {
5405 	struct pci_dev *dev;
5406 
5407 	list_for_each_entry(dev, &bus->devices, bus_list) {
5408 		pci_dev_restore(dev);
5409 		if (dev->subordinate)
5410 			pci_bus_restore_locked(dev->subordinate);
5411 	}
5412 }
5413 
5414 /*
5415  * Save and disable devices from the top of the tree down while holding
5416  * the @dev mutex lock for the entire tree.
5417  */
5418 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5419 {
5420 	struct pci_dev *dev;
5421 
5422 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5423 		if (!dev->slot || dev->slot != slot)
5424 			continue;
5425 		pci_dev_save_and_disable(dev);
5426 		if (dev->subordinate)
5427 			pci_bus_save_and_disable_locked(dev->subordinate);
5428 	}
5429 }
5430 
5431 /*
5432  * Restore devices from top of the tree down while holding @dev mutex lock
5433  * for the entire tree.  Parent bridges need to be restored before we can
5434  * get to subordinate devices.
5435  */
5436 static void pci_slot_restore_locked(struct pci_slot *slot)
5437 {
5438 	struct pci_dev *dev;
5439 
5440 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5441 		if (!dev->slot || dev->slot != slot)
5442 			continue;
5443 		pci_dev_restore(dev);
5444 		if (dev->subordinate)
5445 			pci_bus_restore_locked(dev->subordinate);
5446 	}
5447 }
5448 
5449 static int pci_slot_reset(struct pci_slot *slot, int probe)
5450 {
5451 	int rc;
5452 
5453 	if (!slot || !pci_slot_resetable(slot))
5454 		return -ENOTTY;
5455 
5456 	if (!probe)
5457 		pci_slot_lock(slot);
5458 
5459 	might_sleep();
5460 
5461 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5462 
5463 	if (!probe)
5464 		pci_slot_unlock(slot);
5465 
5466 	return rc;
5467 }
5468 
5469 /**
5470  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5471  * @slot: PCI slot to probe
5472  *
5473  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5474  */
5475 int pci_probe_reset_slot(struct pci_slot *slot)
5476 {
5477 	return pci_slot_reset(slot, 1);
5478 }
5479 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5480 
5481 /**
5482  * __pci_reset_slot - Try to reset a PCI slot
5483  * @slot: PCI slot to reset
5484  *
5485  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5486  * independent of other slots.  For instance, some slots may support slot power
5487  * control.  In the case of a 1:1 bus to slot architecture, this function may
5488  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5489  * Generally a slot reset should be attempted before a bus reset.  All of the
5490  * function of the slot and any subordinate buses behind the slot are reset
5491  * through this function.  PCI config space of all devices in the slot and
5492  * behind the slot is saved before and restored after reset.
5493  *
5494  * Same as above except return -EAGAIN if the slot cannot be locked
5495  */
5496 static int __pci_reset_slot(struct pci_slot *slot)
5497 {
5498 	int rc;
5499 
5500 	rc = pci_slot_reset(slot, 1);
5501 	if (rc)
5502 		return rc;
5503 
5504 	if (pci_slot_trylock(slot)) {
5505 		pci_slot_save_and_disable_locked(slot);
5506 		might_sleep();
5507 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5508 		pci_slot_restore_locked(slot);
5509 		pci_slot_unlock(slot);
5510 	} else
5511 		rc = -EAGAIN;
5512 
5513 	return rc;
5514 }
5515 
5516 static int pci_bus_reset(struct pci_bus *bus, int probe)
5517 {
5518 	int ret;
5519 
5520 	if (!bus->self || !pci_bus_resetable(bus))
5521 		return -ENOTTY;
5522 
5523 	if (probe)
5524 		return 0;
5525 
5526 	pci_bus_lock(bus);
5527 
5528 	might_sleep();
5529 
5530 	ret = pci_bridge_secondary_bus_reset(bus->self);
5531 
5532 	pci_bus_unlock(bus);
5533 
5534 	return ret;
5535 }
5536 
5537 /**
5538  * pci_bus_error_reset - reset the bridge's subordinate bus
5539  * @bridge: The parent device that connects to the bus to reset
5540  *
5541  * This function will first try to reset the slots on this bus if the method is
5542  * available. If slot reset fails or is not available, this will fall back to a
5543  * secondary bus reset.
5544  */
5545 int pci_bus_error_reset(struct pci_dev *bridge)
5546 {
5547 	struct pci_bus *bus = bridge->subordinate;
5548 	struct pci_slot *slot;
5549 
5550 	if (!bus)
5551 		return -ENOTTY;
5552 
5553 	mutex_lock(&pci_slot_mutex);
5554 	if (list_empty(&bus->slots))
5555 		goto bus_reset;
5556 
5557 	list_for_each_entry(slot, &bus->slots, list)
5558 		if (pci_probe_reset_slot(slot))
5559 			goto bus_reset;
5560 
5561 	list_for_each_entry(slot, &bus->slots, list)
5562 		if (pci_slot_reset(slot, 0))
5563 			goto bus_reset;
5564 
5565 	mutex_unlock(&pci_slot_mutex);
5566 	return 0;
5567 bus_reset:
5568 	mutex_unlock(&pci_slot_mutex);
5569 	return pci_bus_reset(bridge->subordinate, 0);
5570 }
5571 
5572 /**
5573  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5574  * @bus: PCI bus to probe
5575  *
5576  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5577  */
5578 int pci_probe_reset_bus(struct pci_bus *bus)
5579 {
5580 	return pci_bus_reset(bus, 1);
5581 }
5582 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5583 
5584 /**
5585  * __pci_reset_bus - Try to reset a PCI bus
5586  * @bus: top level PCI bus to reset
5587  *
5588  * Same as above except return -EAGAIN if the bus cannot be locked
5589  */
5590 static int __pci_reset_bus(struct pci_bus *bus)
5591 {
5592 	int rc;
5593 
5594 	rc = pci_bus_reset(bus, 1);
5595 	if (rc)
5596 		return rc;
5597 
5598 	if (pci_bus_trylock(bus)) {
5599 		pci_bus_save_and_disable_locked(bus);
5600 		might_sleep();
5601 		rc = pci_bridge_secondary_bus_reset(bus->self);
5602 		pci_bus_restore_locked(bus);
5603 		pci_bus_unlock(bus);
5604 	} else
5605 		rc = -EAGAIN;
5606 
5607 	return rc;
5608 }
5609 
5610 /**
5611  * pci_reset_bus - Try to reset a PCI bus
5612  * @pdev: top level PCI device to reset via slot/bus
5613  *
5614  * Same as above except return -EAGAIN if the bus cannot be locked
5615  */
5616 int pci_reset_bus(struct pci_dev *pdev)
5617 {
5618 	return (!pci_probe_reset_slot(pdev->slot)) ?
5619 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5620 }
5621 EXPORT_SYMBOL_GPL(pci_reset_bus);
5622 
5623 /**
5624  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5625  * @dev: PCI device to query
5626  *
5627  * Returns mmrbc: maximum designed memory read count in bytes or
5628  * appropriate error value.
5629  */
5630 int pcix_get_max_mmrbc(struct pci_dev *dev)
5631 {
5632 	int cap;
5633 	u32 stat;
5634 
5635 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5636 	if (!cap)
5637 		return -EINVAL;
5638 
5639 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5640 		return -EINVAL;
5641 
5642 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5643 }
5644 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5645 
5646 /**
5647  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5648  * @dev: PCI device to query
5649  *
5650  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5651  * value.
5652  */
5653 int pcix_get_mmrbc(struct pci_dev *dev)
5654 {
5655 	int cap;
5656 	u16 cmd;
5657 
5658 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5659 	if (!cap)
5660 		return -EINVAL;
5661 
5662 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5663 		return -EINVAL;
5664 
5665 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5666 }
5667 EXPORT_SYMBOL(pcix_get_mmrbc);
5668 
5669 /**
5670  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5671  * @dev: PCI device to query
5672  * @mmrbc: maximum memory read count in bytes
5673  *    valid values are 512, 1024, 2048, 4096
5674  *
5675  * If possible sets maximum memory read byte count, some bridges have errata
5676  * that prevent this.
5677  */
5678 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5679 {
5680 	int cap;
5681 	u32 stat, v, o;
5682 	u16 cmd;
5683 
5684 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5685 		return -EINVAL;
5686 
5687 	v = ffs(mmrbc) - 10;
5688 
5689 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5690 	if (!cap)
5691 		return -EINVAL;
5692 
5693 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5694 		return -EINVAL;
5695 
5696 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5697 		return -E2BIG;
5698 
5699 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5700 		return -EINVAL;
5701 
5702 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5703 	if (o != v) {
5704 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5705 			return -EIO;
5706 
5707 		cmd &= ~PCI_X_CMD_MAX_READ;
5708 		cmd |= v << 2;
5709 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5710 			return -EIO;
5711 	}
5712 	return 0;
5713 }
5714 EXPORT_SYMBOL(pcix_set_mmrbc);
5715 
5716 /**
5717  * pcie_get_readrq - get PCI Express read request size
5718  * @dev: PCI device to query
5719  *
5720  * Returns maximum memory read request in bytes or appropriate error value.
5721  */
5722 int pcie_get_readrq(struct pci_dev *dev)
5723 {
5724 	u16 ctl;
5725 
5726 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5727 
5728 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5729 }
5730 EXPORT_SYMBOL(pcie_get_readrq);
5731 
5732 /**
5733  * pcie_set_readrq - set PCI Express maximum memory read request
5734  * @dev: PCI device to query
5735  * @rq: maximum memory read count in bytes
5736  *    valid values are 128, 256, 512, 1024, 2048, 4096
5737  *
5738  * If possible sets maximum memory read request in bytes
5739  */
5740 int pcie_set_readrq(struct pci_dev *dev, int rq)
5741 {
5742 	u16 v;
5743 	int ret;
5744 
5745 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5746 		return -EINVAL;
5747 
5748 	/*
5749 	 * If using the "performance" PCIe config, we clamp the read rq
5750 	 * size to the max packet size to keep the host bridge from
5751 	 * generating requests larger than we can cope with.
5752 	 */
5753 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5754 		int mps = pcie_get_mps(dev);
5755 
5756 		if (mps < rq)
5757 			rq = mps;
5758 	}
5759 
5760 	v = (ffs(rq) - 8) << 12;
5761 
5762 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5763 						  PCI_EXP_DEVCTL_READRQ, v);
5764 
5765 	return pcibios_err_to_errno(ret);
5766 }
5767 EXPORT_SYMBOL(pcie_set_readrq);
5768 
5769 /**
5770  * pcie_get_mps - get PCI Express maximum payload size
5771  * @dev: PCI device to query
5772  *
5773  * Returns maximum payload size in bytes
5774  */
5775 int pcie_get_mps(struct pci_dev *dev)
5776 {
5777 	u16 ctl;
5778 
5779 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5780 
5781 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5782 }
5783 EXPORT_SYMBOL(pcie_get_mps);
5784 
5785 /**
5786  * pcie_set_mps - set PCI Express maximum payload size
5787  * @dev: PCI device to query
5788  * @mps: maximum payload size in bytes
5789  *    valid values are 128, 256, 512, 1024, 2048, 4096
5790  *
5791  * If possible sets maximum payload size
5792  */
5793 int pcie_set_mps(struct pci_dev *dev, int mps)
5794 {
5795 	u16 v;
5796 	int ret;
5797 
5798 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5799 		return -EINVAL;
5800 
5801 	v = ffs(mps) - 8;
5802 	if (v > dev->pcie_mpss)
5803 		return -EINVAL;
5804 	v <<= 5;
5805 
5806 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5807 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5808 
5809 	return pcibios_err_to_errno(ret);
5810 }
5811 EXPORT_SYMBOL(pcie_set_mps);
5812 
5813 /**
5814  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5815  *			      device and its bandwidth limitation
5816  * @dev: PCI device to query
5817  * @limiting_dev: storage for device causing the bandwidth limitation
5818  * @speed: storage for speed of limiting device
5819  * @width: storage for width of limiting device
5820  *
5821  * Walk up the PCI device chain and find the point where the minimum
5822  * bandwidth is available.  Return the bandwidth available there and (if
5823  * limiting_dev, speed, and width pointers are supplied) information about
5824  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5825  * raw bandwidth.
5826  */
5827 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5828 			     enum pci_bus_speed *speed,
5829 			     enum pcie_link_width *width)
5830 {
5831 	u16 lnksta;
5832 	enum pci_bus_speed next_speed;
5833 	enum pcie_link_width next_width;
5834 	u32 bw, next_bw;
5835 
5836 	if (speed)
5837 		*speed = PCI_SPEED_UNKNOWN;
5838 	if (width)
5839 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5840 
5841 	bw = 0;
5842 
5843 	while (dev) {
5844 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5845 
5846 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5847 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5848 			PCI_EXP_LNKSTA_NLW_SHIFT;
5849 
5850 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5851 
5852 		/* Check if current device limits the total bandwidth */
5853 		if (!bw || next_bw <= bw) {
5854 			bw = next_bw;
5855 
5856 			if (limiting_dev)
5857 				*limiting_dev = dev;
5858 			if (speed)
5859 				*speed = next_speed;
5860 			if (width)
5861 				*width = next_width;
5862 		}
5863 
5864 		dev = pci_upstream_bridge(dev);
5865 	}
5866 
5867 	return bw;
5868 }
5869 EXPORT_SYMBOL(pcie_bandwidth_available);
5870 
5871 /**
5872  * pcie_get_speed_cap - query for the PCI device's link speed capability
5873  * @dev: PCI device to query
5874  *
5875  * Query the PCI device speed capability.  Return the maximum link speed
5876  * supported by the device.
5877  */
5878 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5879 {
5880 	u32 lnkcap2, lnkcap;
5881 
5882 	/*
5883 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5884 	 * implementation note there recommends using the Supported Link
5885 	 * Speeds Vector in Link Capabilities 2 when supported.
5886 	 *
5887 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5888 	 * should use the Supported Link Speeds field in Link Capabilities,
5889 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5890 	 */
5891 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5892 
5893 	/* PCIe r3.0-compliant */
5894 	if (lnkcap2)
5895 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5896 
5897 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5898 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5899 		return PCIE_SPEED_5_0GT;
5900 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5901 		return PCIE_SPEED_2_5GT;
5902 
5903 	return PCI_SPEED_UNKNOWN;
5904 }
5905 EXPORT_SYMBOL(pcie_get_speed_cap);
5906 
5907 /**
5908  * pcie_get_width_cap - query for the PCI device's link width capability
5909  * @dev: PCI device to query
5910  *
5911  * Query the PCI device width capability.  Return the maximum link width
5912  * supported by the device.
5913  */
5914 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5915 {
5916 	u32 lnkcap;
5917 
5918 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5919 	if (lnkcap)
5920 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5921 
5922 	return PCIE_LNK_WIDTH_UNKNOWN;
5923 }
5924 EXPORT_SYMBOL(pcie_get_width_cap);
5925 
5926 /**
5927  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5928  * @dev: PCI device
5929  * @speed: storage for link speed
5930  * @width: storage for link width
5931  *
5932  * Calculate a PCI device's link bandwidth by querying for its link speed
5933  * and width, multiplying them, and applying encoding overhead.  The result
5934  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5935  */
5936 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5937 			   enum pcie_link_width *width)
5938 {
5939 	*speed = pcie_get_speed_cap(dev);
5940 	*width = pcie_get_width_cap(dev);
5941 
5942 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5943 		return 0;
5944 
5945 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5946 }
5947 
5948 /**
5949  * __pcie_print_link_status - Report the PCI device's link speed and width
5950  * @dev: PCI device to query
5951  * @verbose: Print info even when enough bandwidth is available
5952  *
5953  * If the available bandwidth at the device is less than the device is
5954  * capable of, report the device's maximum possible bandwidth and the
5955  * upstream link that limits its performance.  If @verbose, always print
5956  * the available bandwidth, even if the device isn't constrained.
5957  */
5958 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5959 {
5960 	enum pcie_link_width width, width_cap;
5961 	enum pci_bus_speed speed, speed_cap;
5962 	struct pci_dev *limiting_dev = NULL;
5963 	u32 bw_avail, bw_cap;
5964 
5965 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5966 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5967 
5968 	if (bw_avail >= bw_cap && verbose)
5969 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5970 			 bw_cap / 1000, bw_cap % 1000,
5971 			 pci_speed_string(speed_cap), width_cap);
5972 	else if (bw_avail < bw_cap)
5973 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5974 			 bw_avail / 1000, bw_avail % 1000,
5975 			 pci_speed_string(speed), width,
5976 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5977 			 bw_cap / 1000, bw_cap % 1000,
5978 			 pci_speed_string(speed_cap), width_cap);
5979 }
5980 
5981 /**
5982  * pcie_print_link_status - Report the PCI device's link speed and width
5983  * @dev: PCI device to query
5984  *
5985  * Report the available bandwidth at the device.
5986  */
5987 void pcie_print_link_status(struct pci_dev *dev)
5988 {
5989 	__pcie_print_link_status(dev, true);
5990 }
5991 EXPORT_SYMBOL(pcie_print_link_status);
5992 
5993 /**
5994  * pci_select_bars - Make BAR mask from the type of resource
5995  * @dev: the PCI device for which BAR mask is made
5996  * @flags: resource type mask to be selected
5997  *
5998  * This helper routine makes bar mask from the type of resource.
5999  */
6000 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6001 {
6002 	int i, bars = 0;
6003 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6004 		if (pci_resource_flags(dev, i) & flags)
6005 			bars |= (1 << i);
6006 	return bars;
6007 }
6008 EXPORT_SYMBOL(pci_select_bars);
6009 
6010 /* Some architectures require additional programming to enable VGA */
6011 static arch_set_vga_state_t arch_set_vga_state;
6012 
6013 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6014 {
6015 	arch_set_vga_state = func;	/* NULL disables */
6016 }
6017 
6018 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6019 				  unsigned int command_bits, u32 flags)
6020 {
6021 	if (arch_set_vga_state)
6022 		return arch_set_vga_state(dev, decode, command_bits,
6023 						flags);
6024 	return 0;
6025 }
6026 
6027 /**
6028  * pci_set_vga_state - set VGA decode state on device and parents if requested
6029  * @dev: the PCI device
6030  * @decode: true = enable decoding, false = disable decoding
6031  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6032  * @flags: traverse ancestors and change bridges
6033  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6034  */
6035 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6036 		      unsigned int command_bits, u32 flags)
6037 {
6038 	struct pci_bus *bus;
6039 	struct pci_dev *bridge;
6040 	u16 cmd;
6041 	int rc;
6042 
6043 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6044 
6045 	/* ARCH specific VGA enables */
6046 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6047 	if (rc)
6048 		return rc;
6049 
6050 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6051 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6052 		if (decode)
6053 			cmd |= command_bits;
6054 		else
6055 			cmd &= ~command_bits;
6056 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6057 	}
6058 
6059 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6060 		return 0;
6061 
6062 	bus = dev->bus;
6063 	while (bus) {
6064 		bridge = bus->self;
6065 		if (bridge) {
6066 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6067 					     &cmd);
6068 			if (decode)
6069 				cmd |= PCI_BRIDGE_CTL_VGA;
6070 			else
6071 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6072 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6073 					      cmd);
6074 		}
6075 		bus = bus->parent;
6076 	}
6077 	return 0;
6078 }
6079 
6080 #ifdef CONFIG_ACPI
6081 bool pci_pr3_present(struct pci_dev *pdev)
6082 {
6083 	struct acpi_device *adev;
6084 
6085 	if (acpi_disabled)
6086 		return false;
6087 
6088 	adev = ACPI_COMPANION(&pdev->dev);
6089 	if (!adev)
6090 		return false;
6091 
6092 	return adev->power.flags.power_resources &&
6093 		acpi_has_method(adev->handle, "_PR3");
6094 }
6095 EXPORT_SYMBOL_GPL(pci_pr3_present);
6096 #endif
6097 
6098 /**
6099  * pci_add_dma_alias - Add a DMA devfn alias for a device
6100  * @dev: the PCI device for which alias is added
6101  * @devfn_from: alias slot and function
6102  * @nr_devfns: number of subsequent devfns to alias
6103  *
6104  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6105  * which is used to program permissible bus-devfn source addresses for DMA
6106  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6107  * and are useful for devices generating DMA requests beyond or different
6108  * from their logical bus-devfn.  Examples include device quirks where the
6109  * device simply uses the wrong devfn, as well as non-transparent bridges
6110  * where the alias may be a proxy for devices in another domain.
6111  *
6112  * IOMMU group creation is performed during device discovery or addition,
6113  * prior to any potential DMA mapping and therefore prior to driver probing
6114  * (especially for userspace assigned devices where IOMMU group definition
6115  * cannot be left as a userspace activity).  DMA aliases should therefore
6116  * be configured via quirks, such as the PCI fixup header quirk.
6117  */
6118 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6119 {
6120 	int devfn_to;
6121 
6122 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6123 	devfn_to = devfn_from + nr_devfns - 1;
6124 
6125 	if (!dev->dma_alias_mask)
6126 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6127 	if (!dev->dma_alias_mask) {
6128 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6129 		return;
6130 	}
6131 
6132 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6133 
6134 	if (nr_devfns == 1)
6135 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6136 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6137 	else if (nr_devfns > 1)
6138 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6139 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6140 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6141 }
6142 
6143 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6144 {
6145 	return (dev1->dma_alias_mask &&
6146 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6147 	       (dev2->dma_alias_mask &&
6148 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6149 	       pci_real_dma_dev(dev1) == dev2 ||
6150 	       pci_real_dma_dev(dev2) == dev1;
6151 }
6152 
6153 bool pci_device_is_present(struct pci_dev *pdev)
6154 {
6155 	u32 v;
6156 
6157 	if (pci_dev_is_disconnected(pdev))
6158 		return false;
6159 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6160 }
6161 EXPORT_SYMBOL_GPL(pci_device_is_present);
6162 
6163 void pci_ignore_hotplug(struct pci_dev *dev)
6164 {
6165 	struct pci_dev *bridge = dev->bus->self;
6166 
6167 	dev->ignore_hotplug = 1;
6168 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6169 	if (bridge)
6170 		bridge->ignore_hotplug = 1;
6171 }
6172 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6173 
6174 /**
6175  * pci_real_dma_dev - Get PCI DMA device for PCI device
6176  * @dev: the PCI device that may have a PCI DMA alias
6177  *
6178  * Permits the platform to provide architecture-specific functionality to
6179  * devices needing to alias DMA to another PCI device on another PCI bus. If
6180  * the PCI device is on the same bus, it is recommended to use
6181  * pci_add_dma_alias(). This is the default implementation. Architecture
6182  * implementations can override this.
6183  */
6184 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6185 {
6186 	return dev;
6187 }
6188 
6189 resource_size_t __weak pcibios_default_alignment(void)
6190 {
6191 	return 0;
6192 }
6193 
6194 /*
6195  * Arches that don't want to expose struct resource to userland as-is in
6196  * sysfs and /proc can implement their own pci_resource_to_user().
6197  */
6198 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6199 				 const struct resource *rsrc,
6200 				 resource_size_t *start, resource_size_t *end)
6201 {
6202 	*start = rsrc->start;
6203 	*end = rsrc->end;
6204 }
6205 
6206 static char *resource_alignment_param;
6207 static DEFINE_SPINLOCK(resource_alignment_lock);
6208 
6209 /**
6210  * pci_specified_resource_alignment - get resource alignment specified by user.
6211  * @dev: the PCI device to get
6212  * @resize: whether or not to change resources' size when reassigning alignment
6213  *
6214  * RETURNS: Resource alignment if it is specified.
6215  *          Zero if it is not specified.
6216  */
6217 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6218 							bool *resize)
6219 {
6220 	int align_order, count;
6221 	resource_size_t align = pcibios_default_alignment();
6222 	const char *p;
6223 	int ret;
6224 
6225 	spin_lock(&resource_alignment_lock);
6226 	p = resource_alignment_param;
6227 	if (!p || !*p)
6228 		goto out;
6229 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6230 		align = 0;
6231 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6232 		goto out;
6233 	}
6234 
6235 	while (*p) {
6236 		count = 0;
6237 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6238 		    p[count] == '@') {
6239 			p += count + 1;
6240 			if (align_order > 63) {
6241 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6242 				       align_order);
6243 				align_order = PAGE_SHIFT;
6244 			}
6245 		} else {
6246 			align_order = PAGE_SHIFT;
6247 		}
6248 
6249 		ret = pci_dev_str_match(dev, p, &p);
6250 		if (ret == 1) {
6251 			*resize = true;
6252 			align = 1ULL << align_order;
6253 			break;
6254 		} else if (ret < 0) {
6255 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6256 			       p);
6257 			break;
6258 		}
6259 
6260 		if (*p != ';' && *p != ',') {
6261 			/* End of param or invalid format */
6262 			break;
6263 		}
6264 		p++;
6265 	}
6266 out:
6267 	spin_unlock(&resource_alignment_lock);
6268 	return align;
6269 }
6270 
6271 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6272 					   resource_size_t align, bool resize)
6273 {
6274 	struct resource *r = &dev->resource[bar];
6275 	resource_size_t size;
6276 
6277 	if (!(r->flags & IORESOURCE_MEM))
6278 		return;
6279 
6280 	if (r->flags & IORESOURCE_PCI_FIXED) {
6281 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6282 			 bar, r, (unsigned long long)align);
6283 		return;
6284 	}
6285 
6286 	size = resource_size(r);
6287 	if (size >= align)
6288 		return;
6289 
6290 	/*
6291 	 * Increase the alignment of the resource.  There are two ways we
6292 	 * can do this:
6293 	 *
6294 	 * 1) Increase the size of the resource.  BARs are aligned on their
6295 	 *    size, so when we reallocate space for this resource, we'll
6296 	 *    allocate it with the larger alignment.  This also prevents
6297 	 *    assignment of any other BARs inside the alignment region, so
6298 	 *    if we're requesting page alignment, this means no other BARs
6299 	 *    will share the page.
6300 	 *
6301 	 *    The disadvantage is that this makes the resource larger than
6302 	 *    the hardware BAR, which may break drivers that compute things
6303 	 *    based on the resource size, e.g., to find registers at a
6304 	 *    fixed offset before the end of the BAR.
6305 	 *
6306 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6307 	 *    set r->start to the desired alignment.  By itself this
6308 	 *    doesn't prevent other BARs being put inside the alignment
6309 	 *    region, but if we realign *every* resource of every device in
6310 	 *    the system, none of them will share an alignment region.
6311 	 *
6312 	 * When the user has requested alignment for only some devices via
6313 	 * the "pci=resource_alignment" argument, "resize" is true and we
6314 	 * use the first method.  Otherwise we assume we're aligning all
6315 	 * devices and we use the second.
6316 	 */
6317 
6318 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6319 		 bar, r, (unsigned long long)align);
6320 
6321 	if (resize) {
6322 		r->start = 0;
6323 		r->end = align - 1;
6324 	} else {
6325 		r->flags &= ~IORESOURCE_SIZEALIGN;
6326 		r->flags |= IORESOURCE_STARTALIGN;
6327 		r->start = align;
6328 		r->end = r->start + size - 1;
6329 	}
6330 	r->flags |= IORESOURCE_UNSET;
6331 }
6332 
6333 /*
6334  * This function disables memory decoding and releases memory resources
6335  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6336  * It also rounds up size to specified alignment.
6337  * Later on, the kernel will assign page-aligned memory resource back
6338  * to the device.
6339  */
6340 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6341 {
6342 	int i;
6343 	struct resource *r;
6344 	resource_size_t align;
6345 	u16 command;
6346 	bool resize = false;
6347 
6348 	/*
6349 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6350 	 * 3.4.1.11.  Their resources are allocated from the space
6351 	 * described by the VF BARx register in the PF's SR-IOV capability.
6352 	 * We can't influence their alignment here.
6353 	 */
6354 	if (dev->is_virtfn)
6355 		return;
6356 
6357 	/* check if specified PCI is target device to reassign */
6358 	align = pci_specified_resource_alignment(dev, &resize);
6359 	if (!align)
6360 		return;
6361 
6362 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6363 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6364 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6365 		return;
6366 	}
6367 
6368 	pci_read_config_word(dev, PCI_COMMAND, &command);
6369 	command &= ~PCI_COMMAND_MEMORY;
6370 	pci_write_config_word(dev, PCI_COMMAND, command);
6371 
6372 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6373 		pci_request_resource_alignment(dev, i, align, resize);
6374 
6375 	/*
6376 	 * Need to disable bridge's resource window,
6377 	 * to enable the kernel to reassign new resource
6378 	 * window later on.
6379 	 */
6380 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6381 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6382 			r = &dev->resource[i];
6383 			if (!(r->flags & IORESOURCE_MEM))
6384 				continue;
6385 			r->flags |= IORESOURCE_UNSET;
6386 			r->end = resource_size(r) - 1;
6387 			r->start = 0;
6388 		}
6389 		pci_disable_bridge_window(dev);
6390 	}
6391 }
6392 
6393 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6394 {
6395 	size_t count = 0;
6396 
6397 	spin_lock(&resource_alignment_lock);
6398 	if (resource_alignment_param)
6399 		count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6400 	spin_unlock(&resource_alignment_lock);
6401 
6402 	/*
6403 	 * When set by the command line, resource_alignment_param will not
6404 	 * have a trailing line feed, which is ugly. So conditionally add
6405 	 * it here.
6406 	 */
6407 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6408 		buf[count - 1] = '\n';
6409 		buf[count++] = 0;
6410 	}
6411 
6412 	return count;
6413 }
6414 
6415 static ssize_t resource_alignment_store(struct bus_type *bus,
6416 					const char *buf, size_t count)
6417 {
6418 	char *param = kstrndup(buf, count, GFP_KERNEL);
6419 
6420 	if (!param)
6421 		return -ENOMEM;
6422 
6423 	spin_lock(&resource_alignment_lock);
6424 	kfree(resource_alignment_param);
6425 	resource_alignment_param = param;
6426 	spin_unlock(&resource_alignment_lock);
6427 	return count;
6428 }
6429 
6430 static BUS_ATTR_RW(resource_alignment);
6431 
6432 static int __init pci_resource_alignment_sysfs_init(void)
6433 {
6434 	return bus_create_file(&pci_bus_type,
6435 					&bus_attr_resource_alignment);
6436 }
6437 late_initcall(pci_resource_alignment_sysfs_init);
6438 
6439 static void pci_no_domains(void)
6440 {
6441 #ifdef CONFIG_PCI_DOMAINS
6442 	pci_domains_supported = 0;
6443 #endif
6444 }
6445 
6446 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6447 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6448 
6449 static int pci_get_new_domain_nr(void)
6450 {
6451 	return atomic_inc_return(&__domain_nr);
6452 }
6453 
6454 static int of_pci_bus_find_domain_nr(struct device *parent)
6455 {
6456 	static int use_dt_domains = -1;
6457 	int domain = -1;
6458 
6459 	if (parent)
6460 		domain = of_get_pci_domain_nr(parent->of_node);
6461 
6462 	/*
6463 	 * Check DT domain and use_dt_domains values.
6464 	 *
6465 	 * If DT domain property is valid (domain >= 0) and
6466 	 * use_dt_domains != 0, the DT assignment is valid since this means
6467 	 * we have not previously allocated a domain number by using
6468 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6469 	 * 1, to indicate that we have just assigned a domain number from
6470 	 * DT.
6471 	 *
6472 	 * If DT domain property value is not valid (ie domain < 0), and we
6473 	 * have not previously assigned a domain number from DT
6474 	 * (use_dt_domains != 1) we should assign a domain number by
6475 	 * using the:
6476 	 *
6477 	 * pci_get_new_domain_nr()
6478 	 *
6479 	 * API and update the use_dt_domains value to keep track of method we
6480 	 * are using to assign domain numbers (use_dt_domains = 0).
6481 	 *
6482 	 * All other combinations imply we have a platform that is trying
6483 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6484 	 * which is a recipe for domain mishandling and it is prevented by
6485 	 * invalidating the domain value (domain = -1) and printing a
6486 	 * corresponding error.
6487 	 */
6488 	if (domain >= 0 && use_dt_domains) {
6489 		use_dt_domains = 1;
6490 	} else if (domain < 0 && use_dt_domains != 1) {
6491 		use_dt_domains = 0;
6492 		domain = pci_get_new_domain_nr();
6493 	} else {
6494 		if (parent)
6495 			pr_err("Node %pOF has ", parent->of_node);
6496 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6497 		domain = -1;
6498 	}
6499 
6500 	return domain;
6501 }
6502 
6503 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6504 {
6505 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6506 			       acpi_pci_bus_find_domain_nr(bus);
6507 }
6508 #endif
6509 
6510 /**
6511  * pci_ext_cfg_avail - can we access extended PCI config space?
6512  *
6513  * Returns 1 if we can access PCI extended config space (offsets
6514  * greater than 0xff). This is the default implementation. Architecture
6515  * implementations can override this.
6516  */
6517 int __weak pci_ext_cfg_avail(void)
6518 {
6519 	return 1;
6520 }
6521 
6522 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6523 {
6524 }
6525 EXPORT_SYMBOL(pci_fixup_cardbus);
6526 
6527 static int __init pci_setup(char *str)
6528 {
6529 	while (str) {
6530 		char *k = strchr(str, ',');
6531 		if (k)
6532 			*k++ = 0;
6533 		if (*str && (str = pcibios_setup(str)) && *str) {
6534 			if (!strcmp(str, "nomsi")) {
6535 				pci_no_msi();
6536 			} else if (!strncmp(str, "noats", 5)) {
6537 				pr_info("PCIe: ATS is disabled\n");
6538 				pcie_ats_disabled = true;
6539 			} else if (!strcmp(str, "noaer")) {
6540 				pci_no_aer();
6541 			} else if (!strcmp(str, "earlydump")) {
6542 				pci_early_dump = true;
6543 			} else if (!strncmp(str, "realloc=", 8)) {
6544 				pci_realloc_get_opt(str + 8);
6545 			} else if (!strncmp(str, "realloc", 7)) {
6546 				pci_realloc_get_opt("on");
6547 			} else if (!strcmp(str, "nodomains")) {
6548 				pci_no_domains();
6549 			} else if (!strncmp(str, "noari", 5)) {
6550 				pcie_ari_disabled = true;
6551 			} else if (!strncmp(str, "cbiosize=", 9)) {
6552 				pci_cardbus_io_size = memparse(str + 9, &str);
6553 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6554 				pci_cardbus_mem_size = memparse(str + 10, &str);
6555 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6556 				resource_alignment_param = str + 19;
6557 			} else if (!strncmp(str, "ecrc=", 5)) {
6558 				pcie_ecrc_get_policy(str + 5);
6559 			} else if (!strncmp(str, "hpiosize=", 9)) {
6560 				pci_hotplug_io_size = memparse(str + 9, &str);
6561 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6562 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6563 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6564 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6565 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6566 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6567 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6568 			} else if (!strncmp(str, "hpbussize=", 10)) {
6569 				pci_hotplug_bus_size =
6570 					simple_strtoul(str + 10, &str, 0);
6571 				if (pci_hotplug_bus_size > 0xff)
6572 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6573 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6574 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6575 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6576 				pcie_bus_config = PCIE_BUS_SAFE;
6577 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6578 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6579 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6580 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6581 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6582 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6583 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6584 				disable_acs_redir_param = str + 18;
6585 			} else {
6586 				pr_err("PCI: Unknown option `%s'\n", str);
6587 			}
6588 		}
6589 		str = k;
6590 	}
6591 	return 0;
6592 }
6593 early_param("pci", pci_setup);
6594 
6595 /*
6596  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6597  * in pci_setup(), above, to point to data in the __initdata section which
6598  * will be freed after the init sequence is complete. We can't allocate memory
6599  * in pci_setup() because some architectures do not have any memory allocation
6600  * service available during an early_param() call. So we allocate memory and
6601  * copy the variable here before the init section is freed.
6602  *
6603  */
6604 static int __init pci_realloc_setup_params(void)
6605 {
6606 	resource_alignment_param = kstrdup(resource_alignment_param,
6607 					   GFP_KERNEL);
6608 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6609 
6610 	return 0;
6611 }
6612 pure_initcall(pci_realloc_setup_params);
6613